1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include "delayed-inode.h" 30 #include "ctree.h" 31 #include "disk-io.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "props.h" 36 #include "xattr.h" 37 #include "volumes.h" 38 #include "export.h" 39 #include "compression.h" 40 #include "rcu-string.h" 41 #include "dev-replace.h" 42 #include "free-space-cache.h" 43 #include "backref.h" 44 #include "space-info.h" 45 #include "sysfs.h" 46 #include "zoned.h" 47 #include "tests/btrfs-tests.h" 48 #include "block-group.h" 49 #include "discard.h" 50 #include "qgroup.h" 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/btrfs.h> 53 54 static const struct super_operations btrfs_super_ops; 55 56 /* 57 * Types for mounting the default subvolume and a subvolume explicitly 58 * requested by subvol=/path. That way the callchain is straightforward and we 59 * don't have to play tricks with the mount options and recursive calls to 60 * btrfs_mount. 61 * 62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 63 */ 64 static struct file_system_type btrfs_fs_type; 65 static struct file_system_type btrfs_root_fs_type; 66 67 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 68 69 #ifdef CONFIG_PRINTK 70 71 #define STATE_STRING_PREFACE ": state " 72 #define STATE_STRING_BUF_LEN (sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT) 73 74 /* 75 * Characters to print to indicate error conditions or uncommon filesystem sate. 76 * RO is not an error. 77 */ 78 static const char fs_state_chars[] = { 79 [BTRFS_FS_STATE_ERROR] = 'E', 80 [BTRFS_FS_STATE_REMOUNTING] = 'M', 81 [BTRFS_FS_STATE_RO] = 0, 82 [BTRFS_FS_STATE_TRANS_ABORTED] = 'A', 83 [BTRFS_FS_STATE_DEV_REPLACING] = 'R', 84 [BTRFS_FS_STATE_DUMMY_FS_INFO] = 0, 85 [BTRFS_FS_STATE_NO_CSUMS] = 'C', 86 [BTRFS_FS_STATE_LOG_CLEANUP_ERROR] = 'L', 87 }; 88 89 static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf) 90 { 91 unsigned int bit; 92 bool states_printed = false; 93 unsigned long fs_state = READ_ONCE(info->fs_state); 94 char *curr = buf; 95 96 memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE)); 97 curr += sizeof(STATE_STRING_PREFACE) - 1; 98 99 for_each_set_bit(bit, &fs_state, sizeof(fs_state)) { 100 WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT); 101 if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) { 102 *curr++ = fs_state_chars[bit]; 103 states_printed = true; 104 } 105 } 106 107 /* If no states were printed, reset the buffer */ 108 if (!states_printed) 109 curr = buf; 110 111 *curr++ = 0; 112 } 113 #endif 114 115 /* 116 * Generally the error codes correspond to their respective errors, but there 117 * are a few special cases. 118 * 119 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 120 * instance will return EUCLEAN if any of the blocks are corrupted in 121 * a way that is problematic. We want to reserve EUCLEAN for these 122 * sort of corruptions. 123 * 124 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 125 * need to use EROFS for this case. We will have no idea of the 126 * original failure, that will have been reported at the time we tripped 127 * over the error. Each subsequent error that doesn't have any context 128 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 129 */ 130 const char * __attribute_const__ btrfs_decode_error(int errno) 131 { 132 char *errstr = "unknown"; 133 134 switch (errno) { 135 case -ENOENT: /* -2 */ 136 errstr = "No such entry"; 137 break; 138 case -EIO: /* -5 */ 139 errstr = "IO failure"; 140 break; 141 case -ENOMEM: /* -12*/ 142 errstr = "Out of memory"; 143 break; 144 case -EEXIST: /* -17 */ 145 errstr = "Object already exists"; 146 break; 147 case -ENOSPC: /* -28 */ 148 errstr = "No space left"; 149 break; 150 case -EROFS: /* -30 */ 151 errstr = "Readonly filesystem"; 152 break; 153 case -EOPNOTSUPP: /* -95 */ 154 errstr = "Operation not supported"; 155 break; 156 case -EUCLEAN: /* -117 */ 157 errstr = "Filesystem corrupted"; 158 break; 159 case -EDQUOT: /* -122 */ 160 errstr = "Quota exceeded"; 161 break; 162 } 163 164 return errstr; 165 } 166 167 /* 168 * __btrfs_handle_fs_error decodes expected errors from the caller and 169 * invokes the appropriate error response. 170 */ 171 __cold 172 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 173 unsigned int line, int errno, const char *fmt, ...) 174 { 175 struct super_block *sb = fs_info->sb; 176 #ifdef CONFIG_PRINTK 177 char statestr[STATE_STRING_BUF_LEN]; 178 const char *errstr; 179 #endif 180 181 /* 182 * Special case: if the error is EROFS, and we're already 183 * under SB_RDONLY, then it is safe here. 184 */ 185 if (errno == -EROFS && sb_rdonly(sb)) 186 return; 187 188 #ifdef CONFIG_PRINTK 189 errstr = btrfs_decode_error(errno); 190 btrfs_state_to_string(fs_info, statestr); 191 if (fmt) { 192 struct va_format vaf; 193 va_list args; 194 195 va_start(args, fmt); 196 vaf.fmt = fmt; 197 vaf.va = &args; 198 199 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n", 200 sb->s_id, statestr, function, line, errno, errstr, &vaf); 201 va_end(args); 202 } else { 203 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n", 204 sb->s_id, statestr, function, line, errno, errstr); 205 } 206 #endif 207 208 /* 209 * Today we only save the error info to memory. Long term we'll 210 * also send it down to the disk 211 */ 212 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 213 214 /* Don't go through full error handling during mount */ 215 if (!(sb->s_flags & SB_BORN)) 216 return; 217 218 if (sb_rdonly(sb)) 219 return; 220 221 btrfs_discard_stop(fs_info); 222 223 /* btrfs handle error by forcing the filesystem readonly */ 224 btrfs_set_sb_rdonly(sb); 225 btrfs_info(fs_info, "forced readonly"); 226 /* 227 * Note that a running device replace operation is not canceled here 228 * although there is no way to update the progress. It would add the 229 * risk of a deadlock, therefore the canceling is omitted. The only 230 * penalty is that some I/O remains active until the procedure 231 * completes. The next time when the filesystem is mounted writable 232 * again, the device replace operation continues. 233 */ 234 } 235 236 #ifdef CONFIG_PRINTK 237 static const char * const logtypes[] = { 238 "emergency", 239 "alert", 240 "critical", 241 "error", 242 "warning", 243 "notice", 244 "info", 245 "debug", 246 }; 247 248 249 /* 250 * Use one ratelimit state per log level so that a flood of less important 251 * messages doesn't cause more important ones to be dropped. 252 */ 253 static struct ratelimit_state printk_limits[] = { 254 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 255 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 256 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 257 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 258 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 259 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 260 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 261 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 262 }; 263 264 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 265 { 266 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 267 struct va_format vaf; 268 va_list args; 269 int kern_level; 270 const char *type = logtypes[4]; 271 struct ratelimit_state *ratelimit = &printk_limits[4]; 272 273 va_start(args, fmt); 274 275 while ((kern_level = printk_get_level(fmt)) != 0) { 276 size_t size = printk_skip_level(fmt) - fmt; 277 278 if (kern_level >= '0' && kern_level <= '7') { 279 memcpy(lvl, fmt, size); 280 lvl[size] = '\0'; 281 type = logtypes[kern_level - '0']; 282 ratelimit = &printk_limits[kern_level - '0']; 283 } 284 fmt += size; 285 } 286 287 vaf.fmt = fmt; 288 vaf.va = &args; 289 290 if (__ratelimit(ratelimit)) { 291 if (fs_info) { 292 char statestr[STATE_STRING_BUF_LEN]; 293 294 btrfs_state_to_string(fs_info, statestr); 295 printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type, 296 fs_info->sb->s_id, statestr, &vaf); 297 } else { 298 printk("%sBTRFS %s: %pV\n", lvl, type, &vaf); 299 } 300 } 301 302 va_end(args); 303 } 304 #endif 305 306 #if BITS_PER_LONG == 32 307 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info) 308 { 309 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) { 310 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses"); 311 btrfs_warn(fs_info, 312 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT", 313 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 314 btrfs_warn(fs_info, 315 "please consider upgrading to 64bit kernel/hardware"); 316 } 317 } 318 319 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info) 320 { 321 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) { 322 btrfs_err(fs_info, "reached 32bit limit for logical addresses"); 323 btrfs_err(fs_info, 324 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed", 325 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 326 btrfs_err(fs_info, 327 "please consider upgrading to 64bit kernel/hardware"); 328 } 329 } 330 #endif 331 332 /* 333 * We only mark the transaction aborted and then set the file system read-only. 334 * This will prevent new transactions from starting or trying to join this 335 * one. 336 * 337 * This means that error recovery at the call site is limited to freeing 338 * any local memory allocations and passing the error code up without 339 * further cleanup. The transaction should complete as it normally would 340 * in the call path but will return -EIO. 341 * 342 * We'll complete the cleanup in btrfs_end_transaction and 343 * btrfs_commit_transaction. 344 */ 345 __cold 346 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 347 const char *function, 348 unsigned int line, int errno) 349 { 350 struct btrfs_fs_info *fs_info = trans->fs_info; 351 352 WRITE_ONCE(trans->aborted, errno); 353 WRITE_ONCE(trans->transaction->aborted, errno); 354 /* Wake up anybody who may be waiting on this transaction */ 355 wake_up(&fs_info->transaction_wait); 356 wake_up(&fs_info->transaction_blocked_wait); 357 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 358 } 359 /* 360 * __btrfs_panic decodes unexpected, fatal errors from the caller, 361 * issues an alert, and either panics or BUGs, depending on mount options. 