1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "compat.h" 46 #include "delayed-inode.h" 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "xattr.h" 53 #include "volumes.h" 54 #include "version.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/btrfs.h> 63 64 static const struct super_operations btrfs_super_ops; 65 static struct file_system_type btrfs_fs_type; 66 67 static const char *btrfs_decode_error(int errno) 68 { 69 char *errstr = "unknown"; 70 71 switch (errno) { 72 case -EIO: 73 errstr = "IO failure"; 74 break; 75 case -ENOMEM: 76 errstr = "Out of memory"; 77 break; 78 case -EROFS: 79 errstr = "Readonly filesystem"; 80 break; 81 case -EEXIST: 82 errstr = "Object already exists"; 83 break; 84 case -ENOSPC: 85 errstr = "No space left"; 86 break; 87 case -ENOENT: 88 errstr = "No such entry"; 89 break; 90 } 91 92 return errstr; 93 } 94 95 static void save_error_info(struct btrfs_fs_info *fs_info) 96 { 97 /* 98 * today we only save the error info into ram. Long term we'll 99 * also send it down to the disk 100 */ 101 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 102 } 103 104 /* btrfs handle error by forcing the filesystem readonly */ 105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 106 { 107 struct super_block *sb = fs_info->sb; 108 109 if (sb->s_flags & MS_RDONLY) 110 return; 111 112 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 113 sb->s_flags |= MS_RDONLY; 114 btrfs_info(fs_info, "forced readonly"); 115 /* 116 * Note that a running device replace operation is not 117 * canceled here although there is no way to update 118 * the progress. It would add the risk of a deadlock, 119 * therefore the canceling is ommited. The only penalty 120 * is that some I/O remains active until the procedure 121 * completes. The next time when the filesystem is 122 * mounted writeable again, the device replace 123 * operation continues. 124 */ 125 } 126 } 127 128 #ifdef CONFIG_PRINTK 129 /* 130 * __btrfs_std_error decodes expected errors from the caller and 131 * invokes the approciate error response. 132 */ 133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 134 unsigned int line, int errno, const char *fmt, ...) 135 { 136 struct super_block *sb = fs_info->sb; 137 const char *errstr; 138 139 /* 140 * Special case: if the error is EROFS, and we're already 141 * under MS_RDONLY, then it is safe here. 142 */ 143 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 144 return; 145 146 errstr = btrfs_decode_error(errno); 147 if (fmt) { 148 struct va_format vaf; 149 va_list args; 150 151 va_start(args, fmt); 152 vaf.fmt = fmt; 153 vaf.va = &args; 154 155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n", 156 sb->s_id, function, line, errno, errstr, &vaf); 157 va_end(args); 158 } else { 159 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n", 160 sb->s_id, function, line, errno, errstr); 161 } 162 163 /* Don't go through full error handling during mount */ 164 save_error_info(fs_info); 165 if (sb->s_flags & MS_BORN) 166 btrfs_handle_error(fs_info); 167 } 168 169 static const char * const logtypes[] = { 170 "emergency", 171 "alert", 172 "critical", 173 "error", 174 "warning", 175 "notice", 176 "info", 177 "debug", 178 }; 179 180 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 181 { 182 struct super_block *sb = fs_info->sb; 183 char lvl[4]; 184 struct va_format vaf; 185 va_list args; 186 const char *type = logtypes[4]; 187 int kern_level; 188 189 va_start(args, fmt); 190 191 kern_level = printk_get_level(fmt); 192 if (kern_level) { 193 size_t size = printk_skip_level(fmt) - fmt; 194 memcpy(lvl, fmt, size); 195 lvl[size] = '\0'; 196 fmt += size; 197 type = logtypes[kern_level - '0']; 198 } else 199 *lvl = '\0'; 200 201 vaf.fmt = fmt; 202 vaf.va = &args; 203 204 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 205 206 va_end(args); 207 } 208 209 #else 210 211 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 212 unsigned int line, int errno, const char *fmt, ...) 213 { 214 struct super_block *sb = fs_info->sb; 215 216 /* 217 * Special case: if the error is EROFS, and we're already 218 * under MS_RDONLY, then it is safe here. 219 */ 220 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 221 return; 222 223 /* Don't go through full error handling during mount */ 224 if (sb->s_flags & MS_BORN) { 225 save_error_info(fs_info); 226 btrfs_handle_error(fs_info); 227 } 228 } 229 #endif 230 231 /* 232 * We only mark the transaction aborted and then set the file system read-only. 233 * This will prevent new transactions from starting or trying to join this 234 * one. 235 * 236 * This means that error recovery at the call site is limited to freeing 237 * any local memory allocations and passing the error code up without 238 * further cleanup. The transaction should complete as it normally would 239 * in the call path but will return -EIO. 240 * 241 * We'll complete the cleanup in btrfs_end_transaction and 242 * btrfs_commit_transaction. 243 */ 244 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 245 struct btrfs_root *root, const char *function, 246 unsigned int line, int errno) 247 { 248 /* 249 * Report first abort since mount 250 */ 251 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, 252 &root->fs_info->fs_state)) { 253 WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n", 254 errno); 255 } 256 trans->aborted = errno; 257 /* Nothing used. The other threads that have joined this 258 * transaction may be able to continue. */ 259 if (!trans->blocks_used) { 260 const char *errstr; 261 262 errstr = btrfs_decode_error(errno); 263 btrfs_warn(root->fs_info, 264 "%s:%d: Aborting unused transaction(%s).", 265 function, line, errstr); 266 return; 267 } 268 ACCESS_ONCE(trans->transaction->aborted) = errno; 269 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 270 } 271 /* 272 * __btrfs_panic decodes unexpected, fatal errors from the caller, 273 * issues an alert, and either panics or BUGs, depending on mount options. 274 */ 275 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 276 unsigned int line, int errno, const char *fmt, ...) 