xref: /openbmc/linux/fs/btrfs/super.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 
52 #include "qgroup.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/btrfs.h>
55 
56 static const struct super_operations btrfs_super_ops;
57 
58 /*
59  * Types for mounting the default subvolume and a subvolume explicitly
60  * requested by subvol=/path. That way the callchain is straightforward and we
61  * don't have to play tricks with the mount options and recursive calls to
62  * btrfs_mount.
63  *
64  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
65  */
66 static struct file_system_type btrfs_fs_type;
67 static struct file_system_type btrfs_root_fs_type;
68 
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70 
71 /*
72  * Generally the error codes correspond to their respective errors, but there
73  * are a few special cases.
74  *
75  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
76  *          instance will return EUCLEAN if any of the blocks are corrupted in
77  *          a way that is problematic.  We want to reserve EUCLEAN for these
78  *          sort of corruptions.
79  *
80  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
81  *        need to use EROFS for this case.  We will have no idea of the
82  *        original failure, that will have been reported at the time we tripped
83  *        over the error.  Each subsequent error that doesn't have any context
84  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
85  */
86 const char * __attribute_const__ btrfs_decode_error(int errno)
87 {
88 	char *errstr = "unknown";
89 
90 	switch (errno) {
91 	case -ENOENT:		/* -2 */
92 		errstr = "No such entry";
93 		break;
94 	case -EIO:		/* -5 */
95 		errstr = "IO failure";
96 		break;
97 	case -ENOMEM:		/* -12*/
98 		errstr = "Out of memory";
99 		break;
100 	case -EEXIST:		/* -17 */
101 		errstr = "Object already exists";
102 		break;
103 	case -ENOSPC:		/* -28 */
104 		errstr = "No space left";
105 		break;
106 	case -EROFS:		/* -30 */
107 		errstr = "Readonly filesystem";
108 		break;
109 	case -EOPNOTSUPP:	/* -95 */
110 		errstr = "Operation not supported";
111 		break;
112 	case -EUCLEAN:		/* -117 */
113 		errstr = "Filesystem corrupted";
114 		break;
115 	case -EDQUOT:		/* -122 */
116 		errstr = "Quota exceeded";
117 		break;
118 	}
119 
120 	return errstr;
121 }
122 
123 /*
124  * __btrfs_handle_fs_error decodes expected errors from the caller and
125  * invokes the appropriate error response.
126  */
127 __cold
128 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
129 		       unsigned int line, int errno, const char *fmt, ...)
130 {
131 	struct super_block *sb = fs_info->sb;
132 #ifdef CONFIG_PRINTK
133 	const char *errstr;
134 #endif
135 
136 	/*
137 	 * Special case: if the error is EROFS, and we're already
138 	 * under SB_RDONLY, then it is safe here.
139 	 */
140 	if (errno == -EROFS && sb_rdonly(sb))
141   		return;
142 
143 #ifdef CONFIG_PRINTK
144 	errstr = btrfs_decode_error(errno);
145 	if (fmt) {
146 		struct va_format vaf;
147 		va_list args;
148 
149 		va_start(args, fmt);
150 		vaf.fmt = fmt;
151 		vaf.va = &args;
152 
153 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
154 			sb->s_id, function, line, errno, errstr, &vaf);
155 		va_end(args);
156 	} else {
157 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
158 			sb->s_id, function, line, errno, errstr);
159 	}
160 #endif
161 
162 	/*
163 	 * Today we only save the error info to memory.  Long term we'll
164 	 * also send it down to the disk
165 	 */
166 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
167 
168 	/* Don't go through full error handling during mount */
169 	if (!(sb->s_flags & SB_BORN))
170 		return;
171 
172 	if (sb_rdonly(sb))
173 		return;
174 
175 	btrfs_discard_stop(fs_info);
176 
177 	/* btrfs handle error by forcing the filesystem readonly */
178 	sb->s_flags |= SB_RDONLY;
179 	btrfs_info(fs_info, "forced readonly");
180 	/*
181 	 * Note that a running device replace operation is not canceled here
182 	 * although there is no way to update the progress. It would add the
183 	 * risk of a deadlock, therefore the canceling is omitted. The only
184 	 * penalty is that some I/O remains active until the procedure
185 	 * completes. The next time when the filesystem is mounted writable
186 	 * again, the device replace operation continues.
187 	 */
188 }
189 
190 #ifdef CONFIG_PRINTK
191 static const char * const logtypes[] = {
192 	"emergency",
193 	"alert",
194 	"critical",
195 	"error",
196 	"warning",
197 	"notice",
198 	"info",
199 	"debug",
200 };
201 
202 
203 /*
204  * Use one ratelimit state per log level so that a flood of less important
205  * messages doesn't cause more important ones to be dropped.
206  */
207 static struct ratelimit_state printk_limits[] = {
208 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
210 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
211 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
212 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
213 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
214 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
215 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
216 };
217 
218 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
219 {
220 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
221 	struct va_format vaf;
222 	va_list args;
223 	int kern_level;
224 	const char *type = logtypes[4];
225 	struct ratelimit_state *ratelimit = &printk_limits[4];
226 
227 	va_start(args, fmt);
228 
229 	while ((kern_level = printk_get_level(fmt)) != 0) {
230 		size_t size = printk_skip_level(fmt) - fmt;
231 
232 		if (kern_level >= '0' && kern_level <= '7') {
233 			memcpy(lvl, fmt,  size);
234 			lvl[size] = '\0';
235 			type = logtypes[kern_level - '0'];
236 			ratelimit = &printk_limits[kern_level - '0'];
237 		}
238 		fmt += size;
239 	}
240 
241 	vaf.fmt = fmt;
242 	vaf.va = &args;
243 
244 	if (__ratelimit(ratelimit)) {
245 		if (fs_info)
246 			printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
247 				fs_info->sb->s_id, &vaf);
248 		else
249 			printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
250 	}
251 
252 	va_end(args);
253 }
254 #endif
255 
256 /*
257  * We only mark the transaction aborted and then set the file system read-only.
258  * This will prevent new transactions from starting or trying to join this
259  * one.
260  *
261  * This means that error recovery at the call site is limited to freeing
262  * any local memory allocations and passing the error code up without
263  * further cleanup. The transaction should complete as it normally would
264  * in the call path but will return -EIO.
265  *
266  * We'll complete the cleanup in btrfs_end_transaction and
267  * btrfs_commit_transaction.
268  */
269 __cold
270 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
271 			       const char *function,
272 			       unsigned int line, int errno)
273 {
274 	struct btrfs_fs_info *fs_info = trans->fs_info;
275 
276 	WRITE_ONCE(trans->aborted, errno);
277 	/* Nothing used. The other threads that have joined this
278 	 * transaction may be able to continue. */
279 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
280 		const char *errstr;
281 
282 		errstr = btrfs_decode_error(errno);
283 		btrfs_warn(fs_info,
284 		           "%s:%d: Aborting unused transaction(%s).",
285 		           function, line, errstr);
286 		return;
287 	}
288 	WRITE_ONCE(trans->transaction->aborted, errno);
289 	/* Wake up anybody who may be waiting on this transaction */
290 	wake_up(&fs_info->transaction_wait);
291 	wake_up(&fs_info->transaction_blocked_wait);
292 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
293 }
294 /*
295  * __btrfs_panic decodes unexpected, fatal errors from the caller,
296  * issues an alert, and either panics or BUGs, depending on mount options.
297  */
298 __cold
299 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
300 		   unsigned int line, int errno, const char *fmt, ...)
301 {
302 	char *s_id = "<unknown>";
303 	const char *errstr;
304 	struct va_format vaf = { .fmt = fmt };
305 	va_list args;
306 
307 	if (fs_info)
308 		s_id = fs_info->sb->s_id;
309 
310 	va_start(args, fmt);
311 	vaf.va = &args;
312 
313 	errstr = btrfs_decode_error(errno);
314 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
315 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
316 			s_id, function, line, &vaf, errno, errstr);
317 
318 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
319 		   function, line, &vaf, errno, errstr);
320 	va_end(args);
321 	/* Caller calls BUG() */
322 }
323 
324 static void btrfs_put_super(struct super_block *sb)
325 {
326 	close_ctree(btrfs_sb(sb));
327 }
328 
329 enum {
330 	Opt_acl, Opt_noacl,
331 	Opt_clear_cache,
332 	Opt_commit_interval,
333 	Opt_compress,
334 	Opt_compress_force,
335 	Opt_compress_force_type,
336 	Opt_compress_type,
337 	Opt_degraded,
338 	Opt_device,
339 	Opt_fatal_errors,
340 	Opt_flushoncommit, Opt_noflushoncommit,
341 	Opt_max_inline,
342 	Opt_barrier, Opt_nobarrier,
343 	Opt_datacow, Opt_nodatacow,
344 	Opt_datasum, Opt_nodatasum,
345 	Opt_defrag, Opt_nodefrag,
346 	Opt_discard, Opt_nodiscard,
347 	Opt_discard_mode,
348 	Opt_norecovery,
349 	Opt_ratio,
350 	Opt_rescan_uuid_tree,
351 	Opt_skip_balance,
352 	Opt_space_cache, Opt_no_space_cache,
353 	Opt_space_cache_version,
354 	Opt_ssd, Opt_nossd,
355 	Opt_ssd_spread, Opt_nossd_spread,
356 	Opt_subvol,
357 	Opt_subvol_empty,
