1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 69 70 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 71 72 const char *btrfs_decode_error(int errno) 73 { 74 char *errstr = "unknown"; 75 76 switch (errno) { 77 case -EIO: 78 errstr = "IO failure"; 79 break; 80 case -ENOMEM: 81 errstr = "Out of memory"; 82 break; 83 case -EROFS: 84 errstr = "Readonly filesystem"; 85 break; 86 case -EEXIST: 87 errstr = "Object already exists"; 88 break; 89 case -ENOSPC: 90 errstr = "No space left"; 91 break; 92 case -ENOENT: 93 errstr = "No such entry"; 94 break; 95 } 96 97 return errstr; 98 } 99 100 /* btrfs handle error by forcing the filesystem readonly */ 101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 102 { 103 struct super_block *sb = fs_info->sb; 104 105 if (sb->s_flags & MS_RDONLY) 106 return; 107 108 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 109 sb->s_flags |= MS_RDONLY; 110 btrfs_info(fs_info, "forced readonly"); 111 /* 112 * Note that a running device replace operation is not 113 * canceled here although there is no way to update 114 * the progress. It would add the risk of a deadlock, 115 * therefore the canceling is omitted. The only penalty 116 * is that some I/O remains active until the procedure 117 * completes. The next time when the filesystem is 118 * mounted writeable again, the device replace 119 * operation continues. 120 */ 121 } 122 } 123 124 /* 125 * __btrfs_handle_fs_error decodes expected errors from the caller and 126 * invokes the approciate error response. 127 */ 128 __cold 129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 130 unsigned int line, int errno, const char *fmt, ...) 131 { 132 struct super_block *sb = fs_info->sb; 133 #ifdef CONFIG_PRINTK 134 const char *errstr; 135 #endif 136 137 /* 138 * Special case: if the error is EROFS, and we're already 139 * under MS_RDONLY, then it is safe here. 140 */ 141 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 142 return; 143 144 #ifdef CONFIG_PRINTK 145 errstr = btrfs_decode_error(errno); 146 if (fmt) { 147 struct va_format vaf; 148 va_list args; 149 150 va_start(args, fmt); 151 vaf.fmt = fmt; 152 vaf.va = &args; 153 154 printk(KERN_CRIT 155 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 156 sb->s_id, function, line, errno, errstr, &vaf); 157 va_end(args); 158 } else { 159 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 160 sb->s_id, function, line, errno, errstr); 161 } 162 #endif 163 164 /* 165 * Today we only save the error info to memory. Long term we'll 166 * also send it down to the disk 167 */ 168 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 169 170 /* Don't go through full error handling during mount */ 171 if (sb->s_flags & MS_BORN) 172 btrfs_handle_error(fs_info); 173 } 174 175 #ifdef CONFIG_PRINTK 176 static const char * const logtypes[] = { 177 "emergency", 178 "alert", 179 "critical", 180 "error", 181 "warning", 182 "notice", 183 "info", 184 "debug", 185 }; 186 187 188 /* 189 * Use one ratelimit state per log level so that a flood of less important 190 * messages doesn't cause more important ones to be dropped. 191 */ 192 static struct ratelimit_state printk_limits[] = { 193 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 200 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 201 }; 202 203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 204 { 205 struct super_block *sb = fs_info->sb; 206 char lvl[4]; 207 struct va_format vaf; 208 va_list args; 209 const char *type = logtypes[4]; 210 int kern_level; 211 struct ratelimit_state *ratelimit; 212 213 va_start(args, fmt); 214 215 kern_level = printk_get_level(fmt); 216 if (kern_level) { 217 size_t size = printk_skip_level(fmt) - fmt; 218 memcpy(lvl, fmt, size); 219 lvl[size] = '\0'; 220 fmt += size; 221 type = logtypes[kern_level - '0']; 222 ratelimit = &printk_limits[kern_level - '0']; 223 } else { 224 *lvl = '\0'; 225 /* Default to debug output */ 226 ratelimit = &printk_limits[7]; 227 } 228 229 vaf.fmt = fmt; 230 vaf.va = &args; 231 232 if (__ratelimit(ratelimit)) 233 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 234 235 va_end(args); 236 } 237 #endif 238 239 /* 240 * We only mark the transaction aborted and then set the file system read-only. 241 * This will prevent new transactions from starting or trying to join this 242 * one. 243 * 244 * This means that error recovery at the call site is limited to freeing 245 * any local memory allocations and passing the error code up without 246 * further cleanup. The transaction should complete as it normally would 247 * in the call path but will return -EIO. 248 * 249 * We'll complete the cleanup in btrfs_end_transaction and 250 * btrfs_commit_transaction. 251 */ 252 __cold 253 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 254 const char *function, 255 unsigned int line, int errno) 256 { 257 struct btrfs_fs_info *fs_info = trans->fs_info; 258 259 trans->aborted = errno; 260 /* Nothing used. The other threads that have joined this 261 * transaction may be able to continue. */ 262 if (!trans->dirty && list_empty(&trans->new_bgs)) { 263 const char *errstr; 264 265 errstr = btrfs_decode_error(errno); 266 btrfs_warn(fs_info, 267 "%s:%d: Aborting unused transaction(%s).", 268 function, line, errstr); 269 return; 270 } 271 ACCESS_ONCE(trans->transaction->aborted) = errno; 272 /* Wake up anybody who may be waiting on this transaction */ 273 wake_up(&fs_info->transaction_wait); 274 wake_up(&fs_info->transaction_blocked_wait); 275 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 276 } 277 /* 278 * __btrfs_panic decodes unexpected, fatal errors from the caller, 279 * issues an alert, and either panics or BUGs, depending on mount options. 280 */ 281 __cold 282 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 283 unsigned int line, int errno, const char *fmt, ...) 284 { 285 char *s_id = "<unknown>"; 286 const char *errstr; 287 struct va_format vaf = { .fmt = fmt }; 288 va_list args; 289 290 if (fs_info) 291 s_id = fs_info->sb->s_id; 292 293 va_start(args, fmt); 294 vaf.va = &args; 295 296 errstr = btrfs_decode_error(errno); 297 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 298 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 299 s_id, function, line, &vaf, errno, errstr); 300 301 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 302 function, line, &vaf, errno, errstr); 303 va_end(args); 304 /* Caller calls BUG() */ 305 } 306 307 static void btrfs_put_super(struct super_block *sb) 308 { 309 close_ctree(btrfs_sb(sb)->tree_root); 310 } 311 312 enum { 313 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 314 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 315 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 316 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 317 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 318 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, 319 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, 320 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, 321 Opt_skip_balance, Opt_check_integrity, 322 Opt_check_integrity_including_extent_data, 323 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 324 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 325 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 326 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, 327 Opt_nologreplay, Opt_norecovery, 