277 { 278 char *s_id = "<unknown>"; 279 const char *errstr; 280 struct va_format vaf = { .fmt = fmt }; 281 va_list args; 282 283 if (fs_info) 284 s_id = fs_info->sb->s_id; 285 286 va_start(args, fmt); 287 vaf.va = &args; 288 289 errstr = btrfs_decode_error(errno); 290 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 291 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 292 s_id, function, line, &vaf, errno, errstr); 293 294 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 295 s_id, function, line, &vaf, errno, errstr); 296 va_end(args); 297 /* Caller calls BUG() */ 298 } 299 300 static void btrfs_put_super(struct super_block *sb) 301 { 302 (void)close_ctree(btrfs_sb(sb)->tree_root); 303 /* FIXME: need to fix VFS to return error? */ 304 /* AV: return it _where_? ->put_super() can be triggered by any number 305 * of async events, up to and including delivery of SIGKILL to the 306 * last process that kept it busy. Or segfault in the aforementioned 307 * process... Whom would you report that to? 308 */ 309 } 310 311 enum { 312 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 313 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 314 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 315 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 316 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 317 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 318 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 319 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 320 Opt_check_integrity, Opt_check_integrity_including_extent_data, 321 Opt_check_integrity_print_mask, Opt_fatal_errors, 322 Opt_err, 323 }; 324 325 static match_table_t tokens = { 326 {Opt_degraded, "degraded"}, 327 {Opt_subvol, "subvol=%s"}, 328 {Opt_subvolid, "subvolid=%d"}, 329 {Opt_device, "device=%s"}, 330 {Opt_nodatasum, "nodatasum"}, 331 {Opt_nodatacow, "nodatacow"}, 332 {Opt_nobarrier, "nobarrier"}, 333 {Opt_max_inline, "max_inline=%s"}, 334 {Opt_alloc_start, "alloc_start=%s"}, 335 {Opt_thread_pool, "thread_pool=%d"}, 336 {Opt_compress, "compress"}, 337 {Opt_compress_type, "compress=%s"}, 338 {Opt_compress_force, "compress-force"}, 339 {Opt_compress_force_type, "compress-force=%s"}, 340 {Opt_ssd, "ssd"}, 341 {Opt_ssd_spread, "ssd_spread"}, 342 {Opt_nossd, "nossd"}, 343 {Opt_noacl, "noacl"}, 344 {Opt_notreelog, "notreelog"}, 345 {Opt_flushoncommit, "flushoncommit"}, 346 {Opt_ratio, "metadata_ratio=%d"}, 347 {Opt_discard, "discard"}, 348 {Opt_space_cache, "space_cache"}, 349 {Opt_clear_cache, "clear_cache"}, 350 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 351 {Opt_enospc_debug, "enospc_debug"}, 352 {Opt_subvolrootid, "subvolrootid=%d"}, 353 {Opt_defrag, "autodefrag"}, 354 {Opt_inode_cache, "inode_cache"}, 355 {Opt_no_space_cache, "nospace_cache"}, 356 {Opt_recovery, "recovery"}, 357 {Opt_skip_balance, "skip_balance"}, 358 {Opt_check_integrity, "check_int"}, 359 {Opt_check_integrity_including_extent_data, "check_int_data"}, 360 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 361 {Opt_fatal_errors, "fatal_errors=%s"}, 362 {Opt_err, NULL}, 363 }; 364 365 /* 366 * Regular mount options parser. Everything that is needed only when 367 * reading in a new superblock is parsed here. 368 * XXX JDM: This needs to be cleaned up for remount. 369 */ 370 int btrfs_parse_options(struct btrfs_root *root, char *options) 371 { 372 struct btrfs_fs_info *info = root->fs_info; 373 substring_t args[MAX_OPT_ARGS]; 374 char *p, *num, *orig = NULL; 375 u64 cache_gen; 376 int intarg; 377 int ret = 0; 378 char *compress_type; 379 bool compress_force = false; 380 381 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 382 if (cache_gen) 383 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 384 385 if (!options) 386 goto out; 387 388 /* 389 * strsep changes the string, duplicate it because parse_options 390 * gets called twice 391 */ 392 options = kstrdup(options, GFP_NOFS); 393 if (!options) 394 return -ENOMEM; 395 396 orig = options; 397 398 while ((p = strsep(&options, ",")) != NULL) { 399 int token; 400 if (!*p) 401 continue; 402 403 token = match_token(p, tokens, args); 404 switch (token) { 405 case Opt_degraded: 406 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 407 btrfs_set_opt(info->mount_opt, DEGRADED); 408 break; 409 case Opt_subvol: 410 case Opt_subvolid: 411 case Opt_subvolrootid: 412 case Opt_device: 413 /* 414 * These are parsed by btrfs_parse_early_options 415 * and can be happily ignored here. 416 */ 417 break; 418 case Opt_nodatasum: 419 printk(KERN_INFO "btrfs: setting nodatasum\n"); 420 btrfs_set_opt(info->mount_opt, NODATASUM); 421 break; 422 case Opt_nodatacow: 423 if (!btrfs_test_opt(root, COMPRESS) || 424 !btrfs_test_opt(root, FORCE_COMPRESS)) { 425 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n"); 426 } else { 427 printk(KERN_INFO "btrfs: setting nodatacow\n"); 428 } 429 info->compress_type = BTRFS_COMPRESS_NONE; 430 btrfs_clear_opt(info->mount_opt, COMPRESS); 431 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 432 btrfs_set_opt(info->mount_opt, NODATACOW); 433 btrfs_set_opt(info->mount_opt, NODATASUM); 434 break; 435 case Opt_compress_force: 436 case Opt_compress_force_type: 437 compress_force = true; 438 /* Fallthrough */ 439 case Opt_compress: 440 case Opt_compress_type: 441 if (token == Opt_compress || 442 token == Opt_compress_force || 443 strcmp(args[0].from, "zlib") == 0) { 444 compress_type = "zlib"; 445 info->compress_type = BTRFS_COMPRESS_ZLIB; 446 btrfs_set_opt(info->mount_opt, COMPRESS); 447 btrfs_clear_opt(info->mount_opt, NODATACOW); 448 btrfs_clear_opt(info->mount_opt, NODATASUM); 449 } else if (strcmp(args[0].from, "lzo") == 0) { 450 compress_type = "lzo"; 451 info->compress_type = BTRFS_COMPRESS_LZO; 452 btrfs_set_opt(info->mount_opt, COMPRESS); 453 btrfs_clear_opt(info->mount_opt, NODATACOW); 454 btrfs_clear_opt(info->mount_opt, NODATASUM); 455 btrfs_set_fs_incompat(info, COMPRESS_LZO); 456 } else if (strncmp(args[0].from, "no", 2) == 0) { 457 compress_type = "no"; 458 info->compress_type = BTRFS_COMPRESS_NONE; 459 btrfs_clear_opt(info->mount_opt, COMPRESS); 460 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 461 compress_force = false; 462 } else { 463 ret = -EINVAL; 464 goto out; 465 } 466 467 if (compress_force) { 468 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 469 pr_info("btrfs: force %s compression\n", 470 compress_type); 471 } else 472 pr_info("btrfs: use %s compression\n", 