358 	Opt_subvolid,
359 	Opt_thread_pool,
360 	Opt_treelog, Opt_notreelog,
361 	Opt_user_subvol_rm_allowed,
362 
363 	/* Rescue options */
364 	Opt_rescue,
365 	Opt_usebackuproot,
366 	Opt_nologreplay,
367 	Opt_ignorebadroots,
368 	Opt_ignoredatacsums,
369 	Opt_rescue_all,
370 
371 	/* Deprecated options */
372 	Opt_recovery,
373 	Opt_inode_cache, Opt_noinode_cache,
374 
375 	/* Debugging options */
376 	Opt_check_integrity,
377 	Opt_check_integrity_including_extent_data,
378 	Opt_check_integrity_print_mask,
379 	Opt_enospc_debug, Opt_noenospc_debug,
380 #ifdef CONFIG_BTRFS_DEBUG
381 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
382 #endif
383 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
384 	Opt_ref_verify,
385 #endif
386 	Opt_err,
387 };
388 
389 static const match_table_t tokens = {
390 	{Opt_acl, "acl"},
391 	{Opt_noacl, "noacl"},
392 	{Opt_clear_cache, "clear_cache"},
393 	{Opt_commit_interval, "commit=%u"},
394 	{Opt_compress, "compress"},
395 	{Opt_compress_type, "compress=%s"},
396 	{Opt_compress_force, "compress-force"},
397 	{Opt_compress_force_type, "compress-force=%s"},
398 	{Opt_degraded, "degraded"},
399 	{Opt_device, "device=%s"},
400 	{Opt_fatal_errors, "fatal_errors=%s"},
401 	{Opt_flushoncommit, "flushoncommit"},
402 	{Opt_noflushoncommit, "noflushoncommit"},
403 	{Opt_inode_cache, "inode_cache"},
404 	{Opt_noinode_cache, "noinode_cache"},
405 	{Opt_max_inline, "max_inline=%s"},
406 	{Opt_barrier, "barrier"},
407 	{Opt_nobarrier, "nobarrier"},
408 	{Opt_datacow, "datacow"},
409 	{Opt_nodatacow, "nodatacow"},
410 	{Opt_datasum, "datasum"},
411 	{Opt_nodatasum, "nodatasum"},
412 	{Opt_defrag, "autodefrag"},
413 	{Opt_nodefrag, "noautodefrag"},
414 	{Opt_discard, "discard"},
415 	{Opt_discard_mode, "discard=%s"},
416 	{Opt_nodiscard, "nodiscard"},
417 	{Opt_norecovery, "norecovery"},
418 	{Opt_ratio, "metadata_ratio=%u"},
419 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
420 	{Opt_skip_balance, "skip_balance"},
421 	{Opt_space_cache, "space_cache"},
422 	{Opt_no_space_cache, "nospace_cache"},
423 	{Opt_space_cache_version, "space_cache=%s"},
424 	{Opt_ssd, "ssd"},
425 	{Opt_nossd, "nossd"},
426 	{Opt_ssd_spread, "ssd_spread"},
427 	{Opt_nossd_spread, "nossd_spread"},
428 	{Opt_subvol, "subvol=%s"},
429 	{Opt_subvol_empty, "subvol="},
430 	{Opt_subvolid, "subvolid=%s"},
431 	{Opt_thread_pool, "thread_pool=%u"},
432 	{Opt_treelog, "treelog"},
433 	{Opt_notreelog, "notreelog"},
434 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
435 
436 	/* Rescue options */
437 	{Opt_rescue, "rescue=%s"},
438 	/* Deprecated, with alias rescue=nologreplay */
439 	{Opt_nologreplay, "nologreplay"},
440 	/* Deprecated, with alias rescue=usebackuproot */
441 	{Opt_usebackuproot, "usebackuproot"},
442 
443 	/* Deprecated options */
444 	{Opt_recovery, "recovery"},
445 
446 	/* Debugging options */
447 	{Opt_check_integrity, "check_int"},
448 	{Opt_check_integrity_including_extent_data, "check_int_data"},
449 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
450 	{Opt_enospc_debug, "enospc_debug"},
451 	{Opt_noenospc_debug, "noenospc_debug"},
452 #ifdef CONFIG_BTRFS_DEBUG
453 	{Opt_fragment_data, "fragment=data"},
454 	{Opt_fragment_metadata, "fragment=metadata"},
455 	{Opt_fragment_all, "fragment=all"},
456 #endif
457 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
458 	{Opt_ref_verify, "ref_verify"},
459 #endif
460 	{Opt_err, NULL},
461 };
462 
463 static const match_table_t rescue_tokens = {
464 	{Opt_usebackuproot, "usebackuproot"},
465 	{Opt_nologreplay, "nologreplay"},
466 	{Opt_ignorebadroots, "ignorebadroots"},
467 	{Opt_ignorebadroots, "ibadroots"},
468 	{Opt_ignoredatacsums, "ignoredatacsums"},
469 	{Opt_ignoredatacsums, "idatacsums"},
470 	{Opt_rescue_all, "all"},
471 	{Opt_err, NULL},
472 };
473 
474 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
475 			    const char *opt_name)
476 {
477 	if (fs_info->mount_opt & opt) {
478 		btrfs_err(fs_info, "%s must be used with ro mount option",
479 			  opt_name);
480 		return true;
481 	}
482 	return false;
483 }
484 
485 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
486 {
487 	char *opts;
488 	char *orig;
489 	char *p;
490 	substring_t args[MAX_OPT_ARGS];
491 	int ret = 0;
492 
493 	opts = kstrdup(options, GFP_KERNEL);
494 	if (!opts)
495 		return -ENOMEM;
496 	orig = opts;
497 
498 	while ((p = strsep(&opts, ":")) != NULL) {
499 		int token;
500 
501 		if (!*p)
502 			continue;
503 		token = match_token(p, rescue_tokens, args);
504 		switch (token){
505 		case Opt_usebackuproot:
506 			btrfs_info(info,
507 				   "trying to use backup root at mount time");
508 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
509 			break;
510 		case Opt_nologreplay:
511 			btrfs_set_and_info(info, NOLOGREPLAY,
512 					   "disabling log replay at mount time");
513 			break;
514 		case Opt_ignorebadroots:
515 			btrfs_set_and_info(info, IGNOREBADROOTS,
516 					   "ignoring bad roots");
517 			break;
518 		case Opt_ignoredatacsums:
519 			btrfs_set_and_info(info, IGNOREDATACSUMS,
520 					   "ignoring data csums");
521 			break;
522 		case Opt_rescue_all:
523 			btrfs_info(info, "enabling all of the rescue options");
524 			btrfs_set_and_info(info, IGNOREDATACSUMS,
525 					   "ignoring data csums");
526 			btrfs_set_and_info(info, IGNOREBADROOTS,
527 					   "ignoring bad roots");
528 			btrfs_set_and_info(info, NOLOGREPLAY,
529 					   "disabling log replay at mount time");
530 			break;
531 		case Opt_err:
532 			btrfs_info(info, "unrecognized rescue option '%s'", p);
533 			ret = -EINVAL;
534 			goto out;
535 		default:
536 			break;
537 		}
538 
539 	}
540 out:
541 	kfree(orig);
542 	return ret;
543 }
544 
545 /*
546  * Regular mount options parser.  Everything that is needed only when
547  * reading in a new superblock is parsed here.
548  * XXX JDM: This needs to be cleaned up for remount.
549  */
550 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
551 			unsigned long new_flags)
552 {
553 	substring_t args[MAX_OPT_ARGS];
554 	char *p, *num;
555 	int intarg;
556 	int ret = 0;
557 	char *compress_type;
558 	bool compress_force = false;
559 	enum btrfs_compression_type saved_compress_type;
560 	int saved_compress_level;
561 	bool saved_compress_force;
562 	int no_compress = 0;
563 
564 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
565 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
566 	else if (btrfs_free_space_cache_v1_active(info)) {
567 		if (btrfs_is_zoned(info)) {
568 			btrfs_info(info,
569 			"zoned: clearing existing space cache");
570 			btrfs_set_super_cache_generation(info->super_copy, 0);
571 		} else {
572 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
573 		}
574 	}
575 
576 	/*
577 	 * Even the options are empty, we still need to do extra check
578 	 * against new flags
579 	 */
580 	if (!options)
581 		goto check;
582 
583 	while ((p = strsep(&options, ",")) != NULL) {
584 		int token;
585 		if (!*p)
586 			continue;
587 
588 		token = match_token(p, tokens, args);
589 		switch (token) {
590 		case Opt_degraded:
591 			btrfs_info(info, "allowing degraded mounts");
592 			btrfs_set_opt(info->mount_opt, DEGRADED);
593 			break;
594 		case Opt_subvol:
595 		case Opt_subvol_empty:
596 		case Opt_subvolid:
597 		case Opt_device:
598 			/*
599 			 * These are parsed by btrfs_parse_subvol_options or
600 			 * btrfs_parse_device_options and can be ignored here.
601 			 */
602 			break;
603 		case Opt_nodatasum:
604 			btrfs_set_and_info(info, NODATASUM,
605 					   "setting nodatasum");
606 			break;
607 		case Opt_datasum:
608 			if (btrfs_test_opt(info, NODATASUM)) {
609 				if (btrfs_test_opt(info, NODATACOW))
610 					btrfs_info(info,
611 						   "setting datasum, datacow enabled");
612 				else
613 					btrfs_info(info, "setting datasum");
614 			}
615 			btrfs_clear_opt(info->mount_opt, NODATACOW);
616 			btrfs_clear_opt(info->mount_opt, NODATASUM);
617 			break;
618 		case Opt_nodatacow:
619 			if (!btrfs_test_opt(info, NODATACOW)) {
620 				if (!btrfs_test_opt(info, COMPRESS) ||
621 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
622 					btrfs_info(info,
623 						   "setting nodatacow, compression disabled");
624 				} else {
625 					btrfs_info(info, "setting nodatacow");
626 				}
627 			}
628 			btrfs_clear_opt(info->mount_opt, COMPRESS);
629 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
630 			btrfs_set_opt(info->mount_opt, NODATACOW);
631 			btrfs_set_opt(info->mount_opt, NODATASUM);
632 			break;
633 		case Opt_datacow:
634 			btrfs_clear_and_info(info, NODATACOW,
635 					     "setting datacow");
636 			break;
637 		case Opt_compress_force:
638 		case Opt_compress_force_type:
639 			compress_force = true;
640 			fallthrough;
641 		case Opt_compress:
642 		case Opt_compress_type:
643 			saved_compress_type = btrfs_test_opt(info,
644 							     COMPRESS) ?
645 				info->compress_type : BTRFS_COMPRESS_NONE;
646 			saved_compress_force =
647 				btrfs_test_opt(info, FORCE_COMPRESS);
648 			saved_compress_level = info->compress_level;
649 			if (token == Opt_compress ||
650 			    token == Opt_compress_force ||
651 			    strncmp(args[0].from, "zlib", 4) == 0) {
652 				compress_type = "zlib";
653 
654 				info->compress_type = BTRFS_COMPRESS_ZLIB;
655 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
656 				/*
657 				 * args[0] contains uninitialized data since
658 				 * for these tokens we don't expect any
659 				 * parameter.
