1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "tests/btrfs-tests.h" 48 #include "block-group.h" 49 #include "discard.h" 50 51 #include "qgroup.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 const char * __attribute_const__ btrfs_decode_error(int errno) 71 { 72 char *errstr = "unknown"; 73 74 switch (errno) { 75 case -EIO: 76 errstr = "IO failure"; 77 break; 78 case -ENOMEM: 79 errstr = "Out of memory"; 80 break; 81 case -EROFS: 82 errstr = "Readonly filesystem"; 83 break; 84 case -EEXIST: 85 errstr = "Object already exists"; 86 break; 87 case -ENOSPC: 88 errstr = "No space left"; 89 break; 90 case -ENOENT: 91 errstr = "No such entry"; 92 break; 93 } 94 95 return errstr; 96 } 97 98 /* 99 * __btrfs_handle_fs_error decodes expected errors from the caller and 100 * invokes the appropriate error response. 101 */ 102 __cold 103 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 104 unsigned int line, int errno, const char *fmt, ...) 105 { 106 struct super_block *sb = fs_info->sb; 107 #ifdef CONFIG_PRINTK 108 const char *errstr; 109 #endif 110 111 /* 112 * Special case: if the error is EROFS, and we're already 113 * under SB_RDONLY, then it is safe here. 114 */ 115 if (errno == -EROFS && sb_rdonly(sb)) 116 return; 117 118 #ifdef CONFIG_PRINTK 119 errstr = btrfs_decode_error(errno); 120 if (fmt) { 121 struct va_format vaf; 122 va_list args; 123 124 va_start(args, fmt); 125 vaf.fmt = fmt; 126 vaf.va = &args; 127 128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 129 sb->s_id, function, line, errno, errstr, &vaf); 130 va_end(args); 131 } else { 132 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 133 sb->s_id, function, line, errno, errstr); 134 } 135 #endif 136 137 /* 138 * Today we only save the error info to memory. Long term we'll 139 * also send it down to the disk 140 */ 141 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 142 143 /* Don't go through full error handling during mount */ 144 if (!(sb->s_flags & SB_BORN)) 145 return; 146 147 if (sb_rdonly(sb)) 148 return; 149 150 btrfs_discard_stop(fs_info); 151 152 /* btrfs handle error by forcing the filesystem readonly */ 153 sb->s_flags |= SB_RDONLY; 154 btrfs_info(fs_info, "forced readonly"); 155 /* 156 * Note that a running device replace operation is not canceled here 157 * although there is no way to update the progress. It would add the 158 * risk of a deadlock, therefore the canceling is omitted. The only 159 * penalty is that some I/O remains active until the procedure 160 * completes. The next time when the filesystem is mounted writable 161 * again, the device replace operation continues. 162 */ 163 } 164 165 #ifdef CONFIG_PRINTK 166 static const char * const logtypes[] = { 167 "emergency", 168 "alert", 169 "critical", 170 "error", 171 "warning", 172 "notice", 173 "info", 174 "debug", 175 }; 176 177 178 /* 179 * Use one ratelimit state per log level so that a flood of less important 180 * messages doesn't cause more important ones to be dropped. 181 */ 182 static struct ratelimit_state printk_limits[] = { 183 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 184 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 185 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 186 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 187 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 188 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 189 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 190 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 191 }; 192 193 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 194 { 195 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 196 struct va_format vaf; 197 va_list args; 198 int kern_level; 199 const char *type = logtypes[4]; 200 struct ratelimit_state *ratelimit = &printk_limits[4]; 201 202 va_start(args, fmt); 203 204 while ((kern_level = printk_get_level(fmt)) != 0) { 205 size_t size = printk_skip_level(fmt) - fmt; 206 207 if (kern_level >= '0' && kern_level <= '7') { 208 memcpy(lvl, fmt, size); 209 lvl[size] = '\0'; 210 type = logtypes[kern_level - '0']; 211 ratelimit = &printk_limits[kern_level - '0']; 212 } 213 fmt += size; 214 } 215 216 vaf.fmt = fmt; 217 vaf.va = &args; 218 219 if (__ratelimit(ratelimit)) 220 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 221 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 222 223 va_end(args); 224 } 225 #endif 226 227 /* 228 * We only mark the transaction aborted and then set the file system read-only. 229 * This will prevent new transactions from starting or trying to join this 230 * one. 231 * 232 * This means that error recovery at the call site is limited to freeing 233 * any local memory allocations and passing the error code up without 234 * further cleanup. The transaction should complete as it normally would 235 * in the call path but will return -EIO. 236 * 237 * We'll complete the cleanup in btrfs_end_transaction and 238 * btrfs_commit_transaction. 239 */ 240 __cold 241 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 242 const char *function, 243 unsigned int line, int errno) 244 { 245 struct btrfs_fs_info *fs_info = trans->fs_info; 246 247 WRITE_ONCE(trans->aborted, errno); 248 /* Nothing used. The other threads that have joined this 249 * transaction may be able to continue. */ 250 if (!trans->dirty && list_empty(&trans->new_bgs)) { 251 const char *errstr; 252 253 errstr = btrfs_decode_error(errno); 254 btrfs_warn(fs_info, 255 "%s:%d: Aborting unused transaction(%s).", 256 function, line, errstr); 257 return; 258 } 259 WRITE_ONCE(trans->transaction->aborted, errno); 260 /* Wake up anybody who may be waiting on this transaction */ 261 wake_up(&fs_info->transaction_wait); 262 wake_up(&fs_info->transaction_blocked_wait); 263 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 264 } 265 /* 266 * __btrfs_panic decodes unexpected, fatal errors from the caller, 267 * issues an alert, and either panics or BUGs, depending on mount options. 268 */ 269 __cold 270 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 271 unsigned int line, int errno, const char *fmt, ...) 272 { 273 char *s_id = "<unknown>"; 274 const char *errstr; 275 struct va_format vaf = { .fmt = fmt }; 276 va_list args; 277 278 if (fs_info) 279 s_id = fs_info->sb->s_id; 280 281 va_start(args, fmt); 282 vaf.va = &args; 283 284 errstr = btrfs_decode_error(errno); 285 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 286 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 287 s_id, function, line, &vaf, errno, errstr); 288 289 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 290 function, line, &vaf, errno, errstr); 291 va_end(args); 292 /* Caller calls BUG() */ 293 } 294 295 static void btrfs_put_super(struct super_block *sb) 296 { 297 close_ctree(btrfs_sb(sb)); 298 } 299 300 enum { 301 Opt_acl, Opt_noacl, 302 Opt_clear_cache, 303 Opt_commit_interval, 304 Opt_compress, 305 Opt_compress_force, 306 Opt_compress_force_type, 307 Opt_compress_type, 308 Opt_degraded, 309 Opt_device, 310 Opt_fatal_errors, 311 Opt_flushoncommit, Opt_noflushoncommit, 312 Opt_inode_cache, Opt_noinode_cache, 313 Opt_max_inline, 314 Opt_barrier, Opt_nobarrier, 315 Opt_datacow, Opt_nodatacow, 316 Opt_datasum, Opt_nodatasum, 317 Opt_defrag, Opt_nodefrag, 318 Opt_discard, Opt_nodiscard, 319 Opt_discard_mode, 320 Opt_nologreplay, 321 Opt_norecovery, 322 Opt_ratio, 323 Opt_rescan_uuid_tree, 324 Opt_skip_balance, 325 Opt_space_cache, Opt_no_space_cache, 326 Opt_space_cache_version, 327 Opt_ssd, Opt_nossd, 328 Opt_ssd_spread, Opt_nossd_spread, 329 Opt_subvol, 330 Opt_subvol_empty, 331 Opt_subvolid, 332 Opt_thread_pool, 333 Opt_treelog, Opt_notreelog, 334 Opt_usebackuproot, 335 Opt_user_subvol_rm_allowed, 336 337 /* Deprecated options */ 338 Opt_alloc_start, 339 Opt_recovery, 340 Opt_subvolrootid, 341 342 /* Debugging options */ 343 Opt_check_integrity, 344 Opt_check_integrity_including_extent_data, 345 Opt_check_integrity_print_mask, 346 Opt_enospc_debug, Opt_noenospc_debug, 347 #ifdef CONFIG_BTRFS_DEBUG 348 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 349 #endif 350 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 351 Opt_ref_verify, 352 #endif 353 Opt_err, 354 }; 355 356 static const match_table_t tokens = { 357 {Opt_acl, "acl"}, 358 {Opt_noacl, "noacl"}, 359 {Opt_clear_cache, "clear_cache"}, 360 {Opt_commit_interval, "commit=%u"}, 361 {Opt_compress, "compress"}, 362 {Opt_compress_type, "compress=%s"}, 363 {Opt_compress_force, "compress-force"}, 364 {Opt_compress_force_type, "compress-force=%s"}, 365 {Opt_degraded, "degraded"}, 366 {Opt_device, "device=%s"}, 367 {Opt_fatal_errors, "fatal_errors=%s"}, 368 {Opt_flushoncommit, "flushoncommit"}, 369 {Opt_noflushoncommit, "noflushoncommit"}, 370 {Opt_inode_cache, "inode_cache"}, 371 {Opt_noinode_cache, "noinode_cache"}, 372 {Opt_max_inline, "max_inline=%s"}, 373 {Opt_barrier, "barrier"}, 374 {Opt_nobarrier, "nobarrier"}, 375 {Opt_datacow, "datacow"}, 376 {Opt_nodatacow, "nodatacow"}, 377 {Opt_datasum, "datasum"}, 378 {Opt_nodatasum, "nodatasum"}, 379 {Opt_defrag, "autodefrag"}, 380 {Opt_nodefrag, "noautodefrag"}, 381 {Opt_discard, "discard"}, 382 {Opt_discard_mode, "discard=%s"}, 383 {Opt_nodiscard, "nodiscard"}, 384 {Opt_nologreplay, "nologreplay"}, 385 {Opt_norecovery, "norecovery"}, 386 {Opt_ratio, "metadata_ratio=%u"}, 387 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 388 {Opt_skip_balance, "skip_balance"}, 389 {Opt_space_cache, "space_cache"}, 390 {Opt_no_space_cache, "nospace_cache"}, 391 {Opt_space_cache_version, "space_cache=%s"}, 392 {Opt_ssd, "ssd"}, 393 {Opt_nossd, "nossd"}, 394 {Opt_ssd_spread, "ssd_spread"}, 395 {Opt_nossd_spread, "nossd_spread"}, 396 {Opt_subvol, "subvol=%s"}, 397 {Opt_subvol_empty, "subvol="}, 398 {Opt_subvolid, "subvolid=%s"}, 399 {Opt_thread_pool, "thread_pool=%u"}, 400 {Opt_treelog, "treelog"}, 401 {Opt_notreelog, "notreelog"}, 402 {Opt_usebackuproot, "usebackuproot"}, 403 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 404 405 /* Deprecated options */ 406 {Opt_alloc_start, "alloc_start=%s"}, 407 {Opt_recovery, "recovery"}, 408 {Opt_subvolrootid, "subvolrootid=%d"}, 409 410 /* Debugging options */ 411 {Opt_check_integrity, "check_int"}, 412 {Opt_check_integrity_including_extent_data, "check_int_data"}, 413 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 414 {Opt_enospc_debug, "enospc_debug"}, 415 {Opt_noenospc_debug, "noenospc_debug"}, 416 #ifdef CONFIG_BTRFS_DEBUG 417 {Opt_fragment_data, "fragment=data"}, 418 {Opt_fragment_metadata, "fragment=metadata"}, 419 {Opt_fragment_all, "fragment=all"}, 420 #endif 421 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 422 {Opt_ref_verify, "ref_verify"}, 423 #endif 424 {Opt_err, NULL}, 425 }; 426 427 /* 428 * Regular mount options parser. Everything that is needed only when 429 * reading in a new superblock is parsed here. 430 * XXX JDM: This needs to be cleaned up for remount. 431 */ 432 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 433 unsigned long new_flags) 434 { 435 substring_t args[MAX_OPT_ARGS]; 436 char *p, *num; 437 u64 cache_gen; 438 int intarg; 439 int ret = 0; 440 char *compress_type; 441 bool compress_force = false; 442 enum btrfs_compression_type saved_compress_type; 443 bool saved_compress_force; 444 int no_compress = 0; 445 446 cache_gen = btrfs_super_cache_generation(info->super_copy); 447 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 448 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 449 else if (cache_gen) 450 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 451 452 /* 453 * Even the options are empty, we still need to do extra check 454 * against new flags 455 */ 456 if (!options) 457 goto check; 458 459 while ((p = strsep(&options, ",")) != NULL) { 460 int token; 461 if (!*p) 462 continue; 463 464 token = match_token(p, tokens, args); 465 switch (token) { 466 case Opt_degraded: 467 btrfs_info(info, "allowing degraded mounts"); 468 btrfs_set_opt(info->mount_opt, DEGRADED); 469 break; 470 case Opt_subvol: 471 case Opt_subvol_empty: 472 case Opt_subvolid: 473 case Opt_subvolrootid: 474 case Opt_device: 475 /* 476 * These are parsed by btrfs_parse_subvol_options or 477 * btrfs_parse_device_options and can be ignored here. 478 */ 479 break; 480 case Opt_nodatasum: 481 btrfs_set_and_info(info, NODATASUM, 482 "setting nodatasum"); 483 break; 484 case Opt_datasum: 485 if (btrfs_test_opt(info, NODATASUM)) { 486 if (btrfs_test_opt(info, NODATACOW)) 487 btrfs_info(info, 488 "setting datasum, datacow enabled"); 489 else 490 btrfs_info(info, "setting datasum"); 491 } 492 btrfs_clear_opt(info->mount_opt, NODATACOW); 493 btrfs_clear_opt(info->mount_opt, NODATASUM); 494 break; 495 case Opt_nodatacow: 496 if (!btrfs_test_opt(info, NODATACOW)) { 497 if (!btrfs_test_opt(info, COMPRESS) || 498 !btrfs_test_opt(info, FORCE_COMPRESS)) { 499 btrfs_info(info, 500 "setting nodatacow, compression disabled"); 501 } else { 502 btrfs_info(info, "setting nodatacow"); 503 } 504 } 505 btrfs_clear_opt(info->mount_opt, COMPRESS); 506 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 507 btrfs_set_opt(info->mount_opt, NODATACOW); 508 btrfs_set_opt(info->mount_opt, NODATASUM); 509 break; 510 case Opt_datacow: 511 btrfs_clear_and_info(info, NODATACOW, 512 "setting datacow"); 513 break; 514 case Opt_compress_force: 515 case Opt_compress_force_type: 516 compress_force = true; 517 /* Fallthrough */ 518 case Opt_compress: 519 case Opt_compress_type: 520 saved_compress_type = btrfs_test_opt(info, 521 COMPRESS) ? 522 info->compress_type : BTRFS_COMPRESS_NONE; 523 saved_compress_force = 524 btrfs_test_opt(info, FORCE_COMPRESS); 525 if (token == Opt_compress || 526 token == Opt_compress_force || 527 strncmp(args[0].from, "zlib", 4) == 0) { 528 compress_type = "zlib"; 529 530 info->compress_type = BTRFS_COMPRESS_ZLIB; 531 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 532 /* 533 * args[0] contains uninitialized data since 534 * for these tokens we don't expect any 535 * parameter. 536 */ 537 if (token != Opt_compress && 538 token != Opt_compress_force) 539 info->compress_level = 540 btrfs_compress_str2level( 541 BTRFS_COMPRESS_ZLIB, 542 args[0].from + 4); 543 btrfs_set_opt(info->mount_opt, COMPRESS); 544 btrfs_clear_opt(info->mount_opt, NODATACOW); 545 btrfs_clear_opt(info->mount_opt, NODATASUM); 546 no_compress = 0; 547 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 548 compress_type = "lzo"; 549 info->compress_type = BTRFS_COMPRESS_LZO; 550 btrfs_set_opt(info->mount_opt, COMPRESS); 551 btrfs_clear_opt(info->mount_opt, NODATACOW); 552 btrfs_clear_opt(info->mount_opt, NODATASUM); 553 btrfs_set_fs_incompat(info, COMPRESS_LZO); 554 no_compress = 0; 555 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 556 compress_type = "zstd"; 557 info->compress_type = BTRFS_COMPRESS_ZSTD; 558 info->compress_level = 559 btrfs_compress_str2level( 560 BTRFS_COMPRESS_ZSTD, 561 args[0].from + 4); 562 btrfs_set_opt(info->mount_opt, COMPRESS); 563 btrfs_clear_opt(info->mount_opt, NODATACOW); 564 btrfs_clear_opt(info->mount_opt, NODATASUM); 565 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 566 no_compress = 0; 567 } else if (strncmp(args[0].from, "no", 2) == 0) { 568 compress_type = "no"; 569 btrfs_clear_opt(info->mount_opt, COMPRESS); 570 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 571 compress_force = false; 572 no_compress++; 573 } else { 574 ret = -EINVAL; 575 goto out; 576 } 577 578 if (compress_force) { 579 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 580 } else { 581 /* 582 * If we remount from compress-force=xxx to 583 * compress=xxx, we need clear FORCE_COMPRESS 584 * flag, otherwise, there is no way for users 585 * to disable forcible compression separately. 586 */ 587 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 588 } 589 if ((btrfs_test_opt(info, COMPRESS) && 590 (info->compress_type != saved_compress_type || 591 compress_force != saved_compress_force)) || 592 (!btrfs_test_opt(info, COMPRESS) && 593 no_compress == 1)) { 594 btrfs_info(info, "%s %s compression, level %d", 595 (compress_force) ? "force" : "use", 596 compress_type, info->compress_level); 597 } 598 compress_force = false; 599 break; 600 case Opt_ssd: 601 btrfs_set_and_info(info, SSD, 602 "enabling ssd optimizations"); 603 btrfs_clear_opt(info->mount_opt, NOSSD); 604 break; 605 case Opt_ssd_spread: 606 btrfs_set_and_info(info, SSD, 607 "enabling ssd optimizations"); 608 btrfs_set_and_info(info, SSD_SPREAD, 609 "using spread ssd allocation scheme"); 610 btrfs_clear_opt(info->mount_opt, NOSSD); 611 break; 612 case Opt_nossd: 613 btrfs_set_opt(info->mount_opt, NOSSD); 614 btrfs_clear_and_info(info, SSD, 615 "not using ssd optimizations"); 616 /* Fallthrough */ 617 case Opt_nossd_spread: 618 btrfs_clear_and_info(info, SSD_SPREAD, 619 "not using spread ssd allocation scheme"); 620 break; 621 case Opt_barrier: 622 btrfs_clear_and_info(info, NOBARRIER, 623 "turning on barriers"); 624 break; 625 case Opt_nobarrier: 626 btrfs_set_and_info(info, NOBARRIER, 627 "turning off barriers"); 628 break; 629 case Opt_thread_pool: 630 ret = match_int(&args[0], &intarg); 631 if (ret) { 632 goto out; 633 } else if (intarg == 0) { 634 ret = -EINVAL; 635 goto out; 636 } 637 info->thread_pool_size = intarg; 638 break; 639 case Opt_max_inline: 640 num = match_strdup(&args[0]); 641 if (num) { 642 info->max_inline = memparse(num, NULL); 643 kfree(num); 644 645 if (info->max_inline) { 646 info->max_inline = min_t(u64, 647 info->max_inline, 648 info->sectorsize); 649 } 650 btrfs_info(info, "max_inline at %llu", 651 info->max_inline); 652 } else { 653 ret = -ENOMEM; 654 goto out; 655 } 656 break; 657 case Opt_alloc_start: 658 btrfs_info(info, 659 "option alloc_start is obsolete, ignored"); 660 break; 661 case Opt_acl: 662 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 663 info->sb->s_flags |= SB_POSIXACL; 664 break; 665 #else 666 btrfs_err(info, "support for ACL not compiled in!"); 667 ret = -EINVAL; 668 goto out; 669 #endif 670 case Opt_noacl: 671 info->sb->s_flags &= ~SB_POSIXACL; 