473 compress_type); 474 break; 475 case Opt_ssd: 476 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 477 btrfs_set_opt(info->mount_opt, SSD); 478 break; 479 case Opt_ssd_spread: 480 printk(KERN_INFO "btrfs: use spread ssd " 481 "allocation scheme\n"); 482 btrfs_set_opt(info->mount_opt, SSD); 483 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 484 break; 485 case Opt_nossd: 486 printk(KERN_INFO "btrfs: not using ssd allocation " 487 "scheme\n"); 488 btrfs_set_opt(info->mount_opt, NOSSD); 489 btrfs_clear_opt(info->mount_opt, SSD); 490 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 491 break; 492 case Opt_nobarrier: 493 printk(KERN_INFO "btrfs: turning off barriers\n"); 494 btrfs_set_opt(info->mount_opt, NOBARRIER); 495 break; 496 case Opt_thread_pool: 497 intarg = 0; 498 match_int(&args[0], &intarg); 499 if (intarg) 500 info->thread_pool_size = intarg; 501 break; 502 case Opt_max_inline: 503 num = match_strdup(&args[0]); 504 if (num) { 505 info->max_inline = memparse(num, NULL); 506 kfree(num); 507 508 if (info->max_inline) { 509 info->max_inline = max_t(u64, 510 info->max_inline, 511 root->sectorsize); 512 } 513 printk(KERN_INFO "btrfs: max_inline at %llu\n", 514 (unsigned long long)info->max_inline); 515 } 516 break; 517 case Opt_alloc_start: 518 num = match_strdup(&args[0]); 519 if (num) { 520 mutex_lock(&info->chunk_mutex); 521 info->alloc_start = memparse(num, NULL); 522 mutex_unlock(&info->chunk_mutex); 523 kfree(num); 524 printk(KERN_INFO 525 "btrfs: allocations start at %llu\n", 526 (unsigned long long)info->alloc_start); 527 } 528 break; 529 case Opt_noacl: 530 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 531 break; 532 case Opt_notreelog: 533 printk(KERN_INFO "btrfs: disabling tree log\n"); 534 btrfs_set_opt(info->mount_opt, NOTREELOG); 535 break; 536 case Opt_flushoncommit: 537 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 538 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 539 break; 540 case Opt_ratio: 541 intarg = 0; 542 match_int(&args[0], &intarg); 543 if (intarg) { 544 info->metadata_ratio = intarg; 545 printk(KERN_INFO "btrfs: metadata ratio %d\n", 546 info->metadata_ratio); 547 } 548 break; 549 case Opt_discard: 550 btrfs_set_opt(info->mount_opt, DISCARD); 551 break; 552 case Opt_space_cache: 553 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 554 break; 555 case Opt_no_space_cache: 556 printk(KERN_INFO "btrfs: disabling disk space caching\n"); 557 btrfs_clear_opt(info->mount_opt, SPACE_CACHE); 558 break; 559 case Opt_inode_cache: 560 printk(KERN_INFO "btrfs: enabling inode map caching\n"); 561 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); 562 break; 563 case Opt_clear_cache: 564 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 565 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 566 break; 567 case Opt_user_subvol_rm_allowed: 568 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 569 break; 570 case Opt_enospc_debug: 571 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 572 break; 573 case Opt_defrag: 574 printk(KERN_INFO "btrfs: enabling auto defrag\n"); 575 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); 576 break; 577 case Opt_recovery: 578 printk(KERN_INFO "btrfs: enabling auto recovery\n"); 579 btrfs_set_opt(info->mount_opt, RECOVERY); 580 break; 581 case Opt_skip_balance: 582 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 583 break; 584 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 585 case Opt_check_integrity_including_extent_data: 586 printk(KERN_INFO "btrfs: enabling check integrity" 587 " including extent data\n"); 588 btrfs_set_opt(info->mount_opt, 589 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 590 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 591 break; 592 case Opt_check_integrity: 593 printk(KERN_INFO "btrfs: enabling check integrity\n"); 594 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 595 break; 596 case Opt_check_integrity_print_mask: 597 intarg = 0; 598 match_int(&args[0], &intarg); 599 if (intarg) { 600 info->check_integrity_print_mask = intarg; 601 printk(KERN_INFO "btrfs:" 602 " check_integrity_print_mask 0x%x\n", 603 info->check_integrity_print_mask); 604 } 605 break; 606 #else 607 case Opt_check_integrity_including_extent_data: 608 case Opt_check_integrity: 609 case Opt_check_integrity_print_mask: 610 printk(KERN_ERR "btrfs: support for check_integrity*" 611 " not compiled in!\n"); 612 ret = -EINVAL; 613 goto out; 614 #endif 615 case Opt_fatal_errors: 616 if (strcmp(args[0].from, "panic") == 0) 617 btrfs_set_opt(info->mount_opt, 618 PANIC_ON_FATAL_ERROR); 619 else if (strcmp(args[0].from, "bug") == 0) 620 btrfs_clear_opt(info->mount_opt, 621 PANIC_ON_FATAL_ERROR); 622 else { 623 ret = -EINVAL; 624 goto out; 625 } 626 break; 627 case Opt_err: 628 printk(KERN_INFO "btrfs: unrecognized mount option " 629 "'%s'\n", p); 630 ret = -EINVAL; 631 goto out; 632 default: 633 break; 634 } 635 } 636 out: 637 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 638 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 639 kfree(orig); 640 return ret; 641 } 642 643 /* 644 * Parse mount options that are required early in the mount process. 645 * 646 * All other options will be parsed on much later in the mount process and 647 * only when we need to allocate a new super block. 648 */ 649 static int btrfs_parse_early_options(const char *options, fmode_t flags, 650 void *holder, char **subvol_name, u64 *subvol_objectid, 651 struct btrfs_fs_devices **fs_devices) 652 { 653 substring_t args[MAX_OPT_ARGS]; 654 char *device_name, *opts, *orig, *p; 655 int error = 0; 656 int intarg; 657 658 if (!options) 659 return 0; 660 661 /* 662 * strsep changes the string, duplicate it because parse_options 663 * gets called twice 664 */ 665 opts = kstrdup(options, GFP_KERNEL); 666 if (!opts) 667 return -ENOMEM; 668 orig = opts; 669 670 while ((p = strsep(&opts, ",")) != NULL) { 671 int token; 672 if (!