xref: /openbmc/linux/fs/btrfs/super.c (revision bfe655d1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "tests/btrfs-tests.h"
47 
48 #include "qgroup.h"
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/btrfs.h>
51 
52 static const struct super_operations btrfs_super_ops;
53 
54 /*
55  * Types for mounting the default subvolume and a subvolume explicitly
56  * requested by subvol=/path. That way the callchain is straightforward and we
57  * don't have to play tricks with the mount options and recursive calls to
58  * btrfs_mount.
59  *
60  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
61  */
62 static struct file_system_type btrfs_fs_type;
63 static struct file_system_type btrfs_root_fs_type;
64 
65 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
66 
67 const char *btrfs_decode_error(int errno)
68 {
69 	char *errstr = "unknown";
70 
71 	switch (errno) {
72 	case -EIO:
73 		errstr = "IO failure";
74 		break;
75 	case -ENOMEM:
76 		errstr = "Out of memory";
77 		break;
78 	case -EROFS:
79 		errstr = "Readonly filesystem";
80 		break;
81 	case -EEXIST:
82 		errstr = "Object already exists";
83 		break;
84 	case -ENOSPC:
85 		errstr = "No space left";
86 		break;
87 	case -ENOENT:
88 		errstr = "No such entry";
89 		break;
90 	}
91 
92 	return errstr;
93 }
94 
95 /*
96  * __btrfs_handle_fs_error decodes expected errors from the caller and
97  * invokes the appropriate error response.
98  */
99 __cold
100 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
101 		       unsigned int line, int errno, const char *fmt, ...)
102 {
103 	struct super_block *sb = fs_info->sb;
104 #ifdef CONFIG_PRINTK
105 	const char *errstr;
106 #endif
107 
108 	/*
109 	 * Special case: if the error is EROFS, and we're already
110 	 * under SB_RDONLY, then it is safe here.
111 	 */
112 	if (errno == -EROFS && sb_rdonly(sb))
113   		return;
114 
115 #ifdef CONFIG_PRINTK
116 	errstr = btrfs_decode_error(errno);
117 	if (fmt) {
118 		struct va_format vaf;
119 		va_list args;
120 
121 		va_start(args, fmt);
122 		vaf.fmt = fmt;
123 		vaf.va = &args;
124 
125 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
126 			sb->s_id, function, line, errno, errstr, &vaf);
127 		va_end(args);
128 	} else {
129 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
130 			sb->s_id, function, line, errno, errstr);
131 	}
132 #endif
133 
134 	/*
135 	 * Today we only save the error info to memory.  Long term we'll
136 	 * also send it down to the disk
137 	 */
138 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
139 
140 	/* Don't go through full error handling during mount */
141 	if (!(sb->s_flags & SB_BORN))
142 		return;
143 
144 	if (sb_rdonly(sb))
145 		return;
146 
147 	/* btrfs handle error by forcing the filesystem readonly */
148 	sb->s_flags |= SB_RDONLY;
149 	btrfs_info(fs_info, "forced readonly");
150 	/*
151 	 * Note that a running device replace operation is not canceled here
152 	 * although there is no way to update the progress. It would add the
153 	 * risk of a deadlock, therefore the canceling is omitted. The only
154 	 * penalty is that some I/O remains active until the procedure
155 	 * completes. The next time when the filesystem is mounted writable
156 	 * again, the device replace operation continues.
157 	 */
158 }
159 
160 #ifdef CONFIG_PRINTK
161 static const char * const logtypes[] = {
162 	"emergency",
163 	"alert",
164 	"critical",
165 	"error",
166 	"warning",
167 	"notice",
168 	"info",
169 	"debug",
170 };
171 
172 
173 /*
174  * Use one ratelimit state per log level so that a flood of less important
175  * messages doesn't cause more important ones to be dropped.
176  */
177 static struct ratelimit_state printk_limits[] = {
178 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
179 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
180 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
181 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
182 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
183 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
184 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
185 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
186 };
187 
188 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
189 {
190 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
191 	struct va_format vaf;
192 	va_list args;
193 	int kern_level;
194 	const char *type = logtypes[4];
195 	struct ratelimit_state *ratelimit = &printk_limits[4];
196 
197 	va_start(args, fmt);
198 
199 	while ((kern_level = printk_get_level(fmt)) != 0) {
200 		size_t size = printk_skip_level(fmt) - fmt;
201 
202 		if (kern_level >= '0' && kern_level <= '7') {
203 			memcpy(lvl, fmt,  size);
204 			lvl[size] = '\0';
205 			type = logtypes[kern_level - '0'];
206 			ratelimit = &printk_limits[kern_level - '0'];
207 		}
208 		fmt += size;
209 	}
210 
211 	vaf.fmt = fmt;
212 	vaf.va = &args;
213 
214 	if (__ratelimit(ratelimit))
215 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
216 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
217 
218 	va_end(args);
219 }
220 #endif
221 
222 /*
223  * We only mark the transaction aborted and then set the file system read-only.
224  * This will prevent new transactions from starting or trying to join this
225  * one.
226  *
227  * This means that error recovery at the call site is limited to freeing
228  * any local memory allocations and passing the error code up without
229  * further cleanup. The transaction should complete as it normally would
230  * in the call path but will return -EIO.
231  *
232  * We'll complete the cleanup in btrfs_end_transaction and
233  * btrfs_commit_transaction.
234  */
235 __cold
236 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
237 			       const char *function,
238 			       unsigned int line, int errno)
239 {
240 	struct btrfs_fs_info *fs_info = trans->fs_info;
241 
242 	trans->aborted = errno;
243 	/* Nothing used. The other threads that have joined this
244 	 * transaction may be able to continue. */
245 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
246 		const char *errstr;
247 
248 		errstr = btrfs_decode_error(errno);
249 		btrfs_warn(fs_info,
250 		           "%s:%d: Aborting unused transaction(%s).",
251 		           function, line, errstr);
252 		return;
253 	}
254 	WRITE_ONCE(trans->transaction->aborted, errno);
255 	/* Wake up anybody who may be waiting on this transaction */
256 	wake_up(&fs_info->transaction_wait);
257 	wake_up(&fs_info->transaction_blocked_wait);
258 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
259 }
260 /*
261  * __btrfs_panic decodes unexpected, fatal errors from the caller,
262  * issues an alert, and either panics or BUGs, depending on mount options.
263  */
264 __cold
265 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
266 		   unsigned int line, int errno, const char *fmt, ...)
267 {
268 	char *s_id = "<unknown>";
269 	const char *errstr;
270 	struct va_format vaf = { .fmt = fmt };
271 	va_list args;
272 
273 	if (fs_info)
274 		s_id = fs_info->sb->s_id;
275 
276 	va_start(args, fmt);
277 	vaf.va = &args;
278 
279 	errstr = btrfs_decode_error(errno);
280 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
281 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
282 			s_id, function, line, &vaf, errno, errstr);
283 
284 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
285 		   function, line, &vaf, errno, errstr);
286 	va_end(args);
287 	/* Caller calls BUG() */
288 }
289 
290 static void btrfs_put_super(struct super_block *sb)
291 {
292 	close_ctree(btrfs_sb(sb));
293 }
294 
295 enum {
296 	Opt_acl, Opt_noacl,
297 	Opt_clear_cache,
298 	Opt_commit_interval,
299 	Opt_compress,
300 	Opt_compress_force,
301 	Opt_compress_force_type,
302 	Opt_compress_type,
303 	Opt_degraded,
304 	Opt_device,
305 	Opt_fatal_errors,
306 	Opt_flushoncommit, Opt_noflushoncommit,
307 	Opt_inode_cache, Opt_noinode_cache,
308 	Opt_max_inline,
309 	Opt_barrier, Opt_nobarrier,
310 	Opt_datacow, Opt_nodatacow,
311 	Opt_datasum, Opt_nodatasum,
312 	Opt_defrag, Opt_nodefrag,
313 	Opt_discard, Opt_nodiscard,
314 	Opt_nologreplay,
315 	Opt_norecovery,
316 	Opt_ratio,
317 	Opt_rescan_uuid_tree,
318 	Opt_skip_balance,
319 	Opt_space_cache, Opt_no_space_cache,
320 	Opt_space_cache_version,
321 	Opt_ssd, Opt_nossd,
322 	Opt_ssd_spread, Opt_nossd_spread,
323 	Opt_subvol,
324 	Opt_subvol_empty,
325 	Opt_subvolid,
326 	Opt_thread_pool,
327 	Opt_treelog, Opt_notreelog,
328 	Opt_usebackuproot,
329 	Opt_user_subvol_rm_allowed,
330 
331 	/* Deprecated options */
332 	Opt_alloc_start,
333 	Opt_recovery,
334 	Opt_subvolrootid,
335 
336 	/* Debugging options */
337 	Opt_check_integrity,
338 	Opt_check_integrity_including_extent_data,
339 	Opt_check_integrity_print_mask,
340 	Opt_enospc_debug, Opt_noenospc_debug,
341 #ifdef CONFIG_BTRFS_DEBUG
342 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
343 #endif
344 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
345 	Opt_ref_verify,
346 #endif
347 	Opt_err,
348 };
349 
350 static const match_table_t tokens = {
351 	{Opt_acl, "acl"},
352 	{Opt_noacl, "noacl"},
353 	{Opt_clear_cache, "clear_cache"},
354 	{Opt_commit_interval, "commit=%u"},
355 	{Opt_compress, "compress"},
356 	{Opt_compress_type, "compress=%s"},
357 	{Opt_compress_force, "compress-force"},
358 	{Opt_compress_force_type, "compress-force=%s"},
359 	{Opt_degraded, "degraded"},
360 	{Opt_device, "device=%s"},
361 	{Opt_fatal_errors, "fatal_errors=%s"},
362 	{Opt_flushoncommit, "flushoncommit"},
363 	{Opt_noflushoncommit, "noflushoncommit"},
364 	{Opt_inode_cache, "inode_cache"},
365 	{Opt_noinode_cache, "noinode_cache"},
366 	{Opt_max_inline, "max_inline=%s"},
367 	{Opt_barrier, "barrier"},
368 	{Opt_nobarrier, "nobarrier"},
369 	{Opt_datacow, "datacow"},
370 	{Opt_nodatacow, "nodatacow"},
371 	{Opt_datasum, "datasum"},
372 	{Opt_nodatasum, "nodatasum"},
373 	{Opt_defrag, "autodefrag"},
374 	{Opt_nodefrag, "noautodefrag"},
375 	{Opt_discard, "discard"},
376 	{Opt_nodiscard, "nodiscard"},
377 	{Opt_nologreplay, "nologreplay"},
378 	{Opt_norecovery, "norecovery"},
379 	{Opt_ratio, "metadata_ratio=%u"},
380 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
381 	{Opt_skip_balance, "skip_balance"},
382 	{Opt_space_cache, "space_cache"},
383 	{Opt_no_space_cache, "nospace_cache"},
384 	{Opt_space_cache_version, "space_cache=%s"},
385 	{Opt_ssd, "ssd"},
386 	{Opt_nossd, "nossd"},
387 	{Opt_ssd_spread, "ssd_spread"},
388 	{Opt_nossd_spread, "nossd_spread"},
389 	{Opt_subvol, "subvol=%s"},
390 	{Opt_subvol_empty, "subvol="},
391 	{Opt_subvolid, "subvolid=%s"},
392 	{Opt_thread_pool, "thread_pool=%u"},
393 	{Opt_treelog, "treelog"},
394 	{Opt_notreelog, "notreelog"},
395 	{Opt_usebackuproot, "usebackuproot"},
396 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
397 
398 	/* Deprecated options */
399 	{Opt_alloc_start, "alloc_start=%s"},
400 	{Opt_recovery, "recovery"},
401 	{Opt_subvolrootid, "subvolrootid=%d"},
402 
403 	/* Debugging options */
404 	{Opt_check_integrity, "check_int"},
405 	{Opt_check_integrity_including_extent_data, "check_int_data"},
406 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
407 	{Opt_enospc_debug, "enospc_debug"},
408 	{Opt_noenospc_debug, "noenospc_debug"},
409 #ifdef CONFIG_BTRFS_DEBUG
410 	{Opt_fragment_data, "fragment=data"},
411 	{Opt_fragment_metadata, "fragment=metadata"},
412 	{Opt_fragment_all, "fragment=all"},
413 #endif
414 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
415 	{Opt_ref_verify, "ref_verify"},
416 #endif
417 	{Opt_err, NULL},
418 };
419 
420 /*
421  * Regular mount options parser.  Everything that is needed only when
422  * reading in a new superblock is parsed here.