672 break; 673 case Opt_notreelog: 674 btrfs_set_and_info(info, NOTREELOG, 675 "disabling tree log"); 676 break; 677 case Opt_treelog: 678 btrfs_clear_and_info(info, NOTREELOG, 679 "enabling tree log"); 680 break; 681 case Opt_norecovery: 682 case Opt_nologreplay: 683 btrfs_set_and_info(info, NOLOGREPLAY, 684 "disabling log replay at mount time"); 685 break; 686 case Opt_flushoncommit: 687 btrfs_set_and_info(info, FLUSHONCOMMIT, 688 "turning on flush-on-commit"); 689 break; 690 case Opt_noflushoncommit: 691 btrfs_clear_and_info(info, FLUSHONCOMMIT, 692 "turning off flush-on-commit"); 693 break; 694 case Opt_ratio: 695 ret = match_int(&args[0], &intarg); 696 if (ret) 697 goto out; 698 info->metadata_ratio = intarg; 699 btrfs_info(info, "metadata ratio %u", 700 info->metadata_ratio); 701 break; 702 case Opt_discard: 703 case Opt_discard_mode: 704 if (token == Opt_discard || 705 strcmp(args[0].from, "sync") == 0) { 706 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 707 btrfs_set_and_info(info, DISCARD_SYNC, 708 "turning on sync discard"); 709 } else if (strcmp(args[0].from, "async") == 0) { 710 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 711 btrfs_set_and_info(info, DISCARD_ASYNC, 712 "turning on async discard"); 713 } else { 714 ret = -EINVAL; 715 goto out; 716 } 717 break; 718 case Opt_nodiscard: 719 btrfs_clear_and_info(info, DISCARD_SYNC, 720 "turning off discard"); 721 btrfs_clear_and_info(info, DISCARD_ASYNC, 722 "turning off async discard"); 723 break; 724 case Opt_space_cache: 725 case Opt_space_cache_version: 726 if (token == Opt_space_cache || 727 strcmp(args[0].from, "v1") == 0) { 728 btrfs_clear_opt(info->mount_opt, 729 FREE_SPACE_TREE); 730 btrfs_set_and_info(info, SPACE_CACHE, 731 "enabling disk space caching"); 732 } else if (strcmp(args[0].from, "v2") == 0) { 733 btrfs_clear_opt(info->mount_opt, 734 SPACE_CACHE); 735 btrfs_set_and_info(info, FREE_SPACE_TREE, 736 "enabling free space tree"); 737 } else { 738 ret = -EINVAL; 739 goto out; 740 } 741 break; 742 case Opt_rescan_uuid_tree: 743 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 744 break; 745 case Opt_no_space_cache: 746 if (btrfs_test_opt(info, SPACE_CACHE)) { 747 btrfs_clear_and_info(info, SPACE_CACHE, 748 "disabling disk space caching"); 749 } 750 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 751 btrfs_clear_and_info(info, FREE_SPACE_TREE, 752 "disabling free space tree"); 753 } 754 break; 755 case Opt_inode_cache: 756 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 757 "enabling inode map caching"); 758 break; 759 case Opt_noinode_cache: 760 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 761 "disabling inode map caching"); 762 break; 763 case Opt_clear_cache: 764 btrfs_set_and_info(info, CLEAR_CACHE, 765 "force clearing of disk cache"); 766 break; 767 case Opt_user_subvol_rm_allowed: 768 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 769 break; 770 case Opt_enospc_debug: 771 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 772 break; 773 case Opt_noenospc_debug: 774 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 775 break; 776 case Opt_defrag: 777 btrfs_set_and_info(info, AUTO_DEFRAG, 778 "enabling auto defrag"); 779 break; 780 case Opt_nodefrag: 781 btrfs_clear_and_info(info, AUTO_DEFRAG, 782 "disabling auto defrag"); 783 break; 784 case Opt_recovery: 785 btrfs_warn(info, 786 "'recovery' is deprecated, use 'usebackuproot' instead"); 787 /* fall through */ 788 case Opt_usebackuproot: 789 btrfs_info(info, 790 "trying to use backup root at mount time"); 791 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 792 break; 793 case Opt_skip_balance: 794 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 795 break; 796 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 797 case Opt_check_integrity_including_extent_data: 798 btrfs_info(info, 799 "enabling check integrity including extent data"); 800 btrfs_set_opt(info->mount_opt, 801 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 802 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 803 break; 804 case Opt_check_integrity: 805 btrfs_info(info, "enabling check integrity"); 806 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 807 break; 808 case Opt_check_integrity_print_mask: 809 ret = match_int(&args[0], &intarg); 810 if (ret) 811 goto out; 812 info->check_integrity_print_mask = intarg; 813 btrfs_info(info, "check_integrity_print_mask 0x%x", 814 info->check_integrity_print_mask); 815 break; 816 #else 817 case Opt_check_integrity_including_extent_data: 818 case Opt_check_integrity: 819 case Opt_check_integrity_print_mask: 820 btrfs_err(info, 821 "support for check_integrity* not compiled in!"); 822 ret = -EINVAL; 823 goto out; 824 #endif 825 case Opt_fatal_errors: 826 if (strcmp(args[0].from, "panic") == 0) 827 btrfs_set_opt(info->mount_opt, 828 PANIC_ON_FATAL_ERROR); 829 else if (strcmp(args[0].from, "bug") == 0) 830 btrfs_clear_opt(info->mount_opt, 831 PANIC_ON_FATAL_ERROR); 832 else { 833 ret = -EINVAL; 834 goto out; 835 } 836 break; 837 case Opt_commit_interval: 838 intarg = 0; 839 ret = match_int(&args[0], &intarg); 840 if (ret) 841 goto out; 842 if (intarg == 0) { 843 btrfs_info(info, 844 "using default commit interval %us", 845 BTRFS_DEFAULT_COMMIT_INTERVAL); 846 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 847 } else if (intarg > 300) { 848 btrfs_warn(info, "excessive commit interval %d", 849 intarg); 850 } 851 info->commit_interval = intarg; 852 break; 853 #ifdef CONFIG_BTRFS_DEBUG 854 case Opt_fragment_all: 855 btrfs_info(info, "fragmenting all space"); 856 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 857 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 858 break; 859 case Opt_fragment_metadata: 860 btrfs_info(info, "fragmenting metadata"); 861 btrfs_set_opt(info->mount_opt, 862 FRAGMENT_METADATA); 863 break; 864 case Opt_fragment_data: 865 btrfs_info(info, "fragmenting data"); 866 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 867 break; 868 #endif 869 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 870 case Opt_ref_verify: 871 btrfs_info(info, "doing ref verification"); 872 btrfs_set_opt(info->mount_opt, REF_VERIFY); 873 break; 874 #endif 875 case Opt_err: 876 btrfs_err(info, "unrecognized mount option '%s'", p); 877 ret = -EINVAL; 878 goto out; 879 default: 880 break; 881 } 882 } 883 check: 884 /* 885 * Extra check for current option against current flag 886 */ 887 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 888 btrfs_err(info, 889 "nologreplay must be used with ro mount option"); 890 ret = -EINVAL; 891 } 892 out: 893 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 894 !btrfs_test_opt(info, FREE_SPACE_TREE) && 895 !btrfs_test_opt(info, CLEAR_CACHE)) { 896 btrfs_err(info, "cannot disable free space tree"); 897 ret = -EINVAL; 898 899 } 900 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 901 btrfs_info(info, "disk space caching is enabled"); 902 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 903 btrfs_info(info, "using free space tree"); 904 return ret; 905 } 906 907 /* 908 * Parse mount options that are required early in the mount process. 909 * 910 * All other options will be parsed on much later in the mount process and 911 * only when we need to allocate a new super block. 912 */ 913 static int btrfs_parse_device_options(const char *options, fmode_t flags, 914 void *holder) 915 { 916 substring_t args[MAX_OPT_ARGS]; 917 char *device_name, *opts, *orig, *p; 918 struct btrfs_device *device = NULL; 919 int error = 0; 920 921 lockdep_assert_held(&uuid_mutex); 922 923 if (!options) 924 return 0; 925 926 /* 927 * strsep changes the string, duplicate it because btrfs_parse_options 928 * gets called later 929 */ 930 opts = kstrdup(options, GFP_KERNEL); 931 if (!opts) 932 return -ENOMEM; 933 orig = opts; 934 935 while ((p = strsep(&opts, ",")) != NULL) { 936 int token; 937 938 if (!*p) 939 continue; 940 941 token = match_token(p, tokens, args); 942 if (token == Opt_device) { 943 device_name = match_strdup(&args[0]); 944 if (!device_name) { 945 error = -ENOMEM; 946 goto out; 947 } 948 device = btrfs_scan_one_device(device_name, flags, 949 holder); 950 kfree(device_name); 951 if (IS_ERR(device)) { 952 error = PTR_ERR(device); 953 goto out; 954 } 955 } 956 } 957 958 out: 959 kfree(orig); 960 return error; 961 } 962 963 /* 964 * Parse mount options that are related to subvolume id 965 * 966 * The value is later passed to mount_subvol() 967 */ 968 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 969 u64 *subvol_objectid) 970 { 971 substring_t args[MAX_OPT_ARGS]; 972 char *opts, *orig, *p; 973 int error = 0; 974 u64 subvolid; 975 976 if (!options) 977 return 0; 978 979 /* 980 * strsep changes the string, duplicate it because 981 * btrfs_parse_device_options gets called later 982 */ 983 opts = kstrdup(options, GFP_KERNEL); 984 if (!opts) 985 return -ENOMEM; 986 orig = opts; 987 988 while ((p = strsep(&opts, ",")) != NULL) { 989 int token; 990 if (!