362 */ 363 __cold 364 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 365 unsigned int line, int errno, const char *fmt, ...) 366 { 367 char *s_id = "<unknown>"; 368 const char *errstr; 369 struct va_format vaf = { .fmt = fmt }; 370 va_list args; 371 372 if (fs_info) 373 s_id = fs_info->sb->s_id; 374 375 va_start(args, fmt); 376 vaf.va = &args; 377 378 errstr = btrfs_decode_error(errno); 379 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 380 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 381 s_id, function, line, &vaf, errno, errstr); 382 383 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 384 function, line, &vaf, errno, errstr); 385 va_end(args); 386 /* Caller calls BUG() */ 387 } 388 389 static void btrfs_put_super(struct super_block *sb) 390 { 391 close_ctree(btrfs_sb(sb)); 392 } 393 394 enum { 395 Opt_acl, Opt_noacl, 396 Opt_clear_cache, 397 Opt_commit_interval, 398 Opt_compress, 399 Opt_compress_force, 400 Opt_compress_force_type, 401 Opt_compress_type, 402 Opt_degraded, 403 Opt_device, 404 Opt_fatal_errors, 405 Opt_flushoncommit, Opt_noflushoncommit, 406 Opt_max_inline, 407 Opt_barrier, Opt_nobarrier, 408 Opt_datacow, Opt_nodatacow, 409 Opt_datasum, Opt_nodatasum, 410 Opt_defrag, Opt_nodefrag, 411 Opt_discard, Opt_nodiscard, 412 Opt_discard_mode, 413 Opt_norecovery, 414 Opt_ratio, 415 Opt_rescan_uuid_tree, 416 Opt_skip_balance, 417 Opt_space_cache, Opt_no_space_cache, 418 Opt_space_cache_version, 419 Opt_ssd, Opt_nossd, 420 Opt_ssd_spread, Opt_nossd_spread, 421 Opt_subvol, 422 Opt_subvol_empty, 423 Opt_subvolid, 424 Opt_thread_pool, 425 Opt_treelog, Opt_notreelog, 426 Opt_user_subvol_rm_allowed, 427 428 /* Rescue options */ 429 Opt_rescue, 430 Opt_usebackuproot, 431 Opt_nologreplay, 432 Opt_ignorebadroots, 433 Opt_ignoredatacsums, 434 Opt_rescue_all, 435 436 /* Deprecated options */ 437 Opt_recovery, 438 Opt_inode_cache, Opt_noinode_cache, 439 440 /* Debugging options */ 441 Opt_check_integrity, 442 Opt_check_integrity_including_extent_data, 443 Opt_check_integrity_print_mask, 444 Opt_enospc_debug, Opt_noenospc_debug, 445 #ifdef CONFIG_BTRFS_DEBUG 446 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 447 #endif 448 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 449 Opt_ref_verify, 450 #endif 451 Opt_err, 452 }; 453 454 static const match_table_t tokens = { 455 {Opt_acl, "acl"}, 456 {Opt_noacl, "noacl"}, 457 {Opt_clear_cache, "clear_cache"}, 458 {Opt_commit_interval, "commit=%u"}, 459 {Opt_compress, "compress"}, 460 {Opt_compress_type, "compress=%s"}, 461 {Opt_compress_force, "compress-force"}, 462 {Opt_compress_force_type, "compress-force=%s"}, 463 {Opt_degraded, "degraded"}, 464 {Opt_device, "device=%s"}, 465 {Opt_fatal_errors, "fatal_errors=%s"}, 466 {Opt_flushoncommit, "flushoncommit"}, 467 {Opt_noflushoncommit, "noflushoncommit"}, 468 {Opt_inode_cache, "inode_cache"}, 469 {Opt_noinode_cache, "noinode_cache"}, 470 {Opt_max_inline, "max_inline=%s"}, 471 {Opt_barrier, "barrier"}, 472 {Opt_nobarrier, "nobarrier"}, 473 {Opt_datacow, "datacow"}, 474 {Opt_nodatacow, "nodatacow"}, 475 {Opt_datasum, "datasum"}, 476 {Opt_nodatasum, "nodatasum"}, 477 {Opt_defrag, "autodefrag"}, 478 {Opt_nodefrag, "noautodefrag"}, 479 {Opt_discard, "discard"}, 480 {Opt_discard_mode, "discard=%s"}, 481 {Opt_nodiscard, "nodiscard"}, 482 {Opt_norecovery, "norecovery"}, 483 {Opt_ratio, "metadata_ratio=%u"}, 484 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 485 {Opt_skip_balance, "skip_balance"}, 486 {Opt_space_cache, "space_cache"}, 487 {Opt_no_space_cache, "nospace_cache"}, 488 {Opt_space_cache_version, "space_cache=%s"}, 489 {Opt_ssd, "ssd"}, 490 {Opt_nossd, "nossd"}, 491 {Opt_ssd_spread, "ssd_spread"}, 492 {Opt_nossd_spread, "nossd_spread"}, 493 {Opt_subvol, "subvol=%s"}, 494 {Opt_subvol_empty, "subvol="}, 495 {Opt_subvolid, "subvolid=%s"}, 496 {Opt_thread_pool, "thread_pool=%u"}, 497 {Opt_treelog, "treelog"}, 498 {Opt_notreelog, "notreelog"}, 499 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 500 501 /* Rescue options */ 502 {Opt_rescue, "rescue=%s"}, 503 /* Deprecated, with alias rescue=nologreplay */ 504 {Opt_nologreplay, "nologreplay"}, 505 /* Deprecated, with alias rescue=usebackuproot */ 506 {Opt_usebackuproot, "usebackuproot"}, 507 508 /* Deprecated options */ 509 {Opt_recovery, "recovery"}, 510 511 /* Debugging options */ 512 {Opt_check_integrity, "check_int"}, 513 {Opt_check_integrity_including_extent_data, "check_int_data"}, 514 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 515 {Opt_enospc_debug, "enospc_debug"}, 516 {Opt_noenospc_debug, "noenospc_debug"}, 517 #ifdef CONFIG_BTRFS_DEBUG 518 {Opt_fragment_data, "fragment=data"}, 519 {Opt_fragment_metadata, "fragment=metadata"}, 520 {Opt_fragment_all, "fragment=all"}, 521 #endif 522 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 523 {Opt_ref_verify, "ref_verify"}, 524 #endif 525 {Opt_err, NULL}, 526 }; 527 528 static const match_table_t rescue_tokens = { 529 {Opt_usebackuproot, "usebackuproot"}, 530 {Opt_nologreplay, "nologreplay"}, 531 {Opt_ignorebadroots, "ignorebadroots"}, 532 {Opt_ignorebadroots, "ibadroots"}, 533 {Opt_ignoredatacsums, "ignoredatacsums"}, 534 {Opt_ignoredatacsums, "idatacsums"}, 535 {Opt_rescue_all, "all"}, 536 {Opt_err, NULL}, 537 }; 538 539 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt, 540 const char *opt_name) 541 { 542 if (fs_info->mount_opt & opt) { 543 btrfs_err(fs_info, "%s must be used with ro mount option", 544 opt_name); 545 return true; 546 } 547 return false; 548 } 549 550 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 551 { 552 char *opts; 553 char *orig; 554 char *p; 555 substring_t args[MAX_OPT_ARGS]; 556 int ret = 0; 557 558 opts = kstrdup(options, GFP_KERNEL); 559 if (!opts) 560 return -ENOMEM; 561 orig = opts; 562 563 while ((p = strsep(&opts, ":")) != NULL) { 564 int token; 565 566 if (!*p) 567 continue; 568 token = match_token(p, rescue_tokens, args); 569 switch (token){ 570 case Opt_usebackuproot: 571 btrfs_info(info, 572 "trying to use backup root at mount time"); 573 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 574 break; 575 case Opt_nologreplay: 576 btrfs_set_and_info(info, NOLOGREPLAY, 577 "disabling log replay at mount time"); 578 break; 579 case Opt_ignorebadroots: 580 btrfs_set_and_info(info, IGNOREBADROOTS, 581 "ignoring bad roots"); 582 break; 583 case Opt_ignoredatacsums: 584 btrfs_set_and_info(info, IGNOREDATACSUMS, 585 "ignoring data csums"); 586 break; 587 case Opt_rescue_all: 588 btrfs_info(info, "enabling all of the rescue options"); 589 btrfs_set_and_info(info, IGNOREDATACSUMS, 590 "ignoring data csums"); 591 btrfs_set_and_info(info, IGNOREBADROOTS, 592 "ignoring bad roots"); 593 btrfs_set_and_info(info, NOLOGREPLAY, 594 "disabling log replay at mount time"); 595 break; 596 case Opt_err: 597 btrfs_info(info, "unrecognized rescue option '%s'", p); 598 ret = -EINVAL; 599 goto out; 600 default: 601 break; 602 } 603 604 } 605 out: 606 kfree(orig); 607 return ret; 608 } 609 610 /* 611 * Regular mount options parser. Everything that is needed only when 612 * reading in a new superblock is parsed here. 613 * XXX JDM: This needs to be cleaned up for remount. 614 */ 615 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 616 unsigned long new_flags) 617 { 618 substring_t args[MAX_OPT_ARGS]; 619 char *p, *num; 620 int intarg; 621 int ret = 0; 622 char *compress_type; 623 bool compress_force = false; 624 enum btrfs_compression_type saved_compress_type; 625 int saved_compress_level; 626 bool saved_compress_force; 627 int no_compress = 0; 628 629 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 630 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 631 else if (btrfs_free_space_cache_v1_active(info)) { 632 if (btrfs_is_zoned(info)) { 633 btrfs_info(info, 634 "zoned: clearing existing space cache"); 635 btrfs_set_super_cache_generation(info->super_copy, 0); 636 } else { 637 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 638 } 639 } 640 641 /* 642 * Even the options are empty, we still need to do extra check 643 * against new flags 644 */ 645 if (!options) 646 goto check; 647 648 while ((p = strsep(&options, ",")) != NULL) { 649 int token; 650 if (!*p) 651 continue; 652 653 token = match_token(p, tokens, args); 654 switch (token) { 655 case Opt_degraded: 656 btrfs_info(info, "allowing degraded mounts"); 657 btrfs_set_opt(info->mount_opt, DEGRADED); 658 break; 659 case Opt_subvol: 660 case Opt_subvol_empty: 661 case Opt_subvolid: 662 case Opt_device: 663 /* 664 * These are parsed by btrfs_parse_subvol_options or 665 * btrfs_parse_device_options and can be ignored here. 666 */ 667 break; 668 case Opt_nodatasum: 669 btrfs_set_and_info(info, NODATASUM, 670 "setting nodatasum"); 671 break; 672 case Opt_datasum: 673 if (btrfs_test_opt(info, NODATASUM)) { 674 if (btrfs_test_opt(info, NODATACOW)) 675 btrfs_info(info, 676 "setting datasum, datacow enabled"); 677 else 678 btrfs_info(info, "setting datasum"); 679 } 680 btrfs_clear_opt(info->mount_opt, NODATACOW); 681 btrfs_clear_opt(info->mount_opt, NODATASUM); 682 break; 683 case Opt_nodatacow: 684 if (!btrfs_test_opt(info, NODATACOW)) { 685 if (!btrfs_test_opt(info, COMPRESS) || 686 !btrfs_test_opt(info, FORCE_COMPRESS)) { 687 btrfs_info(info, 688 "setting nodatacow, compression disabled"); 689 } else { 690 btrfs_info(info, "setting nodatacow"); 691 } 692 } 693 btrfs_clear_opt(info->mount_opt, COMPRESS); 694 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 695 btrfs_set_opt(info->mount_opt, NODATACOW); 696 btrfs_set_opt(info->mount_opt, NODATASUM); 697 break; 698 case Opt_datacow: 699 btrfs_clear_and_info(info, NODATACOW, 700 "setting datacow"); 701 break; 702 case Opt_compress_force: 703 case Opt_compress_force_type: 704 compress_force = true; 705 fallthrough; 706 case Opt_compress: 707 case Opt_compress_type: 708 saved_compress_type = btrfs_test_opt(info, 709 COMPRESS) ? 