*p) 673 continue; 674 675 token = match_token(p, tokens, args); 676 switch (token) { 677 case Opt_subvol: 678 kfree(*subvol_name); 679 *subvol_name = match_strdup(&args[0]); 680 break; 681 case Opt_subvolid: 682 intarg = 0; 683 error = match_int(&args[0], &intarg); 684 if (!error) { 685 /* we want the original fs_tree */ 686 if (!intarg) 687 *subvol_objectid = 688 BTRFS_FS_TREE_OBJECTID; 689 else 690 *subvol_objectid = intarg; 691 } 692 break; 693 case Opt_subvolrootid: 694 printk(KERN_WARNING 695 "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n"); 696 break; 697 case Opt_device: 698 device_name = match_strdup(&args[0]); 699 if (!device_name) { 700 error = -ENOMEM; 701 goto out; 702 } 703 error = btrfs_scan_one_device(device_name, 704 flags, holder, fs_devices); 705 kfree(device_name); 706 if (error) 707 goto out; 708 break; 709 default: 710 break; 711 } 712 } 713 714 out: 715 kfree(orig); 716 return error; 717 } 718 719 static struct dentry *get_default_root(struct super_block *sb, 720 u64 subvol_objectid) 721 { 722 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 723 struct btrfs_root *root = fs_info->tree_root; 724 struct btrfs_root *new_root; 725 struct btrfs_dir_item *di; 726 struct btrfs_path *path; 727 struct btrfs_key location; 728 struct inode *inode; 729 u64 dir_id; 730 int new = 0; 731 732 /* 733 * We have a specific subvol we want to mount, just setup location and 734 * go look up the root. 735 */ 736 if (subvol_objectid) { 737 location.objectid = subvol_objectid; 738 location.type = BTRFS_ROOT_ITEM_KEY; 739 location.offset = (u64)-1; 740 goto find_root; 741 } 742 743 path = btrfs_alloc_path(); 744 if (!path) 745 return ERR_PTR(-ENOMEM); 746 path->leave_spinning = 1; 747 748 /* 749 * Find the "default" dir item which points to the root item that we 750 * will mount by default if we haven't been given a specific subvolume 751 * to mount. 752 */ 753 dir_id = btrfs_super_root_dir(fs_info->super_copy); 754 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 755 if (IS_ERR(di)) { 756 btrfs_free_path(path); 757 return ERR_CAST(di); 758 } 759 if (!di) { 760 /* 761 * Ok the default dir item isn't there. This is weird since 762 * it's always been there, but don't freak out, just try and 763 * mount to root most subvolume. 764 */ 765 btrfs_free_path(path); 766 dir_id = BTRFS_FIRST_FREE_OBJECTID; 767 new_root = fs_info->fs_root; 768 goto setup_root; 769 } 770 771 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 772 btrfs_free_path(path); 773 774 find_root: 775 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 776 if (IS_ERR(new_root)) 777 return ERR_CAST(new_root); 778 779 if (btrfs_root_refs(&new_root->root_item) == 0) 780 return ERR_PTR(-ENOENT); 781 782 dir_id = btrfs_root_dirid(&new_root->root_item); 783 setup_root: 784 location.objectid = dir_id; 785 location.type = BTRFS_INODE_ITEM_KEY; 786 location.offset = 0; 787 788 inode = btrfs_iget(sb, &location, new_root, &new); 789 if (IS_ERR(inode)) 790 return ERR_CAST(inode); 791 792 /* 793 * If we're just mounting the root most subvol put the inode and return 794 * a reference to the dentry. We will have already gotten a reference 795 * to the inode in btrfs_fill_super so we're good to go. 796 */ 797 if (!new && sb->s_root->d_inode == inode) { 798 iput(inode); 799 return dget(sb->s_root); 800 } 801 802 return d_obtain_alias(inode); 803 } 804 805 static int btrfs_fill_super(struct super_block *sb, 806 struct btrfs_fs_devices *fs_devices, 807 void *data, int silent) 808 { 809 struct inode *inode; 810 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 811 struct btrfs_key key; 812 int err; 813 814 sb->s_maxbytes = MAX_LFS_FILESIZE; 815 sb->s_magic = BTRFS_SUPER_MAGIC; 816 sb->s_op = &btrfs_super_ops; 817 sb->s_d_op = &btrfs_dentry_operations; 818 sb->s_export_op = &btrfs_export_ops; 819 sb->s_xattr = btrfs_xattr_handlers; 820 sb->s_time_gran = 1; 821 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 822 sb->s_flags |= MS_POSIXACL; 823 #endif 824 sb->s_flags |= MS_I_VERSION; 825 err = open_ctree(sb, fs_devices, (char *)data); 826 if (err) { 827 printk("btrfs: open_ctree failed\n"); 828 return err; 829 } 830 831 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 832 key.type = BTRFS_INODE_ITEM_KEY; 833 key.offset = 0; 834 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 835 if (IS_ERR(inode)) { 836 err = PTR_ERR(inode); 837 goto fail_close; 838 } 839 840 sb->s_root = d_make_root(inode); 841 if (!sb->s_root) { 842 err = -ENOMEM; 843 goto fail_close; 844 } 845 846 save_mount_options(sb, data); 847 cleancache_init_fs(sb); 848 sb->s_flags |= MS_ACTIVE; 849 return 0; 850 851 fail_close: 852 close_ctree(fs_info->tree_root); 853 return err; 854 } 855 856 int btrfs_sync_fs(struct super_block *sb, int wait) 857 { 858 struct btrfs_trans_handle *trans; 859 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 860 struct btrfs_root *root = fs_info->tree_root; 861 862 trace_btrfs_sync_fs(wait); 863 864 if (!wait) { 865 filemap_flush(fs_info->btree_inode->i_mapping); 866 return 0; 867 } 868 869 btrfs_wait_ordered_extents(root, 1); 870 871 trans = btrfs_attach_transaction_barrier(root); 872 if (IS_ERR(trans)) { 873 /* no transaction, don't bother */ 874 if (PTR_ERR(trans) == -ENOENT) 875 return 0; 876 return PTR_ERR(trans); 877 } 878 return btrfs_commit_transaction(trans, root); 879 } 880 881 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 882 { 883 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 884 struct btrfs_root *root = info->tree_root; 885 char *compress_type; 886 887 if (btrfs_test_opt(root, DEGRADED)) 888 seq_puts(seq, ",degraded"); 889 if (btrfs_test_opt(root, NODATASUM)) 890 seq_puts(seq, ",nodatasum"); 891 if (btrfs_test_opt(root, NODATACOW)) 892 seq_puts(seq, ",nodatacow"); 893 if (btrfs_test_opt(root, NOBARRIER)) 894 seq_puts(seq, ",nobarrier"); 895 if (info->max_inline != 8192 * 1024) 896 seq_printf(seq, ",max_inline=%llu", 897 (unsigned long long)info->max_inline); 898 if (info->alloc_start != 0) 899 seq_printf(seq, ",alloc_start=%llu", 900 (unsigned long long)info->alloc_start); 901 if (info->thread_pool_size != min_t(unsigned long, 902 num_online_cpus() + 2, 8)) 903 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 904 if (btrfs_test_opt(root, COMPRESS)) { 905 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 906 compress_type = "zlib"; 907 else 908 compress_type = "lzo"; 909 if (btrfs_test_opt(root, FORCE_COMPRESS)) 910 seq_printf(seq, ",compress-force=%s", compress_type); 911 else 912 seq_printf(seq, ",compress=%s", compress_type); 913 } 914 if (btrfs_test_opt(root, NOSSD)) 915 