423  * XXX JDM: This needs to be cleaned up for remount.
424  */
425 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
426 			unsigned long new_flags)
427 {
428 	substring_t args[MAX_OPT_ARGS];
429 	char *p, *num;
430 	u64 cache_gen;
431 	int intarg;
432 	int ret = 0;
433 	char *compress_type;
434 	bool compress_force = false;
435 	enum btrfs_compression_type saved_compress_type;
436 	bool saved_compress_force;
437 	int no_compress = 0;
438 
439 	cache_gen = btrfs_super_cache_generation(info->super_copy);
440 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
441 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
442 	else if (cache_gen)
443 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
444 
445 	/*
446 	 * Even the options are empty, we still need to do extra check
447 	 * against new flags
448 	 */
449 	if (!options)
450 		goto check;
451 
452 	while ((p = strsep(&options, ",")) != NULL) {
453 		int token;
454 		if (!*p)
455 			continue;
456 
457 		token = match_token(p, tokens, args);
458 		switch (token) {
459 		case Opt_degraded:
460 			btrfs_info(info, "allowing degraded mounts");
461 			btrfs_set_opt(info->mount_opt, DEGRADED);
462 			break;
463 		case Opt_subvol:
464 		case Opt_subvol_empty:
465 		case Opt_subvolid:
466 		case Opt_subvolrootid:
467 		case Opt_device:
468 			/*
469 			 * These are parsed by btrfs_parse_subvol_options or
470 			 * btrfs_parse_device_options and can be ignored here.
471 			 */
472 			break;
473 		case Opt_nodatasum:
474 			btrfs_set_and_info(info, NODATASUM,
475 					   "setting nodatasum");
476 			break;
477 		case Opt_datasum:
478 			if (btrfs_test_opt(info, NODATASUM)) {
479 				if (btrfs_test_opt(info, NODATACOW))
480 					btrfs_info(info,
481 						   "setting datasum, datacow enabled");
482 				else
483 					btrfs_info(info, "setting datasum");
484 			}
485 			btrfs_clear_opt(info->mount_opt, NODATACOW);
486 			btrfs_clear_opt(info->mount_opt, NODATASUM);
487 			break;
488 		case Opt_nodatacow:
489 			if (!btrfs_test_opt(info, NODATACOW)) {
490 				if (!btrfs_test_opt(info, COMPRESS) ||
491 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
492 					btrfs_info(info,
493 						   "setting nodatacow, compression disabled");
494 				} else {
495 					btrfs_info(info, "setting nodatacow");
496 				}
497 			}
498 			btrfs_clear_opt(info->mount_opt, COMPRESS);
499 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
500 			btrfs_set_opt(info->mount_opt, NODATACOW);
501 			btrfs_set_opt(info->mount_opt, NODATASUM);
502 			break;
503 		case Opt_datacow:
504 			btrfs_clear_and_info(info, NODATACOW,
505 					     "setting datacow");
506 			break;
507 		case Opt_compress_force:
508 		case Opt_compress_force_type:
509 			compress_force = true;
510 			/* Fallthrough */
511 		case Opt_compress:
512 		case Opt_compress_type:
513 			saved_compress_type = btrfs_test_opt(info,
514 							     COMPRESS) ?
515 				info->compress_type : BTRFS_COMPRESS_NONE;
516 			saved_compress_force =
517 				btrfs_test_opt(info, FORCE_COMPRESS);
518 			if (token == Opt_compress ||
519 			    token == Opt_compress_force ||
520 			    strncmp(args[0].from, "zlib", 4) == 0) {
521 				compress_type = "zlib";
522 
523 				info->compress_type = BTRFS_COMPRESS_ZLIB;
524 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
525 				/*
526 				 * args[0] contains uninitialized data since
527 				 * for these tokens we don't expect any
528 				 * parameter.
529 				 */
530 				if (token != Opt_compress &&
531 				    token != Opt_compress_force)
532 					info->compress_level =
533 					  btrfs_compress_str2level(
534 							BTRFS_COMPRESS_ZLIB,
535 							args[0].from + 4);
536 				btrfs_set_opt(info->mount_opt, COMPRESS);
537 				btrfs_clear_opt(info->mount_opt, NODATACOW);
538 				btrfs_clear_opt(info->mount_opt, NODATASUM);
539 				no_compress = 0;
540 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
541 				compress_type = "lzo";
542 				info->compress_type = BTRFS_COMPRESS_LZO;
543 				btrfs_set_opt(info->mount_opt, COMPRESS);
544 				btrfs_clear_opt(info->mount_opt, NODATACOW);
545 				btrfs_clear_opt(info->mount_opt, NODATASUM);
546 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
547 				no_compress = 0;
548 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
549 				compress_type = "zstd";
550 				info->compress_type = BTRFS_COMPRESS_ZSTD;
551 				info->compress_level =
552 					btrfs_compress_str2level(
553 							 BTRFS_COMPRESS_ZSTD,
554 							 args[0].from + 4);
555 				btrfs_set_opt(info->mount_opt, COMPRESS);
556 				btrfs_clear_opt(info->mount_opt, NODATACOW);
557 				btrfs_clear_opt(info->mount_opt, NODATASUM);
558 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
559 				no_compress = 0;
560 			} else if (strncmp(args[0].from, "no", 2) == 0) {
561 				compress_type = "no";
562 				btrfs_clear_opt(info->mount_opt, COMPRESS);
563 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
564 				compress_force = false;
565 				no_compress++;
566 			} else {
567 				ret = -EINVAL;
568 				goto out;
569 			}
570 
571 			if (compress_force) {
572 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
573 			} else {
574 				/*
575 				 * If we remount from compress-force=xxx to
576 				 * compress=xxx, we need clear FORCE_COMPRESS
577 				 * flag, otherwise, there is no way for users
578 				 * to disable forcible compression separately.