660 				 */
661 				if (token != Opt_compress &&
662 				    token != Opt_compress_force)
663 					info->compress_level =
664 					  btrfs_compress_str2level(
665 							BTRFS_COMPRESS_ZLIB,
666 							args[0].from + 4);
667 				btrfs_set_opt(info->mount_opt, COMPRESS);
668 				btrfs_clear_opt(info->mount_opt, NODATACOW);
669 				btrfs_clear_opt(info->mount_opt, NODATASUM);
670 				no_compress = 0;
671 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
672 				compress_type = "lzo";
673 				info->compress_type = BTRFS_COMPRESS_LZO;
674 				info->compress_level = 0;
675 				btrfs_set_opt(info->mount_opt, COMPRESS);
676 				btrfs_clear_opt(info->mount_opt, NODATACOW);
677 				btrfs_clear_opt(info->mount_opt, NODATASUM);
678 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
679 				no_compress = 0;
680 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
681 				compress_type = "zstd";
682 				info->compress_type = BTRFS_COMPRESS_ZSTD;
683 				info->compress_level =
684 					btrfs_compress_str2level(
685 							 BTRFS_COMPRESS_ZSTD,
686 							 args[0].from + 4);
687 				btrfs_set_opt(info->mount_opt, COMPRESS);
688 				btrfs_clear_opt(info->mount_opt, NODATACOW);
689 				btrfs_clear_opt(info->mount_opt, NODATASUM);
690 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
691 				no_compress = 0;
692 			} else if (strncmp(args[0].from, "no", 2) == 0) {
693 				compress_type = "no";
694 				info->compress_level = 0;
695 				info->compress_type = 0;
696 				btrfs_clear_opt(info->mount_opt, COMPRESS);
697 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
698 				compress_force = false;
699 				no_compress++;
700 			} else {
701 				ret = -EINVAL;
702 				goto out;
703 			}
704 
705 			if (compress_force) {
706 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
707 			} else {
708 				/*
709 				 * If we remount from compress-force=xxx to
710 				 * compress=xxx, we need clear FORCE_COMPRESS
711 				 * flag, otherwise, there is no way for users
712 				 * to disable forcible compression separately.
713 				 */
714 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
715 			}
716 			if (no_compress == 1) {
717 				btrfs_info(info, "use no compression");
718 			} else if ((info->compress_type != saved_compress_type) ||
719 				   (compress_force != saved_compress_force) ||
720 				   (info->compress_level != saved_compress_level)) {
721 				btrfs_info(info, "%s %s compression, level %d",
722 					   (compress_force) ? "force" : "use",
723 					   compress_type, info->compress_level);
724 			}
725 			compress_force = false;
726 			break;
727 		case Opt_ssd:
728 			btrfs_set_and_info(info, SSD,
729 					   "enabling ssd optimizations");
730 			btrfs_clear_opt(info->mount_opt, NOSSD);
731 			break;
732 		case Opt_ssd_spread:
733 			btrfs_set_and_info(info, SSD,
734 					   "enabling ssd optimizations");
735 			btrfs_set_and_info(info, SSD_SPREAD,
736 					   "using spread ssd allocation scheme");
737 			btrfs_clear_opt(info->mount_opt, NOSSD);
738 			break;
739 		case Opt_nossd:
740 			btrfs_set_opt(info->mount_opt, NOSSD);
741 			btrfs_clear_and_info(info, SSD,
742 					     "not using ssd optimizations");
743 			fallthrough;
744 		case Opt_nossd_spread:
745 			btrfs_clear_and_info(info, SSD_SPREAD,
746 					     "not using spread ssd allocation scheme");
747 			break;
748 		case Opt_barrier:
749 			btrfs_clear_and_info(info, NOBARRIER,
750 					     "turning on barriers");
751 			break;
752 		case Opt_nobarrier:
753 			btrfs_set_and_info(info, NOBARRIER,
754 					   "turning off barriers");
755 			break;
756 		case Opt_thread_pool:
757 			ret = match_int(&args[0], &intarg);
758 			if (ret) {
759 				goto out;
760 			} else if (intarg == 0) {
761 				ret = -EINVAL;
762 				goto out;
763 			}
764 			info->thread_pool_size = intarg;
765 			break;
766 		case Opt_max_inline:
767 			num = match_strdup(&args[0]);
768 			if (num) {
769 				info->max_inline = memparse(num, NULL);
770 				kfree(num);
771 
772 				if (info->max_inline) {
773 					info->max_inline = min_t(u64,
774 						info->max_inline,
775 						info->sectorsize);
776 				}
777 				btrfs_info(info, "max_inline at %llu",
778 					   info->max_inline);
779 			} else {
780 				ret = -ENOMEM;
781 				goto out;
782 			}
783 			break;
784 		case Opt_acl:
785 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
786 			info->sb->s_flags |= SB_POSIXACL;
787 			break;
788 #else
789 			btrfs_err(info, "support for ACL not compiled in!");
790 			ret = -EINVAL;
791 			goto out;
792 #endif
793 		case Opt_noacl:
794 			info->sb->s_flags &= ~SB_POSIXACL;
795 			break;
796 		case Opt_notreelog:
797 			btrfs_set_and_info(info, NOTREELOG,
798 					   "disabling tree log");
799 			break;
800 		case Opt_treelog:
801 			btrfs_clear_and_info(info, NOTREELOG,
802 					     "enabling tree log");
803 			break;
804 		case Opt_norecovery:
805 		case Opt_nologreplay:
806 			btrfs_warn(info,
807 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
808 			btrfs_set_and_info(info, NOLOGREPLAY,
809 					   "disabling log replay at mount time");
810 			break;
811 		case Opt_flushoncommit:
812 			btrfs_set_and_info(info, FLUSHONCOMMIT,
813 					   "turning on flush-on-commit");
814 			break;
815 		case Opt_noflushoncommit:
816 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
817 					     "turning off flush-on-commit");
818 			break;
819 		case Opt_ratio:
820 			ret = match_int(&args[0], &intarg);
821 			if (ret)
822 				goto out;
823 			info->metadata_ratio = intarg;
824 			btrfs_info(info, "metadata ratio %u",
825 				   info->metadata_ratio);
826 			break;
827 		case Opt_discard:
828 		case Opt_discard_mode:
829 			if (token == Opt_discard ||
830 			    strcmp(args[0].from, "sync") == 0) {
831 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
832 				btrfs_set_and_info(info, DISCARD_SYNC,
833 						   "turning on sync discard");
834 			} else if (strcmp(args[0].from, "async") == 0) {
835 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
836 				btrfs_set_and_info(info, DISCARD_ASYNC,
837 						   "turning on async discard");
838 			} else {
839 				ret = -EINVAL;
840 				goto out;
841 			}
842 			break;
843 		case Opt_nodiscard:
844 			btrfs_clear_and_info(info, DISCARD_SYNC,
845 					     "turning off discard");
846 			btrfs_clear_and_info(info, DISCARD_ASYNC,
847 					     "turning off async discard");
848 			break;
849 		case Opt_space_cache:
850 		case Opt_space_cache_version:
851 			if (token == Opt_space_cache ||
852 			    strcmp(args[0].from, "v1") == 0) {
853 				btrfs_clear_opt(info->mount_opt,
854 						FREE_SPACE_TREE);
855 				btrfs_set_and_info(info, SPACE_CACHE,
856 					   "enabling disk space caching");
857 			} else if (strcmp(args[0].from, "v2") == 0) {
858 				btrfs_clear_opt(info->mount_opt,
859 						SPACE_CACHE);
860 				btrfs_set_and_info(info, FREE_SPACE_TREE,
861 						   "enabling free space tree");
862 			} else {
863 				ret = -EINVAL;
864 				goto out;
865 			}
866 			break;
867 		case Opt_rescan_uuid_tree:
868 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
869 			break;
870 		case Opt_no_space_cache:
871 			if (btrfs_test_opt(info, SPACE_CACHE)) {
872 				btrfs_clear_and_info(info, SPACE_CACHE,
873 					     "disabling disk space caching");
874 			}
875 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
876 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
877 					     "disabling free space tree");
878 			}
879 			break;
880 		case Opt_inode_cache:
881 		case Opt_noinode_cache:
882 			btrfs_warn(info,
883 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
884 			break;
885 		case Opt_clear_cache:
886 			btrfs_set_and_info(info, CLEAR_CACHE,
887 					   "force clearing of disk cache");
888 			break;
889 		case Opt_user_subvol_rm_allowed:
890 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
891 			break;
892 		case Opt_enospc_debug:
893 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
894 			break;
895 		case Opt_noenospc_debug:
896 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
897 			break;
898 		case Opt_defrag:
899 			btrfs_set_and_info(info, AUTO_DEFRAG,
900 					   "enabling auto defrag");
901 			break;
902 		case Opt_nodefrag:
903 			btrfs_clear_and_info(info, AUTO_DEFRAG,
904 					     "disabling auto defrag");
905 			break;
906 		case Opt_recovery:
907 		case Opt_usebackuproot:
908 			btrfs_warn(info,
909 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
910 				   token == Opt_recovery ? "recovery" :
911 				   "usebackuproot");
912 			btrfs_info(info,
913 				   "trying to use backup root at mount time");
914 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
915 			break;
916 		case Opt_skip_balance:
917 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
918 			break;
919 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
920 		case Opt_check_integrity_including_extent_data:
921 			btrfs_info(info,
922 				   "enabling check integrity including extent data");
923 			btrfs_set_opt(info->mount_opt,
924 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
925 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
926 			break;
927 		case Opt_check_integrity:
928 			btrfs_info(info, "enabling check integrity");
929 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
930 			break;
931 		case Opt_check_integrity_print_mask:
932 			ret = match_int(&args[0], &intarg);
933 			if (ret)
934 				goto out;
935 			info->check_integrity_print_mask = intarg;
936 			btrfs_info(info, "check_integrity_print_mask 0x%x",
937 				   info->check_integrity_print_mask);
938 			break;
939 #else
940 		case Opt_check_integrity_including_extent_data:
941 		case Opt_check_integrity:
942 		case Opt_check_integrity_print_mask:
943 			btrfs_err(info,
944 				  "support for check_integrity* not compiled in!");
945 			ret = -EINVAL;
946 			goto out;
947 #endif
948 		case Opt_fatal_errors:
949 			if (strcmp(args[0].from, "panic") == 0)
950 				btrfs_set_opt(info->mount_opt,
951 					      PANIC_ON_FATAL_ERROR);
952 			else if (strcmp(args[0].from, "bug") == 0)
953 				btrfs_clear_opt(info->mount_opt,
954 					      PANIC_ON_FATAL_ERROR);
955 			else {
956 				ret = -EINVAL;
957 				goto out;
958 			}
959 			break;
960 		case Opt_commit_interval:
961 			intarg = 0;
962 			ret = match_int(&args[0], &intarg);
963 			if (ret)
964 				goto out;
965 			if (intarg == 0) {
966 				btrfs_info(info,
967 					   "using default commit interval %us",
968 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
969 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
970 			} else if (intarg > 300) {
971 				btrfs_warn(info, "excessive commit interval %d",
972 					   intarg);
973 			}
974 			info->commit_interval = intarg;
975 			break;
976 		case Opt_rescue:
977 			ret = parse_rescue_options(info, args[0].from);
978 			if (ret < 0)
979 				goto out;
980 			break;
981 #ifdef CONFIG_BTRFS_DEBUG
982 		case Opt_fragment_all:
983 			btrfs_info(info, "fragmenting all space");
984 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
985 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
986 			break;
987 		case Opt_fragment_metadata:
988 			btrfs_info(info, "fragmenting metadata");
989 			btrfs_set_opt(info->mount_opt,
990 				      FRAGMENT_METADATA);
991 			break;
992 		case Opt_fragment_data:
993 			btrfs_info(info, "fragmenting data");
994 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
995 			break;
996 #endif
997 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
998 		case Opt_ref_verify:
999 			btrfs_info(info, "doing ref verification");
1000 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1001 			break;
1002 #endif
1003 		case Opt_err:
1004 			btrfs_err(info, "unrecognized mount option '%s'", p);
1005 			ret = -EINVAL;
1006 			goto out;
1007 		default:
1008 			break;
1009 		}
1010 	}
1011 check:
1012 	/* We're read-only, don't have to check. */
1013 	if (new_flags & SB_RDONLY)
1014 		goto out;
1015 
1016 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1017 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1018 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1019 		ret = -EINVAL;
1020 out:
1021 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1022 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1023 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1024 		btrfs_err(info, "cannot disable free space tree");
1025 		ret = -EINVAL;
1026 
1027 	}
1028 	if (!ret)
1029 		ret = btrfs_check_mountopts_zoned(info);
1030 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1031 		btrfs_info(info, "disk space caching is enabled");
1032 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1033 		btrfs_info(info, "using free space tree");
1034 	return ret;
1035 }
1036 
1037 /*
1038  * Parse mount options that are required early in the mount process.