seq_puts(seq, ",nossd"); 916 if (btrfs_test_opt(root, SSD_SPREAD)) 917 seq_puts(seq, ",ssd_spread"); 918 else if (btrfs_test_opt(root, SSD)) 919 seq_puts(seq, ",ssd"); 920 if (btrfs_test_opt(root, NOTREELOG)) 921 seq_puts(seq, ",notreelog"); 922 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 923 seq_puts(seq, ",flushoncommit"); 924 if (btrfs_test_opt(root, DISCARD)) 925 seq_puts(seq, ",discard"); 926 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 927 seq_puts(seq, ",noacl"); 928 if (btrfs_test_opt(root, SPACE_CACHE)) 929 seq_puts(seq, ",space_cache"); 930 else 931 seq_puts(seq, ",nospace_cache"); 932 if (btrfs_test_opt(root, CLEAR_CACHE)) 933 seq_puts(seq, ",clear_cache"); 934 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 935 seq_puts(seq, ",user_subvol_rm_allowed"); 936 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 937 seq_puts(seq, ",enospc_debug"); 938 if (btrfs_test_opt(root, AUTO_DEFRAG)) 939 seq_puts(seq, ",autodefrag"); 940 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 941 seq_puts(seq, ",inode_cache"); 942 if (btrfs_test_opt(root, SKIP_BALANCE)) 943 seq_puts(seq, ",skip_balance"); 944 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 945 seq_puts(seq, ",fatal_errors=panic"); 946 return 0; 947 } 948 949 static int btrfs_test_super(struct super_block *s, void *data) 950 { 951 struct btrfs_fs_info *p = data; 952 struct btrfs_fs_info *fs_info = btrfs_sb(s); 953 954 return fs_info->fs_devices == p->fs_devices; 955 } 956 957 static int btrfs_set_super(struct super_block *s, void *data) 958 { 959 int err = set_anon_super(s, data); 960 if (!err) 961 s->s_fs_info = data; 962 return err; 963 } 964 965 /* 966 * subvolumes are identified by ino 256 967 */ 968 static inline int is_subvolume_inode(struct inode *inode) 969 { 970 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 971 return 1; 972 return 0; 973 } 974 975 /* 976 * This will strip out the subvol=%s argument for an argument string and add 977 * subvolid=0 to make sure we get the actual tree root for path walking to the 978 * subvol we want. 979 */ 980 static char *setup_root_args(char *args) 981 { 982 unsigned len = strlen(args) + 2 + 1; 983 char *src, *dst, *buf; 984 985 /* 986 * We need the same args as before, but with this substitution: 987 * s!subvol=[^,]+!subvolid=0! 988 * 989 * Since the replacement string is up to 2 bytes longer than the 990 * original, allocate strlen(args) + 2 + 1 bytes. 991 */ 992 993 src = strstr(args, "subvol="); 994 /* This shouldn't happen, but just in case.. */ 995 if (!src) 996 return NULL; 997 998 buf = dst = kmalloc(len, GFP_NOFS); 999 if (!buf) 1000 return NULL; 1001 1002 /* 1003 * If the subvol= arg is not at the start of the string, 1004 * copy whatever precedes it into buf. 1005 */ 1006 if (src != args) { 1007 *src++ = '\0'; 1008 strcpy(buf, args); 1009 dst += strlen(args); 1010 } 1011 1012 strcpy(dst, "subvolid=0"); 1013 dst += strlen("subvolid=0"); 1014 1015 /* 1016 * If there is a "," after the original subvol=... string, 1017 * copy that suffix into our buffer. Otherwise, we're done. 1018 */ 1019 src = strchr(src, ','); 1020 if (src) 1021 strcpy(dst, src); 1022 1023 return buf; 1024 } 1025 1026 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1027 const char *device_name, char *data) 1028 { 1029 struct dentry *root; 1030 struct vfsmount *mnt; 1031 char *newargs; 1032 1033 newargs = setup_root_args(data); 1034 if (!newargs) 1035 return ERR_PTR(-ENOMEM); 1036 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1037 newargs); 1038 kfree(newargs); 1039 if (IS_ERR(mnt)) 1040 return ERR_CAST(mnt); 1041 1042 root = mount_subtree(mnt, subvol_name); 1043 1044 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1045 struct super_block *s = root->d_sb; 1046 dput(root); 1047 root = ERR_PTR(-EINVAL); 1048 deactivate_locked_super(s); 1049 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", 1050 subvol_name); 1051 } 1052 1053 return root; 1054 } 1055 1056 /* 1057 * Find a superblock for the given device / mount point. 1058 * 1059 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1060 * for multiple device setup. Make sure to keep it in sync. 1061 */ 1062 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1063 const char *device_name, void *data) 1064 { 1065 struct block_device *bdev = NULL; 1066 struct super_block *s; 1067 struct dentry *root; 1068 struct btrfs_fs_devices *fs_devices = NULL; 1069 struct btrfs_fs_info *fs_info = NULL; 1070 fmode_t mode = FMODE_READ; 1071 char *subvol_name = NULL; 1072 u64 subvol_objectid = 0; 1073 int error = 0; 1074 1075 if (!(flags & MS_RDONLY)) 1076 mode |= FMODE_WRITE; 1077 1078 error = btrfs_parse_early_options(data, mode, fs_type, 1079 &subvol_name, &subvol_objectid, 1080 &fs_devices); 1081 if (error) { 1082 kfree(subvol_name); 1083 return ERR_PTR(error); 1084 } 1085 1086 if (subvol_name) { 1087 root = mount_subvol(subvol_name, flags, device_name, data); 1088 kfree(subvol_name); 1089 return root; 1090 } 1091 1092 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1093 if (error) 1094 return ERR_PTR(error); 1095 1096 /* 1097 * Setup a dummy root and fs_info for test/set super. This is because 1098 * we don't actually fill this stuff out until open_ctree, but we need 1099 * it for searching for existing supers, so this lets us do that and 1100 * then open_ctree will properly initialize everything later. 1101 */ 1102 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1103 if (!fs_info) 1104 return ERR_PTR(-ENOMEM); 1105 1106 fs_info->fs_devices = fs_devices; 1107 1108 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1109 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1110 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1111 error = -ENOMEM; 1112 goto error_fs_info; 1113 } 1114 1115 error = btrfs_open_devices(fs_devices, mode, fs_type); 1116 if (error) 1117 goto error_fs_info; 1118 1119 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1120 error = -EACCES; 1121 goto error_close_devices; 1122 } 1123 1124 bdev = fs_devices->latest_bdev; 1125 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1126 fs_info); 1127 if (IS_ERR(s)) { 1128 error = PTR_ERR(s); 1129 goto error_close_devices; 1130 } 1131 1132 if (s->s_root) { 1133 btrfs_close_devices(fs_devices); 1134 free_fs_info(fs_info); 1135 if ((flags ^ s->s_flags) & MS_RDONLY) 1136 error = -EBUSY; 1137 } else { 1138 char b[BDEVNAME_SIZE]; 1139 1140 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1141 btrfs_sb(s)->bdev_holder = fs_type; 1142 error = btrfs_fill_super(s, fs_devices, data, 1143 flags & MS_SILENT ? 