*p) 991 continue; 992 993 token = match_token(p, tokens, args); 994 switch (token) { 995 case Opt_subvol: 996 kfree(*subvol_name); 997 *subvol_name = match_strdup(&args[0]); 998 if (!*subvol_name) { 999 error = -ENOMEM; 1000 goto out; 1001 } 1002 break; 1003 case Opt_subvolid: 1004 error = match_u64(&args[0], &subvolid); 1005 if (error) 1006 goto out; 1007 1008 /* we want the original fs_tree */ 1009 if (subvolid == 0) 1010 subvolid = BTRFS_FS_TREE_OBJECTID; 1011 1012 *subvol_objectid = subvolid; 1013 break; 1014 case Opt_subvolrootid: 1015 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 1016 break; 1017 default: 1018 break; 1019 } 1020 } 1021 1022 out: 1023 kfree(orig); 1024 return error; 1025 } 1026 1027 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1028 u64 subvol_objectid) 1029 { 1030 struct btrfs_root *root = fs_info->tree_root; 1031 struct btrfs_root *fs_root = NULL; 1032 struct btrfs_root_ref *root_ref; 1033 struct btrfs_inode_ref *inode_ref; 1034 struct btrfs_key key; 1035 struct btrfs_path *path = NULL; 1036 char *name = NULL, *ptr; 1037 u64 dirid; 1038 int len; 1039 int ret; 1040 1041 path = btrfs_alloc_path(); 1042 if (!path) { 1043 ret = -ENOMEM; 1044 goto err; 1045 } 1046 path->leave_spinning = 1; 1047 1048 name = kmalloc(PATH_MAX, GFP_KERNEL); 1049 if (!name) { 1050 ret = -ENOMEM; 1051 goto err; 1052 } 1053 ptr = name + PATH_MAX - 1; 1054 ptr[0] = '\0'; 1055 1056 /* 1057 * Walk up the subvolume trees in the tree of tree roots by root 1058 * backrefs until we hit the top-level subvolume. 1059 */ 1060 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1061 key.objectid = subvol_objectid; 1062 key.type = BTRFS_ROOT_BACKREF_KEY; 1063 key.offset = (u64)-1; 1064 1065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1066 if (ret < 0) { 1067 goto err; 1068 } else if (ret > 0) { 1069 ret = btrfs_previous_item(root, path, subvol_objectid, 1070 BTRFS_ROOT_BACKREF_KEY); 1071 if (ret < 0) { 1072 goto err; 1073 } else if (ret > 0) { 1074 ret = -ENOENT; 1075 goto err; 1076 } 1077 } 1078 1079 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1080 subvol_objectid = key.offset; 1081 1082 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1083 struct btrfs_root_ref); 1084 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1085 ptr -= len + 1; 1086 if (ptr < name) { 1087 ret = -ENAMETOOLONG; 1088 goto err; 1089 } 1090 read_extent_buffer(path->nodes[0], ptr + 1, 1091 (unsigned long)(root_ref + 1), len); 1092 ptr[0] = '/'; 1093 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1094 btrfs_release_path(path); 1095 1096 key.objectid = subvol_objectid; 1097 key.type = BTRFS_ROOT_ITEM_KEY; 1098 key.offset = (u64)-1; 1099 fs_root = btrfs_get_fs_root(fs_info, &key, true); 1100 if (IS_ERR(fs_root)) { 1101 ret = PTR_ERR(fs_root); 1102 fs_root = NULL; 1103 goto err; 1104 } 1105 1106 /* 1107 * Walk up the filesystem tree by inode refs until we hit the 1108 * root directory. 1109 */ 1110 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1111 key.objectid = dirid; 1112 key.type = BTRFS_INODE_REF_KEY; 1113 key.offset = (u64)-1; 1114 1115 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1116 if (ret < 0) { 1117 goto err; 1118 } else if (ret > 0) { 1119 ret = btrfs_previous_item(fs_root, path, dirid, 1120 BTRFS_INODE_REF_KEY); 1121 if (ret < 0) { 1122 goto err; 1123 } else if (ret > 0) { 1124 ret = -ENOENT; 1125 goto err; 1126 } 1127 } 1128 1129 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1130 dirid = key.offset; 1131 1132 inode_ref = btrfs_item_ptr(path->nodes[0], 1133 path->slots[0], 1134 struct btrfs_inode_ref); 1135 len = btrfs_inode_ref_name_len(path->nodes[0], 1136 inode_ref); 1137 ptr -= len + 1; 1138 if (ptr < name) { 1139 ret = -ENAMETOOLONG; 1140 goto err; 1141 } 1142 read_extent_buffer(path->nodes[0], ptr + 1, 1143 (unsigned long)(inode_ref + 1), len); 1144 ptr[0] = '/'; 1145 btrfs_release_path(path); 1146 } 1147 btrfs_put_root(fs_root); 1148 fs_root = NULL; 1149 } 1150 1151 btrfs_free_path(path); 1152 if (ptr == name + PATH_MAX - 1) { 1153 name[0] = '/'; 1154 name[1] = '\0'; 1155 } else { 1156 memmove(name, ptr, name + PATH_MAX - ptr); 1157 } 1158 return name; 1159 1160 err: 1161 btrfs_put_root(fs_root); 1162 btrfs_free_path(path); 1163 kfree(name); 1164 return ERR_PTR(ret); 1165 } 1166 1167 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1168 { 1169 struct btrfs_root *root = fs_info->tree_root; 1170 struct btrfs_dir_item *di; 1171 struct btrfs_path *path; 1172 struct btrfs_key location; 1173 u64 dir_id; 1174 1175 path = btrfs_alloc_path(); 1176 if (!path) 1177 return -ENOMEM; 1178 path->leave_spinning = 1; 1179 1180 /* 1181 * Find the "default" dir item which points to the root item that we 1182 * will mount by default if we haven't been given a specific subvolume 1183 * to mount. 1184 */ 1185 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1186 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1187 if (IS_ERR(di)) { 1188 btrfs_free_path(path); 1189 return PTR_ERR(di); 1190 } 1191 if (!di) { 1192 /* 1193 * Ok the default dir item isn't there. This is weird since 1194 * it's always been there, but don't freak out, just try and 1195 * mount the top-level subvolume. 1196 */ 1197 btrfs_free_path(path); 1198 *objectid = BTRFS_FS_TREE_OBJECTID; 1199 return 0; 1200 } 1201 1202 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1203 btrfs_free_path(path); 1204 *objectid = location.objectid; 1205 return 0; 1206 } 1207 1208 static int btrfs_fill_super(struct super_block *sb, 1209 struct btrfs_fs_devices *fs_devices, 1210 void *data) 1211 { 1212 struct inode *inode; 1213 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1214 struct btrfs_key key; 1215 int err; 1216 1217 sb->s_maxbytes = MAX_LFS_FILESIZE; 1218 sb->s_magic = BTRFS_SUPER_MAGIC; 1219 sb->s_op = &btrfs_super_ops; 1220 sb->s_d_op = &btrfs_dentry_operations; 1221 sb->s_export_op = &btrfs_export_ops; 1222 sb->s_xattr = btrfs_xattr_handlers; 1223 sb->s_time_gran = 1; 1224 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1225 sb->s_flags |= SB_POSIXACL; 1226 #endif 1227 sb->s_flags |= SB_I_VERSION; 1228 sb->s_iflags |= SB_I_CGROUPWB; 1229 1230 err = super_setup_bdi(sb); 1231 if (err) { 1232 btrfs_err(fs_info, "super_setup_bdi failed"); 1233 return err; 1234 } 1235 1236 err = open_ctree(sb, fs_devices, (char *)data); 1237 if (err) { 1238 btrfs_err(fs_info, "open_ctree failed"); 1239 return err; 1240 } 1241 1242 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1243 key.type = BTRFS_INODE_ITEM_KEY; 1244 key.offset = 0; 1245 inode = btrfs_iget(sb, &key, fs_info->fs_root); 1246 if (IS_ERR(inode)) { 1247 err = PTR_ERR(inode); 1248 goto fail_close; 1249 } 1250 1251 sb->s_root = d_make_root(inode); 1252 if (!sb->s_root) { 1253 err = -ENOMEM; 1254 goto fail_close; 1255 } 1256 1257 cleancache_init_fs(sb); 1258 sb->s_flags |= SB_ACTIVE; 1259 return 0; 1260 1261 fail_close: 1262 close_ctree(fs_info); 1263 return err; 1264 } 1265 1266 int btrfs_sync_fs(struct super_block *sb, int wait) 1267 { 1268 struct btrfs_trans_handle *trans; 1269 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1270 struct btrfs_root *root = fs_info->tree_root; 1271 1272 trace_btrfs_sync_fs(fs_info, wait); 1273 1274 if (!wait) { 1275 filemap_flush(fs_info->btree_inode->i_mapping); 1276 return 0; 1277 } 1278 1279 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1280 1281 trans = btrfs_attach_transaction_barrier(root); 1282 if (IS_ERR(trans)) { 1283 /* no transaction, don't bother */ 1284 if (PTR_ERR(trans) == -ENOENT) { 1285 /* 1286 * Exit unless we have some pending changes 1287 * that need to go through commit 1288 */ 1289 if (fs_info->pending_changes == 0) 1290 return 0; 1291 /* 1292 * A non-blocking test if the fs is frozen. We must not 1293 * start a new transaction here otherwise a deadlock 1294 * happens. The pending operations are delayed to the 1295 * next commit after thawing. 1296 */ 1297 if (sb_start_write_trylock(sb)) 1298 sb_end_write(sb); 1299 else 1300 return 0; 1301 trans = btrfs_start_transaction(root, 0); 1302 } 1303 if (IS_ERR(trans)) 1304 return PTR_ERR(trans); 1305 } 1306 return btrfs_commit_transaction(trans); 1307 } 1308 1309 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1310 { 1311 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1312 const char *compress_type; 1313 1314 if (btrfs_test_opt(info, DEGRADED)) 1315 seq_puts(seq, ",degraded"); 1316 if (btrfs_test_opt(info, NODATASUM)) 1317 seq_puts(seq, ",nodatasum"); 1318 if (btrfs_test_opt(info, NODATACOW)) 1319 seq_puts(seq, ",nodatacow"); 1320 if (btrfs_test_opt(info, NOBARRIER)) 1321 seq_puts(seq, ",nobarrier"); 1322 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1323 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1324 if (info->thread_pool_size != min_t(unsigned long, 1325 num_online_cpus() + 2, 8)) 1326 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1327 if (btrfs_test_opt(info, COMPRESS)) { 1328 compress_type = btrfs_compress_type2str(info->compress_type); 1329 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1330 seq_printf(seq, ",compress-force=%s", compress_type); 1331 else 1332 seq_printf(seq, ",compress=%s", compress_type); 1333 if (info->compress_level) 1334 seq_printf(seq, ":%d", info->compress_level); 1335 } 1336 if (btrfs_test_opt(info, NOSSD)) 1337 seq_puts(seq, ",nossd"); 1338 if (btrfs_test_opt(info, SSD_SPREAD)) 1339 seq_puts(seq, ",ssd_spread"); 1340 else if (btrfs_test_opt(info, SSD)) 1341 seq_puts(seq, ",ssd"); 1342 if (btrfs_test_opt(info, NOTREELOG)) 1343 seq_puts(seq, ",notreelog"); 1344 if (btrfs_test_opt(info, NOLOGREPLAY)) 1345 seq_puts(seq, ",nologreplay"); 1346 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1347 seq_puts(seq, ",flushoncommit"); 1348 if (btrfs_test_opt(info, DISCARD_SYNC)) 1349 seq_puts(seq, ",discard"); 1350 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1351 seq_puts(seq, ",discard=async"); 1352 if (!