1039  *
1040  * All other options will be parsed on much later in the mount process and
1041  * only when we need to allocate a new super block.
1042  */
1043 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1044 				      void *holder)
1045 {
1046 	substring_t args[MAX_OPT_ARGS];
1047 	char *device_name, *opts, *orig, *p;
1048 	struct btrfs_device *device = NULL;
1049 	int error = 0;
1050 
1051 	lockdep_assert_held(&uuid_mutex);
1052 
1053 	if (!options)
1054 		return 0;
1055 
1056 	/*
1057 	 * strsep changes the string, duplicate it because btrfs_parse_options
1058 	 * gets called later
1059 	 */
1060 	opts = kstrdup(options, GFP_KERNEL);
1061 	if (!opts)
1062 		return -ENOMEM;
1063 	orig = opts;
1064 
1065 	while ((p = strsep(&opts, ",")) != NULL) {
1066 		int token;
1067 
1068 		if (!*p)
1069 			continue;
1070 
1071 		token = match_token(p, tokens, args);
1072 		if (token == Opt_device) {
1073 			device_name = match_strdup(&args[0]);
1074 			if (!device_name) {
1075 				error = -ENOMEM;
1076 				goto out;
1077 			}
1078 			device = btrfs_scan_one_device(device_name, flags,
1079 					holder);
1080 			kfree(device_name);
1081 			if (IS_ERR(device)) {
1082 				error = PTR_ERR(device);
1083 				goto out;
1084 			}
1085 		}
1086 	}
1087 
1088 out:
1089 	kfree(orig);
1090 	return error;
1091 }
1092 
1093 /*
1094  * Parse mount options that are related to subvolume id
1095  *
1096  * The value is later passed to mount_subvol()
1097  */
1098 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1099 		u64 *subvol_objectid)
1100 {
1101 	substring_t args[MAX_OPT_ARGS];
1102 	char *opts, *orig, *p;
1103 	int error = 0;
1104 	u64 subvolid;
1105 
1106 	if (!options)
1107 		return 0;
1108 
1109 	/*
1110 	 * strsep changes the string, duplicate it because
1111 	 * btrfs_parse_device_options gets called later
1112 	 */
1113 	opts = kstrdup(options, GFP_KERNEL);
1114 	if (!opts)
1115 		return -ENOMEM;
1116 	orig = opts;
1117 
1118 	while ((p = strsep(&opts, ",")) != NULL) {
1119 		int token;
1120 		if (!*p)
1121 			continue;
1122 
1123 		token = match_token(p, tokens, args);
1124 		switch (token) {
1125 		case Opt_subvol:
1126 			kfree(*subvol_name);
1127 			*subvol_name = match_strdup(&args[0]);
1128 			if (!*subvol_name) {
1129 				error = -ENOMEM;
1130 				goto out;
1131 			}
1132 			break;
1133 		case Opt_subvolid:
1134 			error = match_u64(&args[0], &subvolid);
1135 			if (error)
1136 				goto out;
1137 
1138 			/* we want the original fs_tree */
1139 			if (subvolid == 0)
1140 				subvolid = BTRFS_FS_TREE_OBJECTID;
1141 
1142 			*subvol_objectid = subvolid;
1143 			break;
1144 		default:
1145 			break;
1146 		}
1147 	}
1148 
1149 out:
1150 	kfree(orig);
1151 	return error;
1152 }
1153 
1154 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1155 					  u64 subvol_objectid)
1156 {
1157 	struct btrfs_root *root = fs_info->tree_root;
1158 	struct btrfs_root *fs_root = NULL;
1159 	struct btrfs_root_ref *root_ref;
1160 	struct btrfs_inode_ref *inode_ref;
1161 	struct btrfs_key key;
1162 	struct btrfs_path *path = NULL;
1163 	char *name = NULL, *ptr;
1164 	u64 dirid;
1165 	int len;
1166 	int ret;
1167 
1168 	path = btrfs_alloc_path();
1169 	if (!path) {
1170 		ret = -ENOMEM;
1171 		goto err;
1172 	}
1173 
1174 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1175 	if (!name) {
1176 		ret = -ENOMEM;
1177 		goto err;
1178 	}
1179 	ptr = name + PATH_MAX - 1;
1180 	ptr[0] = '\0';
1181 
1182 	/*
1183 	 * Walk up the subvolume trees in the tree of tree roots by root
1184 	 * backrefs until we hit the top-level subvolume.
1185 	 */
1186 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1187 		key.objectid = subvol_objectid;
1188 		key.type = BTRFS_ROOT_BACKREF_KEY;
1189 		key.offset = (u64)-1;
1190 
1191 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1192 		if (ret < 0) {
1193 			goto err;
1194 		} else if (ret > 0) {
1195 			ret = btrfs_previous_item(root, path, subvol_objectid,
1196 						  BTRFS_ROOT_BACKREF_KEY);
1197 			if (ret < 0) {
1198 				goto err;
1199 			} else if (ret > 0) {
1200 				ret = -ENOENT;
1201 				goto err;
1202 			}
1203 		}
1204 
1205 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1206 		subvol_objectid = key.offset;
1207 
1208 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1209 					  struct btrfs_root_ref);
1210 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1211 		ptr -= len + 1;
1212 		if (ptr < name) {
1213 			ret = -ENAMETOOLONG;
1214 			goto err;
1215 		}
1216 		read_extent_buffer(path->nodes[0], ptr + 1,
1217 				   (unsigned long)(root_ref + 1), len);
1218 		ptr[0] = '/';
1219 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1220 		btrfs_release_path(path);
1221 
1222 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1223 		if (IS_ERR(fs_root)) {
1224 			ret = PTR_ERR(fs_root);
1225 			fs_root = NULL;
1226 			goto err;
1227 		}
1228 
1229 		/*
1230 		 * Walk up the filesystem tree by inode refs until we hit the
1231 		 * root directory.
1232 		 */
1233 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1234 			key.objectid = dirid;
1235 			key.type = BTRFS_INODE_REF_KEY;
1236 			key.offset = (u64)-1;
1237 
1238 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1239 			if (ret < 0) {
1240 				goto err;
1241 			} else if (ret > 0) {
1242 				ret = btrfs_previous_item(fs_root, path, dirid,
1243 							  BTRFS_INODE_REF_KEY);
1244 				if (ret < 0) {
1245 					goto err;
1246 				} else if (ret > 0) {
1247 					ret = -ENOENT;
1248 					goto err;
1249 				}
1250 			}
1251 
1252 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1253 			dirid = key.offset;
1254 
1255 			inode_ref = btrfs_item_ptr(path->nodes[0],
1256 						   path->slots[0],
1257 						   struct btrfs_inode_ref);
1258 			len = btrfs_inode_ref_name_len(path->nodes[0],
1259 						       inode_ref);
1260 			ptr -= len + 1;
1261 			if (ptr < name) {
1262 				ret = -ENAMETOOLONG;
1263 				goto err;
1264 			}
1265 			read_extent_buffer(path->nodes[0], ptr + 1,
1266 					   (unsigned long)(inode_ref + 1), len);
1267 			ptr[0] = '/';
1268 			btrfs_release_path(path);
1269 		}
1270 		btrfs_put_root(fs_root);
1271 		fs_root = NULL;
1272 	}
1273 
1274 	btrfs_free_path(path);
1275 	if (ptr == name + PATH_MAX - 1) {
1276 		name[0] = '/';
1277 		name[1] = '\0';
1278 	} else {
1279 		memmove(name, ptr, name + PATH_MAX - ptr);
1280 	}
1281 	return name;
1282 
1283 err:
1284 	btrfs_put_root(fs_root);
1285 	btrfs_free_path(path);
1286 	kfree(name);
1287 	return ERR_PTR(ret);
1288 }
1289 
1290 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1291 {
1292 	struct btrfs_root *root = fs_info->tree_root;
1293 	struct btrfs_dir_item *di;
1294 	struct btrfs_path *path;
1295 	struct btrfs_key location;
1296 	u64 dir_id;
1297 
1298 	path = btrfs_alloc_path();
1299 	if (!path)
1300 		return -ENOMEM;
1301 
1302 	/*
1303 	 * Find the "default" dir item which points to the root item that we
1304 	 * will mount by default if we haven't been given a specific subvolume
1305 	 * to mount.
1306 	 */
1307 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1308 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1309 	if (IS_ERR(di)) {
1310 		btrfs_free_path(path);
1311 		return PTR_ERR(di);
1312 	}
1313 	if (!di) {
1314 		/*
1315 		 * Ok the default dir item isn't there.  This is weird since
1316 		 * it's always been there, but don't freak out, just try and
1317 		 * mount the top-level subvolume.