328 #ifdef CONFIG_BTRFS_DEBUG 329 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 330 #endif 331 Opt_err, 332 }; 333 334 static const match_table_t tokens = { 335 {Opt_degraded, "degraded"}, 336 {Opt_subvol, "subvol=%s"}, 337 {Opt_subvolid, "subvolid=%s"}, 338 {Opt_device, "device=%s"}, 339 {Opt_nodatasum, "nodatasum"}, 340 {Opt_datasum, "datasum"}, 341 {Opt_nodatacow, "nodatacow"}, 342 {Opt_datacow, "datacow"}, 343 {Opt_nobarrier, "nobarrier"}, 344 {Opt_barrier, "barrier"}, 345 {Opt_max_inline, "max_inline=%s"}, 346 {Opt_alloc_start, "alloc_start=%s"}, 347 {Opt_thread_pool, "thread_pool=%d"}, 348 {Opt_compress, "compress"}, 349 {Opt_compress_type, "compress=%s"}, 350 {Opt_compress_force, "compress-force"}, 351 {Opt_compress_force_type, "compress-force=%s"}, 352 {Opt_ssd, "ssd"}, 353 {Opt_ssd_spread, "ssd_spread"}, 354 {Opt_nossd, "nossd"}, 355 {Opt_acl, "acl"}, 356 {Opt_noacl, "noacl"}, 357 {Opt_notreelog, "notreelog"}, 358 {Opt_treelog, "treelog"}, 359 {Opt_nologreplay, "nologreplay"}, 360 {Opt_norecovery, "norecovery"}, 361 {Opt_flushoncommit, "flushoncommit"}, 362 {Opt_noflushoncommit, "noflushoncommit"}, 363 {Opt_ratio, "metadata_ratio=%d"}, 364 {Opt_discard, "discard"}, 365 {Opt_nodiscard, "nodiscard"}, 366 {Opt_space_cache, "space_cache"}, 367 {Opt_space_cache_version, "space_cache=%s"}, 368 {Opt_clear_cache, "clear_cache"}, 369 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 370 {Opt_enospc_debug, "enospc_debug"}, 371 {Opt_noenospc_debug, "noenospc_debug"}, 372 {Opt_subvolrootid, "subvolrootid=%d"}, 373 {Opt_defrag, "autodefrag"}, 374 {Opt_nodefrag, "noautodefrag"}, 375 {Opt_inode_cache, "inode_cache"}, 376 {Opt_noinode_cache, "noinode_cache"}, 377 {Opt_no_space_cache, "nospace_cache"}, 378 {Opt_recovery, "recovery"}, /* deprecated */ 379 {Opt_usebackuproot, "usebackuproot"}, 380 {Opt_skip_balance, "skip_balance"}, 381 {Opt_check_integrity, "check_int"}, 382 {Opt_check_integrity_including_extent_data, "check_int_data"}, 383 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 384 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 385 {Opt_fatal_errors, "fatal_errors=%s"}, 386 {Opt_commit_interval, "commit=%d"}, 387 #ifdef CONFIG_BTRFS_DEBUG 388 {Opt_fragment_data, "fragment=data"}, 389 {Opt_fragment_metadata, "fragment=metadata"}, 390 {Opt_fragment_all, "fragment=all"}, 391 #endif 392 {Opt_err, NULL}, 393 }; 394 395 /* 396 * Regular mount options parser. Everything that is needed only when 397 * reading in a new superblock is parsed here. 398 * XXX JDM: This needs to be cleaned up for remount. 399 */ 400 int btrfs_parse_options(struct btrfs_root *root, char *options, 401 unsigned long new_flags) 402 { 403 struct btrfs_fs_info *info = root->fs_info; 404 substring_t args[MAX_OPT_ARGS]; 405 char *p, *num, *orig = NULL; 406 u64 cache_gen; 407 int intarg; 408 int ret = 0; 409 char *compress_type; 410 bool compress_force = false; 411 enum btrfs_compression_type saved_compress_type; 412 bool saved_compress_force; 413 int no_compress = 0; 414 415 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 416 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE)) 417 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 418 else if (cache_gen) 419 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 420 421 /* 422 * Even the options are empty, we still need to do extra check 423 * against new flags 424 */ 425 if (!options) 426 goto check; 427 428 /* 429 * strsep changes the string, duplicate it because parse_options 430 * gets called twice 431 */ 432 options = kstrdup(options, GFP_NOFS); 433 if (!options) 434 return -ENOMEM; 435 436 orig = options; 437 438 while ((p = strsep(&options, ",")) != NULL) { 439 int token; 440 if (!