710 info->compress_type : BTRFS_COMPRESS_NONE; 711 saved_compress_force = 712 btrfs_test_opt(info, FORCE_COMPRESS); 713 saved_compress_level = info->compress_level; 714 if (token == Opt_compress || 715 token == Opt_compress_force || 716 strncmp(args[0].from, "zlib", 4) == 0) { 717 compress_type = "zlib"; 718 719 info->compress_type = BTRFS_COMPRESS_ZLIB; 720 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 721 /* 722 * args[0] contains uninitialized data since 723 * for these tokens we don't expect any 724 * parameter. 725 */ 726 if (token != Opt_compress && 727 token != Opt_compress_force) 728 info->compress_level = 729 btrfs_compress_str2level( 730 BTRFS_COMPRESS_ZLIB, 731 args[0].from + 4); 732 btrfs_set_opt(info->mount_opt, COMPRESS); 733 btrfs_clear_opt(info->mount_opt, NODATACOW); 734 btrfs_clear_opt(info->mount_opt, NODATASUM); 735 no_compress = 0; 736 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 737 compress_type = "lzo"; 738 info->compress_type = BTRFS_COMPRESS_LZO; 739 info->compress_level = 0; 740 btrfs_set_opt(info->mount_opt, COMPRESS); 741 btrfs_clear_opt(info->mount_opt, NODATACOW); 742 btrfs_clear_opt(info->mount_opt, NODATASUM); 743 btrfs_set_fs_incompat(info, COMPRESS_LZO); 744 no_compress = 0; 745 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 746 compress_type = "zstd"; 747 info->compress_type = BTRFS_COMPRESS_ZSTD; 748 info->compress_level = 749 btrfs_compress_str2level( 750 BTRFS_COMPRESS_ZSTD, 751 args[0].from + 4); 752 btrfs_set_opt(info->mount_opt, COMPRESS); 753 btrfs_clear_opt(info->mount_opt, NODATACOW); 754 btrfs_clear_opt(info->mount_opt, NODATASUM); 755 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 756 no_compress = 0; 757 } else if (strncmp(args[0].from, "no", 2) == 0) { 758 compress_type = "no"; 759 info->compress_level = 0; 760 info->compress_type = 0; 761 btrfs_clear_opt(info->mount_opt, COMPRESS); 762 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 763 compress_force = false; 764 no_compress++; 765 } else { 766 ret = -EINVAL; 767 goto out; 768 } 769 770 if (compress_force) { 771 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 772 } else { 773 /* 774 * If we remount from compress-force=xxx to 775 * compress=xxx, we need clear FORCE_COMPRESS 776 * flag, otherwise, there is no way for users 777 * to disable forcible compression separately. 778 */ 779 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 780 } 781 if (no_compress == 1) { 782 btrfs_info(info, "use no compression"); 783 } else if ((info->compress_type != saved_compress_type) || 784 (compress_force != saved_compress_force) || 785 (info->compress_level != saved_compress_level)) { 786 btrfs_info(info, "%s %s compression, level %d", 787 (compress_force) ? "force" : "use", 788 compress_type, info->compress_level); 789 } 790 compress_force = false; 791 break; 792 case Opt_ssd: 793 btrfs_set_and_info(info, SSD, 794 "enabling ssd optimizations"); 795 btrfs_clear_opt(info->mount_opt, NOSSD); 796 break; 797 case Opt_ssd_spread: 798 btrfs_set_and_info(info, SSD, 799 "enabling ssd optimizations"); 800 btrfs_set_and_info(info, SSD_SPREAD, 801 "using spread ssd allocation scheme"); 802 btrfs_clear_opt(info->mount_opt, NOSSD); 803 break; 804 case Opt_nossd: 805 btrfs_set_opt(info->mount_opt, NOSSD); 806 btrfs_clear_and_info(info, SSD, 807 "not using ssd optimizations"); 808 fallthrough; 809 case Opt_nossd_spread: 810 btrfs_clear_and_info(info, SSD_SPREAD, 811 "not using spread ssd allocation scheme"); 812 break; 813 case Opt_barrier: 814 btrfs_clear_and_info(info, NOBARRIER, 815 "turning on barriers"); 816 break; 817 case Opt_nobarrier: 818 btrfs_set_and_info(info, NOBARRIER, 819 "turning off barriers"); 820 break; 821 case Opt_thread_pool: 822 ret = match_int(&args[0], &intarg); 823 if (ret) { 824 goto out; 825 } else if (intarg == 0) { 826 ret = -EINVAL; 827 goto out; 828 } 829 info->thread_pool_size = intarg; 830 break; 831 case Opt_max_inline: 832 num = match_strdup(&args[0]); 833 if (num) { 834 info->max_inline = memparse(num, NULL); 835 kfree(num); 836 837 if (info->max_inline) { 838 info->max_inline = min_t(u64, 839 info->max_inline, 840 info->sectorsize); 841 } 842 btrfs_info(info, "max_inline at %llu", 843 info->max_inline); 844 } else { 845 ret = -ENOMEM; 846 goto out; 847 } 848 break; 849 case Opt_acl: 850 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 851 info->sb->s_flags |= SB_POSIXACL; 852 break; 853 #else 854 btrfs_err(info, "support for ACL not compiled in!"); 855 ret = -EINVAL; 856 goto out; 857 #endif 858 case Opt_noacl: 859 info->sb->s_flags &= ~SB_POSIXACL; 860 break; 861 case Opt_notreelog: 862 btrfs_set_and_info(info, NOTREELOG, 863 "disabling tree log"); 864 break; 865 case Opt_treelog: 866 btrfs_clear_and_info(info, NOTREELOG, 867 "enabling tree log"); 868 break; 869 case Opt_norecovery: 870 case Opt_nologreplay: 871 btrfs_warn(info, 872 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 873 btrfs_set_and_info(info, NOLOGREPLAY, 874 "disabling log replay at mount time"); 875 break; 876 case Opt_flushoncommit: 877 btrfs_set_and_info(info, FLUSHONCOMMIT, 878 "turning on flush-on-commit"); 879 break; 880 case Opt_noflushoncommit: 881 btrfs_clear_and_info(info, FLUSHONCOMMIT, 882 "turning off flush-on-commit"); 883 break; 884 case Opt_ratio: 885 ret = match_int(&args[0], &intarg); 886 if (ret) 887 goto out; 888 info->metadata_ratio = intarg; 889 btrfs_info(info, "metadata ratio %u", 890 info->metadata_ratio); 891 break; 892 case Opt_discard: 893 case Opt_discard_mode: 894 if (token == Opt_discard || 895 strcmp(args[0].from, "sync") == 0) { 896 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 897 btrfs_set_and_info(info, DISCARD_SYNC, 898 "turning on sync discard"); 899 } else if (strcmp(args[0].from, "async") == 0) { 900 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 901 btrfs_set_and_info(info, DISCARD_ASYNC, 902 "turning on async discard"); 903 } else { 904 ret = -EINVAL; 905 goto out; 906 } 907 break; 908 case Opt_nodiscard: 909 btrfs_clear_and_info(info, DISCARD_SYNC, 910 "turning off discard"); 911 btrfs_clear_and_info(info, DISCARD_ASYNC, 912 "turning off async discard"); 913 break; 914 case Opt_space_cache: 915 case Opt_space_cache_version: 916 /* 917 * We already set FREE_SPACE_TREE above because we have 918 * compat_ro(FREE_SPACE_TREE) set, and we aren't going 919 * to allow v1 to be set for extent tree v2, simply 920 * ignore this setting if we're extent tree v2. 921 */ 922 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 923 break; 924 if (token == Opt_space_cache || 925 strcmp(args[0].from, "v1") == 0) { 926 btrfs_clear_opt(info->mount_opt, 927 FREE_SPACE_TREE); 928 btrfs_set_and_info(info, SPACE_CACHE, 929 "enabling disk space caching"); 930 } else if (strcmp(args[0].from, "v2") == 0) { 931 btrfs_clear_opt(info->mount_opt, 932 SPACE_CACHE); 933 btrfs_set_and_info(info, FREE_SPACE_TREE, 934 "enabling free space tree"); 935 } else { 936 ret = -EINVAL; 937 goto out; 938 } 939 break; 940 case Opt_rescan_uuid_tree: 941 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 942 break; 943 case Opt_no_space_cache: 944 /* 945 * We cannot operate without the free space tree with 946 * extent tree v2, ignore this option. 947 */ 948 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 949 break; 950 if (btrfs_test_opt(info, SPACE_CACHE)) { 951 btrfs_clear_and_info(info, SPACE_CACHE, 952 "disabling disk space caching"); 953 } 954 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 955 btrfs_clear_and_info(info, FREE_SPACE_TREE, 956 "disabling free space tree"); 957 } 958 break; 959 case Opt_inode_cache: 960 case Opt_noinode_cache: 961 btrfs_warn(info, 962 "the 'inode_cache' option is deprecated and has no effect since 5.11"); 963 break; 964 case Opt_clear_cache: 965 /* 966 * We cannot clear the free space tree with extent tree 967 * v2, ignore this option. 968 */ 969 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 970 break; 971 btrfs_set_and_info(info, CLEAR_CACHE, 972 "force clearing of disk cache"); 973 break; 974 case Opt_user_subvol_rm_allowed: 975 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 976 break; 977 case Opt_enospc_debug: 978 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 979 break; 980 case Opt_noenospc_debug: 981 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 982 break; 983 case Opt_defrag: 984 btrfs_set_and_info(info, AUTO_DEFRAG, 985 "enabling auto defrag"); 986 break; 987 case Opt_nodefrag: 988 btrfs_clear_and_info(info, AUTO_DEFRAG, 989 "disabling auto defrag"); 990 break; 991 case Opt_recovery: 992 case Opt_usebackuproot: 993 btrfs_warn(info, 994 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 995 token == Opt_recovery ? "recovery" : 996 "usebackuproot"); 997 btrfs_info(info, 998 "trying to use backup root at mount time"); 999 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 1000 break; 1001 case Opt_skip_balance: 1002 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 1003 break; 1004 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1005 case Opt_check_integrity_including_extent_data: 1006 btrfs_info(info, 1007 "enabling check integrity including extent data"); 1008 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA); 1009 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 1010 break; 1011 case Opt_check_integrity: 1012 btrfs_info(info, "enabling check integrity"); 1013 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 1014 break; 1015 case Opt_check_integrity_print_mask: 1016 ret = match_int(&args[0], &intarg); 1017 if (ret) 1018 goto out; 1019 info->check_integrity_print_mask = intarg; 1020 btrfs_info(info, "check_integrity_print_mask 0x%x", 1021 info->check_integrity_print_mask); 1022 break; 1023 #else 1024 case Opt_check_integrity_including_extent_data: 1025 case Opt_check_integrity: 1026 case Opt_check_integrity_print_mask: 1027 btrfs_err(info, 1028 "support for check_integrity* not compiled in!"); 1029 ret = -EINVAL; 1030 goto out; 1031 #endif 1032 case Opt_fatal_errors: 1033 if (strcmp(args[0].from, "panic") == 0) 1034 btrfs_set_opt(info->mount_opt, 1035 PANIC_ON_FATAL_ERROR); 1036 else if (strcmp(args[0].from, "bug") == 0) 1037 btrfs_clear_opt(info->mount_opt, 1038 PANIC_ON_FATAL_ERROR); 1039 else { 1040 ret = -EINVAL; 1041 goto out; 1042 } 1043 break; 1044 case Opt_commit_interval: 1045 intarg = 0; 1046 ret = match_int(&args[0], &intarg); 