1318 		 */
1319 		btrfs_free_path(path);
1320 		*objectid = BTRFS_FS_TREE_OBJECTID;
1321 		return 0;
1322 	}
1323 
1324 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1325 	btrfs_free_path(path);
1326 	*objectid = location.objectid;
1327 	return 0;
1328 }
1329 
1330 static int btrfs_fill_super(struct super_block *sb,
1331 			    struct btrfs_fs_devices *fs_devices,
1332 			    void *data)
1333 {
1334 	struct inode *inode;
1335 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1336 	int err;
1337 
1338 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1339 	sb->s_magic = BTRFS_SUPER_MAGIC;
1340 	sb->s_op = &btrfs_super_ops;
1341 	sb->s_d_op = &btrfs_dentry_operations;
1342 	sb->s_export_op = &btrfs_export_ops;
1343 	sb->s_xattr = btrfs_xattr_handlers;
1344 	sb->s_time_gran = 1;
1345 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1346 	sb->s_flags |= SB_POSIXACL;
1347 #endif
1348 	sb->s_flags |= SB_I_VERSION;
1349 	sb->s_iflags |= SB_I_CGROUPWB;
1350 
1351 	err = super_setup_bdi(sb);
1352 	if (err) {
1353 		btrfs_err(fs_info, "super_setup_bdi failed");
1354 		return err;
1355 	}
1356 
1357 	err = open_ctree(sb, fs_devices, (char *)data);
1358 	if (err) {
1359 		btrfs_err(fs_info, "open_ctree failed");
1360 		return err;
1361 	}
1362 
1363 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1364 	if (IS_ERR(inode)) {
1365 		err = PTR_ERR(inode);
1366 		goto fail_close;
1367 	}
1368 
1369 	sb->s_root = d_make_root(inode);
1370 	if (!sb->s_root) {
1371 		err = -ENOMEM;
1372 		goto fail_close;
1373 	}
1374 
1375 	cleancache_init_fs(sb);
1376 	sb->s_flags |= SB_ACTIVE;
1377 	return 0;
1378 
1379 fail_close:
1380 	close_ctree(fs_info);
1381 	return err;
1382 }
1383 
1384 int btrfs_sync_fs(struct super_block *sb, int wait)
1385 {
1386 	struct btrfs_trans_handle *trans;
1387 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1388 	struct btrfs_root *root = fs_info->tree_root;
1389 
1390 	trace_btrfs_sync_fs(fs_info, wait);
1391 
1392 	if (!wait) {
1393 		filemap_flush(fs_info->btree_inode->i_mapping);
1394 		return 0;
1395 	}
1396 
1397 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1398 
1399 	trans = btrfs_attach_transaction_barrier(root);
1400 	if (IS_ERR(trans)) {
1401 		/* no transaction, don't bother */
1402 		if (PTR_ERR(trans) == -ENOENT) {
1403 			/*
1404 			 * Exit unless we have some pending changes
1405 			 * that need to go through commit
1406 			 */
1407 			if (fs_info->pending_changes == 0)
1408 				return 0;
1409 			/*
1410 			 * A non-blocking test if the fs is frozen. We must not
1411 			 * start a new transaction here otherwise a deadlock
1412 			 * happens. The pending operations are delayed to the
1413 			 * next commit after thawing.
1414 			 */
1415 			if (sb_start_write_trylock(sb))
1416 				sb_end_write(sb);
1417 			else
1418 				return 0;
1419 			trans = btrfs_start_transaction(root, 0);
1420 		}
1421 		if (IS_ERR(trans))
1422 			return PTR_ERR(trans);
1423 	}
1424 	return btrfs_commit_transaction(trans);
1425 }
1426 
1427 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1428 {
1429 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1430 	*printed = true;
1431 }
1432 
1433 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1434 {
1435 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1436 	const char *compress_type;
1437 	const char *subvol_name;
1438 	bool printed = false;
1439 
1440 	if (btrfs_test_opt(info, DEGRADED))
1441 		seq_puts(seq, ",degraded");
1442 	if (btrfs_test_opt(info, NODATASUM))
1443 		seq_puts(seq, ",nodatasum");
1444 	if (btrfs_test_opt(info, NODATACOW))
1445 		seq_puts(seq, ",nodatacow");
1446 	if (btrfs_test_opt(info, NOBARRIER))
1447 		seq_puts(seq, ",nobarrier");
1448 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1449 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1450 	if (info->thread_pool_size !=  min_t(unsigned long,
1451 					     num_online_cpus() + 2, 8))
1452 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1453 	if (btrfs_test_opt(info, COMPRESS)) {
1454 		compress_type = btrfs_compress_type2str(info->compress_type);
1455 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1456 			seq_printf(seq, ",compress-force=%s", compress_type);
1457 		else
1458 			seq_printf(seq, ",compress=%s", compress_type);
1459 		if (info->compress_level)
1460 			seq_printf(seq, ":%d", info->compress_level);
1461 	}
1462 	if (btrfs_test_opt(info, NOSSD))
1463 		seq_puts(seq, ",nossd");
1464 	if (btrfs_test_opt(info, SSD_SPREAD))
1465 		seq_puts(seq, ",ssd_spread");
1466 	else if (btrfs_test_opt(info, SSD))
1467 		seq_puts(seq, ",ssd");
1468 	if (btrfs_test_opt(info, NOTREELOG))
1469 		seq_puts(seq, ",notreelog");
1470 	if (btrfs_test_opt(info, NOLOGREPLAY))
1471 		print_rescue_option(seq, "nologreplay", &printed);
1472 	if (btrfs_test_opt(info, USEBACKUPROOT))
1473 		print_rescue_option(seq, "usebackuproot", &printed);
1474 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1475 		print_rescue_option(seq, "ignorebadroots", &printed);
1476 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1477 		print_rescue_option(seq, "ignoredatacsums", &printed);
1478 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1479 		seq_puts(seq, ",flushoncommit");
1480 	if (btrfs_test_opt(info, DISCARD_SYNC))
1481 		seq_puts(seq, ",discard");
1482 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1483 		seq_puts(seq, ",discard=async");
1484 	if (!(info->sb->s_flags & SB_POSIXACL))
1485 		seq_puts(seq, ",noacl");
1486 	if (btrfs_free_space_cache_v1_active(info))
1487 		seq_puts(seq, ",space_cache");
1488 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1489 		seq_puts(seq, ",space_cache=v2");
1490 	else
1491 		seq_puts(seq, ",nospace_cache");
1492 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1493 		seq_puts(seq, ",rescan_uuid_tree");
1494 	if (btrfs_test_opt(info, CLEAR_CACHE))
1495 		seq_puts(seq, ",clear_cache");
1496 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1497 		seq_puts(seq, ",user_subvol_rm_allowed");
1498 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1499 		seq_puts(seq, ",enospc_debug");
1500 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1501 		seq_puts(seq, ",autodefrag");
1502 	if (btrfs_test_opt(info, SKIP_BALANCE))
1503 		seq_puts(seq, ",skip_balance");
1504 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1505 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1506 		seq_puts(seq, ",check_int_data");
1507 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1508 		seq_puts(seq, ",check_int");
1509 	if (info->check_integrity_print_mask)
1510 		seq_printf(seq, ",check_int_print_mask=%d",
1511 				info->check_integrity_print_mask);
1512 #endif
1513 	if (info->metadata_ratio)
1514 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1515 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1516 		seq_puts(seq, ",fatal_errors=panic");
1517 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1518 		seq_printf(seq, ",commit=%u", info->commit_interval);
1519 #ifdef CONFIG_BTRFS_DEBUG
1520 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1521 		seq_puts(seq, ",fragment=data");
1522 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1523 		seq_puts(seq, ",fragment=metadata");
1524 #endif
1525 	if (btrfs_test_opt(info, REF_VERIFY))
1526 		seq_puts(seq, ",ref_verify");
1527 	seq_printf(seq, ",subvolid=%llu",
1528 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1529 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1530 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1531 	if (!IS_ERR(subvol_name)) {
1532 		seq_puts(seq, ",subvol=");
1533 		seq_escape(seq, subvol_name, " \t\n\\");
1534 		kfree(subvol_name);
1535 	}
1536 	return 0;
1537 }
1538 
1539 static int btrfs_test_super(struct super_block *s, void *data)
1540 {
1541 	struct btrfs_fs_info *p = data;
1542 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1543 
1544 	return fs_info->fs_devices == p->fs_devices;
1545 }
1546 
1547 static int btrfs_set_super(struct super_block *s, void *data)
1548 {
1549 	int err = set_anon_super(s, data);
1550 	if (!err)
1551 		s->s_fs_info = data;
1552 	return err;
1553 }
1554 
1555 /*
1556  * subvolumes are identified by ino 256
1557  */
1558 static inline int is_subvolume_inode(struct inode *inode)
1559 {
1560 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1561 		return 1;
1562 	return 0;
1563 }
1564 
1565 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1566 				   struct vfsmount *mnt)
1567 {
1568 	struct dentry *root;
1569 	int ret;
1570 
1571 	if (!subvol_name) {
1572 		if (!subvol_objectid) {
1573 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1574 							  &subvol_objectid);
1575 			if (ret) {
1576 				root = ERR_PTR(ret);
1577 				goto out;
1578 			}
1579 		}
1580 		subvol_name = btrfs_get_subvol_name_from_objectid(
1581 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1582 		if (IS_ERR(subvol_name)) {
1583 			root = ERR_CAST(subvol_name);
1584 			subvol_name = NULL;
1585 			goto out;
1586 		}
1587 
1588 	}
1589 
1590 	root = mount_subtree(mnt, subvol_name);
1591 	/* mount_subtree() drops our reference on the vfsmount. */
1592 	mnt = NULL;
1593 
1594 	if (!IS_ERR(root)) {
1595 		struct super_block *s = root->d_sb;
1596 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1597 		struct inode *root_inode = d_inode(root);
1598 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1599 
1600 		ret = 0;
1601 		if (!is_subvolume_inode(root_inode)) {
1602 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1603 			       subvol_name);
1604 			ret = -EINVAL;
1605 		}
1606 		if (subvol_objectid && root_objectid != subvol_objectid) {
1607 			/*
1608 			 * This will also catch a race condition where a
1609 			 * subvolume which was passed by ID is renamed and
1610 			 * another subvolume is renamed over the old location.
1611 			 */
1612 			btrfs_err(fs_info,
1613 				  "subvol '%s' does not match subvolid %llu",
1614 				  subvol_name, subvol_objectid);
1615 			ret = -EINVAL;
1616 		}
1617 		if (ret) {
1618 			dput(root);
1619 			root = ERR_PTR(ret);
1620 			deactivate_locked_super(s);
1621 		}
1622 	}
1623 
1624 out:
1625 	mntput(mnt);
1626 	kfree(subvol_name);
1627 	return root;
1628 }
1629 
1630 /*
1631  * Find a superblock for the given device / mount point.
1632  *
1633  * Note: This is based on mount_bdev from fs/super.c with a few additions
1634  *       for multiple device setup.  Make sure to keep it in sync.