*p) 441 continue; 442 443 token = match_token(p, tokens, args); 444 switch (token) { 445 case Opt_degraded: 446 btrfs_info(root->fs_info, "allowing degraded mounts"); 447 btrfs_set_opt(info->mount_opt, DEGRADED); 448 break; 449 case Opt_subvol: 450 case Opt_subvolid: 451 case Opt_subvolrootid: 452 case Opt_device: 453 /* 454 * These are parsed by btrfs_parse_early_options 455 * and can be happily ignored here. 456 */ 457 break; 458 case Opt_nodatasum: 459 btrfs_set_and_info(info, NODATASUM, 460 "setting nodatasum"); 461 break; 462 case Opt_datasum: 463 if (btrfs_test_opt(info, NODATASUM)) { 464 if (btrfs_test_opt(info, NODATACOW)) 465 btrfs_info(root->fs_info, "setting datasum, datacow enabled"); 466 else 467 btrfs_info(root->fs_info, "setting datasum"); 468 } 469 btrfs_clear_opt(info->mount_opt, NODATACOW); 470 btrfs_clear_opt(info->mount_opt, NODATASUM); 471 break; 472 case Opt_nodatacow: 473 if (!btrfs_test_opt(info, NODATACOW)) { 474 if (!btrfs_test_opt(info, COMPRESS) || 475 !btrfs_test_opt(info, FORCE_COMPRESS)) { 476 btrfs_info(root->fs_info, 477 "setting nodatacow, compression disabled"); 478 } else { 479 btrfs_info(root->fs_info, "setting nodatacow"); 480 } 481 } 482 btrfs_clear_opt(info->mount_opt, COMPRESS); 483 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 484 btrfs_set_opt(info->mount_opt, NODATACOW); 485 btrfs_set_opt(info->mount_opt, NODATASUM); 486 break; 487 case Opt_datacow: 488 btrfs_clear_and_info(info, NODATACOW, 489 "setting datacow"); 490 break; 491 case Opt_compress_force: 492 case Opt_compress_force_type: 493 compress_force = true; 494 /* Fallthrough */ 495 case Opt_compress: 496 case Opt_compress_type: 497 saved_compress_type = btrfs_test_opt(info, 498 COMPRESS) ? 499 info->compress_type : BTRFS_COMPRESS_NONE; 500 saved_compress_force = 501 btrfs_test_opt(info, FORCE_COMPRESS); 502 if (token == Opt_compress || 503 token == Opt_compress_force || 504 strcmp(args[0].from, "zlib") == 0) { 505 compress_type = "zlib"; 506 info->compress_type = BTRFS_COMPRESS_ZLIB; 507 btrfs_set_opt(info->mount_opt, COMPRESS); 508 btrfs_clear_opt(info->mount_opt, NODATACOW); 509 btrfs_clear_opt(info->mount_opt, NODATASUM); 510 no_compress = 0; 511 } else if (strcmp(args[0].from, "lzo") == 0) { 512 compress_type = "lzo"; 513 info->compress_type = BTRFS_COMPRESS_LZO; 514 btrfs_set_opt(info->mount_opt, COMPRESS); 515 btrfs_clear_opt(info->mount_opt, NODATACOW); 516 btrfs_clear_opt(info->mount_opt, NODATASUM); 517 btrfs_set_fs_incompat(info, COMPRESS_LZO); 518 no_compress = 0; 519 } else if (strncmp(args[0].from, "no", 2) == 0) { 520 compress_type = "no"; 521 btrfs_clear_opt(info->mount_opt, COMPRESS); 522 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 523 compress_force = false; 524 no_compress++; 525 } else { 526 ret = -EINVAL; 527 goto out; 528 } 529 530 if (compress_force) { 531 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 532 } else { 533 /* 534 * If we remount from compress-force=xxx to 535 * compress=xxx, we need clear FORCE_COMPRESS 536 * flag, otherwise, there is no way for users 537 * to disable forcible compression separately. 