579 				 */
580 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
581 			}
582 			if ((btrfs_test_opt(info, COMPRESS) &&
583 			     (info->compress_type != saved_compress_type ||
584 			      compress_force != saved_compress_force)) ||
585 			    (!btrfs_test_opt(info, COMPRESS) &&
586 			     no_compress == 1)) {
587 				btrfs_info(info, "%s %s compression, level %d",
588 					   (compress_force) ? "force" : "use",
589 					   compress_type, info->compress_level);
590 			}
591 			compress_force = false;
592 			break;
593 		case Opt_ssd:
594 			btrfs_set_and_info(info, SSD,
595 					   "enabling ssd optimizations");
596 			btrfs_clear_opt(info->mount_opt, NOSSD);
597 			break;
598 		case Opt_ssd_spread:
599 			btrfs_set_and_info(info, SSD,
600 					   "enabling ssd optimizations");
601 			btrfs_set_and_info(info, SSD_SPREAD,
602 					   "using spread ssd allocation scheme");
603 			btrfs_clear_opt(info->mount_opt, NOSSD);
604 			break;
605 		case Opt_nossd:
606 			btrfs_set_opt(info->mount_opt, NOSSD);
607 			btrfs_clear_and_info(info, SSD,
608 					     "not using ssd optimizations");
609 			/* Fallthrough */
610 		case Opt_nossd_spread:
611 			btrfs_clear_and_info(info, SSD_SPREAD,
612 					     "not using spread ssd allocation scheme");
613 			break;
614 		case Opt_barrier:
615 			btrfs_clear_and_info(info, NOBARRIER,
616 					     "turning on barriers");
617 			break;
618 		case Opt_nobarrier:
619 			btrfs_set_and_info(info, NOBARRIER,
620 					   "turning off barriers");
621 			break;
622 		case Opt_thread_pool:
623 			ret = match_int(&args[0], &intarg);
624 			if (ret) {
625 				goto out;
626 			} else if (intarg == 0) {
627 				ret = -EINVAL;
628 				goto out;
629 			}
630 			info->thread_pool_size = intarg;
631 			break;
632 		case Opt_max_inline:
633 			num = match_strdup(&args[0]);
634 			if (num) {
635 				info->max_inline = memparse(num, NULL);
636 				kfree(num);
637 
638 				if (info->max_inline) {
639 					info->max_inline = min_t(u64,
640 						info->max_inline,
641 						info->sectorsize);
642 				}
643 				btrfs_info(info, "max_inline at %llu",
644 					   info->max_inline);
645 			} else {
646 				ret = -ENOMEM;
647 				goto out;
648 			}
649 			break;
650 		case Opt_alloc_start:
651 			btrfs_info(info,
652 				"option alloc_start is obsolete, ignored");
653 			break;
654 		case Opt_acl:
655 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
656 			info->sb->s_flags |= SB_POSIXACL;
657 			break;
658 #else
659 			btrfs_err(info, "support for ACL not compiled in!");
660 			ret = -EINVAL;
661 			goto out;
662 #endif
663 		case Opt_noacl:
664 			info->sb->s_flags &= ~SB_POSIXACL;
665 			break;
666 		case Opt_notreelog:
667 			btrfs_set_and_info(info, NOTREELOG,
668 					   "disabling tree log");
669 			break;
670 		case Opt_treelog:
671 			btrfs_clear_and_info(info, NOTREELOG,
672 					     "enabling tree log");
673 			break;
674 		case Opt_norecovery:
675 		case Opt_nologreplay:
676 			btrfs_set_and_info(info, NOLOGREPLAY,
677 					   "disabling log replay at mount time");
678 			break;
679 		case Opt_flushoncommit:
680 			btrfs_set_and_info(info, FLUSHONCOMMIT,
681 					   "turning on flush-on-commit");
682 			break;
683 		case Opt_noflushoncommit:
684 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
685 					     "turning off flush-on-commit");
686 			break;
687 		case Opt_ratio:
688 			ret = match_int(&args[0], &intarg);
689 			if (ret)
690 				goto out;
691 			info->metadata_ratio = intarg;
692 			btrfs_info(info, "metadata ratio %u",
693 				   info->metadata_ratio);
694 			break;
695 		case Opt_discard:
696 			btrfs_set_and_info(info, DISCARD,
697 					   "turning on discard");
698 			break;
699 		case Opt_nodiscard:
700 			btrfs_clear_and_info(info, DISCARD,
701 					     "turning off discard");
702 			break;
703 		case Opt_space_cache:
704 		case Opt_space_cache_version:
705 			if (token == Opt_space_cache ||
706 			    strcmp(args[0].from, "v1") == 0) {
707 				btrfs_clear_opt(info->mount_opt,
708 						FREE_SPACE_TREE);
709 				btrfs_set_and_info(info, SPACE_CACHE,
710 					   "enabling disk space caching");
711 			} else if (strcmp(args[0].from, "v2") == 0) {
712 				btrfs_clear_opt(info->mount_opt,
713 						SPACE_CACHE);
714 				btrfs_set_and_info(info, FREE_SPACE_TREE,
715 						   "enabling free space tree");
716 			} else {
717 				ret = -EINVAL;
718 				goto out;
719 			}
720 			break;
721 		case Opt_rescan_uuid_tree:
722 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
723 			break;
724 		case Opt_no_space_cache:
725 			if (btrfs_test_opt(info, SPACE_CACHE)) {
726 				btrfs_clear_and_info(info, SPACE_CACHE,
727 					     "disabling disk space caching");
728 			}
729 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
730 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
731 					     "disabling free space tree");
732 			}
733 			break;
734 		case Opt_inode_cache:
735 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
736 					   "enabling inode map caching");
737 			break;
738 		case Opt_noinode_cache:
739 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
740 					     "disabling inode map caching");
741 			break;
742 		case Opt_clear_cache:
743 			btrfs_set_and_info(info, CLEAR_CACHE,
744 					   "force clearing of disk cache");
745 			break;
746 		case Opt_user_subvol_rm_allowed:
747 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
748 			break;
749 		case Opt_enospc_debug:
750 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
751 			break;
752 		case Opt_noenospc_debug:
753 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
754 			break;
755 		case Opt_defrag:
756 			btrfs_set_and_info(info, AUTO_DEFRAG,
757 					   "enabling auto defrag");
758 			break;
759 		case Opt_nodefrag:
760 			btrfs_clear_and_info(info, AUTO_DEFRAG,
761 					     "disabling auto defrag");
762 			break;
763 		case Opt_recovery:
764 			btrfs_warn(info,
765 				   "'recovery' is deprecated, use 'usebackuproot' instead");
766 			/* fall through */
767 		case Opt_usebackuproot:
768 			btrfs_info(info,
769 				   "trying to use backup root at mount time");
770 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
771 			break;
772 		case Opt_skip_balance:
773 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
774 			break;
775 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
776 		case Opt_check_integrity_including_extent_data:
777 			btrfs_info(info,
778 				   "enabling check integrity including extent data");
779 			btrfs_set_opt(info->mount_opt,
780 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
781 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
782 			break;
783 		case Opt_check_integrity:
784 			btrfs_info(info, "enabling check integrity");
785 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
786 			break;
787 		case Opt_check_integrity_print_mask:
788 			ret = match_int(&args[0], &intarg);
789 			if (ret)
790 				goto out;
791 			info->check_integrity_print_mask = intarg;
792 			btrfs_info(info, "check_integrity_print_mask 0x%x",
793 				   info->check_integrity_print_mask);
794 			break;
795 #else
796 		case Opt_check_integrity_including_extent_data:
797 		case Opt_check_integrity:
798 		case Opt_check_integrity_print_mask:
799 			btrfs_err(info,
800 				  "support for check_integrity* not compiled in!");
801 			ret = -EINVAL;
802 			goto out;
803 #endif
804 		case Opt_fatal_errors:
805 			if (strcmp(args[0].from, "panic") == 0)
806 				btrfs_set_opt(info->mount_opt,
807 					      PANIC_ON_FATAL_ERROR);
808 			else if (strcmp(args[0].from, "bug") == 0)
809 				btrfs_clear_opt(info->mount_opt,
810 					      PANIC_ON_FATAL_ERROR);
811 			else {
812 				ret = -EINVAL;
813 				goto out;
814 			}
815 			break;
816 		case Opt_commit_interval:
817 			intarg = 0;
818 			ret = match_int(&args[0], &intarg);
819 			if (ret)
820 				goto out;
821 			if (intarg == 0) {
822 				btrfs_info(info,
823 					   "using default commit interval %us",
824 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
825 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
826 			} else if (intarg > 300) {
827 				btrfs_warn(info, "excessive commit interval %d",
828 					   intarg);
829 			}
830 			info->commit_interval = intarg;
831 			break;
832 #ifdef CONFIG_BTRFS_DEBUG
833 		case Opt_fragment_all:
834 			btrfs_info(info, "fragmenting all space");
835 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
836 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
837 			break;
838 		case Opt_fragment_metadata:
839 			btrfs_info(info, "fragmenting metadata");
840 			btrfs_set_opt(info->mount_opt,
841 				      FRAGMENT_METADATA);
842 			break;
843 		case Opt_fragment_data:
844 			btrfs_info(info, "fragmenting data");
845 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
846 			break;
847 #endif
848 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
849 		case Opt_ref_verify:
850 			btrfs_info(info, "doing ref verification");
851 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
852 			break;
853 #endif
854 		case Opt_err:
855 			btrfs_info(info, "unrecognized mount option '%s'", p);
856 			ret = -EINVAL;
857 			goto out;
858 		default:
859 			break;
860 		}
861 	}
862 check:
863 	/*
864 	 * Extra check for current option against current flag
865 	 */
866 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
867 		btrfs_err(info,
868 			  "nologreplay must be used with ro mount option");
869 		ret = -EINVAL;
870 	}
871 out:
872 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
873 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
874 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
875 		btrfs_err(info, "cannot disable free space tree");
876 		ret = -EINVAL;
877 
878 	}
879 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
880 		btrfs_info(info, "disk space caching is enabled");
881 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
882 		btrfs_info(info, "using free space tree");
883 	return ret;
884 }
885 
886 /*
887  * Parse mount options that are required early in the mount process.
888  *
889  * All other options will be parsed on much later in the mount process and
890  * only when we need to allocate a new super block.