1635  */
1636 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1637 		int flags, const char *device_name, void *data)
1638 {
1639 	struct block_device *bdev = NULL;
1640 	struct super_block *s;
1641 	struct btrfs_device *device = NULL;
1642 	struct btrfs_fs_devices *fs_devices = NULL;
1643 	struct btrfs_fs_info *fs_info = NULL;
1644 	void *new_sec_opts = NULL;
1645 	fmode_t mode = FMODE_READ;
1646 	int error = 0;
1647 
1648 	if (!(flags & SB_RDONLY))
1649 		mode |= FMODE_WRITE;
1650 
1651 	if (data) {
1652 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1653 		if (error)
1654 			return ERR_PTR(error);
1655 	}
1656 
1657 	/*
1658 	 * Setup a dummy root and fs_info for test/set super.  This is because
1659 	 * we don't actually fill this stuff out until open_ctree, but we need
1660 	 * then open_ctree will properly initialize the file system specific
1661 	 * settings later.  btrfs_init_fs_info initializes the static elements
1662 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1663 	 * superblock with our given fs_devices later on at sget() time.
1664 	 */
1665 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1666 	if (!fs_info) {
1667 		error = -ENOMEM;
1668 		goto error_sec_opts;
1669 	}
1670 	btrfs_init_fs_info(fs_info);
1671 
1672 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1673 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1674 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1675 		error = -ENOMEM;
1676 		goto error_fs_info;
1677 	}
1678 
1679 	mutex_lock(&uuid_mutex);
1680 	error = btrfs_parse_device_options(data, mode, fs_type);
1681 	if (error) {
1682 		mutex_unlock(&uuid_mutex);
1683 		goto error_fs_info;
1684 	}
1685 
1686 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1687 	if (IS_ERR(device)) {
1688 		mutex_unlock(&uuid_mutex);
1689 		error = PTR_ERR(device);
1690 		goto error_fs_info;
1691 	}
1692 
1693 	fs_devices = device->fs_devices;
1694 	fs_info->fs_devices = fs_devices;
1695 
1696 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1697 	mutex_unlock(&uuid_mutex);
1698 	if (error)
1699 		goto error_fs_info;
1700 
1701 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1702 		error = -EACCES;
1703 		goto error_close_devices;
1704 	}
1705 
1706 	bdev = fs_devices->latest_bdev;
1707 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1708 		 fs_info);
1709 	if (IS_ERR(s)) {
1710 		error = PTR_ERR(s);
1711 		goto error_close_devices;
1712 	}
1713 
1714 	if (s->s_root) {
1715 		btrfs_close_devices(fs_devices);
1716 		btrfs_free_fs_info(fs_info);
1717 		if ((flags ^ s->s_flags) & SB_RDONLY)
1718 			error = -EBUSY;
1719 	} else {
1720 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1721 		btrfs_sb(s)->bdev_holder = fs_type;
1722 		if (!strstr(crc32c_impl(), "generic"))
1723 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1724 		error = btrfs_fill_super(s, fs_devices, data);
1725 	}
1726 	if (!error)
1727 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1728 	security_free_mnt_opts(&new_sec_opts);
1729 	if (error) {
1730 		deactivate_locked_super(s);
1731 		return ERR_PTR(error);
1732 	}
1733 
1734 	return dget(s->s_root);
1735 
1736 error_close_devices:
1737 	btrfs_close_devices(fs_devices);
1738 error_fs_info:
1739 	btrfs_free_fs_info(fs_info);
1740 error_sec_opts:
1741 	security_free_mnt_opts(&new_sec_opts);
1742 	return ERR_PTR(error);
1743 }
1744 
1745 /*
1746  * Mount function which is called by VFS layer.
1747  *
1748  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1749  * which needs vfsmount* of device's root (/).  This means device's root has to
1750  * be mounted internally in any case.
1751  *
1752  * Operation flow:
1753  *   1. Parse subvol id related options for later use in mount_subvol().
1754  *
1755  *   2. Mount device's root (/) by calling vfs_kern_mount().
1756  *
1757  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1758  *      first place. In order to avoid calling btrfs_mount() again, we use
1759  *      different file_system_type which is not registered to VFS by
1760  *      register_filesystem() (btrfs_root_fs_type). As a result,
1761  *      btrfs_mount_root() is called. The return value will be used by
1762  *      mount_subtree() in mount_subvol().
1763  *
1764  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1765  *      "btrfs subvolume set-default", mount_subvol() is called always.
1766  */
1767 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1768 		const char *device_name, void *data)
1769 {
1770 	struct vfsmount *mnt_root;
1771 	struct dentry *root;
1772 	char *subvol_name = NULL;
1773 	u64 subvol_objectid = 0;
1774 	int error = 0;
1775 
1776 	error = btrfs_parse_subvol_options(data, &subvol_name,
1777 					&subvol_objectid);
1778 	if (error) {
1779 		kfree(subvol_name);
1780 		return ERR_PTR(error);
1781 	}
1782 
1783 	/* mount device's root (/) */
1784 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1785 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1786 		if (flags & SB_RDONLY) {
1787 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1788 				flags & ~SB_RDONLY, device_name, data);
1789 		} else {
1790 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1791 				flags | SB_RDONLY, device_name, data);
1792 			if (IS_ERR(mnt_root)) {
1793 				root = ERR_CAST(mnt_root);
1794 				kfree(subvol_name);
1795 				goto out;
1796 			}
1797 
1798 			down_write(&mnt_root->mnt_sb->s_umount);
1799 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1800 			up_write(&mnt_root->mnt_sb->s_umount);
1801 			if (error < 0) {
1802 				root = ERR_PTR(error);
1803 				mntput(mnt_root);
1804 				kfree(subvol_name);
1805 				goto out;
1806 			}
1807 		}
1808 	}
1809 	if (IS_ERR(mnt_root)) {
1810 		root = ERR_CAST(mnt_root);
1811 		kfree(subvol_name);
1812 		goto out;
1813 	}
1814 
1815 	/* mount_subvol() will free subvol_name and mnt_root */
1816 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1817 
1818 out:
1819 	return root;
1820 }
1821 
1822 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1823 				     u32 new_pool_size, u32 old_pool_size)
1824 {
1825 	if (new_pool_size == old_pool_size)
1826 		return;
1827 
1828 	fs_info->thread_pool_size = new_pool_size;
1829 
1830 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1831 	       old_pool_size, new_pool_size);
1832 
1833 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1834 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1835 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1836 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1837 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1838 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1839 				new_pool_size);
1840 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1841 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1842 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1843 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1844 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1845 				new_pool_size);
1846 }
1847 
1848 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1849 				       unsigned long old_opts, int flags)
1850 {
1851 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1852 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1853 	     (flags & SB_RDONLY))) {
1854 		/* wait for any defraggers to finish */
1855 		wait_event(fs_info->transaction_wait,
1856 			   (atomic_read(&fs_info->defrag_running) == 0));
1857 		if (flags & SB_RDONLY)
1858 			sync_filesystem(fs_info->sb);
1859 	}
1860 }
1861 
1862 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1863 					 unsigned long old_opts)
1864 {
1865 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1866 
1867 	/*
1868 	 * We need to cleanup all defragable inodes if the autodefragment is
1869 	 * close or the filesystem is read only.
1870 	 */
1871 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1872 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1873 		btrfs_cleanup_defrag_inodes(fs_info);
1874 	}
1875 
1876 	/* If we toggled discard async */
1877 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1878 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1879 		btrfs_discard_resume(fs_info);
1880 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1881 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1882 		btrfs_discard_cleanup(fs_info);
1883 
1884 	/* If we toggled space cache */
1885 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1886 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1887 }
1888 
1889 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1890 {
1891 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1892 	unsigned old_flags = sb->s_flags;
1893 	unsigned long old_opts = fs_info->mount_opt;
1894 	unsigned long old_compress_type = fs_info->compress_type;
1895 	u64 old_max_inline = fs_info->max_inline;
1896 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1897 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1898 	int ret;
1899 
1900 	sync_filesystem(sb);
1901 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1902 
1903 	if (data) {
1904 		void *new_sec_opts = NULL;
1905 
1906 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1907 		if (!ret)
1908 			ret = security_sb_remount(sb, new_sec_opts);
1909 		security_free_mnt_opts(&new_sec_opts);
1910 		if (ret)
1911 			goto restore;
1912 	}
1913 
1914 	ret = btrfs_parse_options(fs_info, data, *flags);
1915 	if (ret)
1916 		goto restore;
1917 
1918 	btrfs_remount_begin(fs_info, old_opts, *flags);
1919 	btrfs_resize_thread_pool(fs_info,
1920 		fs_info->thread_pool_size, old_thread_pool_size);
1921 
1922 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1923 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1924 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1925 		btrfs_warn(fs_info,
1926 		"remount supports changing free space tree only from ro to rw");
1927 		/* Make sure free space cache options match the state on disk */
1928 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1929 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1930 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1931 		}
1932 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1933 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1934 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1935 		}
1936 	}
1937 
1938 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1939 		goto out;
1940 
1941 	if (*flags & SB_RDONLY) {
1942 		/*
1943 		 * this also happens on 'umount -rf' or on shutdown, when
1944 		 * the filesystem is busy.
1945 		 */
1946 		cancel_work_sync(&fs_info->async_reclaim_work);
1947 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1948 
1949 		btrfs_discard_cleanup(fs_info);
1950 
1951 		/* wait for the uuid_scan task to finish */
1952 		down(&fs_info->uuid_tree_rescan_sem);
1953 		/* avoid complains from lockdep et al. */
1954 		up(&fs_info->uuid_tree_rescan_sem);
1955 
1956 		sb->s_flags |= SB_RDONLY;
1957 
1958 		/*
1959 		 * Setting SB_RDONLY will put the cleaner thread to
1960 		 * sleep at the next loop if it's already active.
1961 		 * If it's already asleep, we'll leave unused block
1962 		 * groups on disk until we're mounted read-write again
1963 		 * unless we clean them up here.
1964 		 */
1965 		btrfs_delete_unused_bgs(fs_info);
1966 
1967 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1968 		btrfs_scrub_cancel(fs_info);
1969 		btrfs_pause_balance(fs_info);
1970 
1971 		ret = btrfs_commit_super(fs_info);
1972 		if (ret)
1973 			goto restore;
1974 	} else {
1975 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1976 			btrfs_err(fs_info,
1977 				"Remounting read-write after error is not allowed");
1978 			ret = -EINVAL;
1979 			goto restore;
1980 		}
1981 		if (fs_info->fs_devices->rw_devices == 0) {
1982 			ret = -EACCES;
1983 			goto restore;
1984 		}
1985 
1986 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1987 			btrfs_warn(fs_info,
1988 		"too many missing devices, writable remount is not allowed");
1989 			ret = -EACCES;
1990 			goto restore;
1991 		}
1992 
1993 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1994 			btrfs_warn(fs_info,
1995 		"mount required to replay tree-log, cannot remount read-write");
1996 			ret = -EINVAL;
1997 			goto restore;
1998 		}
1999 
2000 		/*
2001 		 * NOTE: when remounting with a change that does writes, don't
2002 		 * put it anywhere above this point, as we are not sure to be
2003 		 * safe to write until we pass the above checks.