1 : 0); 1144 } 1145 1146 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1147 if (IS_ERR(root)) 1148 deactivate_locked_super(s); 1149 1150 return root; 1151 1152 error_close_devices: 1153 btrfs_close_devices(fs_devices); 1154 error_fs_info: 1155 free_fs_info(fs_info); 1156 return ERR_PTR(error); 1157 } 1158 1159 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit) 1160 { 1161 spin_lock_irq(&workers->lock); 1162 workers->max_workers = new_limit; 1163 spin_unlock_irq(&workers->lock); 1164 } 1165 1166 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1167 int new_pool_size, int old_pool_size) 1168 { 1169 if (new_pool_size == old_pool_size) 1170 return; 1171 1172 fs_info->thread_pool_size = new_pool_size; 1173 1174 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n", 1175 old_pool_size, new_pool_size); 1176 1177 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size); 1178 btrfs_set_max_workers(&fs_info->workers, new_pool_size); 1179 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size); 1180 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size); 1181 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size); 1182 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size); 1183 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size); 1184 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size); 1185 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size); 1186 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size); 1187 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size); 1188 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size); 1189 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size); 1190 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers, 1191 new_pool_size); 1192 } 1193 1194 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1195 { 1196 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1197 } 1198 1199 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1200 unsigned long old_opts, int flags) 1201 { 1202 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1203 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1204 (flags & MS_RDONLY))) { 1205 /* wait for any defraggers to finish */ 1206 wait_event(fs_info->transaction_wait, 1207 (atomic_read(&fs_info->defrag_running) == 0)); 1208 if (flags & MS_RDONLY) 1209 sync_filesystem(fs_info->sb); 1210 } 1211 } 1212 1213 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1214 unsigned long old_opts) 1215 { 1216 /* 1217 * We need cleanup all defragable inodes if the autodefragment is 1218 * close or the fs is R/O. 1219 */ 1220 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1221 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1222 (fs_info->sb->s_flags & MS_RDONLY))) { 1223 btrfs_cleanup_defrag_inodes(fs_info); 1224 } 1225 1226 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1227 } 1228 1229 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1230 { 1231 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1232 struct btrfs_root *root = fs_info->tree_root; 1233 unsigned old_flags = sb->s_flags; 1234 unsigned long old_opts = fs_info->mount_opt; 1235 unsigned long old_compress_type = fs_info->compress_type; 1236 u64 old_max_inline = fs_info->max_inline; 1237 u64 old_alloc_start = fs_info->alloc_start; 1238 int old_thread_pool_size = fs_info->thread_pool_size; 1239 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1240 int ret; 1241 1242 btrfs_remount_prepare(fs_info); 1243 1244 ret = btrfs_parse_options(root, data); 1245 if (ret) { 1246 ret = -EINVAL; 1247 goto restore; 1248 } 1249 1250 btrfs_remount_begin(fs_info, old_opts, *flags); 1251 btrfs_resize_thread_pool(fs_info, 1252 fs_info->thread_pool_size, old_thread_pool_size); 1253 1254 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1255 goto out; 1256 1257 if (*flags & MS_RDONLY) { 1258 /* 1259 * this also happens on 'umount -rf' or on shutdown, when 1260 * the filesystem is busy. 1261 */ 1262 sb->s_flags |= MS_RDONLY; 1263 1264 btrfs_dev_replace_suspend_for_unmount(fs_info); 1265 btrfs_scrub_cancel(fs_info); 1266 btrfs_pause_balance(fs_info); 1267 1268 ret = btrfs_commit_super(root); 1269 if (ret) 1270 goto restore; 1271 } else { 1272 if (fs_info->fs_devices->rw_devices == 0) { 1273 ret = -EACCES; 1274 goto restore; 1275 } 1276 1277 if (fs_info->fs_devices->missing_devices > 1278 fs_info->num_tolerated_disk_barrier_failures && 1279 !(*flags & MS_RDONLY)) { 1280 printk(KERN_WARNING 1281 "Btrfs: too many missing devices, writeable remount is not allowed\n"); 1282 ret = -EACCES; 1283 goto restore; 1284 } 1285 1286 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1287 ret = -EINVAL; 1288 goto restore; 1289 } 1290 1291 ret = btrfs_cleanup_fs_roots(fs_info); 1292 if (ret) 1293 goto restore; 1294 1295 /* recover relocation */ 1296 ret = btrfs_recover_relocation(root); 1297 if (ret) 1298 goto restore; 1299 1300 ret = btrfs_resume_balance_async(fs_info); 1301 if (ret) 1302 goto restore; 1303 1304 ret = btrfs_resume_dev_replace_async(fs_info); 1305 if (ret) { 1306 pr_warn("btrfs: failed to resume dev_replace\n"); 1307 goto restore; 1308 } 1309 sb->s_flags &= ~MS_RDONLY; 1310 } 1311 out: 1312 btrfs_remount_cleanup(fs_info, old_opts); 1313 return 0; 1314 1315 restore: 1316 /* We've hit an error - don't reset MS_RDONLY */ 1317 if (sb->s_flags & MS_RDONLY) 1318 old_flags |= MS_RDONLY; 1319 sb->s_flags = old_flags; 1320 fs_info->mount_opt = old_opts; 1321 fs_info->compress_type = old_compress_type; 1322 fs_info->max_inline = old_max_inline; 1323 mutex_lock(&fs_info->chunk_mutex); 1324 fs_info->alloc_start = old_alloc_start; 1325 mutex_unlock(&fs_info->chunk_mutex); 1326 btrfs_resize_thread_pool(fs_info, 1327 old_thread_pool_size, fs_info->thread_pool_size); 1328 fs_info->metadata_ratio = old_metadata_ratio; 1329 btrfs_remount_cleanup(fs_info, old_opts); 1330 return ret; 1331 } 1332 1333 /* Used to sort the devices by max_avail(descending sort) */ 1334 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1335 const void *dev_info2) 1336 { 1337 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1338 ((struct btrfs_device_info *)dev_info2)->max_avail) 1339 return -1; 1340 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1341 ((struct btrfs_device_info *)dev_info2)->max_avail) 1342 return 1; 1343 else 1344 return 0; 1345 } 1346 1347 /* 1348 * sort the devices by max_avail, in which max free extent size of each device 1349 * is stored.