(info->sb->s_flags & SB_POSIXACL)) 1353 seq_puts(seq, ",noacl"); 1354 if (btrfs_test_opt(info, SPACE_CACHE)) 1355 seq_puts(seq, ",space_cache"); 1356 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1357 seq_puts(seq, ",space_cache=v2"); 1358 else 1359 seq_puts(seq, ",nospace_cache"); 1360 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1361 seq_puts(seq, ",rescan_uuid_tree"); 1362 if (btrfs_test_opt(info, CLEAR_CACHE)) 1363 seq_puts(seq, ",clear_cache"); 1364 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1365 seq_puts(seq, ",user_subvol_rm_allowed"); 1366 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1367 seq_puts(seq, ",enospc_debug"); 1368 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1369 seq_puts(seq, ",autodefrag"); 1370 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1371 seq_puts(seq, ",inode_cache"); 1372 if (btrfs_test_opt(info, SKIP_BALANCE)) 1373 seq_puts(seq, ",skip_balance"); 1374 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1375 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1376 seq_puts(seq, ",check_int_data"); 1377 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1378 seq_puts(seq, ",check_int"); 1379 if (info->check_integrity_print_mask) 1380 seq_printf(seq, ",check_int_print_mask=%d", 1381 info->check_integrity_print_mask); 1382 #endif 1383 if (info->metadata_ratio) 1384 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1385 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1386 seq_puts(seq, ",fatal_errors=panic"); 1387 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1388 seq_printf(seq, ",commit=%u", info->commit_interval); 1389 #ifdef CONFIG_BTRFS_DEBUG 1390 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1391 seq_puts(seq, ",fragment=data"); 1392 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1393 seq_puts(seq, ",fragment=metadata"); 1394 #endif 1395 if (btrfs_test_opt(info, REF_VERIFY)) 1396 seq_puts(seq, ",ref_verify"); 1397 seq_printf(seq, ",subvolid=%llu", 1398 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1399 seq_puts(seq, ",subvol="); 1400 seq_dentry(seq, dentry, " \t\n\\"); 1401 return 0; 1402 } 1403 1404 static int btrfs_test_super(struct super_block *s, void *data) 1405 { 1406 struct btrfs_fs_info *p = data; 1407 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1408 1409 return fs_info->fs_devices == p->fs_devices; 1410 } 1411 1412 static int btrfs_set_super(struct super_block *s, void *data) 1413 { 1414 int err = set_anon_super(s, data); 1415 if (!err) 1416 s->s_fs_info = data; 1417 return err; 1418 } 1419 1420 /* 1421 * subvolumes are identified by ino 256 1422 */ 1423 static inline int is_subvolume_inode(struct inode *inode) 1424 { 1425 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1426 return 1; 1427 return 0; 1428 } 1429 1430 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1431 struct vfsmount *mnt) 1432 { 1433 struct dentry *root; 1434 int ret; 1435 1436 if (!subvol_name) { 1437 if (!subvol_objectid) { 1438 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1439 &subvol_objectid); 1440 if (ret) { 1441 root = ERR_PTR(ret); 1442 goto out; 1443 } 1444 } 1445 subvol_name = btrfs_get_subvol_name_from_objectid( 1446 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1447 if (IS_ERR(subvol_name)) { 1448 root = ERR_CAST(subvol_name); 1449 subvol_name = NULL; 1450 goto out; 1451 } 1452 1453 } 1454 1455 root = mount_subtree(mnt, subvol_name); 1456 /* mount_subtree() drops our reference on the vfsmount. */ 1457 mnt = NULL; 1458 1459 if (!IS_ERR(root)) { 1460 struct super_block *s = root->d_sb; 1461 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1462 struct inode *root_inode = d_inode(root); 1463 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1464 1465 ret = 0; 1466 if (!is_subvolume_inode(root_inode)) { 1467 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1468 subvol_name); 1469 ret = -EINVAL; 1470 } 1471 if (subvol_objectid && root_objectid != subvol_objectid) { 1472 /* 1473 * This will also catch a race condition where a 1474 * subvolume which was passed by ID is renamed and 1475 * another subvolume is renamed over the old location. 1476 */ 1477 btrfs_err(fs_info, 1478 "subvol '%s' does not match subvolid %llu", 1479 subvol_name, subvol_objectid); 1480 ret = -EINVAL; 1481 } 1482 if (ret) { 1483 dput(root); 1484 root = ERR_PTR(ret); 1485 deactivate_locked_super(s); 1486 } 1487 } 1488 1489 out: 1490 mntput(mnt); 1491 kfree(subvol_name); 1492 return root; 1493 } 1494 1495 /* 1496 * Find a superblock for the given device / mount point. 1497 * 1498 * Note: This is based on mount_bdev from fs/super.c with a few additions 1499 * for multiple device setup. Make sure to keep it in sync. 1500 */ 1501 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1502 int flags, const char *device_name, void *data) 1503 { 1504 struct block_device *bdev = NULL; 1505 struct super_block *s; 1506 struct btrfs_device *device = NULL; 1507 struct btrfs_fs_devices *fs_devices = NULL; 1508 struct btrfs_fs_info *fs_info = NULL; 1509 void *new_sec_opts = NULL; 1510 fmode_t mode = FMODE_READ; 1511 int error = 0; 1512 1513 if (!(flags & SB_RDONLY)) 1514 mode |= FMODE_WRITE; 1515 1516 if (data) { 1517 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1518 if (error) 1519 return ERR_PTR(error); 1520 } 1521 1522 /* 1523 * Setup a dummy root and fs_info for test/set super. This is because 1524 * we don't actually fill this stuff out until open_ctree, but we need 1525 * then open_ctree will properly initialize the file system specific 1526 * settings later. btrfs_init_fs_info initializes the static elements 1527 * of the fs_info (locks and such) to make cleanup easier if we find a 1528 * superblock with our given fs_devices later on at sget() time. 1529 */ 1530 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1531 if (!fs_info) { 1532 error = -ENOMEM; 1533 goto error_sec_opts; 1534 } 1535 btrfs_init_fs_info(fs_info); 1536 1537 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1538 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1539 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1540 error = -ENOMEM; 1541 goto error_fs_info; 1542 } 1543 1544 mutex_lock(&uuid_mutex); 1545 error = btrfs_parse_device_options(data, mode, fs_type); 1546 if (error) { 1547 mutex_unlock(&uuid_mutex); 1548 goto error_fs_info; 1549 } 1550 1551 device = btrfs_scan_one_device(device_name, mode, fs_type); 1552 if (IS_ERR(device)) { 1553 mutex_unlock(&uuid_mutex); 1554 error = PTR_ERR(device); 1555 goto error_fs_info; 1556 } 1557 1558 fs_devices = device->fs_devices; 1559 fs_info->fs_devices = fs_devices; 1560 1561 error = btrfs_open_devices(fs_devices, mode, fs_type); 1562 mutex_unlock(&uuid_mutex); 1563 if (error) 1564 goto error_fs_info; 1565 1566 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1567 error = -EACCES; 1568 goto error_close_devices; 1569 } 1570 1571 bdev = fs_devices->latest_bdev; 1572 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1573 fs_info); 1574 if (IS_ERR(s)) { 1575 error = PTR_ERR(s); 1576 goto error_close_devices; 1577 } 1578 1579 if (s->s_root) { 1580 btrfs_close_devices(fs_devices); 1581 btrfs_free_fs_info(fs_info); 1582 if ((flags ^ s->s_flags) & SB_RDONLY) 1583 error = -EBUSY; 1584 } else { 1585 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1586 btrfs_sb(s)->bdev_holder = fs_type; 1587 if (!strstr(crc32c_impl(), "generic")) 1588 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1589 error = btrfs_fill_super(s, fs_devices, data); 1590 } 1591 if (!error) 1592 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1593 security_free_mnt_opts(&new_sec_opts); 1594 if (error) { 1595 deactivate_locked_super(s); 1596 return ERR_PTR(error); 1597 } 1598 1599 return dget(s->s_root); 1600 1601 error_close_devices: 1602 btrfs_close_devices(fs_devices); 1603 error_fs_info: 1604 btrfs_free_fs_info(fs_info); 1605 error_sec_opts: 1606 security_free_mnt_opts(&new_sec_opts); 1607 return ERR_PTR(error); 1608 } 1609 1610 /* 1611 * Mount function which is called by VFS layer. 