1047 if (ret) 1048 goto out; 1049 if (intarg == 0) { 1050 btrfs_info(info, 1051 "using default commit interval %us", 1052 BTRFS_DEFAULT_COMMIT_INTERVAL); 1053 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 1054 } else if (intarg > 300) { 1055 btrfs_warn(info, "excessive commit interval %d", 1056 intarg); 1057 } 1058 info->commit_interval = intarg; 1059 break; 1060 case Opt_rescue: 1061 ret = parse_rescue_options(info, args[0].from); 1062 if (ret < 0) 1063 goto out; 1064 break; 1065 #ifdef CONFIG_BTRFS_DEBUG 1066 case Opt_fragment_all: 1067 btrfs_info(info, "fragmenting all space"); 1068 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 1069 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 1070 break; 1071 case Opt_fragment_metadata: 1072 btrfs_info(info, "fragmenting metadata"); 1073 btrfs_set_opt(info->mount_opt, 1074 FRAGMENT_METADATA); 1075 break; 1076 case Opt_fragment_data: 1077 btrfs_info(info, "fragmenting data"); 1078 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 1079 break; 1080 #endif 1081 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1082 case Opt_ref_verify: 1083 btrfs_info(info, "doing ref verification"); 1084 btrfs_set_opt(info->mount_opt, REF_VERIFY); 1085 break; 1086 #endif 1087 case Opt_err: 1088 btrfs_err(info, "unrecognized mount option '%s'", p); 1089 ret = -EINVAL; 1090 goto out; 1091 default: 1092 break; 1093 } 1094 } 1095 check: 1096 /* We're read-only, don't have to check. */ 1097 if (new_flags & SB_RDONLY) 1098 goto out; 1099 1100 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 1101 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 1102 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")) 1103 ret = -EINVAL; 1104 out: 1105 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 1106 !btrfs_test_opt(info, FREE_SPACE_TREE) && 1107 !btrfs_test_opt(info, CLEAR_CACHE)) { 1108 btrfs_err(info, "cannot disable free space tree"); 1109 ret = -EINVAL; 1110 1111 } 1112 if (!ret) 1113 ret = btrfs_check_mountopts_zoned(info); 1114 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 1115 btrfs_info(info, "disk space caching is enabled"); 1116 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 1117 btrfs_info(info, "using free space tree"); 1118 return ret; 1119 } 1120 1121 /* 1122 * Parse mount options that are required early in the mount process. 1123 * 1124 * All other options will be parsed on much later in the mount process and 1125 * only when we need to allocate a new super block. 1126 */ 1127 static int btrfs_parse_device_options(const char *options, fmode_t flags, 1128 void *holder) 1129 { 1130 substring_t args[MAX_OPT_ARGS]; 1131 char *device_name, *opts, *orig, *p; 1132 struct btrfs_device *device = NULL; 1133 int error = 0; 1134 1135 lockdep_assert_held(&uuid_mutex); 1136 1137 if (!options) 1138 return 0; 1139 1140 /* 1141 * strsep changes the string, duplicate it because btrfs_parse_options 1142 * gets called later 1143 */ 1144 opts = kstrdup(options, GFP_KERNEL); 1145 if (!opts) 1146 return -ENOMEM; 1147 orig = opts; 1148 1149 while ((p = strsep(&opts, ",")) != NULL) { 1150 int token; 1151 1152 if (!*p) 1153 continue; 1154 1155 token = match_token(p, tokens, args); 1156 if (token == Opt_device) { 1157 device_name = match_strdup(&args[0]); 1158 if (!device_name) { 1159 error = -ENOMEM; 1160 goto out; 1161 } 1162 device = btrfs_scan_one_device(device_name, flags, 1163 holder); 1164 kfree(device_name); 1165 if (IS_ERR(device)) { 1166 error = PTR_ERR(device); 1167 goto out; 1168 } 1169 } 1170 } 1171 1172 out: 1173 kfree(orig); 1174 return error; 1175 } 1176 1177 /* 1178 * Parse mount options that are related to subvolume id 1179 * 1180 * The value is later passed to mount_subvol() 1181 */ 1182 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1183 u64 *subvol_objectid) 1184 { 1185 substring_t args[MAX_OPT_ARGS]; 1186 char *opts, *orig, *p; 1187 int error = 0; 1188 u64 subvolid; 1189 1190 if (!options) 1191 return 0; 1192 1193 /* 1194 * strsep changes the string, duplicate it because 1195 * btrfs_parse_device_options gets called later 1196 */ 1197 opts = kstrdup(options, GFP_KERNEL); 1198 if (!opts) 1199 return -ENOMEM; 1200 orig = opts; 1201 1202 while ((p = strsep(&opts, ",")) != NULL) { 1203 int token; 1204 if (!*p) 1205 continue; 1206 1207 token = match_token(p, tokens, args); 1208 switch (token) { 1209 case Opt_subvol: 1210 kfree(*subvol_name); 1211 *subvol_name = match_strdup(&args[0]); 1212 if (!*subvol_name) { 1213 error = -ENOMEM; 1214 goto out; 1215 } 1216 break; 1217 case Opt_subvolid: 1218 error = match_u64(&args[0], &subvolid); 1219 if (error) 1220 goto out; 1221 1222 /* we want the original fs_tree */ 1223 if (subvolid == 0) 1224 subvolid = BTRFS_FS_TREE_OBJECTID; 1225 1226 *subvol_objectid = subvolid; 1227 break; 1228 default: 1229 break; 1230 } 1231 } 1232 1233 out: 1234 kfree(orig); 1235 return error; 1236 } 1237 1238 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1239 u64 subvol_objectid) 1240 { 1241 struct btrfs_root *root = fs_info->tree_root; 1242 struct btrfs_root *fs_root = NULL; 1243 struct btrfs_root_ref *root_ref; 1244 struct btrfs_inode_ref *inode_ref; 1245 struct btrfs_key key; 1246 struct btrfs_path *path = NULL; 1247 char *name = NULL, *ptr; 1248 u64 dirid; 1249 int len; 1250 int ret; 1251 1252 path = btrfs_alloc_path(); 1253 if (!path) { 1254 ret = -ENOMEM; 1255 goto err; 1256 } 1257 1258 name = kmalloc(PATH_MAX, GFP_KERNEL); 1259 if (!name) { 1260 ret = -ENOMEM; 1261 goto err; 1262 } 1263 ptr = name + PATH_MAX - 1; 1264 ptr[0] = '\0'; 1265 1266 /* 1267 * Walk up the subvolume trees in the tree of tree roots by root 1268 * backrefs until we hit the top-level subvolume. 1269 */ 1270 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1271 key.objectid = subvol_objectid; 1272 key.type = BTRFS_ROOT_BACKREF_KEY; 1273 key.offset = (u64)-1; 1274 1275 ret = btrfs_search_backwards(root, &key, path); 1276 if (ret < 0) { 1277 goto err; 1278 } else if (ret > 0) { 1279 ret = -ENOENT; 1280 goto err; 1281 } 1282 1283 subvol_objectid = key.offset; 1284 1285 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1286 struct btrfs_root_ref); 1287 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1288 ptr -= len + 1; 1289 if (ptr < name) { 1290 ret = -ENAMETOOLONG; 1291 goto err; 1292 } 1293 read_extent_buffer(path->nodes[0], ptr + 1, 1294 (unsigned long)(root_ref + 1), len); 1295 ptr[0] = '/'; 1296 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1297 btrfs_release_path(path); 1298 1299 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1300 if (IS_ERR(fs_root)) { 1301 ret = PTR_ERR(fs_root); 1302 fs_root = NULL; 1303 goto err; 1304 } 1305 1306 /* 1307 * Walk up the filesystem tree by inode refs until we hit the 1308 * root directory. 1309 */ 1310 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1311 key.objectid = dirid; 1312 key.type = BTRFS_INODE_REF_KEY; 1313 key.offset = (u64)-1; 1314 1315 ret = btrfs_search_backwards(fs_root, &key, path); 1316 if (ret < 0) { 1317 goto err; 1318 } else if (ret > 0) { 1319 ret = -ENOENT; 1320 goto err; 1321 } 1322 1323 dirid = key.offset; 1324 1325 inode_ref = btrfs_item_ptr(path->nodes[0], 1326 path->slots[0], 1327 struct btrfs_inode_ref); 1328 len = btrfs_inode_ref_name_len(path->nodes[0], 1329 inode_ref); 1330 ptr -= len + 1; 1331 if (ptr < name) { 1332 ret = -ENAMETOOLONG; 1333 goto err; 1334 } 1335 read_extent_buffer(path->nodes[0], ptr + 1, 1336 (unsigned long)(inode_ref + 1), len); 1337 ptr[0] = '/'; 1338 btrfs_release_path(path); 1339 } 1340 btrfs_put_root(fs_root); 1341 fs_root = NULL; 1342 } 1343 1344 btrfs_free_path(path); 1345 if (ptr == name + PATH_MAX - 1) { 1346 name[0] = '/'; 1347 name[1] = '\0'; 1348 } else { 1349 memmove(name, ptr, name + PATH_MAX - ptr); 1350 } 1351 return name; 1352 1353 err: 1354 btrfs_put_root(fs_root); 1355 btrfs_free_path(path); 1356 kfree(name); 1357 return ERR_PTR(ret); 1358 } 1359 1360 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1361 { 1362 struct btrfs_root *root = fs_info->tree_root; 1363 struct btrfs_dir_item *di; 1364 struct btrfs_path *path; 1365 struct btrfs_key location; 1366 u64 dir_id; 1367 1368 path = btrfs_alloc_path(); 1369 if (!path) 1370 return -ENOMEM; 1371 1372 /* 1373 * Find the "default" dir item which points to the root item that we 1374 * will mount by default if we haven't been given a specific subvolume 1375 * to mount. 1376 */ 1377 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1378 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1379 if (IS_ERR(di)) { 1380 btrfs_free_path(path); 1381 return PTR_ERR(di); 1382 } 1383 if (!di) { 1384 /* 1385 * Ok the default dir item isn't there. This is weird since 1386 * it's always been there, but don't freak out, just try and 1387 * mount the top-level subvolume. 1388 */ 1389 btrfs_free_path(path); 1390 *objectid = BTRFS_FS_TREE_OBJECTID; 1391 return 0; 1392 } 1393 1394 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1395 btrfs_free_path(path); 1396 *objectid = location.objectid; 1397 return 0; 1398 } 1399 1400 static int btrfs_fill_super(struct super_block *sb, 1401 struct btrfs_fs_devices *fs_devices, 1402 void *data) 1403 { 1404 struct inode *inode; 1405 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1406 int err; 1407 1408 sb->s_maxbytes = MAX_LFS_FILESIZE; 1409 sb->s_magic = BTRFS_SUPER_MAGIC; 1410 sb->s_op = &btrfs_super_ops; 1411 sb->s_d_op = &btrfs_dentry_operations; 1412 sb->s_export_op = &btrfs_export_ops; 1413 #ifdef CONFIG_FS_VERITY 1414 sb->s_vop = &btrfs_verityops; 1415 #endif 1416 sb->s_xattr = btrfs_xattr_handlers; 1417 sb->s_time_gran = 1; 1418 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1419 sb->s_flags |= SB_POSIXACL; 1420 #endif 1421 sb->s_flags |= SB_I_VERSION; 1422 sb->s_iflags |= SB_I_CGROUPWB; 1423 1424 err = super_setup_bdi(sb); 1425 if (err) { 1426 btrfs_err(fs_info, "super_setup_bdi failed"); 1427 return err; 1428 } 1429 1430 err = open_ctree(sb, fs_devices, (char *)data); 1431 if (err) { 1432 btrfs_err(fs_info, "open_ctree failed"); 1433 return err; 1434 } 1435 1436 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1437 if (IS_ERR(inode)) { 1438 err = PTR_ERR(inode); 1439 goto fail_close; 1440 } 1441 1442 sb->s_root = d_make_root(inode); 1443 if (!sb->s_root) { 1444 err = -ENOMEM; 1445 goto fail_close; 1446 } 1447 1448 sb->s_flags |= SB_ACTIVE; 1449 return 0; 1450 1451 fail_close: 1452 close_ctree(fs_info); 1453 return err; 1454 } 1455 1456 int btrfs_sync_fs(struct super_block *sb, int wait) 1457 { 1458 struct btrfs_trans_handle *trans; 1459 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1460 struct btrfs_root *root = fs_info->tree_root; 1461 1462 trace_btrfs_sync_fs(fs_info, wait); 1463 1464 if (!wait) { 1465 filemap_flush(fs_info->btree_inode->i_mapping); 1466 return 0; 1467 } 1468 1469 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1470 1471 trans = btrfs_attach_transaction_barrier(root); 1472 if (IS_ERR(trans)) { 1473 /* no transaction, don't bother */ 1474 if (PTR_ERR(trans) == -ENOENT) { 1475 /* 1476 * Exit unless we have some pending changes 1477 * that need to go through commit 1478 */ 1479 if (fs_info->pending_changes == 0) 1480 return 0; 1481 /* 1482 * A non-blocking test if the fs is frozen. We must not 1483 * start a new transaction here otherwise a deadlock 1484 * happens. The pending operations are delayed to the 1485 * next commit after thawing. 