(Descending Sort) 1350 */ 1351 static inline void btrfs_descending_sort_devices( 1352 struct btrfs_device_info *devices, 1353 size_t nr_devices) 1354 { 1355 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1356 btrfs_cmp_device_free_bytes, NULL); 1357 } 1358 1359 /* 1360 * The helper to calc the free space on the devices that can be used to store 1361 * file data. 1362 */ 1363 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1364 { 1365 struct btrfs_fs_info *fs_info = root->fs_info; 1366 struct btrfs_device_info *devices_info; 1367 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1368 struct btrfs_device *device; 1369 u64 skip_space; 1370 u64 type; 1371 u64 avail_space; 1372 u64 used_space; 1373 u64 min_stripe_size; 1374 int min_stripes = 1, num_stripes = 1; 1375 int i = 0, nr_devices; 1376 int ret; 1377 1378 nr_devices = fs_info->fs_devices->open_devices; 1379 BUG_ON(!nr_devices); 1380 1381 devices_info = kmalloc(sizeof(*devices_info) * nr_devices, 1382 GFP_NOFS); 1383 if (!devices_info) 1384 return -ENOMEM; 1385 1386 /* calc min stripe number for data space alloction */ 1387 type = btrfs_get_alloc_profile(root, 1); 1388 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1389 min_stripes = 2; 1390 num_stripes = nr_devices; 1391 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1392 min_stripes = 2; 1393 num_stripes = 2; 1394 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1395 min_stripes = 4; 1396 num_stripes = 4; 1397 } 1398 1399 if (type & BTRFS_BLOCK_GROUP_DUP) 1400 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1401 else 1402 min_stripe_size = BTRFS_STRIPE_LEN; 1403 1404 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1405 if (!device->in_fs_metadata || !device->bdev || 1406 device->is_tgtdev_for_dev_replace) 1407 continue; 1408 1409 avail_space = device->total_bytes - device->bytes_used; 1410 1411 /* align with stripe_len */ 1412 do_div(avail_space, BTRFS_STRIPE_LEN); 1413 avail_space *= BTRFS_STRIPE_LEN; 1414 1415 /* 1416 * In order to avoid overwritting the superblock on the drive, 1417 * btrfs starts at an offset of at least 1MB when doing chunk 1418 * allocation. 1419 */ 1420 skip_space = 1024 * 1024; 1421 1422 /* user can set the offset in fs_info->alloc_start. */ 1423 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1424 device->total_bytes) 1425 skip_space = max(fs_info->alloc_start, skip_space); 1426 1427 /* 1428 * btrfs can not use the free space in [0, skip_space - 1], 1429 * we must subtract it from the total. In order to implement 1430 * it, we account the used space in this range first. 1431 */ 1432 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1433 &used_space); 1434 if (ret) { 1435 kfree(devices_info); 1436 return ret; 1437 } 1438 1439 /* calc the free space in [0, skip_space - 1] */ 1440 skip_space -= used_space; 1441 1442 /* 1443 * we can use the free space in [0, skip_space - 1], subtract 1444 * it from the total. 1445 */ 1446 if (avail_space && avail_space >= skip_space) 1447 avail_space -= skip_space; 1448 else 1449 avail_space = 0; 1450 1451 if (avail_space < min_stripe_size) 1452 continue; 1453 1454 devices_info[i].dev = device; 1455 devices_info[i].max_avail = avail_space; 1456 1457 i++; 1458 } 1459 1460 nr_devices = i; 1461 1462 btrfs_descending_sort_devices(devices_info, nr_devices); 1463 1464 i = nr_devices - 1; 1465 avail_space = 0; 1466 while (nr_devices >= min_stripes) { 1467 if (num_stripes > nr_devices) 1468 num_stripes = nr_devices; 1469 1470 if (devices_info[i].max_avail >= min_stripe_size) { 1471 int j; 1472 u64 alloc_size; 1473 1474 avail_space += devices_info[i].max_avail * num_stripes; 1475 alloc_size = devices_info[i].max_avail; 1476 for (j = i + 1 - num_stripes; j <= i; j++) 1477 devices_info[j].max_avail -= alloc_size; 1478 } 1479 i--; 1480 nr_devices--; 1481 } 1482 1483 kfree(devices_info); 1484 *free_bytes = avail_space; 1485 return 0; 1486 } 1487 1488 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1489 { 1490 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1491 struct btrfs_super_block *disk_super = fs_info->super_copy; 1492 struct list_head *head = &fs_info->space_info; 1493 struct btrfs_space_info *found; 1494 u64 total_used = 0; 1495 u64 total_free_data = 0; 1496 int bits = dentry->d_sb->s_blocksize_bits; 1497 __be32 *fsid = (__be32 *)fs_info->fsid; 1498 int ret; 1499 1500 /* holding chunk_muext to avoid allocating new chunks */ 1501 mutex_lock(&fs_info->chunk_mutex); 1502 rcu_read_lock(); 1503 list_for_each_entry_rcu(found, head, list) { 1504 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1505 total_free_data += found->disk_total - found->disk_used; 1506 total_free_data -= 1507 btrfs_account_ro_block_groups_free_space(found); 1508 } 1509 1510 total_used += found->disk_used; 1511 } 1512 rcu_read_unlock(); 1513 1514 buf->f_namelen = BTRFS_NAME_LEN; 1515 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1516 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1517 buf->f_bsize = dentry->d_sb->s_blocksize; 1518 buf->f_type = BTRFS_SUPER_MAGIC; 1519 buf->f_bavail = total_free_data; 1520 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1521 if (ret) { 1522 mutex_unlock(&fs_info->chunk_mutex); 1523 return ret; 1524 } 1525 buf->f_bavail += total_free_data; 1526 buf->f_bavail = buf->f_bavail >> bits; 1527 mutex_unlock(&fs_info->chunk_mutex); 1528 1529 /* We treat it as constant endianness (it doesn't matter _which_) 1530 because we want the fsid to come out the same whether mounted 1531 on a big-endian or little-endian host */ 1532 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1533 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1534 /* Mask in the root object ID too, to disambiguate subvols */ 1535 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1536 