1612 * 1613 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1614 * which needs vfsmount* of device's root (/). This means device's root has to 1615 * be mounted internally in any case. 1616 * 1617 * Operation flow: 1618 * 1. Parse subvol id related options for later use in mount_subvol(). 1619 * 1620 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1621 * 1622 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1623 * first place. In order to avoid calling btrfs_mount() again, we use 1624 * different file_system_type which is not registered to VFS by 1625 * register_filesystem() (btrfs_root_fs_type). As a result, 1626 * btrfs_mount_root() is called. The return value will be used by 1627 * mount_subtree() in mount_subvol(). 1628 * 1629 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1630 * "btrfs subvolume set-default", mount_subvol() is called always. 1631 */ 1632 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1633 const char *device_name, void *data) 1634 { 1635 struct vfsmount *mnt_root; 1636 struct dentry *root; 1637 char *subvol_name = NULL; 1638 u64 subvol_objectid = 0; 1639 int error = 0; 1640 1641 error = btrfs_parse_subvol_options(data, &subvol_name, 1642 &subvol_objectid); 1643 if (error) { 1644 kfree(subvol_name); 1645 return ERR_PTR(error); 1646 } 1647 1648 /* mount device's root (/) */ 1649 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1650 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1651 if (flags & SB_RDONLY) { 1652 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1653 flags & ~SB_RDONLY, device_name, data); 1654 } else { 1655 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1656 flags | SB_RDONLY, device_name, data); 1657 if (IS_ERR(mnt_root)) { 1658 root = ERR_CAST(mnt_root); 1659 kfree(subvol_name); 1660 goto out; 1661 } 1662 1663 down_write(&mnt_root->mnt_sb->s_umount); 1664 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1665 up_write(&mnt_root->mnt_sb->s_umount); 1666 if (error < 0) { 1667 root = ERR_PTR(error); 1668 mntput(mnt_root); 1669 kfree(subvol_name); 1670 goto out; 1671 } 1672 } 1673 } 1674 if (IS_ERR(mnt_root)) { 1675 root = ERR_CAST(mnt_root); 1676 kfree(subvol_name); 1677 goto out; 1678 } 1679 1680 /* mount_subvol() will free subvol_name and mnt_root */ 1681 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1682 1683 out: 1684 return root; 1685 } 1686 1687 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1688 u32 new_pool_size, u32 old_pool_size) 1689 { 1690 if (new_pool_size == old_pool_size) 1691 return; 1692 1693 fs_info->thread_pool_size = new_pool_size; 1694 1695 btrfs_info(fs_info, "resize thread pool %d -> %d", 1696 old_pool_size, new_pool_size); 1697 1698 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1699 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1700 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1701 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1702 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1703 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1704 new_pool_size); 1705 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1706 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1707 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1708 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1709 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1710 new_pool_size); 1711 } 1712 1713 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1714 { 1715 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1716 } 1717 1718 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1719 unsigned long old_opts, int flags) 1720 { 1721 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1722 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1723 (flags & SB_RDONLY))) { 1724 /* wait for any defraggers to finish */ 1725 wait_event(fs_info->transaction_wait, 1726 (atomic_read(&fs_info->defrag_running) == 0)); 1727 if (flags & SB_RDONLY) 1728 sync_filesystem(fs_info->sb); 1729 } 1730 } 1731 1732 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1733 unsigned long old_opts) 1734 { 1735 /* 1736 * We need to cleanup all defragable inodes if the autodefragment is 1737 * close or the filesystem is read only. 1738 */ 1739 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1740 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1741 btrfs_cleanup_defrag_inodes(fs_info); 1742 } 1743 1744 /* If we toggled discard async */ 1745 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1746 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1747 btrfs_discard_resume(fs_info); 1748 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1749 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1750 btrfs_discard_cleanup(fs_info); 1751 1752 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1753 } 1754 1755 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1756 { 1757 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1758 struct btrfs_root *root = fs_info->tree_root; 1759 unsigned old_flags = sb->s_flags; 1760 unsigned long old_opts = fs_info->mount_opt; 1761 unsigned long old_compress_type = fs_info->compress_type; 1762 u64 old_max_inline = fs_info->max_inline; 1763 u32 old_thread_pool_size = fs_info->thread_pool_size; 1764 u32 old_metadata_ratio = fs_info->metadata_ratio; 1765 int ret; 1766 1767 sync_filesystem(sb); 1768 btrfs_remount_prepare(fs_info); 1769 1770 if (data) { 1771 void *new_sec_opts = NULL; 1772 1773 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1774 if (!ret) 1775 ret = security_sb_remount(sb, new_sec_opts); 1776 security_free_mnt_opts(&new_sec_opts); 1777 if (ret) 1778 goto restore; 1779 } 1780 1781 ret = btrfs_parse_options(fs_info, data, *flags); 1782 if (ret) 1783 goto restore; 1784 1785 btrfs_remount_begin(fs_info, old_opts, *flags); 1786 btrfs_resize_thread_pool(fs_info, 1787 fs_info->thread_pool_size, old_thread_pool_size); 1788 1789 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1790 goto out; 1791 1792 if (*flags & SB_RDONLY) { 1793 /* 1794 * this also happens on 'umount -rf' or on shutdown, when 1795 * the filesystem is busy. 1796 */ 1797 cancel_work_sync(&fs_info->async_reclaim_work); 1798 1799 btrfs_discard_cleanup(fs_info); 1800 1801 /* wait for the uuid_scan task to finish */ 1802 down(&fs_info->uuid_tree_rescan_sem); 1803 /* avoid complains from lockdep et al. */ 1804 up(&fs_info->uuid_tree_rescan_sem); 1805 1806 sb->s_flags |= SB_RDONLY; 1807 1808 /* 1809 * Setting SB_RDONLY will put the cleaner thread to 1810 * sleep at the next loop if it's already active. 1811 * If it's already asleep, we'll leave unused block 1812 * groups on disk until we're mounted read-write again 1813 * unless we clean them up here. 1814 */ 1815 btrfs_delete_unused_bgs(fs_info); 1816 1817 btrfs_dev_replace_suspend_for_unmount(fs_info); 1818 btrfs_scrub_cancel(fs_info); 1819 btrfs_pause_balance(fs_info); 1820 1821 ret = btrfs_commit_super(fs_info); 1822 if (ret) 1823 goto restore; 1824 } else { 1825 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1826 btrfs_err(fs_info, 1827 "Remounting read-write after error is not allowed"); 1828 ret = -EINVAL; 1829 goto restore; 1830 } 1831 if (fs_info->fs_devices->rw_devices == 0) { 1832 ret = -EACCES; 1833 goto restore; 1834 } 1835 1836 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1837 btrfs_warn(fs_info, 1838 "too many missing devices, writable remount is not allowed"); 1839 ret = -EACCES; 1840 goto restore; 1841 } 1842 1843 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1844 btrfs_warn(fs_info, 1845 "mount required to replay tree-log, cannot remount read-write"); 1846 ret = -EINVAL; 1847 goto restore; 1848 } 1849 1850 ret = btrfs_cleanup_fs_roots(fs_info); 1851 if (ret) 1852 goto restore; 1853 1854 /* recover relocation */ 1855 mutex_lock(&fs_info->cleaner_mutex); 1856 ret = btrfs_recover_relocation(root); 1857 mutex_unlock(&fs_info->cleaner_mutex); 1858 if (ret) 1859 goto restore; 1860 1861 ret = btrfs_resume_balance_async(fs_info); 1862 if (ret) 1863 goto restore; 1864 1865 ret = btrfs_resume_dev_replace_async(fs_info); 1866 if (ret) { 1867 btrfs_warn(fs_info, "failed to resume dev_replace"); 1868 goto restore; 1869 } 1870 1871 btrfs_qgroup_rescan_resume(fs_info); 1872 1873 if (!fs_info->uuid_root) { 1874 btrfs_info(fs_info, "creating UUID tree"); 1875 ret = btrfs_create_uuid_tree(fs_info); 1876 if (ret) { 1877 btrfs_warn(fs_info, 1878 "failed to create the UUID tree %d", 1879 ret); 1880 goto restore; 1881 } 1882 } 1883 sb->s_flags &= ~SB_RDONLY; 1884 1885 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1886 } 1887 out: 1888 wake_up_process(fs_info->transaction_kthread); 1889 btrfs_remount_cleanup(fs_info, old_opts); 1890 return 0; 1891 1892 restore: 1893 /* We've hit an error - don't reset SB_RDONLY */ 1894 if (sb_rdonly(sb)) 1895 old_flags |= SB_RDONLY; 1896 sb->s_flags = old_flags; 1897 fs_info->mount_opt = old_opts; 1898 fs_info->compress_type = old_compress_type; 1899 fs_info->max_inline = old_max_inline; 1900 btrfs_resize_thread_pool(fs_info, 1901 old_thread_pool_size, fs_info->thread_pool_size); 1902 fs_info->metadata_ratio = old_metadata_ratio; 1903 btrfs_remount_cleanup(fs_info, old_opts); 1904 return ret; 1905 } 1906 1907 /* Used to sort the devices by max_avail(descending sort) */ 1908 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 1909 const void *dev_info2) 1910 { 1911 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1912 ((struct btrfs_device_info *)dev_info2)->max_avail) 1913 return -1; 1914 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1915 ((struct btrfs_device_info *)dev_info2)->max_avail) 1916 return 1; 1917 else 1918 return 0; 1919 } 1920 1921 /* 1922 * sort the devices by max_avail, in which max free extent size of each device 1923 * is stored.