1486 */ 1487 if (sb_start_write_trylock(sb)) 1488 sb_end_write(sb); 1489 else 1490 return 0; 1491 trans = btrfs_start_transaction(root, 0); 1492 } 1493 if (IS_ERR(trans)) 1494 return PTR_ERR(trans); 1495 } 1496 return btrfs_commit_transaction(trans); 1497 } 1498 1499 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1500 { 1501 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1502 *printed = true; 1503 } 1504 1505 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1506 { 1507 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1508 const char *compress_type; 1509 const char *subvol_name; 1510 bool printed = false; 1511 1512 if (btrfs_test_opt(info, DEGRADED)) 1513 seq_puts(seq, ",degraded"); 1514 if (btrfs_test_opt(info, NODATASUM)) 1515 seq_puts(seq, ",nodatasum"); 1516 if (btrfs_test_opt(info, NODATACOW)) 1517 seq_puts(seq, ",nodatacow"); 1518 if (btrfs_test_opt(info, NOBARRIER)) 1519 seq_puts(seq, ",nobarrier"); 1520 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1521 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1522 if (info->thread_pool_size != min_t(unsigned long, 1523 num_online_cpus() + 2, 8)) 1524 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1525 if (btrfs_test_opt(info, COMPRESS)) { 1526 compress_type = btrfs_compress_type2str(info->compress_type); 1527 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1528 seq_printf(seq, ",compress-force=%s", compress_type); 1529 else 1530 seq_printf(seq, ",compress=%s", compress_type); 1531 if (info->compress_level) 1532 seq_printf(seq, ":%d", info->compress_level); 1533 } 1534 if (btrfs_test_opt(info, NOSSD)) 1535 seq_puts(seq, ",nossd"); 1536 if (btrfs_test_opt(info, SSD_SPREAD)) 1537 seq_puts(seq, ",ssd_spread"); 1538 else if (btrfs_test_opt(info, SSD)) 1539 seq_puts(seq, ",ssd"); 1540 if (btrfs_test_opt(info, NOTREELOG)) 1541 seq_puts(seq, ",notreelog"); 1542 if (btrfs_test_opt(info, NOLOGREPLAY)) 1543 print_rescue_option(seq, "nologreplay", &printed); 1544 if (btrfs_test_opt(info, USEBACKUPROOT)) 1545 print_rescue_option(seq, "usebackuproot", &printed); 1546 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1547 print_rescue_option(seq, "ignorebadroots", &printed); 1548 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1549 print_rescue_option(seq, "ignoredatacsums", &printed); 1550 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1551 seq_puts(seq, ",flushoncommit"); 1552 if (btrfs_test_opt(info, DISCARD_SYNC)) 1553 seq_puts(seq, ",discard"); 1554 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1555 seq_puts(seq, ",discard=async"); 1556 if (!(info->sb->s_flags & SB_POSIXACL)) 1557 seq_puts(seq, ",noacl"); 1558 if (btrfs_free_space_cache_v1_active(info)) 1559 seq_puts(seq, ",space_cache"); 1560 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1561 seq_puts(seq, ",space_cache=v2"); 1562 else 1563 seq_puts(seq, ",nospace_cache"); 1564 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1565 seq_puts(seq, ",rescan_uuid_tree"); 1566 if (btrfs_test_opt(info, CLEAR_CACHE)) 1567 seq_puts(seq, ",clear_cache"); 1568 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1569 seq_puts(seq, ",user_subvol_rm_allowed"); 1570 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1571 seq_puts(seq, ",enospc_debug"); 1572 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1573 seq_puts(seq, ",autodefrag"); 1574 if (btrfs_test_opt(info, SKIP_BALANCE)) 1575 seq_puts(seq, ",skip_balance"); 1576 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1577 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA)) 1578 seq_puts(seq, ",check_int_data"); 1579 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1580 seq_puts(seq, ",check_int"); 1581 if (info->check_integrity_print_mask) 1582 seq_printf(seq, ",check_int_print_mask=%d", 1583 info->check_integrity_print_mask); 1584 #endif 1585 if (info->metadata_ratio) 1586 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1587 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1588 seq_puts(seq, ",fatal_errors=panic"); 1589 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1590 seq_printf(seq, ",commit=%u", info->commit_interval); 1591 #ifdef CONFIG_BTRFS_DEBUG 1592 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1593 seq_puts(seq, ",fragment=data"); 1594 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1595 seq_puts(seq, ",fragment=metadata"); 1596 #endif 1597 if (btrfs_test_opt(info, REF_VERIFY)) 1598 seq_puts(seq, ",ref_verify"); 1599 seq_printf(seq, ",subvolid=%llu", 1600 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1601 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1602 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1603 if (!IS_ERR(subvol_name)) { 1604 seq_puts(seq, ",subvol="); 1605 seq_escape(seq, subvol_name, " \t\n\\"); 1606 kfree(subvol_name); 1607 } 1608 return 0; 1609 } 1610 1611 static int btrfs_test_super(struct super_block *s, void *data) 1612 { 1613 struct btrfs_fs_info *p = data; 1614 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1615 1616 return fs_info->fs_devices == p->fs_devices; 1617 } 1618 1619 static int btrfs_set_super(struct super_block *s, void *data) 1620 { 1621 int err = set_anon_super(s, data); 1622 if (!err) 1623 s->s_fs_info = data; 1624 return err; 1625 } 1626 1627 /* 1628 * subvolumes are identified by ino 256 1629 */ 1630 static inline int is_subvolume_inode(struct inode *inode) 1631 { 1632 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1633 return 1; 1634 return 0; 1635 } 1636 1637 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1638 struct vfsmount *mnt) 1639 { 1640 struct dentry *root; 1641 int ret; 1642 1643 if (!subvol_name) { 1644 if (!subvol_objectid) { 1645 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1646 &subvol_objectid); 1647 if (ret) { 1648 root = ERR_PTR(ret); 1649 goto out; 1650 } 1651 } 1652 subvol_name = btrfs_get_subvol_name_from_objectid( 1653 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1654 if (IS_ERR(subvol_name)) { 1655 root = ERR_CAST(subvol_name); 1656 subvol_name = NULL; 1657 goto out; 1658 } 1659 1660 } 1661 1662 root = mount_subtree(mnt, subvol_name); 1663 /* mount_subtree() drops our reference on the vfsmount. */ 1664 mnt = NULL; 1665 1666 if (!IS_ERR(root)) { 1667 struct super_block *s = root->d_sb; 1668 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1669 struct inode *root_inode = d_inode(root); 1670 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1671 1672 ret = 0; 1673 if (!is_subvolume_inode(root_inode)) { 1674 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1675 subvol_name); 1676 ret = -EINVAL; 1677 } 1678 if (subvol_objectid && root_objectid != subvol_objectid) { 1679 /* 1680 * This will also catch a race condition where a 1681 * subvolume which was passed by ID is renamed and 1682 * another subvolume is renamed over the old location. 1683 */ 1684 btrfs_err(fs_info, 1685 "subvol '%s' does not match subvolid %llu", 1686 subvol_name, subvol_objectid); 1687 ret = -EINVAL; 1688 } 1689 if (ret) { 1690 dput(root); 1691 root = ERR_PTR(ret); 1692 deactivate_locked_super(s); 1693 } 1694 } 1695 1696 out: 1697 mntput(mnt); 1698 kfree(subvol_name); 1699 return root; 1700 } 1701 1702 /* 1703 * Find a superblock for the given device / mount point. 1704 * 1705 * Note: This is based on mount_bdev from fs/super.c with a few additions 1706 * for multiple device setup. Make sure to keep it in sync. 1707 */ 1708 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1709 int flags, const char *device_name, void *data) 1710 { 1711 struct block_device *bdev = NULL; 1712 struct super_block *s; 1713 struct btrfs_device *device = NULL; 1714 struct btrfs_fs_devices *fs_devices = NULL; 1715 struct btrfs_fs_info *fs_info = NULL; 1716 void *new_sec_opts = NULL; 1717 fmode_t mode = FMODE_READ; 1718 int error = 0; 1719 1720 if (!