891  */
892 static int btrfs_parse_device_options(const char *options, fmode_t flags,
893 				      void *holder)
894 {
895 	substring_t args[MAX_OPT_ARGS];
896 	char *device_name, *opts, *orig, *p;
897 	struct btrfs_device *device = NULL;
898 	int error = 0;
899 
900 	lockdep_assert_held(&uuid_mutex);
901 
902 	if (!options)
903 		return 0;
904 
905 	/*
906 	 * strsep changes the string, duplicate it because btrfs_parse_options
907 	 * gets called later
908 	 */
909 	opts = kstrdup(options, GFP_KERNEL);
910 	if (!opts)
911 		return -ENOMEM;
912 	orig = opts;
913 
914 	while ((p = strsep(&opts, ",")) != NULL) {
915 		int token;
916 
917 		if (!*p)
918 			continue;
919 
920 		token = match_token(p, tokens, args);
921 		if (token == Opt_device) {
922 			device_name = match_strdup(&args[0]);
923 			if (!device_name) {
924 				error = -ENOMEM;
925 				goto out;
926 			}
927 			device = btrfs_scan_one_device(device_name, flags,
928 					holder);
929 			kfree(device_name);
930 			if (IS_ERR(device)) {
931 				error = PTR_ERR(device);
932 				goto out;
933 			}
934 		}
935 	}
936 
937 out:
938 	kfree(orig);
939 	return error;
940 }
941 
942 /*
943  * Parse mount options that are related to subvolume id
944  *
945  * The value is later passed to mount_subvol()
946  */
947 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
948 		u64 *subvol_objectid)
949 {
950 	substring_t args[MAX_OPT_ARGS];
951 	char *opts, *orig, *p;
952 	int error = 0;
953 	u64 subvolid;
954 
955 	if (!options)
956 		return 0;
957 
958 	/*
959 	 * strsep changes the string, duplicate it because
960 	 * btrfs_parse_device_options gets called later
961 	 */
962 	opts = kstrdup(options, GFP_KERNEL);
963 	if (!opts)
964 		return -ENOMEM;
965 	orig = opts;
966 
967 	while ((p = strsep(&opts, ",")) != NULL) {
968 		int token;
969 		if (!*p)
970 			continue;
971 
972 		token = match_token(p, tokens, args);
973 		switch (token) {
974 		case Opt_subvol:
975 			kfree(*subvol_name);
976 			*subvol_name = match_strdup(&args[0]);
977 			if (!*subvol_name) {
978 				error = -ENOMEM;
979 				goto out;
980 			}
981 			break;
982 		case Opt_subvolid:
983 			error = match_u64(&args[0], &subvolid);
984 			if (error)
985 				goto out;
986 
987 			/* we want the original fs_tree */
988 			if (subvolid == 0)
989 				subvolid = BTRFS_FS_TREE_OBJECTID;
990 
991 			*subvol_objectid = subvolid;
992 			break;
993 		case Opt_subvolrootid:
994 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
995 			break;
996 		default:
997 			break;
998 		}
999 	}
1000 
1001 out:
1002 	kfree(orig);
1003 	return error;
1004 }
1005 
1006 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1007 					   u64 subvol_objectid)
1008 {
1009 	struct btrfs_root *root = fs_info->tree_root;
1010 	struct btrfs_root *fs_root;
1011 	struct btrfs_root_ref *root_ref;
1012 	struct btrfs_inode_ref *inode_ref;
1013 	struct btrfs_key key;
1014 	struct btrfs_path *path = NULL;
1015 	char *name = NULL, *ptr;
1016 	u64 dirid;
1017 	int len;
1018 	int ret;
1019 
1020 	path = btrfs_alloc_path();
1021 	if (!path) {
1022 		ret = -ENOMEM;
1023 		goto err;
1024 	}
1025 	path->leave_spinning = 1;
1026 
1027 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1028 	if (!name) {
1029 		ret = -ENOMEM;
1030 		goto err;
1031 	}
1032 	ptr = name + PATH_MAX - 1;
1033 	ptr[0] = '\0';
1034 
1035 	/*
1036 	 * Walk up the subvolume trees in the tree of tree roots by root
1037 	 * backrefs until we hit the top-level subvolume.
1038 	 */
1039 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1040 		key.objectid = subvol_objectid;
1041 		key.type = BTRFS_ROOT_BACKREF_KEY;
1042 		key.offset = (u64)-1;
1043 
1044 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1045 		if (ret < 0) {
1046 			goto err;
1047 		} else if (ret > 0) {
1048 			ret = btrfs_previous_item(root, path, subvol_objectid,
1049 						  BTRFS_ROOT_BACKREF_KEY);
1050 			if (ret < 0) {
1051 				goto err;
1052 			} else if (ret > 0) {
1053 				ret = -ENOENT;
1054 				goto err;
1055 			}
1056 		}
1057 
1058 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1059 		subvol_objectid = key.offset;
1060 
1061 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1062 					  struct btrfs_root_ref);
1063 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1064 		ptr -= len + 1;
1065 		if (ptr < name) {
1066 			ret = -ENAMETOOLONG;
1067 			goto err;
1068 		}
1069 		read_extent_buffer(path->nodes[0], ptr + 1,
1070 				   (unsigned long)(root_ref + 1), len);
1071 		ptr[0] = '/';
1072 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1073 		btrfs_release_path(path);
1074 
1075 		key.objectid = subvol_objectid;
1076 		key.type = BTRFS_ROOT_ITEM_KEY;
1077 		key.offset = (u64)-1;
1078 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1079 		if (IS_ERR(fs_root)) {
1080 			ret = PTR_ERR(fs_root);
1081 			goto err;
1082 		}
1083 
1084 		/*
1085 		 * Walk up the filesystem tree by inode refs until we hit the
1086 		 * root directory.
1087 		 */
1088 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1089 			key.objectid = dirid;
1090 			key.type = BTRFS_INODE_REF_KEY;
1091 			key.offset = (u64)-1;
1092 
1093 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1094 			if (ret < 0) {
1095 				goto err;
1096 			} else if (ret > 0) {
1097 				ret = btrfs_previous_item(fs_root, path, dirid,
1098 							  BTRFS_INODE_REF_KEY);
1099 				if (ret < 0) {
1100 					goto err;
1101 				} else if (ret > 0) {
1102 					ret = -ENOENT;
1103 					goto err;
1104 				}
1105 			}
1106 
1107 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1108 			dirid = key.offset;
1109 
1110 			inode_ref = btrfs_item_ptr(path->nodes[0],
1111 						   path->slots[0],
1112 						   struct btrfs_inode_ref);
1113 			len = btrfs_inode_ref_name_len(path->nodes[0],
1114 						       inode_ref);
1115 			ptr -= len + 1;
1116 			if (ptr < name) {
1117 				ret = -ENAMETOOLONG;
1118 				goto err;
1119 			}
1120 			read_extent_buffer(path->nodes[0], ptr + 1,
1121 					   (unsigned long)(inode_ref + 1), len);
1122 			ptr[0] = '/';
1123 			btrfs_release_path(path);
1124 		}
1125 	}
1126 
1127 	btrfs_free_path(path);
1128 	if (ptr == name + PATH_MAX - 1) {
1129 		name[0] = '/';
1130 		name[1] = '\0';
1131 	} else {
1132 		memmove(name, ptr, name + PATH_MAX - ptr);
1133 	}
1134 	return name;
1135 
1136 err:
1137 	btrfs_free_path(path);
1138 	kfree(name);
1139 	return ERR_PTR(ret);
1140 }
1141 
1142 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1143 {
1144 	struct btrfs_root *root = fs_info->tree_root;
1145 	struct btrfs_dir_item *di;
1146 	struct btrfs_path *path;
1147 	struct btrfs_key location;
1148 	u64 dir_id;
1149 
1150 	path = btrfs_alloc_path();
1151 	if (!path)
1152 		return -ENOMEM;
1153 	path->leave_spinning = 1;
1154 
1155 	/*
1156 	 * Find the "default" dir item which points to the root item that we
1157 	 * will mount by default if we haven't been given a specific subvolume
1158 	 * to mount.
1159 	 */
1160 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1161 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1162 	if (IS_ERR(di)) {
1163 		btrfs_free_path(path);
1164 		return PTR_ERR(di);
1165 	}
1166 	if (!di) {
1167 		/*
1168 		 * Ok the default dir item isn't there.  This is weird since
1169 		 * it's always been there, but don't freak out, just try and
1170 		 * mount the top-level subvolume.
1171 		 */
1172 		btrfs_free_path(path);
1173 		*objectid = BTRFS_FS_TREE_OBJECTID;
1174 		return 0;
1175 	}
1176 
1177 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1178 	btrfs_free_path(path);
1179 	*objectid = location.objectid;
1180 	return 0;
1181 }
1182 
1183 static int btrfs_fill_super(struct super_block *sb,
1184 			    struct btrfs_fs_devices *fs_devices,
1185 			    void *data)
1186 {
1187 	struct inode *inode;
1188 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1189 	struct btrfs_key key;
1190 	int err;
1191 
1192 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1193 	sb->s_magic = BTRFS_SUPER_MAGIC;
1194 	sb->s_op = &btrfs_super_ops;
1195 	sb->s_d_op = &btrfs_dentry_operations;
1196 	sb->s_export_op = &btrfs_export_ops;
1197 	sb->s_xattr = btrfs_xattr_handlers;
1198 	sb->s_time_gran = 1;
1199 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1200 	sb->s_flags |= SB_POSIXACL;
1201 #endif
1202 	sb->s_flags |= SB_I_VERSION;
1203 	sb->s_iflags |= SB_I_CGROUPWB;
1204 
1205 	err = super_setup_bdi(sb);
1206 	if (err) {
1207 		btrfs_err(fs_info, "super_setup_bdi failed");
1208 		return err;
1209 	}
1210 
1211 	err = open_ctree(sb, fs_devices, (char *)data);
1212 	if (err) {
1213 		btrfs_err(fs_info, "open_ctree failed");
1214 		return err;
1215 	}
1216 
1217 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1218 	key.type = BTRFS_INODE_ITEM_KEY;
1219 	key.offset = 0;
1220 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1221 	if (IS_ERR(inode)) {
1222 		err = PTR_ERR(inode);
1223 		goto fail_close;
1224 	}
1225 
1226 	sb->s_root = d_make_root(inode);
1227 	if (!sb->s_root) {
1228 		err = -ENOMEM;
1229 		goto fail_close;
1230 	}
1231 
1232 	cleancache_init_fs(sb);
1233 	sb->s_flags |= SB_ACTIVE;
1234 	return 0;
1235 
1236 fail_close:
1237 	close_ctree(fs_info);
1238 	return err;
1239 }
1240 
1241 int btrfs_sync_fs(struct super_block *sb, int wait)
1242 {
1243 	struct btrfs_trans_handle *trans;
1244 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1245 	struct btrfs_root *root = fs_info->tree_root;
1246 
1247 	trace_btrfs_sync_fs(fs_info, wait);
1248 
1249 	if (!wait) {
1250 		filemap_flush(fs_info->btree_inode->i_mapping);
1251 		return 0;
1252 	}
1253 
1254 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1255 
1256 	trans = btrfs_attach_transaction_barrier(root);
1257 	if (IS_ERR(trans)) {
1258 		/* no transaction, don't bother */
1259 		if (PTR_ERR(trans) == -ENOENT) {
1260 			/*
1261 			 * Exit unless we have some pending changes
1262 			 * that need to go through commit
1263 			 */
1264 			if (fs_info->pending_changes == 0)
1265 				return 0;
1266 			/*
1267 			 * A non-blocking test if the fs is frozen. We must not
1268 			 * start a new transaction here otherwise a deadlock
1269 			 * happens. The pending operations are delayed to the
1270 			 * next commit after thawing.