2004 		 */
2005 		ret = btrfs_start_pre_rw_mount(fs_info);
2006 		if (ret)
2007 			goto restore;
2008 
2009 		sb->s_flags &= ~SB_RDONLY;
2010 
2011 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2012 	}
2013 out:
2014 	/*
2015 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2016 	 * since the absence of the flag means it can be toggled off by remount.
2017 	 */
2018 	*flags |= SB_I_VERSION;
2019 
2020 	wake_up_process(fs_info->transaction_kthread);
2021 	btrfs_remount_cleanup(fs_info, old_opts);
2022 	btrfs_clear_oneshot_options(fs_info);
2023 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2024 
2025 	return 0;
2026 
2027 restore:
2028 	/* We've hit an error - don't reset SB_RDONLY */
2029 	if (sb_rdonly(sb))
2030 		old_flags |= SB_RDONLY;
2031 	sb->s_flags = old_flags;
2032 	fs_info->mount_opt = old_opts;
2033 	fs_info->compress_type = old_compress_type;
2034 	fs_info->max_inline = old_max_inline;
2035 	btrfs_resize_thread_pool(fs_info,
2036 		old_thread_pool_size, fs_info->thread_pool_size);
2037 	fs_info->metadata_ratio = old_metadata_ratio;
2038 	btrfs_remount_cleanup(fs_info, old_opts);
2039 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2040 
2041 	return ret;
2042 }
2043 
2044 /* Used to sort the devices by max_avail(descending sort) */
2045 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
2046 				       const void *dev_info2)
2047 {
2048 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
2049 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
2050 		return -1;
2051 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2052 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2053 		return 1;
2054 	else
2055 	return 0;
2056 }
2057 
2058 /*
2059  * sort the devices by max_avail, in which max free extent size of each device
2060  * is stored.(Descending Sort)
2061  */
2062 static inline void btrfs_descending_sort_devices(
2063 					struct btrfs_device_info *devices,
2064 					size_t nr_devices)
2065 {
2066 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2067 	     btrfs_cmp_device_free_bytes, NULL);
2068 }
2069 
2070 /*
2071  * The helper to calc the free space on the devices that can be used to store
2072  * file data.
2073  */
2074 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2075 					      u64 *free_bytes)
2076 {
2077 	struct btrfs_device_info *devices_info;
2078 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2079 	struct btrfs_device *device;
2080 	u64 type;
2081 	u64 avail_space;
2082 	u64 min_stripe_size;
2083 	int num_stripes = 1;
2084 	int i = 0, nr_devices;
2085 	const struct btrfs_raid_attr *rattr;
2086 
2087 	/*
2088 	 * We aren't under the device list lock, so this is racy-ish, but good
2089 	 * enough for our purposes.
2090 	 */
2091 	nr_devices = fs_info->fs_devices->open_devices;
2092 	if (!nr_devices) {
2093 		smp_mb();
2094 		nr_devices = fs_info->fs_devices->open_devices;
2095 		ASSERT(nr_devices);
2096 		if (!nr_devices) {
2097 			*free_bytes = 0;
2098 			return 0;
2099 		}
2100 	}
2101 
2102 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2103 			       GFP_KERNEL);
2104 	if (!devices_info)
2105 		return -ENOMEM;
2106 
2107 	/* calc min stripe number for data space allocation */
2108 	type = btrfs_data_alloc_profile(fs_info);
2109 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2110 
2111 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2112 		num_stripes = nr_devices;
2113 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2114 		num_stripes = 2;
2115 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2116 		num_stripes = 3;
2117 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2118 		num_stripes = 4;
2119 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2120 		num_stripes = 4;
2121 
2122 	/* Adjust for more than 1 stripe per device */
2123 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2124 
2125 	rcu_read_lock();
2126 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2127 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2128 						&device->dev_state) ||
2129 		    !device->bdev ||
2130 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2131 			continue;
2132 
2133 		if (i >= nr_devices)
2134 			break;
2135 
2136 		avail_space = device->total_bytes - device->bytes_used;
2137 
2138 		/* align with stripe_len */
2139 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2140 
2141 		/*
2142 		 * In order to avoid overwriting the superblock on the drive,
2143 		 * btrfs starts at an offset of at least 1MB when doing chunk
2144 		 * allocation.
2145 		 *
2146 		 * This ensures we have at least min_stripe_size free space
2147 		 * after excluding 1MB.
2148 		 */
2149 		if (avail_space <= SZ_1M + min_stripe_size)
2150 			continue;
2151 
2152 		avail_space -= SZ_1M;
2153 
2154 		devices_info[i].dev = device;
2155 		devices_info[i].max_avail = avail_space;
2156 
2157 		i++;
2158 	}
2159 	rcu_read_unlock();
2160 
2161 	nr_devices = i;
2162 
2163 	btrfs_descending_sort_devices(devices_info, nr_devices);
2164 
2165 	i = nr_devices - 1;
2166 	avail_space = 0;
2167 	while (nr_devices >= rattr->devs_min) {
2168 		num_stripes = min(num_stripes, nr_devices);
2169 
2170 		if (devices_info[i].max_avail >= min_stripe_size) {
2171 			int j;
2172 			u64 alloc_size;
2173 
2174 			avail_space += devices_info[i].max_avail * num_stripes;
2175 			alloc_size = devices_info[i].max_avail;
2176 			for (j = i + 1 - num_stripes; j <= i; j++)
2177 				devices_info[j].max_avail -= alloc_size;
2178 		}
2179 		i--;
2180 		nr_devices--;
2181 	}
2182 
2183 	kfree(devices_info);
2184 	*free_bytes = avail_space;
2185 	return 0;
2186 }
2187 
2188 /*
2189  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2190  *
2191  * If there's a redundant raid level at DATA block groups, use the respective
2192  * multiplier to scale the sizes.
2193  *
2194  * Unused device space usage is based on simulating the chunk allocator
2195  * algorithm that respects the device sizes and order of allocations.  This is
2196  * a close approximation of the actual use but there are other factors that may
2197  * change the result (like a new metadata chunk).
2198  *
2199  * If metadata is exhausted, f_bavail will be 0.
2200  */
2201 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2202 {
2203 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2204 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2205 	struct btrfs_space_info *found;
2206 	u64 total_used = 0;
2207 	u64 total_free_data = 0;
2208 	u64 total_free_meta = 0;
2209 	u32 bits = fs_info->sectorsize_bits;
2210 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2211 	unsigned factor = 1;
2212 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2213 	int ret;
2214 	u64 thresh = 0;
2215 	int mixed = 0;
2216 
2217 	list_for_each_entry(found, &fs_info->space_info, list) {
2218 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2219 			int i;
2220 
2221 			total_free_data += found->disk_total - found->disk_used;
2222 			total_free_data -=
2223 				btrfs_account_ro_block_groups_free_space(found);
2224 
2225 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2226 				if (!list_empty(&found->block_groups[i]))
2227 					factor = btrfs_bg_type_to_factor(
2228 						btrfs_raid_array[i].bg_flag);
2229 			}
2230 		}
2231 
2232 		/*
2233 		 * Metadata in mixed block goup profiles are accounted in data
2234 		 */
2235 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2236 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2237 				mixed = 1;
2238 			else
2239 				total_free_meta += found->disk_total -
2240 					found->disk_used;
2241 		}
2242 
2243 		total_used += found->disk_used;
2244 	}
2245 
2246 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2247 	buf->f_blocks >>= bits;
2248 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2249 
2250 	/* Account global block reserve as used, it's in logical size already */
2251 	spin_lock(&block_rsv->lock);
2252 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2253 	if (buf->f_bfree >= block_rsv->size >> bits)
2254 		buf->f_bfree -= block_rsv->size >> bits;
2255 	else
2256 		buf->f_bfree = 0;
2257 	spin_unlock(&block_rsv->lock);
2258 
2259 	buf->f_bavail = div_u64(total_free_data, factor);
2260 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2261 	if (ret)
2262 		return ret;
2263 	buf->f_bavail += div_u64(total_free_data, factor);
2264 	buf->f_bavail = buf->f_bavail >> bits;
2265 
2266 	/*
2267 	 * We calculate the remaining metadata space minus global reserve. If
2268 	 * this is (supposedly) smaller than zero, there's no space. But this
2269 	 * does not hold in practice, the exhausted state happens where's still
2270 	 * some positive delta. So we apply some guesswork and compare the
2271 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2272 	 *
2273 	 * We probably cannot calculate the exact threshold value because this
2274 	 * depends on the internal reservations requested by various
2275 	 * operations, so some operations that consume a few metadata will
2276 	 * succeed even if the Avail is zero. But this is better than the other
2277 	 * way around.
2278 	 */
2279 	thresh = SZ_4M;
2280 
2281 	/*
2282 	 * We only want to claim there's no available space if we can no longer
2283 	 * allocate chunks for our metadata profile and our global reserve will
2284 	 * not fit in the free metadata space.  If we aren't ->full then we
2285 	 * still can allocate chunks and thus are fine using the currently
2286 	 * calculated f_bavail.
2287 	 */
2288 	if (!mixed && block_rsv->space_info->full &&
2289 	    total_free_meta - thresh < block_rsv->size)
2290 		buf->f_bavail = 0;
2291 
2292 	buf->f_type = BTRFS_SUPER_MAGIC;
2293 	buf->f_bsize = dentry->d_sb->s_blocksize;
2294 	buf->f_namelen = BTRFS_NAME_LEN;
2295 
2296 	/* We treat it as constant endianness (it doesn't matter _which_)
2297 	   because we want the fsid to come out the same whether mounted
2298 	   on a big-endian or little-endian host */
2299 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2300 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2301 	/* Mask in the root object ID too, to disambiguate subvols */
2302 	buf->f_fsid.val[0] ^=
2303 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2304 	buf->f_fsid.val[1] ^=
2305 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2306 
2307 	return 0;
2308 }
2309 
2310 static void btrfs_kill_super(struct super_block *sb)
2311 {
2312 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2313 	kill_anon_super(sb);
2314 	btrfs_free_fs_info(fs_info);
2315 }
2316 
2317 static struct file_system_type btrfs_fs_type = {
2318 	.owner		= THIS_MODULE,
2319 	.name		= "btrfs",
2320 	.mount		= btrfs_mount,
2321 	.kill_sb	= btrfs_kill_super,
2322 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2323 };
2324 
2325 static struct file_system_type btrfs_root_fs_type = {
2326 	.owner		= THIS_MODULE,
2327 	.name		= "btrfs",
2328 	.mount		= btrfs_mount_root,
2329 	.kill_sb	= btrfs_kill_super,
2330 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2331 };
2332 
2333 MODULE_ALIAS_FS("btrfs");
2334 
2335 static int btrfs_control_open(struct inode *inode, struct file *file)
2336 {
2337 	/*
2338 	 * The control file's private_data is used to hold the
2339 	 * transaction when it is started and is used to keep
2340 	 * track of whether a transaction is already in progress.