(flags & SB_RDONLY)) 1721 mode |= FMODE_WRITE; 1722 1723 if (data) { 1724 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1725 if (error) 1726 return ERR_PTR(error); 1727 } 1728 1729 /* 1730 * Setup a dummy root and fs_info for test/set super. This is because 1731 * we don't actually fill this stuff out until open_ctree, but we need 1732 * then open_ctree will properly initialize the file system specific 1733 * settings later. btrfs_init_fs_info initializes the static elements 1734 * of the fs_info (locks and such) to make cleanup easier if we find a 1735 * superblock with our given fs_devices later on at sget() time. 1736 */ 1737 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1738 if (!fs_info) { 1739 error = -ENOMEM; 1740 goto error_sec_opts; 1741 } 1742 btrfs_init_fs_info(fs_info); 1743 1744 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1745 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1746 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1747 error = -ENOMEM; 1748 goto error_fs_info; 1749 } 1750 1751 mutex_lock(&uuid_mutex); 1752 error = btrfs_parse_device_options(data, mode, fs_type); 1753 if (error) { 1754 mutex_unlock(&uuid_mutex); 1755 goto error_fs_info; 1756 } 1757 1758 device = btrfs_scan_one_device(device_name, mode, fs_type); 1759 if (IS_ERR(device)) { 1760 mutex_unlock(&uuid_mutex); 1761 error = PTR_ERR(device); 1762 goto error_fs_info; 1763 } 1764 1765 fs_devices = device->fs_devices; 1766 fs_info->fs_devices = fs_devices; 1767 1768 error = btrfs_open_devices(fs_devices, mode, fs_type); 1769 mutex_unlock(&uuid_mutex); 1770 if (error) 1771 goto error_fs_info; 1772 1773 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1774 error = -EACCES; 1775 goto error_close_devices; 1776 } 1777 1778 bdev = fs_devices->latest_dev->bdev; 1779 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1780 fs_info); 1781 if (IS_ERR(s)) { 1782 error = PTR_ERR(s); 1783 goto error_close_devices; 1784 } 1785 1786 if (s->s_root) { 1787 btrfs_close_devices(fs_devices); 1788 btrfs_free_fs_info(fs_info); 1789 if ((flags ^ s->s_flags) & SB_RDONLY) 1790 error = -EBUSY; 1791 } else { 1792 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1793 btrfs_sb(s)->bdev_holder = fs_type; 1794 if (!strstr(crc32c_impl(), "generic")) 1795 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1796 error = btrfs_fill_super(s, fs_devices, data); 1797 } 1798 if (!error) 1799 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1800 security_free_mnt_opts(&new_sec_opts); 1801 if (error) { 1802 deactivate_locked_super(s); 1803 return ERR_PTR(error); 1804 } 1805 1806 return dget(s->s_root); 1807 1808 error_close_devices: 1809 btrfs_close_devices(fs_devices); 1810 error_fs_info: 1811 btrfs_free_fs_info(fs_info); 1812 error_sec_opts: 1813 security_free_mnt_opts(&new_sec_opts); 1814 return ERR_PTR(error); 1815 } 1816 1817 /* 1818 * Mount function which is called by VFS layer. 1819 * 1820 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1821 * which needs vfsmount* of device's root (/). This means device's root has to 1822 * be mounted internally in any case. 1823 * 1824 * Operation flow: 1825 * 1. Parse subvol id related options for later use in mount_subvol(). 1826 * 1827 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1828 * 1829 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1830 * first place. In order to avoid calling btrfs_mount() again, we use 1831 * different file_system_type which is not registered to VFS by 1832 * register_filesystem() (btrfs_root_fs_type). As a result, 1833 * btrfs_mount_root() is called. The return value will be used by 1834 * mount_subtree() in mount_subvol(). 1835 * 1836 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1837 * "btrfs subvolume set-default", mount_subvol() is called always. 1838 */ 1839 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1840 const char *device_name, void *data) 1841 { 1842 struct vfsmount *mnt_root; 1843 struct dentry *root; 1844 char *subvol_name = NULL; 1845 u64 subvol_objectid = 0; 1846 int error = 0; 1847 1848 error = btrfs_parse_subvol_options(data, &subvol_name, 1849 &subvol_objectid); 1850 if (error) { 1851 kfree(subvol_name); 1852 return ERR_PTR(error); 1853 } 1854 1855 /* mount device's root (/) */ 1856 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1857 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1858 if (flags & SB_RDONLY) { 1859 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1860 flags & ~SB_RDONLY, device_name, data); 1861 } else { 1862 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1863 flags | SB_RDONLY, device_name, data); 1864 if (IS_ERR(mnt_root)) { 1865 root = ERR_CAST(mnt_root); 1866 kfree(subvol_name); 1867 goto out; 1868 } 1869 1870 down_write(&mnt_root->mnt_sb->s_umount); 1871 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1872 up_write(&mnt_root->mnt_sb->s_umount); 1873 if (error < 0) { 1874 root = ERR_PTR(error); 1875 mntput(mnt_root); 1876 kfree(subvol_name); 1877 goto out; 1878 } 1879 } 1880 } 1881 if (IS_ERR(mnt_root)) { 1882 root = ERR_CAST(mnt_root); 1883 kfree(subvol_name); 1884 goto out; 1885 } 1886 1887 /* mount_subvol() will free subvol_name and mnt_root */ 1888 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1889 1890 out: 1891 return root; 1892 } 1893 1894 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1895 u32 new_pool_size, u32 old_pool_size) 1896 { 1897 if (new_pool_size == old_pool_size) 1898 return; 1899 1900 fs_info->thread_pool_size = new_pool_size; 1901 1902 btrfs_info(fs_info, "resize thread pool %d -> %d", 1903 old_pool_size, new_pool_size); 1904 1905 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1906 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1907 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1908 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1909 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1910 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1911 new_pool_size); 1912 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1913 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1914 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1915 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1916 new_pool_size); 1917 } 1918 1919 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1920 unsigned long old_opts, int flags) 1921 { 1922 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1923 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1924 (flags & SB_RDONLY))) { 1925 /* wait for any defraggers to finish */ 1926 wait_event(fs_info->transaction_wait, 1927 (atomic_read(&fs_info->defrag_running) == 0)); 1928 if (flags & SB_RDONLY) 1929 sync_filesystem(fs_info->sb); 1930 } 1931 } 1932 1933 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1934 unsigned long old_opts) 1935 { 1936 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1937 1938 /* 1939 * We need to cleanup all defragable inodes if the autodefragment is 1940 * close or the filesystem is read only. 1941 */ 1942 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1943 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1944 btrfs_cleanup_defrag_inodes(fs_info); 1945 } 1946 1947 /* If we toggled discard async */ 1948 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1949 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1950 btrfs_discard_resume(fs_info); 1951 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1952 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1953 btrfs_discard_cleanup(fs_info); 1954 1955 /* If we toggled space cache */ 1956 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1957 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1958 } 1959 1960 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1961 { 1962 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1963 unsigned old_flags = sb->s_flags; 1964 unsigned long old_opts = fs_info->mount_opt; 1965 unsigned long old_compress_type = fs_info->compress_type; 1966 u64 old_max_inline = fs_info->max_inline; 1967 u32 old_thread_pool_size = fs_info->thread_pool_size; 1968 u32 old_metadata_ratio = fs_info->metadata_ratio; 1969 int ret; 1970 1971 sync_filesystem(sb); 1972 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1973 1974 if (data) { 1975 void *new_sec_opts = NULL; 1976 1977 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1978 if (!ret) 1979 ret = security_sb_remount(sb, new_sec_opts); 1980 security_free_mnt_opts(&new_sec_opts); 1981 if (ret) 1982 goto restore; 1983 } 1984 1985 ret = btrfs_parse_options(fs_info, data, *flags); 1986 if (ret) 1987 goto restore; 1988 1989 btrfs_remount_begin(fs_info, old_opts, *flags); 1990 btrfs_resize_thread_pool(fs_info, 1991 fs_info->thread_pool_size, old_thread_pool_size); 1992 1993 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1994 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1995 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) { 1996 btrfs_warn(fs_info, 1997 "remount supports changing free space tree only from ro to rw"); 1998 /* Make sure free space cache options match the state on disk */ 1999 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2000 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 2001 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 2002 } 2003 if (btrfs_free_space_cache_v1_active(fs_info)) { 2004 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 2005 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 2006 } 2007 } 2008 2009 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 2010 goto out; 2011 2012 if (*flags & SB_RDONLY) { 2013 /* 2014 * this also happens on 'umount -rf' or on shutdown, when 2015 * the filesystem is busy. 2016 */ 2017 cancel_work_sync(&fs_info->async_reclaim_work); 2018 cancel_work_sync(&fs_info->async_data_reclaim_work); 2019 2020 btrfs_discard_cleanup(fs_info); 2021 2022 /* wait for the uuid_scan task to finish */ 2023 down(&fs_info->uuid_tree_rescan_sem); 2024 /* avoid complains from lockdep et al. */ 2025 up(&fs_info->uuid_tree_rescan_sem); 2026 2027 btrfs_set_sb_rdonly(sb); 2028 2029 /* 2030 * Setting SB_RDONLY will put the cleaner thread to 2031 * sleep at the next loop if it's already active. 2032 * If it's already asleep, we'll leave unused block 2033 * groups on disk until we're mounted read-write again 2034 * unless we clean them up here. 2035 */ 2036 btrfs_delete_unused_bgs(fs_info); 2037 2038 /* 2039 * The cleaner task could be already running before we set the 2040 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). 2041 * We must make sure that after we finish the remount, i.e. after 2042 * we call btrfs_commit_super(), the cleaner can no longer start 2043 * a transaction - either because it was dropping a dead root, 2044 * running delayed iputs or deleting an unused block group (the 2045 * cleaner picked a block group from the list of unused block 2046 * groups before we were able to in the previous call to 2047 * btrfs_delete_unused_bgs()). 2048 */ 2049 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, 2050 TASK_UNINTERRUPTIBLE); 2051 2052 /* 2053 * We've set the superblock to RO mode, so we might have made 2054 * the cleaner task sleep without running all pending delayed 2055 * iputs. Go through all the delayed iputs here, so that if an 2056 * unmount happens without remounting RW we don't end up at 2057 * finishing close_ctree() with a non-empty list of delayed 2058 * iputs. 