1271 			 */
1272 			if (sb_start_write_trylock(sb))
1273 				sb_end_write(sb);
1274 			else
1275 				return 0;
1276 			trans = btrfs_start_transaction(root, 0);
1277 		}
1278 		if (IS_ERR(trans))
1279 			return PTR_ERR(trans);
1280 	}
1281 	return btrfs_commit_transaction(trans);
1282 }
1283 
1284 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1285 {
1286 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1287 	const char *compress_type;
1288 
1289 	if (btrfs_test_opt(info, DEGRADED))
1290 		seq_puts(seq, ",degraded");
1291 	if (btrfs_test_opt(info, NODATASUM))
1292 		seq_puts(seq, ",nodatasum");
1293 	if (btrfs_test_opt(info, NODATACOW))
1294 		seq_puts(seq, ",nodatacow");
1295 	if (btrfs_test_opt(info, NOBARRIER))
1296 		seq_puts(seq, ",nobarrier");
1297 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1298 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1299 	if (info->thread_pool_size !=  min_t(unsigned long,
1300 					     num_online_cpus() + 2, 8))
1301 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1302 	if (btrfs_test_opt(info, COMPRESS)) {
1303 		compress_type = btrfs_compress_type2str(info->compress_type);
1304 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1305 			seq_printf(seq, ",compress-force=%s", compress_type);
1306 		else
1307 			seq_printf(seq, ",compress=%s", compress_type);
1308 		if (info->compress_level)
1309 			seq_printf(seq, ":%d", info->compress_level);
1310 	}
1311 	if (btrfs_test_opt(info, NOSSD))
1312 		seq_puts(seq, ",nossd");
1313 	if (btrfs_test_opt(info, SSD_SPREAD))
1314 		seq_puts(seq, ",ssd_spread");
1315 	else if (btrfs_test_opt(info, SSD))
1316 		seq_puts(seq, ",ssd");
1317 	if (btrfs_test_opt(info, NOTREELOG))
1318 		seq_puts(seq, ",notreelog");
1319 	if (btrfs_test_opt(info, NOLOGREPLAY))
1320 		seq_puts(seq, ",nologreplay");
1321 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1322 		seq_puts(seq, ",flushoncommit");
1323 	if (btrfs_test_opt(info, DISCARD))
1324 		seq_puts(seq, ",discard");
1325 	if (!(info->sb->s_flags & SB_POSIXACL))
1326 		seq_puts(seq, ",noacl");
1327 	if (btrfs_test_opt(info, SPACE_CACHE))
1328 		seq_puts(seq, ",space_cache");
1329 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1330 		seq_puts(seq, ",space_cache=v2");
1331 	else
1332 		seq_puts(seq, ",nospace_cache");
1333 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1334 		seq_puts(seq, ",rescan_uuid_tree");
1335 	if (btrfs_test_opt(info, CLEAR_CACHE))
1336 		seq_puts(seq, ",clear_cache");
1337 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1338 		seq_puts(seq, ",user_subvol_rm_allowed");
1339 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1340 		seq_puts(seq, ",enospc_debug");
1341 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1342 		seq_puts(seq, ",autodefrag");
1343 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1344 		seq_puts(seq, ",inode_cache");
1345 	if (btrfs_test_opt(info, SKIP_BALANCE))
1346 		seq_puts(seq, ",skip_balance");
1347 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1348 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1349 		seq_puts(seq, ",check_int_data");
1350 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1351 		seq_puts(seq, ",check_int");
1352 	if (info->check_integrity_print_mask)
1353 		seq_printf(seq, ",check_int_print_mask=%d",
1354 				info->check_integrity_print_mask);
1355 #endif
1356 	if (info->metadata_ratio)
1357 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1358 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1359 		seq_puts(seq, ",fatal_errors=panic");
1360 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1361 		seq_printf(seq, ",commit=%u", info->commit_interval);
1362 #ifdef CONFIG_BTRFS_DEBUG
1363 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1364 		seq_puts(seq, ",fragment=data");
1365 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1366 		seq_puts(seq, ",fragment=metadata");
1367 #endif
1368 	if (btrfs_test_opt(info, REF_VERIFY))
1369 		seq_puts(seq, ",ref_verify");
1370 	seq_printf(seq, ",subvolid=%llu",
1371 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1372 	seq_puts(seq, ",subvol=");
1373 	seq_dentry(seq, dentry, " \t\n\\");
1374 	return 0;
1375 }
1376 
1377 static int btrfs_test_super(struct super_block *s, void *data)
1378 {
1379 	struct btrfs_fs_info *p = data;
1380 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1381 
1382 	return fs_info->fs_devices == p->fs_devices;
1383 }
1384 
1385 static int btrfs_set_super(struct super_block *s, void *data)
1386 {
1387 	int err = set_anon_super(s, data);
1388 	if (!err)
1389 		s->s_fs_info = data;
1390 	return err;
1391 }
1392 
1393 /*
1394  * subvolumes are identified by ino 256
1395  */
1396 static inline int is_subvolume_inode(struct inode *inode)
1397 {
1398 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1399 		return 1;
1400 	return 0;
1401 }
1402 
1403 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1404 				   struct vfsmount *mnt)
1405 {
1406 	struct dentry *root;
1407 	int ret;
1408 
1409 	if (!subvol_name) {
1410 		if (!subvol_objectid) {
1411 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1412 							  &subvol_objectid);
1413 			if (ret) {
1414 				root = ERR_PTR(ret);
1415 				goto out;
1416 			}
1417 		}
1418 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1419 							    subvol_objectid);
1420 		if (IS_ERR(subvol_name)) {
1421 			root = ERR_CAST(subvol_name);
1422 			subvol_name = NULL;
1423 			goto out;
1424 		}
1425 
1426 	}
1427 
1428 	root = mount_subtree(mnt, subvol_name);
1429 	/* mount_subtree() drops our reference on the vfsmount. */
1430 	mnt = NULL;
1431 
1432 	if (!IS_ERR(root)) {
1433 		struct super_block *s = root->d_sb;
1434 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1435 		struct inode *root_inode = d_inode(root);
1436 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1437 
1438 		ret = 0;
1439 		if (!is_subvolume_inode(root_inode)) {
1440 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1441 			       subvol_name);
1442 			ret = -EINVAL;
1443 		}
1444 		if (subvol_objectid && root_objectid != subvol_objectid) {
1445 			/*
1446 			 * This will also catch a race condition where a
1447 			 * subvolume which was passed by ID is renamed and
1448 			 * another subvolume is renamed over the old location.
1449 			 */
1450 			btrfs_err(fs_info,
1451 				  "subvol '%s' does not match subvolid %llu",
1452 				  subvol_name, subvol_objectid);
1453 			ret = -EINVAL;
1454 		}
1455 		if (ret) {
1456 			dput(root);
1457 			root = ERR_PTR(ret);
1458 			deactivate_locked_super(s);
1459 		}
1460 	}
1461 
1462 out:
1463 	mntput(mnt);
1464 	kfree(subvol_name);
1465 	return root;
1466 }
1467 
1468 /*
1469  * Find a superblock for the given device / mount point.
1470  *
1471  * Note: This is based on mount_bdev from fs/super.c with a few additions
1472  *       for multiple device setup.  Make sure to keep it in sync.
1473  */
1474 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1475 		int flags, const char *device_name, void *data)
1476 {
1477 	struct block_device *bdev = NULL;
1478 	struct super_block *s;
1479 	struct btrfs_device *device = NULL;
1480 	struct btrfs_fs_devices *fs_devices = NULL;
1481 	struct btrfs_fs_info *fs_info = NULL;
1482 	void *new_sec_opts = NULL;
1483 	fmode_t mode = FMODE_READ;
1484 	int error = 0;
1485 
1486 	if (!(flags & SB_RDONLY))
1487 		mode |= FMODE_WRITE;
1488 
1489 	if (data) {
1490 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1491 		if (error)
1492 			return ERR_PTR(error);
1493 	}
1494 
1495 	/*
1496 	 * Setup a dummy root and fs_info for test/set super.  This is because
1497 	 * we don't actually fill this stuff out until open_ctree, but we need
1498 	 * it for searching for existing supers, so this lets us do that and
1499 	 * then open_ctree will properly initialize everything later.