2341 	 */
2342 	file->private_data = NULL;
2343 	return 0;
2344 }
2345 
2346 /*
2347  * Used by /dev/btrfs-control for devices ioctls.
2348  */
2349 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2350 				unsigned long arg)
2351 {
2352 	struct btrfs_ioctl_vol_args *vol;
2353 	struct btrfs_device *device = NULL;
2354 	int ret = -ENOTTY;
2355 
2356 	if (!capable(CAP_SYS_ADMIN))
2357 		return -EPERM;
2358 
2359 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2360 	if (IS_ERR(vol))
2361 		return PTR_ERR(vol);
2362 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2363 
2364 	switch (cmd) {
2365 	case BTRFS_IOC_SCAN_DEV:
2366 		mutex_lock(&uuid_mutex);
2367 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2368 					       &btrfs_root_fs_type);
2369 		ret = PTR_ERR_OR_ZERO(device);
2370 		mutex_unlock(&uuid_mutex);
2371 		break;
2372 	case BTRFS_IOC_FORGET_DEV:
2373 		ret = btrfs_forget_devices(vol->name);
2374 		break;
2375 	case BTRFS_IOC_DEVICES_READY:
2376 		mutex_lock(&uuid_mutex);
2377 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2378 					       &btrfs_root_fs_type);
2379 		if (IS_ERR(device)) {
2380 			mutex_unlock(&uuid_mutex);
2381 			ret = PTR_ERR(device);
2382 			break;
2383 		}
2384 		ret = !(device->fs_devices->num_devices ==
2385 			device->fs_devices->total_devices);
2386 		mutex_unlock(&uuid_mutex);
2387 		break;
2388 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2389 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2390 		break;
2391 	}
2392 
2393 	kfree(vol);
2394 	return ret;
2395 }
2396 
2397 static int btrfs_freeze(struct super_block *sb)
2398 {
2399 	struct btrfs_trans_handle *trans;
2400 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2401 	struct btrfs_root *root = fs_info->tree_root;
2402 
2403 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2404 	/*
2405 	 * We don't need a barrier here, we'll wait for any transaction that
2406 	 * could be in progress on other threads (and do delayed iputs that
2407 	 * we want to avoid on a frozen filesystem), or do the commit
2408 	 * ourselves.
2409 	 */
2410 	trans = btrfs_attach_transaction_barrier(root);
2411 	if (IS_ERR(trans)) {
2412 		/* no transaction, don't bother */
2413 		if (PTR_ERR(trans) == -ENOENT)
2414 			return 0;
2415 		return PTR_ERR(trans);
2416 	}
2417 	return btrfs_commit_transaction(trans);
2418 }
2419 
2420 static int btrfs_unfreeze(struct super_block *sb)
2421 {
2422 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2423 
2424 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2425 	return 0;
2426 }
2427 
2428 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2429 {
2430 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2431 	struct btrfs_device *dev, *first_dev = NULL;
2432 
2433 	/*
2434 	 * Lightweight locking of the devices. We should not need
2435 	 * device_list_mutex here as we only read the device data and the list
2436 	 * is protected by RCU.  Even if a device is deleted during the list
2437 	 * traversals, we'll get valid data, the freeing callback will wait at
2438 	 * least until the rcu_read_unlock.
2439 	 */
2440 	rcu_read_lock();
2441 	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2442 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2443 			continue;
2444 		if (!dev->name)
2445 			continue;
2446 		if (!first_dev || dev->devid < first_dev->devid)
2447 			first_dev = dev;
2448 	}
2449 
2450 	if (first_dev)
2451 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2452 	else
2453 		WARN_ON(1);
2454 	rcu_read_unlock();
2455 	return 0;
2456 }
2457 
2458 static const struct super_operations btrfs_super_ops = {
2459 	.drop_inode	= btrfs_drop_inode,
2460 	.evict_inode	= btrfs_evict_inode,
2461 	.put_super	= btrfs_put_super,
2462 	.sync_fs	= btrfs_sync_fs,
2463 	.show_options	= btrfs_show_options,
2464 	.show_devname	= btrfs_show_devname,
2465 	.alloc_inode	= btrfs_alloc_inode,
2466 	.destroy_inode	= btrfs_destroy_inode,
2467 	.free_inode	= btrfs_free_inode,
2468 	.statfs		= btrfs_statfs,
2469 	.remount_fs	= btrfs_remount,
2470 	.freeze_fs	= btrfs_freeze,
2471 	.unfreeze_fs	= btrfs_unfreeze,
2472 };
2473 
2474 static const struct file_operations btrfs_ctl_fops = {
2475 	.open = btrfs_control_open,
2476 	.unlocked_ioctl	 = btrfs_control_ioctl,
2477 	.compat_ioctl = compat_ptr_ioctl,
2478 	.owner	 = THIS_MODULE,
2479 	.llseek = noop_llseek,
2480 };
2481 
2482 static struct miscdevice btrfs_misc = {
2483 	.minor		= BTRFS_MINOR,
2484 	.name		= "btrfs-control",
2485 	.fops		= &btrfs_ctl_fops
2486 };
2487 
2488 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2489 MODULE_ALIAS("devname:btrfs-control");
2490 
2491 static int __init btrfs_interface_init(void)
2492 {
2493 	return misc_register(&btrfs_misc);
2494 }
2495 
2496 static __cold void btrfs_interface_exit(void)
2497 {
2498 	misc_deregister(&btrfs_misc);
2499 }
2500 
2501 static void __init btrfs_print_mod_info(void)
2502 {
2503 	static const char options[] = ""
2504 #ifdef CONFIG_BTRFS_DEBUG
2505 			", debug=on"
2506 #endif
2507 #ifdef CONFIG_BTRFS_ASSERT
2508 			", assert=on"
2509 #endif
2510 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2511 			", integrity-checker=on"
2512 #endif
2513 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2514 			", ref-verify=on"
2515 #endif
2516 #ifdef CONFIG_BLK_DEV_ZONED
2517 			", zoned=yes"
2518 #else
2519 			", zoned=no"
2520 #endif
2521 			;
2522 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2523 }
2524 
2525 static int __init init_btrfs_fs(void)
2526 {
2527 	int err;
2528 
2529 	btrfs_props_init();
2530 
2531 	err = btrfs_init_sysfs();
2532 	if (err)
2533 		return err;
2534 
2535 	btrfs_init_compress();
2536 
2537 	err = btrfs_init_cachep();
2538 	if (err)
2539 		goto free_compress;
2540 
2541 	err = extent_io_init();
2542 	if (err)
2543 		goto free_cachep;
2544 
2545 	err = extent_state_cache_init();
2546 	if (err)
2547 		goto free_extent_io;
2548 
2549 	err = extent_map_init();
2550 	if (err)
2551 		goto free_extent_state_cache;
2552 
2553 	err = ordered_data_init();
2554 	if (err)
2555 		goto free_extent_map;
2556 
2557 	err = btrfs_delayed_inode_init();
2558 	if (err)
2559 		goto free_ordered_data;
2560 
2561 	err = btrfs_auto_defrag_init();
2562 	if (err)
2563 		goto free_delayed_inode;
2564 
2565 	err = btrfs_delayed_ref_init();
2566 	if (err)
2567 		goto free_auto_defrag;
2568 
2569 	err = btrfs_prelim_ref_init();
2570 	if (err)
2571 		goto free_delayed_ref;
2572 
2573 	err = btrfs_end_io_wq_init();
2574 	if (err)
2575 		goto free_prelim_ref;
2576 
2577 	err = btrfs_interface_init();
2578 	if (err)
2579 		goto free_end_io_wq;
2580 
2581 	btrfs_print_mod_info();
2582 
2583 	err = btrfs_run_sanity_tests();
2584 	if (err)
2585 		goto unregister_ioctl;
2586 
2587 	err = register_filesystem(&btrfs_fs_type);
2588 	if (err)
2589 		goto unregister_ioctl;
2590 
2591 	return 0;
2592 
2593 unregister_ioctl:
2594 	btrfs_interface_exit();
2595 free_end_io_wq:
2596 	btrfs_end_io_wq_exit();
2597 free_prelim_ref:
2598 	btrfs_prelim_ref_exit();
2599 free_delayed_ref:
2600 	btrfs_delayed_ref_exit();
2601 free_auto_defrag:
2602 	btrfs_auto_defrag_exit();
2603 free_delayed_inode:
2604 	btrfs_delayed_inode_exit();
2605 free_ordered_data:
2606 	ordered_data_exit();
2607 free_extent_map:
2608 	extent_map_exit();
2609 free_extent_state_cache:
2610 	extent_state_cache_exit();
2611 free_extent_io:
2612 	extent_io_exit();
2613 free_cachep:
2614 	btrfs_destroy_cachep();
2615 free_compress:
2616 	btrfs_exit_compress();
2617 	btrfs_exit_sysfs();
2618 
2619 	return err;
2620 }
2621 
2622 static void __exit exit_btrfs_fs(void)
2623 {
2624 	btrfs_destroy_cachep();
2625 	btrfs_delayed_ref_exit();
2626 	btrfs_auto_defrag_exit();
2627 	btrfs_delayed_inode_exit();
2628 	btrfs_prelim_ref_exit();
2629 	ordered_data_exit();
2630 	extent_map_exit();
2631 	extent_state_cache_exit();
2632 	extent_io_exit();
2633 	btrfs_interface_exit();
2634 	btrfs_end_io_wq_exit();
2635 	unregister_filesystem(&btrfs_fs_type);
2636 	btrfs_exit_sysfs();
2637 	btrfs_cleanup_fs_uuids();
2638 	btrfs_exit_compress();
2639 }
2640 
2641 late_initcall(init_btrfs_fs);
2642 module_exit(exit_btrfs_fs)
2643 
2644 MODULE_LICENSE("GPL");
2645 MODULE_SOFTDEP("pre: crc32c");
2646 MODULE_SOFTDEP("pre: xxhash64");
2647 MODULE_SOFTDEP("pre: sha256");
2648 MODULE_SOFTDEP("pre: blake2b-256");
2649