(Descending Sort) 1924 */ 1925 static inline void btrfs_descending_sort_devices( 1926 struct btrfs_device_info *devices, 1927 size_t nr_devices) 1928 { 1929 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1930 btrfs_cmp_device_free_bytes, NULL); 1931 } 1932 1933 /* 1934 * The helper to calc the free space on the devices that can be used to store 1935 * file data. 1936 */ 1937 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1938 u64 *free_bytes) 1939 { 1940 struct btrfs_device_info *devices_info; 1941 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1942 struct btrfs_device *device; 1943 u64 type; 1944 u64 avail_space; 1945 u64 min_stripe_size; 1946 int num_stripes = 1; 1947 int i = 0, nr_devices; 1948 const struct btrfs_raid_attr *rattr; 1949 1950 /* 1951 * We aren't under the device list lock, so this is racy-ish, but good 1952 * enough for our purposes. 1953 */ 1954 nr_devices = fs_info->fs_devices->open_devices; 1955 if (!nr_devices) { 1956 smp_mb(); 1957 nr_devices = fs_info->fs_devices->open_devices; 1958 ASSERT(nr_devices); 1959 if (!nr_devices) { 1960 *free_bytes = 0; 1961 return 0; 1962 } 1963 } 1964 1965 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1966 GFP_KERNEL); 1967 if (!devices_info) 1968 return -ENOMEM; 1969 1970 /* calc min stripe number for data space allocation */ 1971 type = btrfs_data_alloc_profile(fs_info); 1972 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1973 1974 if (type & BTRFS_BLOCK_GROUP_RAID0) 1975 num_stripes = nr_devices; 1976 else if (type & BTRFS_BLOCK_GROUP_RAID1) 1977 num_stripes = 2; 1978 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 1979 num_stripes = 3; 1980 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 1981 num_stripes = 4; 1982 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1983 num_stripes = 4; 1984 1985 /* Adjust for more than 1 stripe per device */ 1986 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1987 1988 rcu_read_lock(); 1989 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1990 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1991 &device->dev_state) || 1992 !device->bdev || 1993 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1994 continue; 1995 1996 if (i >= nr_devices) 1997 break; 1998 1999 avail_space = device->total_bytes - device->bytes_used; 2000 2001 /* align with stripe_len */ 2002 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2003 2004 /* 2005 * In order to avoid overwriting the superblock on the drive, 2006 * btrfs starts at an offset of at least 1MB when doing chunk 2007 * allocation. 2008 * 2009 * This ensures we have at least min_stripe_size free space 2010 * after excluding 1MB. 2011 */ 2012 if (avail_space <= SZ_1M + min_stripe_size) 2013 continue; 2014 2015 avail_space -= SZ_1M; 2016 2017 devices_info[i].dev = device; 2018 devices_info[i].max_avail = avail_space; 2019 2020 i++; 2021 } 2022 rcu_read_unlock(); 2023 2024 nr_devices = i; 2025 2026 btrfs_descending_sort_devices(devices_info, nr_devices); 2027 2028 i = nr_devices - 1; 2029 avail_space = 0; 2030 while (nr_devices >= rattr->devs_min) { 2031 num_stripes = min(num_stripes, nr_devices); 2032 2033 if (devices_info[i].max_avail >= min_stripe_size) { 2034 int j; 2035 u64 alloc_size; 2036 2037 avail_space += devices_info[i].max_avail * num_stripes; 2038 alloc_size = devices_info[i].max_avail; 2039 for (j = i + 1 - num_stripes; j <= i; j++) 2040 devices_info[j].max_avail -= alloc_size; 2041 } 2042 i--; 2043 nr_devices--; 2044 } 2045 2046 kfree(devices_info); 2047 *free_bytes = avail_space; 2048 return 0; 2049 } 2050 2051 /* 2052 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2053 * 2054 * If there's a redundant raid level at DATA block groups, use the respective 2055 * multiplier to scale the sizes. 2056 * 2057 * Unused device space usage is based on simulating the chunk allocator 2058 * algorithm that respects the device sizes and order of allocations. This is 2059 * a close approximation of the actual use but there are other factors that may 2060 * change the result (like a new metadata chunk). 2061 * 2062 * If metadata is exhausted, f_bavail will be 0. 2063 */ 2064 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2065 { 2066 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2067 struct btrfs_super_block *disk_super = fs_info->super_copy; 2068 struct btrfs_space_info *found; 2069 u64 total_used = 0; 2070 u64 total_free_data = 0; 2071 u64 total_free_meta = 0; 2072 int bits = dentry->d_sb->s_blocksize_bits; 2073 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2074 unsigned factor = 1; 2075 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2076 int ret; 2077 u64 thresh = 0; 2078 int mixed = 0; 2079 2080 rcu_read_lock(); 2081 list_for_each_entry_rcu(found, &fs_info->space_info, list) { 2082 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2083 int i; 2084 2085 total_free_data += found->disk_total - found->disk_used; 2086 total_free_data -= 2087 btrfs_account_ro_block_groups_free_space(found); 2088 2089 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2090 if (!list_empty(&found->block_groups[i])) 2091 factor = btrfs_bg_type_to_factor( 2092 btrfs_raid_array[i].bg_flag); 2093 } 2094 } 2095 2096 /* 2097 * Metadata in mixed block goup profiles are accounted in data 2098 */ 2099 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2100 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2101 mixed = 1; 2102 else 2103 total_free_meta += found->disk_total - 2104 found->disk_used; 2105 } 2106 2107 total_used += found->disk_used; 2108 } 2109 2110 rcu_read_unlock(); 2111 2112 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2113 buf->f_blocks >>= bits; 2114 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2115 2116 /* Account global block reserve as used, it's in logical size already */ 2117 spin_lock(&block_rsv->lock); 2118 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2119 if (buf->f_bfree >= block_rsv->size >> bits) 2120 buf->f_bfree -= block_rsv->size >> bits; 2121 else 2122 buf->f_bfree = 0; 2123 spin_unlock(&block_rsv->lock); 2124 2125 buf->f_bavail = div_u64(total_free_data, factor); 2126 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2127 if (ret) 2128 return ret; 2129 buf->f_bavail += div_u64(total_free_data, factor); 2130 buf->f_bavail = buf->f_bavail >> bits; 2131 2132 /* 2133 * We calculate the remaining metadata space minus global reserve. If 2134 * this is (supposedly) smaller than zero, there's no space. But this 2135 * does not hold in practice, the exhausted state happens where's still 2136 * some positive delta. So we apply some guesswork and compare the 2137 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2138 * 2139 * We probably cannot calculate the exact threshold value because this 2140 * depends on the internal reservations requested by various 2141 * operations, so some operations that consume a few metadata will 2142 * succeed even if the Avail is zero. But this is better than the other 2143 * way around. 2144 */ 2145 thresh = SZ_4M; 2146 2147 /* 2148 * We only want to claim there's no available space if we can no longer 2149 * allocate chunks for our metadata profile and our global reserve will 2150 * not fit in the free metadata space. If we aren't ->full then we 2151 * still can allocate chunks and thus are fine using the currently 2152 * calculated f_bavail. 2153 */ 2154 if (!mixed && block_rsv->space_info->full && 2155 total_free_meta - thresh < block_rsv->size) 2156 buf->f_bavail = 0; 2157 2158 buf->f_type = BTRFS_SUPER_MAGIC; 2159 buf->f_bsize = dentry->d_sb->s_blocksize; 2160 buf->f_namelen = BTRFS_NAME_LEN; 2161 2162 /* We treat it as constant endianness (it doesn't matter _which_) 2163 because we want the fsid to come out the same whether mounted 2164 on a big-endian or little-endian host */ 2165 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2166 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2167 /* Mask in the root object ID too, to disambiguate subvols */ 2168 buf->f_fsid.val[0] ^= 2169 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2170 buf->f_fsid.val[1] ^= 2171 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2172 2173 return 0; 2174 } 2175 2176 static void btrfs_kill_super(struct super_block *sb) 2177 { 2178 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2179 kill_anon_super(sb); 2180 btrfs_free_fs_info(fs_info); 2181 } 2182 2183 static struct file_system_type btrfs_fs_type = { 2184 .owner = THIS_MODULE, 2185 .name = "btrfs", 2186 .mount = btrfs_mount, 2187 .kill_sb = btrfs_kill_super, 2188 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2189 }; 2190 2191 static struct file_system_type btrfs_root_fs_type = { 2192 .owner = THIS_MODULE, 2193 .name = "btrfs", 2194 .mount = btrfs_mount_root, 2195 .kill_sb = btrfs_kill_super, 2196 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2197 }; 2198 2199 MODULE_ALIAS_FS("btrfs"); 2200 2201 static int btrfs_control_open(struct inode *inode, struct file *file) 2202 { 2203 /* 2204 * The control file's private_data is used to hold the 2205 * transaction when it is started and is used to keep 2206 * track of whether a transaction is already in progress. 