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1537 1538 return 0; 1539 } 1540 1541 static void btrfs_kill_super(struct super_block *sb) 1542 { 1543 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1544 kill_anon_super(sb); 1545 free_fs_info(fs_info); 1546 } 1547 1548 static struct file_system_type btrfs_fs_type = { 1549 .owner = THIS_MODULE, 1550 .name = "btrfs", 1551 .mount = btrfs_mount, 1552 .kill_sb = btrfs_kill_super, 1553 .fs_flags = FS_REQUIRES_DEV, 1554 }; 1555 MODULE_ALIAS_FS("btrfs"); 1556 1557 /* 1558 * used by btrfsctl to scan devices when no FS is mounted 1559 */ 1560 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1561 unsigned long arg) 1562 { 1563 struct btrfs_ioctl_vol_args *vol; 1564 struct btrfs_fs_devices *fs_devices; 1565 int ret = -ENOTTY; 1566 1567 if (!capable(CAP_SYS_ADMIN)) 1568 return -EPERM; 1569 1570 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1571 if (IS_ERR(vol)) 1572 return PTR_ERR(vol); 1573 1574 switch (cmd) { 1575 case BTRFS_IOC_SCAN_DEV: 1576 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1577 &btrfs_fs_type, &fs_devices); 1578 break; 1579 case BTRFS_IOC_DEVICES_READY: 1580 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1581 &btrfs_fs_type, &fs_devices); 1582 if (ret) 1583 break; 1584 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1585 break; 1586 } 1587 1588 kfree(vol); 1589 return ret; 1590 } 1591 1592 static int btrfs_freeze(struct super_block *sb) 1593 { 1594 struct btrfs_trans_handle *trans; 1595 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1596 1597 trans = btrfs_attach_transaction_barrier(root); 1598 if (IS_ERR(trans)) { 1599 /* no transaction, don't bother */ 1600 if (PTR_ERR(trans) == -ENOENT) 1601 return 0; 1602 return PTR_ERR(trans); 1603 } 1604 return btrfs_commit_transaction(trans, root); 1605 } 1606 1607 static int btrfs_unfreeze(struct super_block *sb) 1608 { 1609 return 0; 1610 } 1611 1612 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1613 { 1614 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1615 struct btrfs_fs_devices *cur_devices; 1616 struct btrfs_device *dev, *first_dev = NULL; 1617 struct list_head *head; 1618 struct rcu_string *name; 1619 1620 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1621 cur_devices = fs_info->fs_devices; 1622 while (cur_devices) { 1623 head = &cur_devices->devices; 1624 list_for_each_entry(dev, head, dev_list) { 1625 if (dev->missing) 1626 continue; 1627 if (!first_dev || dev->devid < first_dev->devid) 1628 first_dev = dev; 1629 } 1630 cur_devices = cur_devices->seed; 1631 } 1632 1633 if (first_dev) { 1634 rcu_read_lock(); 1635 name = rcu_dereference(first_dev->name); 1636 seq_escape(m, name->str, " \t\n\\"); 1637 rcu_read_unlock(); 1638 } else { 1639 WARN_ON(1); 1640 } 1641 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1642 return 0; 1643 } 1644 1645 static const struct super_operations btrfs_super_ops = { 1646 .drop_inode = btrfs_drop_inode, 1647 .evict_inode = btrfs_evict_inode, 1648 .put_super = btrfs_put_super, 1649 .sync_fs = btrfs_sync_fs, 1650 .show_options = btrfs_show_options, 1651 .show_devname = btrfs_show_devname, 1652 .write_inode = btrfs_write_inode, 1653 .alloc_inode = btrfs_alloc_inode, 1654 .destroy_inode = btrfs_destroy_inode, 1655 .statfs = btrfs_statfs, 1656 .remount_fs = btrfs_remount, 1657 .freeze_fs = btrfs_freeze, 1658 .unfreeze_fs = btrfs_unfreeze, 1659 }; 1660 1661 static const struct file_operations btrfs_ctl_fops = { 1662 .unlocked_ioctl = btrfs_control_ioctl, 1663 .compat_ioctl = btrfs_control_ioctl, 1664 .owner = THIS_MODULE, 1665 .llseek = noop_llseek, 1666 }; 1667 1668 static struct miscdevice btrfs_misc = { 1669 .minor = BTRFS_MINOR, 1670 .name = "btrfs-control", 1671 .fops = &btrfs_ctl_fops 1672 }; 1673 1674 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1675 MODULE_ALIAS("devname:btrfs-control"); 1676 1677 static int btrfs_interface_init(void) 1678 { 1679 return misc_register(&btrfs_misc); 1680 } 1681 1682 static void btrfs_interface_exit(void) 1683 { 1684 if (misc_deregister(&btrfs_misc) < 0) 1685 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n"); 1686 } 1687 1688 static int __init init_btrfs_fs(void) 1689 { 1690 int err; 1691 1692 err = btrfs_init_sysfs(); 1693 if (err) 1694 return err; 1695 1696 btrfs_init_compress(); 1697 1698 err = btrfs_init_cachep(); 1699 if (err) 1700 goto free_compress; 1701 1702 err = extent_io_init(); 1703 if (err) 1704 goto free_cachep; 1705 1706 err = extent_map_init(); 1707 if (err) 1708 goto free_extent_io; 1709 1710 err = ordered_data_init(); 1711 if (err) 1712 goto free_extent_map; 1713 1714 err = btrfs_delayed_inode_init(); 1715 if (err) 1716 goto free_ordered_data; 1717 1718 err = btrfs_auto_defrag_init(); 1719 if (err) 1720 goto free_delayed_inode; 1721 1722 err = btrfs_delayed_ref_init(); 1723 if (err) 1724 goto free_auto_defrag; 1725 1726 err = btrfs_interface_init(); 1727 if (err) 1728 goto free_delayed_ref; 1729 1730 err = register_filesystem(&btrfs_fs_type); 1731 if (err) 1732 goto unregister_ioctl; 1733 1734 btrfs_init_lockdep(); 1735 1736 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1737 btrfs_test_free_space_cache(); 1738 #endif 1739 1740 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); 1741 return 0; 1742 1743 unregister_ioctl: 1744 btrfs_interface_exit(); 1745 free_delayed_ref: 1746 btrfs_delayed_ref_exit(); 1747 free_auto_defrag: 1748 btrfs_auto_defrag_exit(); 1749 free_delayed_inode: 1750 btrfs_delayed_inode_exit(); 1751 free_ordered_data: 1752 ordered_data_exit(); 1753 free_extent_map: 1754 extent_map_exit(); 1755 free_extent_io: 1756 extent_io_exit(); 1757 free_cachep: 1758 btrfs_destroy_cachep(); 1759 free_compress: 1760 btrfs_exit_compress(); 1761 btrfs_exit_sysfs(); 1762 return err; 1763 } 1764 1765 static void __exit exit_btrfs_fs(void) 1766 { 1767 btrfs_destroy_cachep(); 1768 btrfs_delayed_ref_exit(); 1769 btrfs_auto_defrag_exit(); 1770 btrfs_delayed_inode_exit(); 1771 ordered_data_exit(); 1772 extent_map_exit(); 1773 extent_io_exit(); 1774 btrfs_interface_exit(); 1775 unregister_filesystem(&btrfs_fs_type); 1776 btrfs_exit_sysfs(); 1777 btrfs_cleanup_fs_uuids(); 1778 btrfs_exit_compress(); 1779 } 1780 1781 module_init(init_btrfs_fs) 1782 module_exit(exit_btrfs_fs) 1783 1784 MODULE_LICENSE("GPL"); 1785