1500 	 */
1501 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1502 	if (!fs_info) {
1503 		error = -ENOMEM;
1504 		goto error_sec_opts;
1505 	}
1506 
1507 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1508 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1509 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1510 		error = -ENOMEM;
1511 		goto error_fs_info;
1512 	}
1513 
1514 	mutex_lock(&uuid_mutex);
1515 	error = btrfs_parse_device_options(data, mode, fs_type);
1516 	if (error) {
1517 		mutex_unlock(&uuid_mutex);
1518 		goto error_fs_info;
1519 	}
1520 
1521 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1522 	if (IS_ERR(device)) {
1523 		mutex_unlock(&uuid_mutex);
1524 		error = PTR_ERR(device);
1525 		goto error_fs_info;
1526 	}
1527 
1528 	fs_devices = device->fs_devices;
1529 	fs_info->fs_devices = fs_devices;
1530 
1531 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1532 	mutex_unlock(&uuid_mutex);
1533 	if (error)
1534 		goto error_fs_info;
1535 
1536 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1537 		error = -EACCES;
1538 		goto error_close_devices;
1539 	}
1540 
1541 	bdev = fs_devices->latest_bdev;
1542 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1543 		 fs_info);
1544 	if (IS_ERR(s)) {
1545 		error = PTR_ERR(s);
1546 		goto error_close_devices;
1547 	}
1548 
1549 	if (s->s_root) {
1550 		btrfs_close_devices(fs_devices);
1551 		free_fs_info(fs_info);
1552 		if ((flags ^ s->s_flags) & SB_RDONLY)
1553 			error = -EBUSY;
1554 	} else {
1555 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1556 		btrfs_sb(s)->bdev_holder = fs_type;
1557 		if (!strstr(crc32c_impl(), "generic"))
1558 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1559 		error = btrfs_fill_super(s, fs_devices, data);
1560 	}
1561 	if (!error)
1562 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1563 	security_free_mnt_opts(&new_sec_opts);
1564 	if (error) {
1565 		deactivate_locked_super(s);
1566 		return ERR_PTR(error);
1567 	}
1568 
1569 	return dget(s->s_root);
1570 
1571 error_close_devices:
1572 	btrfs_close_devices(fs_devices);
1573 error_fs_info:
1574 	free_fs_info(fs_info);
1575 error_sec_opts:
1576 	security_free_mnt_opts(&new_sec_opts);
1577 	return ERR_PTR(error);
1578 }
1579 
1580 /*
1581  * Mount function which is called by VFS layer.
1582  *
1583  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1584  * which needs vfsmount* of device's root (/).  This means device's root has to
1585  * be mounted internally in any case.
1586  *
1587  * Operation flow:
1588  *   1. Parse subvol id related options for later use in mount_subvol().
1589  *
1590  *   2. Mount device's root (/) by calling vfs_kern_mount().
1591  *
1592  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1593  *      first place. In order to avoid calling btrfs_mount() again, we use
1594  *      different file_system_type which is not registered to VFS by
1595  *      register_filesystem() (btrfs_root_fs_type). As a result,
1596  *      btrfs_mount_root() is called. The return value will be used by
1597  *      mount_subtree() in mount_subvol().
1598  *
1599  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1600  *      "btrfs subvolume set-default", mount_subvol() is called always.
1601  */
1602 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1603 		const char *device_name, void *data)
1604 {
1605 	struct vfsmount *mnt_root;
1606 	struct dentry *root;
1607 	char *subvol_name = NULL;
1608 	u64 subvol_objectid = 0;
1609 	int error = 0;
1610 
1611 	error = btrfs_parse_subvol_options(data, &subvol_name,
1612 					&subvol_objectid);
1613 	if (error) {
1614 		kfree(subvol_name);
1615 		return ERR_PTR(error);
1616 	}
1617 
1618 	/* mount device's root (/) */
1619 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1620 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1621 		if (flags & SB_RDONLY) {
1622 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1623 				flags & ~SB_RDONLY, device_name, data);
1624 		} else {
1625 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1626 				flags | SB_RDONLY, device_name, data);
1627 			if (IS_ERR(mnt_root)) {
1628 				root = ERR_CAST(mnt_root);
1629 				kfree(subvol_name);
1630 				goto out;
1631 			}
1632 
1633 			down_write(&mnt_root->mnt_sb->s_umount);
1634 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1635 			up_write(&mnt_root->mnt_sb->s_umount);
1636 			if (error < 0) {
1637 				root = ERR_PTR(error);
1638 				mntput(mnt_root);
1639 				kfree(subvol_name);
1640 				goto out;
1641 			}
1642 		}
1643 	}
1644 	if (IS_ERR(mnt_root)) {
1645 		root = ERR_CAST(mnt_root);
1646 		kfree(subvol_name);
1647 		goto out;
1648 	}
1649 
1650 	/* mount_subvol() will free subvol_name and mnt_root */
1651 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1652 
1653 out:
1654 	return root;
1655 }
1656 
1657 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1658 				     u32 new_pool_size, u32 old_pool_size)
1659 {
1660 	if (new_pool_size == old_pool_size)
1661 		return;
1662 
1663 	fs_info->thread_pool_size = new_pool_size;
1664 
1665 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1666 	       old_pool_size, new_pool_size);
1667 
1668 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1669 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1670 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1671 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1672 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1673 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1674 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1675 				new_pool_size);
1676 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1677 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1678 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1679 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1680 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1681 				new_pool_size);
1682 }
1683 
1684 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1685 {
1686 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1687 }
1688 
1689 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1690 				       unsigned long old_opts, int flags)
1691 {
1692 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1693 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1694 	     (flags & SB_RDONLY))) {
1695 		/* wait for any defraggers to finish */
1696 		wait_event(fs_info->transaction_wait,
1697 			   (atomic_read(&fs_info->defrag_running) == 0));
1698 		if (flags & SB_RDONLY)
1699 			sync_filesystem(fs_info->sb);
1700 	}
1701 }
1702 
1703 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1704 					 unsigned long old_opts)
1705 {
1706 	/*
1707 	 * We need to cleanup all defragable inodes if the autodefragment is
1708 	 * close or the filesystem is read only.
1709 	 */
1710 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1711 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1712 		btrfs_cleanup_defrag_inodes(fs_info);
1713 	}
1714 
1715 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1716 }
1717 
1718 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1719 {
1720 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1721 	struct btrfs_root *root = fs_info->tree_root;
1722 	unsigned old_flags = sb->s_flags;
1723 	unsigned long old_opts = fs_info->mount_opt;
1724 	unsigned long old_compress_type = fs_info->compress_type;
1725 	u64 old_max_inline = fs_info->max_inline;
1726 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1727 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1728 	int ret;
1729 
1730 	sync_filesystem(sb);
1731 	btrfs_remount_prepare(fs_info);
1732 
1733 	if (data) {
1734 		void *new_sec_opts = NULL;
1735 
1736 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1737 		if (!ret)
1738 			ret = security_sb_remount(sb, new_sec_opts);
1739 		security_free_mnt_opts(&new_sec_opts);
1740 		if (ret)
1741 			goto restore;
1742 	}
1743 
1744 	ret = btrfs_parse_options(fs_info, data, *flags);
1745 	if (ret)
1746 		goto restore;
1747 
1748 	btrfs_remount_begin(fs_info, old_opts, *flags);
1749 	btrfs_resize_thread_pool(fs_info,
1750 		fs_info->thread_pool_size, old_thread_pool_size);
1751 
1752 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1753 		goto out;
1754 
1755 	if (*flags & SB_RDONLY) {
1756 		/*
1757 		 * this also happens on 'umount -rf' or on shutdown, when
1758 		 * the filesystem is busy.
1759 		 */
1760 		cancel_work_sync(&fs_info->async_reclaim_work);
1761 
1762 		/* wait for the uuid_scan task to finish */
1763 		down(&fs_info->uuid_tree_rescan_sem);
1764 		/* avoid complains from lockdep et al. */
1765 		up(&fs_info->uuid_tree_rescan_sem);
1766 
1767 		sb->s_flags |= SB_RDONLY;
1768 
1769 		/*
1770 		 * Setting SB_RDONLY will put the cleaner thread to
1771 		 * sleep at the next loop if it's already active.
1772 		 * If it's already asleep, we'll leave unused block
1773 		 * groups on disk until we're mounted read-write again
1774 		 * unless we clean them up here.
1775 		 */
1776 		btrfs_delete_unused_bgs(fs_info);
1777 
1778 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1779 		btrfs_scrub_cancel(fs_info);
1780 		btrfs_pause_balance(fs_info);
1781 
1782 		ret = btrfs_commit_super(fs_info);
1783 		if (ret)
1784 			goto restore;
1785 	} else {
1786 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1787 			btrfs_err(fs_info,
1788 				"Remounting read-write after error is not allowed");
1789 			ret = -EINVAL;
1790 			goto restore;
1791 		}
1792 		if (fs_info->fs_devices->rw_devices == 0) {
1793 			ret = -EACCES;
1794 			goto restore;
1795 		}
1796 
1797 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1798 			btrfs_warn(fs_info,
1799 		"too many missing devices, writable remount is not allowed");
1800 			ret = -EACCES;
1801 			goto restore;
1802 		}
1803 
1804 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1805 			ret = -EINVAL;
1806 			goto restore;
1807 		}
1808 
1809 		ret = btrfs_cleanup_fs_roots(fs_info);
1810 		if (ret)
1811 			goto restore;
1812 
1813 		/* recover relocation */
1814 		mutex_lock(&fs_info->cleaner_mutex);
1815 		ret = btrfs_recover_relocation(root);
1816 		mutex_unlock(&fs_info->cleaner_mutex);
1817 		if (ret)
1818 			goto restore;
1819 
1820 		ret = btrfs_resume_balance_async(fs_info);
1821 		if (ret)
1822 			goto restore;
1823 
1824 		ret = btrfs_resume_dev_replace_async(fs_info);
1825 		if (ret) {
1826 			btrfs_warn(fs_info, "failed to resume dev_replace");
1827 			goto restore;
1828 		}
1829 
1830 		btrfs_qgroup_rescan_resume(fs_info);
1831 
1832 		if (!fs_info->uuid_root) {
1833 			btrfs_info(fs_info, "creating UUID tree");
1834 			ret = btrfs_create_uuid_tree(fs_info);
1835 			if (ret) {
1836 				btrfs_warn(fs_info,
1837 					   "failed to create the UUID tree %d",
1838 					   ret);
1839 				goto restore;
1840 			}
1841 		}
1842 		sb->s_flags &= ~SB_RDONLY;
1843 
1844 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1845 	}
1846 out:
1847 	wake_up_process(fs_info->transaction_kthread);
1848 	btrfs_remount_cleanup(fs_info, old_opts);
1849 	return 0;
1850 
1851 restore:
1852 	/* We've hit an error - don't reset SB_RDONLY */
1853 	if (sb_rdonly(sb))
1854 		old_flags |= SB_RDONLY;
1855 	sb->s_flags = old_flags;
1856 	fs_info->mount_opt = old_opts;
1857 	fs_info->compress_type = old_compress_type;
1858 	fs_info->max_inline = old_max_inline;
1859 	btrfs_resize_thread_pool(fs_info,
1860 		old_thread_pool_size, fs_info->thread_pool_size);
1861 	fs_info->metadata_ratio = old_metadata_ratio;
1862 	btrfs_remount_cleanup(fs_info, old_opts);
1863 	return ret;
1864 }
1865 
1866 /* Used to sort the devices by max_avail(descending sort) */
1867 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1868 				       const void *dev_info2)
1869 {
1870 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1871 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1872 		return -1;
1873 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1874 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1875 		return 1;
1876 	else
1877 	return 0;
1878 }
1879 
1880 /*
1881  * sort the devices by max_avail, in which max free extent size of each device
1882  * is stored.(Descending Sort)
1883  */
1884 static inline void btrfs_descending_sort_devices(
1885 					struct btrfs_device_info *devices,
1886 					size_t nr_devices)
1887 {
1888 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1889 	     btrfs_cmp_device_free_bytes, NULL);
1890 }
1891 
1892 /*
1893  * The helper to calc the free space on the devices that can be used to store
1894  * file data.