2207 */ 2208 file->private_data = NULL; 2209 return 0; 2210 } 2211 2212 /* 2213 * Used by /dev/btrfs-control for devices ioctls. 2214 */ 2215 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2216 unsigned long arg) 2217 { 2218 struct btrfs_ioctl_vol_args *vol; 2219 struct btrfs_device *device = NULL; 2220 int ret = -ENOTTY; 2221 2222 if (!capable(CAP_SYS_ADMIN)) 2223 return -EPERM; 2224 2225 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2226 if (IS_ERR(vol)) 2227 return PTR_ERR(vol); 2228 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2229 2230 switch (cmd) { 2231 case BTRFS_IOC_SCAN_DEV: 2232 mutex_lock(&uuid_mutex); 2233 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2234 &btrfs_root_fs_type); 2235 ret = PTR_ERR_OR_ZERO(device); 2236 mutex_unlock(&uuid_mutex); 2237 break; 2238 case BTRFS_IOC_FORGET_DEV: 2239 ret = btrfs_forget_devices(vol->name); 2240 break; 2241 case BTRFS_IOC_DEVICES_READY: 2242 mutex_lock(&uuid_mutex); 2243 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2244 &btrfs_root_fs_type); 2245 if (IS_ERR(device)) { 2246 mutex_unlock(&uuid_mutex); 2247 ret = PTR_ERR(device); 2248 break; 2249 } 2250 ret = !(device->fs_devices->num_devices == 2251 device->fs_devices->total_devices); 2252 mutex_unlock(&uuid_mutex); 2253 break; 2254 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2255 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2256 break; 2257 } 2258 2259 kfree(vol); 2260 return ret; 2261 } 2262 2263 static int btrfs_freeze(struct super_block *sb) 2264 { 2265 struct btrfs_trans_handle *trans; 2266 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2267 struct btrfs_root *root = fs_info->tree_root; 2268 2269 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2270 /* 2271 * We don't need a barrier here, we'll wait for any transaction that 2272 * could be in progress on other threads (and do delayed iputs that 2273 * we want to avoid on a frozen filesystem), or do the commit 2274 * ourselves. 2275 */ 2276 trans = btrfs_attach_transaction_barrier(root); 2277 if (IS_ERR(trans)) { 2278 /* no transaction, don't bother */ 2279 if (PTR_ERR(trans) == -ENOENT) 2280 return 0; 2281 return PTR_ERR(trans); 2282 } 2283 return btrfs_commit_transaction(trans); 2284 } 2285 2286 static int btrfs_unfreeze(struct super_block *sb) 2287 { 2288 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2289 2290 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2291 return 0; 2292 } 2293 2294 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2295 { 2296 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2297 struct btrfs_fs_devices *cur_devices; 2298 struct btrfs_device *dev, *first_dev = NULL; 2299 struct list_head *head; 2300 2301 /* 2302 * Lightweight locking of the devices. We should not need 2303 * device_list_mutex here as we only read the device data and the list 2304 * is protected by RCU. Even if a device is deleted during the list 2305 * traversals, we'll get valid data, the freeing callback will wait at 2306 * least until the rcu_read_unlock. 2307 */ 2308 rcu_read_lock(); 2309 cur_devices = fs_info->fs_devices; 2310 while (cur_devices) { 2311 head = &cur_devices->devices; 2312 list_for_each_entry_rcu(dev, head, dev_list) { 2313 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2314 continue; 2315 if (!dev->name) 2316 continue; 2317 if (!first_dev || dev->devid < first_dev->devid) 2318 first_dev = dev; 2319 } 2320 cur_devices = cur_devices->seed; 2321 } 2322 2323 if (first_dev) 2324 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2325 else 2326 WARN_ON(1); 2327 rcu_read_unlock(); 2328 return 0; 2329 } 2330 2331 static const struct super_operations btrfs_super_ops = { 2332 .drop_inode = btrfs_drop_inode, 2333 .evict_inode = btrfs_evict_inode, 2334 .put_super = btrfs_put_super, 2335 .sync_fs = btrfs_sync_fs, 2336 .show_options = btrfs_show_options, 2337 .show_devname = btrfs_show_devname, 2338 .alloc_inode = btrfs_alloc_inode, 2339 .destroy_inode = btrfs_destroy_inode, 2340 .free_inode = btrfs_free_inode, 2341 .statfs = btrfs_statfs, 2342 .remount_fs = btrfs_remount, 2343 .freeze_fs = btrfs_freeze, 2344 .unfreeze_fs = btrfs_unfreeze, 2345 }; 2346 2347 static const struct file_operations btrfs_ctl_fops = { 2348 .open = btrfs_control_open, 2349 .unlocked_ioctl = btrfs_control_ioctl, 2350 .compat_ioctl = compat_ptr_ioctl, 2351 .owner = THIS_MODULE, 2352 .llseek = noop_llseek, 2353 }; 2354 2355 static struct miscdevice btrfs_misc = { 2356 .minor = BTRFS_MINOR, 2357 .name = "btrfs-control", 2358 .fops = &btrfs_ctl_fops 2359 }; 2360 2361 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2362 MODULE_ALIAS("devname:btrfs-control"); 2363 2364 static int __init btrfs_interface_init(void) 2365 { 2366 return misc_register(&btrfs_misc); 2367 } 2368 2369 static __cold void btrfs_interface_exit(void) 2370 { 2371 misc_deregister(&btrfs_misc); 2372 } 2373 2374 static void __init btrfs_print_mod_info(void) 2375 { 2376 static const char options[] = "" 2377 #ifdef CONFIG_BTRFS_DEBUG 2378 ", debug=on" 2379 #endif 2380 #ifdef CONFIG_BTRFS_ASSERT 2381 ", assert=on" 2382 #endif 2383 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2384 ", integrity-checker=on" 2385 #endif 2386 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2387 ", ref-verify=on" 2388 #endif 2389 ; 2390 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2391 } 2392 2393 static int __init init_btrfs_fs(void) 2394 { 2395 int err; 2396 2397 btrfs_props_init(); 2398 2399 err = btrfs_init_sysfs(); 2400 if (err) 2401 return err; 2402 2403 btrfs_init_compress(); 2404 2405 err = btrfs_init_cachep(); 2406 if (err) 2407 goto free_compress; 2408 2409 err = extent_io_init(); 2410 if (err) 2411 goto free_cachep; 2412 2413 err = extent_state_cache_init(); 2414 if (err) 2415 goto free_extent_io; 2416 2417 err = extent_map_init(); 2418 if (err) 2419 goto free_extent_state_cache; 2420 2421 err = ordered_data_init(); 2422 if (err) 2423 goto free_extent_map; 2424 2425 err = btrfs_delayed_inode_init(); 2426 if (err) 2427 goto free_ordered_data; 2428 2429 err = btrfs_auto_defrag_init(); 2430 if (err) 2431 goto free_delayed_inode; 2432 2433 err = btrfs_delayed_ref_init(); 2434 if (err) 2435 goto free_auto_defrag; 2436 2437 err = btrfs_prelim_ref_init(); 2438 if (err) 2439 goto free_delayed_ref; 2440 2441 err = btrfs_end_io_wq_init(); 2442 if (err) 2443 goto free_prelim_ref; 2444 2445 err = btrfs_interface_init(); 2446 if (err) 2447 goto free_end_io_wq; 2448 2449 btrfs_init_lockdep(); 2450 2451 btrfs_print_mod_info(); 2452 2453 err = btrfs_run_sanity_tests(); 2454 if (err) 2455 goto unregister_ioctl; 2456 2457 err = register_filesystem(&btrfs_fs_type); 2458 if (err) 2459 goto unregister_ioctl; 2460 2461 return 0; 2462 2463 unregister_ioctl: 2464 btrfs_interface_exit(); 2465 free_end_io_wq: 2466 btrfs_end_io_wq_exit(); 2467 free_prelim_ref: 2468 btrfs_prelim_ref_exit(); 2469 free_delayed_ref: 2470 btrfs_delayed_ref_exit(); 2471 free_auto_defrag: 2472 btrfs_auto_defrag_exit(); 2473 free_delayed_inode: 2474 btrfs_delayed_inode_exit(); 2475 free_ordered_data: 2476 ordered_data_exit(); 2477 free_extent_map: 2478 extent_map_exit(); 2479 free_extent_state_cache: 2480 extent_state_cache_exit(); 2481 free_extent_io: 2482 extent_io_exit(); 2483 free_cachep: 2484 btrfs_destroy_cachep(); 2485 free_compress: 2486 btrfs_exit_compress(); 2487 btrfs_exit_sysfs(); 2488 2489 return err; 2490 } 2491 2492 static void __exit exit_btrfs_fs(void) 2493 { 2494 btrfs_destroy_cachep(); 2495 btrfs_delayed_ref_exit(); 2496 btrfs_auto_defrag_exit(); 2497 btrfs_delayed_inode_exit(); 2498 btrfs_prelim_ref_exit(); 2499 ordered_data_exit(); 2500 extent_map_exit(); 2501 extent_state_cache_exit(); 2502 extent_io_exit(); 2503 btrfs_interface_exit(); 2504 btrfs_end_io_wq_exit(); 2505 unregister_filesystem(&btrfs_fs_type); 2506 btrfs_exit_sysfs(); 2507 btrfs_cleanup_fs_uuids(); 2508 btrfs_exit_compress(); 2509 } 2510 2511 late_initcall(init_btrfs_fs); 2512 module_exit(exit_btrfs_fs) 2513 2514 MODULE_LICENSE("GPL"); 2515 MODULE_SOFTDEP("pre: crc32c"); 2516 MODULE_SOFTDEP("pre: xxhash64"); 2517 MODULE_SOFTDEP("pre: sha256"); 2518 MODULE_SOFTDEP("pre: blake2b-256"); 2519