2059 */ 2060 btrfs_run_delayed_iputs(fs_info); 2061 2062 btrfs_dev_replace_suspend_for_unmount(fs_info); 2063 btrfs_scrub_cancel(fs_info); 2064 btrfs_pause_balance(fs_info); 2065 2066 /* 2067 * Pause the qgroup rescan worker if it is running. We don't want 2068 * it to be still running after we are in RO mode, as after that, 2069 * by the time we unmount, it might have left a transaction open, 2070 * so we would leak the transaction and/or crash. 2071 */ 2072 btrfs_qgroup_wait_for_completion(fs_info, false); 2073 2074 ret = btrfs_commit_super(fs_info); 2075 if (ret) 2076 goto restore; 2077 } else { 2078 if (BTRFS_FS_ERROR(fs_info)) { 2079 btrfs_err(fs_info, 2080 "Remounting read-write after error is not allowed"); 2081 ret = -EINVAL; 2082 goto restore; 2083 } 2084 if (fs_info->fs_devices->rw_devices == 0) { 2085 ret = -EACCES; 2086 goto restore; 2087 } 2088 2089 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 2090 btrfs_warn(fs_info, 2091 "too many missing devices, writable remount is not allowed"); 2092 ret = -EACCES; 2093 goto restore; 2094 } 2095 2096 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 2097 btrfs_warn(fs_info, 2098 "mount required to replay tree-log, cannot remount read-write"); 2099 ret = -EINVAL; 2100 goto restore; 2101 } 2102 2103 /* 2104 * NOTE: when remounting with a change that does writes, don't 2105 * put it anywhere above this point, as we are not sure to be 2106 * safe to write until we pass the above checks. 2107 */ 2108 ret = btrfs_start_pre_rw_mount(fs_info); 2109 if (ret) 2110 goto restore; 2111 2112 btrfs_clear_sb_rdonly(sb); 2113 2114 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 2115 } 2116 out: 2117 /* 2118 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 2119 * since the absence of the flag means it can be toggled off by remount. 2120 */ 2121 *flags |= SB_I_VERSION; 2122 2123 wake_up_process(fs_info->transaction_kthread); 2124 btrfs_remount_cleanup(fs_info, old_opts); 2125 btrfs_clear_oneshot_options(fs_info); 2126 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2127 2128 return 0; 2129 2130 restore: 2131 /* We've hit an error - don't reset SB_RDONLY */ 2132 if (sb_rdonly(sb)) 2133 old_flags |= SB_RDONLY; 2134 if (!(old_flags & SB_RDONLY)) 2135 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2136 sb->s_flags = old_flags; 2137 fs_info->mount_opt = old_opts; 2138 fs_info->compress_type = old_compress_type; 2139 fs_info->max_inline = old_max_inline; 2140 btrfs_resize_thread_pool(fs_info, 2141 old_thread_pool_size, fs_info->thread_pool_size); 2142 fs_info->metadata_ratio = old_metadata_ratio; 2143 btrfs_remount_cleanup(fs_info, old_opts); 2144 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2145 2146 return ret; 2147 } 2148 2149 /* Used to sort the devices by max_avail(descending sort) */ 2150 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 2151 { 2152 const struct btrfs_device_info *dev_info1 = a; 2153 const struct btrfs_device_info *dev_info2 = b; 2154 2155 if (dev_info1->max_avail > dev_info2->max_avail) 2156 return -1; 2157 else if (dev_info1->max_avail < dev_info2->max_avail) 2158 return 1; 2159 return 0; 2160 } 2161 2162 /* 2163 * sort the devices by max_avail, in which max free extent size of each device 2164 * is stored.(Descending Sort) 2165 */ 2166 static inline void btrfs_descending_sort_devices( 2167 struct btrfs_device_info *devices, 2168 size_t nr_devices) 2169 { 2170 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2171 btrfs_cmp_device_free_bytes, NULL); 2172 } 2173 2174 /* 2175 * The helper to calc the free space on the devices that can be used to store 2176 * file data. 2177 */ 2178 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2179 u64 *free_bytes) 2180 { 2181 struct btrfs_device_info *devices_info; 2182 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2183 struct btrfs_device *device; 2184 u64 type; 2185 u64 avail_space; 2186 u64 min_stripe_size; 2187 int num_stripes = 1; 2188 int i = 0, nr_devices; 2189 const struct btrfs_raid_attr *rattr; 2190 2191 /* 2192 * We aren't under the device list lock, so this is racy-ish, but good 2193 * enough for our purposes. 2194 */ 2195 nr_devices = fs_info->fs_devices->open_devices; 2196 if (!nr_devices) { 2197 smp_mb(); 2198 nr_devices = fs_info->fs_devices->open_devices; 2199 ASSERT(nr_devices); 2200 if (!nr_devices) { 2201 *free_bytes = 0; 2202 return 0; 2203 } 2204 } 2205 2206 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2207 GFP_KERNEL); 2208 if (!devices_info) 2209 return -ENOMEM; 2210 2211 /* calc min stripe number for data space allocation */ 2212 type = btrfs_data_alloc_profile(fs_info); 2213 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2214 2215 if (type & BTRFS_BLOCK_GROUP_RAID0) 2216 num_stripes = nr_devices; 2217 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2218 num_stripes = 2; 2219 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2220 num_stripes = 3; 2221 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2222 num_stripes = 4; 2223 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2224 num_stripes = 4; 2225 2226 /* Adjust for more than 1 stripe per device */ 2227 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2228 2229 rcu_read_lock(); 2230 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2231 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2232 &device->dev_state) || 2233 !device->bdev || 2234 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2235 continue; 2236 2237 if (i >= nr_devices) 2238 break; 2239 2240 avail_space = device->total_bytes - device->bytes_used; 2241 2242 /* align with stripe_len */ 2243 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2244 2245 /* 2246 * In order to avoid overwriting the superblock on the drive, 2247 * btrfs starts at an offset of at least 1MB when doing chunk 2248 * allocation. 2249 * 2250 * This ensures we have at least min_stripe_size free space 2251 * after excluding 1MB. 2252 */ 2253 if (avail_space <= SZ_1M + min_stripe_size) 2254 continue; 2255 2256 avail_space -= SZ_1M; 2257 2258 devices_info[i].dev = device; 2259 devices_info[i].max_avail = avail_space; 2260 2261 i++; 2262 } 2263 rcu_read_unlock(); 2264 2265 nr_devices = i; 2266 2267 btrfs_descending_sort_devices(devices_info, nr_devices); 2268 2269 i = nr_devices - 1; 2270 avail_space = 0; 2271 while (nr_devices >= rattr->devs_min) { 2272 num_stripes = min(num_stripes, nr_devices); 2273 2274 if (devices_info[i].max_avail >= min_stripe_size) { 2275 int j; 2276 u64 alloc_size; 2277 2278 avail_space += devices_info[i].max_avail * num_stripes; 2279 alloc_size = devices_info[i].max_avail; 2280 for (j = i + 1 - num_stripes; j <= i; j++) 2281 devices_info[j].max_avail -= alloc_size; 2282 } 2283 i--; 2284 nr_devices--; 2285 } 2286 2287 kfree(devices_info); 2288 *free_bytes = avail_space; 2289 return 0; 2290 } 2291 2292 /* 2293 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2294 * 2295 * If there's a redundant raid level at DATA block groups, use the respective 2296 * multiplier to scale the sizes. 2297 * 2298 * Unused device space usage is based on simulating the chunk allocator 2299 * algorithm that respects the device sizes and order of allocations. This is 2300 * a close approximation of the actual use but there are other factors that may 2301 * change the result (like a new metadata chunk). 2302 * 2303 * If metadata is exhausted, f_bavail will be 0. 2304 */ 2305 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2306 { 2307 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2308 struct btrfs_super_block *disk_super = fs_info->super_copy; 2309 struct btrfs_space_info *found; 2310 u64 total_used = 0; 2311 u64 total_free_data = 0; 2312 u64 total_free_meta = 0; 2313 u32 bits = fs_info->sectorsize_bits; 2314 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2315 unsigned factor = 1; 2316 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2317 int ret; 2318 u64 thresh = 0; 2319 int mixed = 0; 2320 2321 list_for_each_entry(found, &fs_info->space_info, list) { 2322 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2323 int i; 2324 2325 total_free_data += found->disk_total - found->disk_used; 2326 total_free_data -= 2327 btrfs_account_ro_block_groups_free_space(found); 2328 2329 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2330 if (!list_empty(&found->block_groups[i])) 2331 factor = btrfs_bg_type_to_factor( 2332 btrfs_raid_array[i].bg_flag); 2333 } 2334 } 2335 2336 /* 2337 * Metadata in mixed block goup profiles are accounted in data 2338 */ 2339 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2340 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2341 mixed = 1; 2342 else 2343 total_free_meta += found->disk_total - 2344 found->disk_used; 2345 } 2346 2347 total_used += found->disk_used; 2348 } 2349 2350 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2351 buf->f_blocks >>= bits; 2352 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2353 2354 /* Account global block reserve as used, it's in logical size already */ 2355 spin_lock(&block_rsv->lock); 2356 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2357 if (buf->f_bfree >= block_rsv->size >> bits) 2358 buf->f_bfree -= block_rsv->size >> bits; 2359 else 2360 buf->f_bfree = 0; 2361 spin_unlock(&block_rsv->lock); 2362 2363 buf->f_bavail = div_u64(total_free_data, factor); 2364 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2365 if (ret) 2366 return ret; 2367 buf->f_bavail += div_u64(total_free_data, factor); 2368 buf->f_bavail = buf->f_bavail >> bits; 2369 2370 /* 2371 * We calculate the remaining metadata space minus global reserve. If 2372 * this is (supposedly) smaller than zero, there's no space. But this 2373 * does not hold in practice, the exhausted state happens where's still 2374 * some positive delta. So we apply some guesswork and compare the 2375 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2376 * 2377 * We probably cannot calculate the exact threshold value because this 2378 * depends on the internal reservations requested by various 2379 * operations, so some operations that consume a few metadata will 2380 * succeed even if the Avail is zero. But this is better than the other 2381 * way around. 