1895  */
1896 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1897 					      u64 *free_bytes)
1898 {
1899 	struct btrfs_device_info *devices_info;
1900 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1901 	struct btrfs_device *device;
1902 	u64 skip_space;
1903 	u64 type;
1904 	u64 avail_space;
1905 	u64 min_stripe_size;
1906 	int min_stripes, num_stripes = 1;
1907 	int i = 0, nr_devices;
1908 	const struct btrfs_raid_attr *rattr;
1909 
1910 	/*
1911 	 * We aren't under the device list lock, so this is racy-ish, but good
1912 	 * enough for our purposes.
1913 	 */
1914 	nr_devices = fs_info->fs_devices->open_devices;
1915 	if (!nr_devices) {
1916 		smp_mb();
1917 		nr_devices = fs_info->fs_devices->open_devices;
1918 		ASSERT(nr_devices);
1919 		if (!nr_devices) {
1920 			*free_bytes = 0;
1921 			return 0;
1922 		}
1923 	}
1924 
1925 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1926 			       GFP_KERNEL);
1927 	if (!devices_info)
1928 		return -ENOMEM;
1929 
1930 	/* calc min stripe number for data space allocation */
1931 	type = btrfs_data_alloc_profile(fs_info);
1932 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1933 	min_stripes = rattr->devs_min;
1934 
1935 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1936 		num_stripes = nr_devices;
1937 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
1938 		num_stripes = 2;
1939 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1940 		num_stripes = 4;
1941 
1942 	/* Adjust for more than 1 stripe per device */
1943 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1944 
1945 	rcu_read_lock();
1946 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1947 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1948 						&device->dev_state) ||
1949 		    !device->bdev ||
1950 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1951 			continue;
1952 
1953 		if (i >= nr_devices)
1954 			break;
1955 
1956 		avail_space = device->total_bytes - device->bytes_used;
1957 
1958 		/* align with stripe_len */
1959 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1960 		avail_space *= BTRFS_STRIPE_LEN;
1961 
1962 		/*
1963 		 * In order to avoid overwriting the superblock on the drive,
1964 		 * btrfs starts at an offset of at least 1MB when doing chunk
1965 		 * allocation.
1966 		 */
1967 		skip_space = SZ_1M;
1968 
1969 		/*
1970 		 * we can use the free space in [0, skip_space - 1], subtract
1971 		 * it from the total.
1972 		 */
1973 		if (avail_space && avail_space >= skip_space)
1974 			avail_space -= skip_space;
1975 		else
1976 			avail_space = 0;
1977 
1978 		if (avail_space < min_stripe_size)
1979 			continue;
1980 
1981 		devices_info[i].dev = device;
1982 		devices_info[i].max_avail = avail_space;
1983 
1984 		i++;
1985 	}
1986 	rcu_read_unlock();
1987 
1988 	nr_devices = i;
1989 
1990 	btrfs_descending_sort_devices(devices_info, nr_devices);
1991 
1992 	i = nr_devices - 1;
1993 	avail_space = 0;
1994 	while (nr_devices >= min_stripes) {
1995 		if (num_stripes > nr_devices)
1996 			num_stripes = nr_devices;
1997 
1998 		if (devices_info[i].max_avail >= min_stripe_size) {
1999 			int j;
2000 			u64 alloc_size;
2001 
2002 			avail_space += devices_info[i].max_avail * num_stripes;
2003 			alloc_size = devices_info[i].max_avail;
2004 			for (j = i + 1 - num_stripes; j <= i; j++)
2005 				devices_info[j].max_avail -= alloc_size;
2006 		}
2007 		i--;
2008 		nr_devices--;
2009 	}
2010 
2011 	kfree(devices_info);
2012 	*free_bytes = avail_space;
2013 	return 0;
2014 }
2015 
2016 /*
2017  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2018  *
2019  * If there's a redundant raid level at DATA block groups, use the respective
2020  * multiplier to scale the sizes.
2021  *
2022  * Unused device space usage is based on simulating the chunk allocator
2023  * algorithm that respects the device sizes and order of allocations.  This is
2024  * a close approximation of the actual use but there are other factors that may
2025  * change the result (like a new metadata chunk).
2026  *
2027  * If metadata is exhausted, f_bavail will be 0.
2028  */
2029 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2030 {
2031 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2032 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2033 	struct list_head *head = &fs_info->space_info;
2034 	struct btrfs_space_info *found;
2035 	u64 total_used = 0;
2036 	u64 total_free_data = 0;
2037 	u64 total_free_meta = 0;
2038 	int bits = dentry->d_sb->s_blocksize_bits;
2039 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2040 	unsigned factor = 1;
2041 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2042 	int ret;
2043 	u64 thresh = 0;
2044 	int mixed = 0;
2045 
2046 	rcu_read_lock();
2047 	list_for_each_entry_rcu(found, head, list) {
2048 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2049 			int i;
2050 
2051 			total_free_data += found->disk_total - found->disk_used;
2052 			total_free_data -=
2053 				btrfs_account_ro_block_groups_free_space(found);
2054 
2055 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2056 				if (!list_empty(&found->block_groups[i]))
2057 					factor = btrfs_bg_type_to_factor(
2058 						btrfs_raid_array[i].bg_flag);
2059 			}
2060 		}
2061 
2062 		/*
2063 		 * Metadata in mixed block goup profiles are accounted in data
2064 		 */
2065 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2066 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2067 				mixed = 1;
2068 			else
2069 				total_free_meta += found->disk_total -
2070 					found->disk_used;
2071 		}
2072 
2073 		total_used += found->disk_used;
2074 	}
2075 
2076 	rcu_read_unlock();
2077 
2078 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2079 	buf->f_blocks >>= bits;
2080 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2081 
2082 	/* Account global block reserve as used, it's in logical size already */
2083 	spin_lock(&block_rsv->lock);
2084 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2085 	if (buf->f_bfree >= block_rsv->size >> bits)
2086 		buf->f_bfree -= block_rsv->size >> bits;
2087 	else
2088 		buf->f_bfree = 0;
2089 	spin_unlock(&block_rsv->lock);
2090 
2091 	buf->f_bavail = div_u64(total_free_data, factor);
2092 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2093 	if (ret)
2094 		return ret;
2095 	buf->f_bavail += div_u64(total_free_data, factor);
2096 	buf->f_bavail = buf->f_bavail >> bits;
2097 
2098 	/*
2099 	 * We calculate the remaining metadata space minus global reserve. If
2100 	 * this is (supposedly) smaller than zero, there's no space. But this
2101 	 * does not hold in practice, the exhausted state happens where's still
2102 	 * some positive delta. So we apply some guesswork and compare the
2103 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2104 	 *
2105 	 * We probably cannot calculate the exact threshold value because this
2106 	 * depends on the internal reservations requested by various
2107 	 * operations, so some operations that consume a few metadata will
2108 	 * succeed even if the Avail is zero. But this is better than the other
2109 	 * way around.
2110 	 */
2111 	thresh = SZ_4M;
2112 
2113 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2114 		buf->f_bavail = 0;
2115 
2116 	buf->f_type = BTRFS_SUPER_MAGIC;
2117 	buf->f_bsize = dentry->d_sb->s_blocksize;
2118 	buf->f_namelen = BTRFS_NAME_LEN;
2119 
2120 	/* We treat it as constant endianness (it doesn't matter _which_)
2121 	   because we want the fsid to come out the same whether mounted
2122 	   on a big-endian or little-endian host */
2123 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2124 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2125 	/* Mask in the root object ID too, to disambiguate subvols */
2126 	buf->f_fsid.val[0] ^=
2127 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2128 	buf->f_fsid.val[1] ^=
2129 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2130 
2131 	return 0;
2132 }
2133 
2134 static void btrfs_kill_super(struct super_block *sb)
2135 {
2136 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2137 	kill_anon_super(sb);
2138 	free_fs_info(fs_info);
2139 }
2140 
2141 static struct file_system_type btrfs_fs_type = {
2142 	.owner		= THIS_MODULE,
2143 	.name		= "btrfs",
2144 	.mount		= btrfs_mount,
2145 	.kill_sb	= btrfs_kill_super,
2146 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2147 };
2148 
2149 static struct file_system_type btrfs_root_fs_type = {
2150 	.owner		= THIS_MODULE,
2151 	.name		= "btrfs",
2152 	.mount		= btrfs_mount_root,
2153 	.kill_sb	= btrfs_kill_super,
2154 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2155 };
2156 
2157 MODULE_ALIAS_FS("btrfs");
2158 
2159 static int btrfs_control_open(struct inode *inode, struct file *file)
2160 {
2161 	/*
2162 	 * The control file's private_data is used to hold the
2163 	 * transaction when it is started and is used to keep
2164 	 * track of whether a transaction is already in progress.