2382 */ 2383 thresh = SZ_4M; 2384 2385 /* 2386 * We only want to claim there's no available space if we can no longer 2387 * allocate chunks for our metadata profile and our global reserve will 2388 * not fit in the free metadata space. If we aren't ->full then we 2389 * still can allocate chunks and thus are fine using the currently 2390 * calculated f_bavail. 2391 */ 2392 if (!mixed && block_rsv->space_info->full && 2393 total_free_meta - thresh < block_rsv->size) 2394 buf->f_bavail = 0; 2395 2396 buf->f_type = BTRFS_SUPER_MAGIC; 2397 buf->f_bsize = dentry->d_sb->s_blocksize; 2398 buf->f_namelen = BTRFS_NAME_LEN; 2399 2400 /* We treat it as constant endianness (it doesn't matter _which_) 2401 because we want the fsid to come out the same whether mounted 2402 on a big-endian or little-endian host */ 2403 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2404 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2405 /* Mask in the root object ID too, to disambiguate subvols */ 2406 buf->f_fsid.val[0] ^= 2407 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2408 buf->f_fsid.val[1] ^= 2409 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2410 2411 return 0; 2412 } 2413 2414 static void btrfs_kill_super(struct super_block *sb) 2415 { 2416 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2417 kill_anon_super(sb); 2418 btrfs_free_fs_info(fs_info); 2419 } 2420 2421 static struct file_system_type btrfs_fs_type = { 2422 .owner = THIS_MODULE, 2423 .name = "btrfs", 2424 .mount = btrfs_mount, 2425 .kill_sb = btrfs_kill_super, 2426 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2427 }; 2428 2429 static struct file_system_type btrfs_root_fs_type = { 2430 .owner = THIS_MODULE, 2431 .name = "btrfs", 2432 .mount = btrfs_mount_root, 2433 .kill_sb = btrfs_kill_super, 2434 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2435 }; 2436 2437 MODULE_ALIAS_FS("btrfs"); 2438 2439 static int btrfs_control_open(struct inode *inode, struct file *file) 2440 { 2441 /* 2442 * The control file's private_data is used to hold the 2443 * transaction when it is started and is used to keep 2444 * track of whether a transaction is already in progress. 2445 */ 2446 file->private_data = NULL; 2447 return 0; 2448 } 2449 2450 /* 2451 * Used by /dev/btrfs-control for devices ioctls. 2452 */ 2453 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2454 unsigned long arg) 2455 { 2456 struct btrfs_ioctl_vol_args *vol; 2457 struct btrfs_device *device = NULL; 2458 dev_t devt = 0; 2459 int ret = -ENOTTY; 2460 2461 if (!capable(CAP_SYS_ADMIN)) 2462 return -EPERM; 2463 2464 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2465 if (IS_ERR(vol)) 2466 return PTR_ERR(vol); 2467 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2468 2469 switch (cmd) { 2470 case BTRFS_IOC_SCAN_DEV: 2471 mutex_lock(&uuid_mutex); 2472 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2473 &btrfs_root_fs_type); 2474 ret = PTR_ERR_OR_ZERO(device); 2475 mutex_unlock(&uuid_mutex); 2476 break; 2477 case BTRFS_IOC_FORGET_DEV: 2478 if (vol->name[0] != 0) { 2479 ret = lookup_bdev(vol->name, &devt); 2480 if (ret) 2481 break; 2482 } 2483 ret = btrfs_forget_devices(devt); 2484 break; 2485 case BTRFS_IOC_DEVICES_READY: 2486 mutex_lock(&uuid_mutex); 2487 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2488 &btrfs_root_fs_type); 2489 if (IS_ERR(device)) { 2490 mutex_unlock(&uuid_mutex); 2491 ret = PTR_ERR(device); 2492 break; 2493 } 2494 ret = !(device->fs_devices->num_devices == 2495 device->fs_devices->total_devices); 2496 mutex_unlock(&uuid_mutex); 2497 break; 2498 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2499 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2500 break; 2501 } 2502 2503 kfree(vol); 2504 return ret; 2505 } 2506 2507 static int btrfs_freeze(struct super_block *sb) 2508 { 2509 struct btrfs_trans_handle *trans; 2510 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2511 struct btrfs_root *root = fs_info->tree_root; 2512 2513 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2514 /* 2515 * We don't need a barrier here, we'll wait for any transaction that 2516 * could be in progress on other threads (and do delayed iputs that 2517 * we want to avoid on a frozen filesystem), or do the commit 2518 * ourselves. 2519 */ 2520 trans = btrfs_attach_transaction_barrier(root); 2521 if (IS_ERR(trans)) { 2522 /* no transaction, don't bother */ 2523 if (PTR_ERR(trans) == -ENOENT) 2524 return 0; 2525 return PTR_ERR(trans); 2526 } 2527 return btrfs_commit_transaction(trans); 2528 } 2529 2530 static int btrfs_unfreeze(struct super_block *sb) 2531 { 2532 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2533 2534 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2535 return 0; 2536 } 2537 2538 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2539 { 2540 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2541 2542 /* 2543 * There should be always a valid pointer in latest_dev, it may be stale 2544 * for a short moment in case it's being deleted but still valid until 2545 * the end of RCU grace period. 2546 */ 2547 rcu_read_lock(); 2548 seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\"); 2549 rcu_read_unlock(); 2550 2551 return 0; 2552 } 2553 2554 static const struct super_operations btrfs_super_ops = { 2555 .drop_inode = btrfs_drop_inode, 2556 .evict_inode = btrfs_evict_inode, 2557 .put_super = btrfs_put_super, 2558 .sync_fs = btrfs_sync_fs, 2559 .show_options = btrfs_show_options, 2560 .show_devname = btrfs_show_devname, 2561 .alloc_inode = btrfs_alloc_inode, 2562 .destroy_inode = btrfs_destroy_inode, 2563 .free_inode = btrfs_free_inode, 2564 .statfs = btrfs_statfs, 2565 .remount_fs = btrfs_remount, 2566 .freeze_fs = btrfs_freeze, 2567 .unfreeze_fs = btrfs_unfreeze, 2568 }; 2569 2570 static const struct file_operations btrfs_ctl_fops = { 2571 .open = btrfs_control_open, 2572 .unlocked_ioctl = btrfs_control_ioctl, 2573 .compat_ioctl = compat_ptr_ioctl, 2574 .owner = THIS_MODULE, 2575 .llseek = noop_llseek, 2576 }; 2577 2578 static struct miscdevice btrfs_misc = { 2579 .minor = BTRFS_MINOR, 2580 .name = "btrfs-control", 2581 .fops = &btrfs_ctl_fops 2582 }; 2583 2584 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2585 MODULE_ALIAS("devname:btrfs-control"); 2586 2587 static int __init btrfs_interface_init(void) 2588 { 2589 return misc_register(&btrfs_misc); 2590 } 2591 2592 static __cold void btrfs_interface_exit(void) 2593 { 2594 misc_deregister(&btrfs_misc); 2595 } 2596 2597 static void __init btrfs_print_mod_info(void) 2598 { 2599 static const char options[] = "" 2600 #ifdef CONFIG_BTRFS_DEBUG 2601 ", debug=on" 2602 #endif 2603 #ifdef CONFIG_BTRFS_ASSERT 2604 ", assert=on" 2605 #endif 2606 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2607 ", integrity-checker=on" 2608 #endif 2609 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2610 ", ref-verify=on" 2611 #endif 2612 #ifdef CONFIG_BLK_DEV_ZONED 2613 ", zoned=yes" 2614 #else 2615 ", zoned=no" 2616 #endif 2617 #ifdef CONFIG_FS_VERITY 2618 ", fsverity=yes" 2619 #else 2620 ", fsverity=no" 2621 #endif 2622 ; 2623 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2624 } 2625 2626 static int __init init_btrfs_fs(void) 2627 { 2628 int err; 2629 2630 btrfs_props_init(); 2631 2632 err = btrfs_init_sysfs(); 2633 if (err) 2634 return err; 2635 2636 btrfs_init_compress(); 2637 2638 err = btrfs_init_cachep(); 2639 if (err) 2640 goto free_compress; 2641 2642 err = extent_io_init(); 2643 if (err) 2644 goto free_cachep; 2645 2646 err = extent_state_cache_init(); 2647 if (err) 2648 goto free_extent_io; 2649 2650 err = extent_map_init(); 2651 if (err) 2652 goto free_extent_state_cache; 2653 2654 err = ordered_data_init(); 2655 if (err) 2656 goto free_extent_map; 2657 2658 err = btrfs_delayed_inode_init(); 2659 if (err) 2660 goto free_ordered_data; 2661 2662 err = btrfs_auto_defrag_init(); 2663 if (err) 2664 goto free_delayed_inode; 2665 2666 err = btrfs_delayed_ref_init(); 2667 if (err) 2668 goto free_auto_defrag; 2669 2670 err = btrfs_prelim_ref_init(); 2671 if (err) 2672 goto free_delayed_ref; 2673 2674 err = btrfs_end_io_wq_init(); 2675 if (err) 2676 goto free_prelim_ref; 2677 2678 err = btrfs_interface_init(); 2679 if (err) 2680 goto free_end_io_wq; 2681 2682 btrfs_print_mod_info(); 2683 2684 err = btrfs_run_sanity_tests(); 2685 if (err) 2686 goto unregister_ioctl; 2687 2688 err = register_filesystem(&btrfs_fs_type); 2689 if (err) 2690 goto unregister_ioctl; 2691 2692 return 0; 2693 2694 unregister_ioctl: 2695 btrfs_interface_exit(); 2696 free_end_io_wq: 2697 btrfs_end_io_wq_exit(); 2698 free_prelim_ref: 2699 btrfs_prelim_ref_exit(); 2700 free_delayed_ref: 2701 btrfs_delayed_ref_exit(); 2702 free_auto_defrag: 2703 btrfs_auto_defrag_exit(); 2704 free_delayed_inode: 2705 btrfs_delayed_inode_exit(); 2706 free_ordered_data: 2707 ordered_data_exit(); 2708 free_extent_map: 2709 extent_map_exit(); 2710 free_extent_state_cache: 2711 extent_state_cache_exit(); 2712 free_extent_io: 2713 extent_io_exit(); 2714 free_cachep: 2715 btrfs_destroy_cachep(); 2716 free_compress: 2717 btrfs_exit_compress(); 2718 btrfs_exit_sysfs(); 2719 2720 return err; 2721 } 2722 2723 static void __exit exit_btrfs_fs(void) 2724 { 2725 btrfs_destroy_cachep(); 2726 btrfs_delayed_ref_exit(); 2727 btrfs_auto_defrag_exit(); 2728 btrfs_delayed_inode_exit(); 2729 btrfs_prelim_ref_exit(); 2730 ordered_data_exit(); 2731 extent_map_exit(); 2732 extent_state_cache_exit(); 2733 extent_io_exit(); 2734 btrfs_interface_exit(); 2735 btrfs_end_io_wq_exit(); 2736 unregister_filesystem(&btrfs_fs_type); 2737 btrfs_exit_sysfs(); 2738 btrfs_cleanup_fs_uuids(); 2739 btrfs_exit_compress(); 2740 } 2741 2742 late_initcall(init_btrfs_fs); 2743 module_exit(exit_btrfs_fs) 2744 2745 MODULE_LICENSE("GPL"); 2746 MODULE_SOFTDEP("pre: crc32c"); 2747 MODULE_SOFTDEP("pre: xxhash64"); 2748 MODULE_SOFTDEP("pre: sha256"); 2749 MODULE_SOFTDEP("pre: blake2b-256"); 2750