2165 	 */
2166 	file->private_data = NULL;
2167 	return 0;
2168 }
2169 
2170 /*
2171  * used by btrfsctl to scan devices when no FS is mounted
2172  */
2173 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2174 				unsigned long arg)
2175 {
2176 	struct btrfs_ioctl_vol_args *vol;
2177 	struct btrfs_device *device = NULL;
2178 	int ret = -ENOTTY;
2179 
2180 	if (!capable(CAP_SYS_ADMIN))
2181 		return -EPERM;
2182 
2183 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2184 	if (IS_ERR(vol))
2185 		return PTR_ERR(vol);
2186 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2187 
2188 	switch (cmd) {
2189 	case BTRFS_IOC_SCAN_DEV:
2190 		mutex_lock(&uuid_mutex);
2191 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2192 					       &btrfs_root_fs_type);
2193 		ret = PTR_ERR_OR_ZERO(device);
2194 		mutex_unlock(&uuid_mutex);
2195 		break;
2196 	case BTRFS_IOC_FORGET_DEV:
2197 		ret = btrfs_forget_devices(vol->name);
2198 		break;
2199 	case BTRFS_IOC_DEVICES_READY:
2200 		mutex_lock(&uuid_mutex);
2201 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2202 					       &btrfs_root_fs_type);
2203 		if (IS_ERR(device)) {
2204 			mutex_unlock(&uuid_mutex);
2205 			ret = PTR_ERR(device);
2206 			break;
2207 		}
2208 		ret = !(device->fs_devices->num_devices ==
2209 			device->fs_devices->total_devices);
2210 		mutex_unlock(&uuid_mutex);
2211 		break;
2212 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2213 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2214 		break;
2215 	}
2216 
2217 	kfree(vol);
2218 	return ret;
2219 }
2220 
2221 static int btrfs_freeze(struct super_block *sb)
2222 {
2223 	struct btrfs_trans_handle *trans;
2224 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2225 	struct btrfs_root *root = fs_info->tree_root;
2226 
2227 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2228 	/*
2229 	 * We don't need a barrier here, we'll wait for any transaction that
2230 	 * could be in progress on other threads (and do delayed iputs that
2231 	 * we want to avoid on a frozen filesystem), or do the commit
2232 	 * ourselves.
2233 	 */
2234 	trans = btrfs_attach_transaction_barrier(root);
2235 	if (IS_ERR(trans)) {
2236 		/* no transaction, don't bother */
2237 		if (PTR_ERR(trans) == -ENOENT)
2238 			return 0;
2239 		return PTR_ERR(trans);
2240 	}
2241 	return btrfs_commit_transaction(trans);
2242 }
2243 
2244 static int btrfs_unfreeze(struct super_block *sb)
2245 {
2246 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2247 
2248 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2249 	return 0;
2250 }
2251 
2252 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2253 {
2254 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2255 	struct btrfs_fs_devices *cur_devices;
2256 	struct btrfs_device *dev, *first_dev = NULL;
2257 	struct list_head *head;
2258 
2259 	/*
2260 	 * Lightweight locking of the devices. We should not need
2261 	 * device_list_mutex here as we only read the device data and the list
2262 	 * is protected by RCU.  Even if a device is deleted during the list
2263 	 * traversals, we'll get valid data, the freeing callback will wait at
2264 	 * least until the rcu_read_unlock.
2265 	 */
2266 	rcu_read_lock();
2267 	cur_devices = fs_info->fs_devices;
2268 	while (cur_devices) {
2269 		head = &cur_devices->devices;
2270 		list_for_each_entry_rcu(dev, head, dev_list) {
2271 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2272 				continue;
2273 			if (!dev->name)
2274 				continue;
2275 			if (!first_dev || dev->devid < first_dev->devid)
2276 				first_dev = dev;
2277 		}
2278 		cur_devices = cur_devices->seed;
2279 	}
2280 
2281 	if (first_dev)
2282 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2283 	else
2284 		WARN_ON(1);
2285 	rcu_read_unlock();
2286 	return 0;
2287 }
2288 
2289 static const struct super_operations btrfs_super_ops = {
2290 	.drop_inode	= btrfs_drop_inode,
2291 	.evict_inode	= btrfs_evict_inode,
2292 	.put_super	= btrfs_put_super,
2293 	.sync_fs	= btrfs_sync_fs,
2294 	.show_options	= btrfs_show_options,
2295 	.show_devname	= btrfs_show_devname,
2296 	.alloc_inode	= btrfs_alloc_inode,
2297 	.destroy_inode	= btrfs_destroy_inode,
2298 	.free_inode	= btrfs_free_inode,
2299 	.statfs		= btrfs_statfs,
2300 	.remount_fs	= btrfs_remount,
2301 	.freeze_fs	= btrfs_freeze,
2302 	.unfreeze_fs	= btrfs_unfreeze,
2303 };
2304 
2305 static const struct file_operations btrfs_ctl_fops = {
2306 	.open = btrfs_control_open,
2307 	.unlocked_ioctl	 = btrfs_control_ioctl,
2308 	.compat_ioctl = btrfs_control_ioctl,
2309 	.owner	 = THIS_MODULE,
2310 	.llseek = noop_llseek,
2311 };
2312 
2313 static struct miscdevice btrfs_misc = {
2314 	.minor		= BTRFS_MINOR,
2315 	.name		= "btrfs-control",
2316 	.fops		= &btrfs_ctl_fops
2317 };
2318 
2319 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2320 MODULE_ALIAS("devname:btrfs-control");
2321 
2322 static int __init btrfs_interface_init(void)
2323 {
2324 	return misc_register(&btrfs_misc);
2325 }
2326 
2327 static __cold void btrfs_interface_exit(void)
2328 {
2329 	misc_deregister(&btrfs_misc);
2330 }
2331 
2332 static void __init btrfs_print_mod_info(void)
2333 {
2334 	static const char options[] = ""
2335 #ifdef CONFIG_BTRFS_DEBUG
2336 			", debug=on"
2337 #endif
2338 #ifdef CONFIG_BTRFS_ASSERT
2339 			", assert=on"
2340 #endif
2341 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2342 			", integrity-checker=on"
2343 #endif
2344 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2345 			", ref-verify=on"
2346 #endif
2347 			;
2348 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2349 }
2350 
2351 static int __init init_btrfs_fs(void)
2352 {
2353 	int err;
2354 
2355 	btrfs_props_init();
2356 
2357 	err = btrfs_init_sysfs();
2358 	if (err)
2359 		return err;
2360 
2361 	btrfs_init_compress();
2362 
2363 	err = btrfs_init_cachep();
2364 	if (err)
2365 		goto free_compress;
2366 
2367 	err = extent_io_init();
2368 	if (err)
2369 		goto free_cachep;
2370 
2371 	err = extent_map_init();
2372 	if (err)
2373 		goto free_extent_io;
2374 
2375 	err = ordered_data_init();
2376 	if (err)
2377 		goto free_extent_map;
2378 
2379 	err = btrfs_delayed_inode_init();
2380 	if (err)
2381 		goto free_ordered_data;
2382 
2383 	err = btrfs_auto_defrag_init();
2384 	if (err)
2385 		goto free_delayed_inode;
2386 
2387 	err = btrfs_delayed_ref_init();
2388 	if (err)
2389 		goto free_auto_defrag;
2390 
2391 	err = btrfs_prelim_ref_init();
2392 	if (err)
2393 		goto free_delayed_ref;
2394 
2395 	err = btrfs_end_io_wq_init();
2396 	if (err)
2397 		goto free_prelim_ref;
2398 
2399 	err = btrfs_interface_init();
2400 	if (err)
2401 		goto free_end_io_wq;
2402 
2403 	btrfs_init_lockdep();
2404 
2405 	btrfs_print_mod_info();
2406 
2407 	err = btrfs_run_sanity_tests();
2408 	if (err)
2409 		goto unregister_ioctl;
2410 
2411 	err = register_filesystem(&btrfs_fs_type);
2412 	if (err)
2413 		goto unregister_ioctl;
2414 
2415 	return 0;
2416 
2417 unregister_ioctl:
2418 	btrfs_interface_exit();
2419 free_end_io_wq:
2420 	btrfs_end_io_wq_exit();
2421 free_prelim_ref:
2422 	btrfs_prelim_ref_exit();
2423 free_delayed_ref:
2424 	btrfs_delayed_ref_exit();
2425 free_auto_defrag:
2426 	btrfs_auto_defrag_exit();
2427 free_delayed_inode:
2428 	btrfs_delayed_inode_exit();
2429 free_ordered_data:
2430 	ordered_data_exit();
2431 free_extent_map:
2432 	extent_map_exit();
2433 free_extent_io:
2434 	extent_io_exit();
2435 free_cachep:
2436 	btrfs_destroy_cachep();
2437 free_compress:
2438 	btrfs_exit_compress();
2439 	btrfs_exit_sysfs();
2440 
2441 	return err;
2442 }
2443 
2444 static void __exit exit_btrfs_fs(void)
2445 {
2446 	btrfs_destroy_cachep();
2447 	btrfs_delayed_ref_exit();
2448 	btrfs_auto_defrag_exit();
2449 	btrfs_delayed_inode_exit();
2450 	btrfs_prelim_ref_exit();
2451 	ordered_data_exit();
2452 	extent_map_exit();
2453 	extent_io_exit();
2454 	btrfs_interface_exit();
2455 	btrfs_end_io_wq_exit();
2456 	unregister_filesystem(&btrfs_fs_type);
2457 	btrfs_exit_sysfs();
2458 	btrfs_cleanup_fs_uuids();
2459 	btrfs_exit_compress();
2460 }
2461 
2462 late_initcall(init_btrfs_fs);
2463 module_exit(exit_btrfs_fs)
2464 
2465 MODULE_LICENSE("GPL");
2466 MODULE_SOFTDEP("pre: crc32c");
2467