538 */ 539 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 540 } 541 if ((btrfs_test_opt(info, COMPRESS) && 542 (info->compress_type != saved_compress_type || 543 compress_force != saved_compress_force)) || 544 (!btrfs_test_opt(info, COMPRESS) && 545 no_compress == 1)) { 546 btrfs_info(root->fs_info, 547 "%s %s compression", 548 (compress_force) ? "force" : "use", 549 compress_type); 550 } 551 compress_force = false; 552 break; 553 case Opt_ssd: 554 btrfs_set_and_info(info, SSD, 555 "use ssd allocation scheme"); 556 break; 557 case Opt_ssd_spread: 558 btrfs_set_and_info(info, SSD_SPREAD, 559 "use spread ssd allocation scheme"); 560 btrfs_set_opt(info->mount_opt, SSD); 561 break; 562 case Opt_nossd: 563 btrfs_set_and_info(info, NOSSD, 564 "not using ssd allocation scheme"); 565 btrfs_clear_opt(info->mount_opt, SSD); 566 break; 567 case Opt_barrier: 568 btrfs_clear_and_info(info, NOBARRIER, 569 "turning on barriers"); 570 break; 571 case Opt_nobarrier: 572 btrfs_set_and_info(info, NOBARRIER, 573 "turning off barriers"); 574 break; 575 case Opt_thread_pool: 576 ret = match_int(&args[0], &intarg); 577 if (ret) { 578 goto out; 579 } else if (intarg > 0) { 580 info->thread_pool_size = intarg; 581 } else { 582 ret = -EINVAL; 583 goto out; 584 } 585 break; 586 case Opt_max_inline: 587 num = match_strdup(&args[0]); 588 if (num) { 589 info->max_inline = memparse(num, NULL); 590 kfree(num); 591 592 if (info->max_inline) { 593 info->max_inline = min_t(u64, 594 info->max_inline, 595 root->sectorsize); 596 } 597 btrfs_info(root->fs_info, "max_inline at %llu", 598 info->max_inline); 599 } else { 600 ret = -ENOMEM; 601 goto out; 602 } 603 break; 604 case Opt_alloc_start: 605 num = match_strdup(&args[0]); 606 if (num) { 607 mutex_lock(&info->chunk_mutex); 608 info->alloc_start = memparse(num, NULL); 609 mutex_unlock(&info->chunk_mutex); 610 kfree(num); 611 btrfs_info(root->fs_info, "allocations start at %llu", 612 info->alloc_start); 613 } else { 614 ret = -ENOMEM; 615 goto out; 616 } 617 break; 618 case Opt_acl: 619 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 620 root->fs_info->sb->s_flags |= MS_POSIXACL; 621 break; 622 #else 623 btrfs_err(root->fs_info, 624 "support for ACL not compiled in!"); 625 ret = -EINVAL; 626 goto out; 627 #endif 628 case Opt_noacl: 629 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 630 break; 631 case Opt_notreelog: 632 btrfs_set_and_info(info, NOTREELOG, 633 "disabling tree log"); 634 break; 635 case Opt_treelog: 636 btrfs_clear_and_info(info, NOTREELOG, 637 "enabling tree log"); 638 break; 639 case Opt_norecovery: 640 case Opt_nologreplay: 641 btrfs_set_and_info(info, NOLOGREPLAY, 642 "disabling log replay at mount time"); 643 break; 644 case Opt_flushoncommit: 645 btrfs_set_and_info(info, FLUSHONCOMMIT, 646 "turning on flush-on-commit"); 647 break; 648 case Opt_noflushoncommit: 649 btrfs_clear_and_info(info, FLUSHONCOMMIT, 650 "turning off flush-on-commit"); 651 break; 652 case Opt_ratio: 653 ret = match_int(&args[0], &intarg); 654 if (ret) { 655 goto out; 656 } else if (intarg >= 0) { 657 info->metadata_ratio = intarg; 658 btrfs_info(root->fs_info, "metadata ratio %d", 659 info->metadata_ratio); 660 } else { 661 ret = -EINVAL; 662 goto out; 663 } 664 break; 665 case Opt_discard: 666 btrfs_set_and_info(info, DISCARD, 667 "turning on discard"); 668 break; 669 case Opt_nodiscard: 670 btrfs_clear_and_info(info, DISCARD, 671 "turning off discard"); 672 break; 673 case Opt_space_cache: 674 case Opt_space_cache_version: 675 if (token == Opt_space_cache || 676 strcmp(args[0].from, "v1") == 0) { 677 btrfs_clear_opt(root->fs_info->mount_opt, 678 FREE_SPACE_TREE); 679 btrfs_set_and_info(info, SPACE_CACHE, 680 "enabling disk space caching"); 681 } else if (strcmp(args[0].from, "v2") == 0) { 682 btrfs_clear_opt(root->fs_info->mount_opt, 683 SPACE_CACHE); 684 btrfs_set_and_info(info, 685 FREE_SPACE_TREE, 686 "enabling free space tree"); 687 } else { 688 ret = -EINVAL; 689 goto out; 690 } 691 break; 692 case Opt_rescan_uuid_tree: 693 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 694 break; 695 case Opt_no_space_cache: 696 if (btrfs_test_opt(info, SPACE_CACHE)) { 697 btrfs_clear_and_info(info, 698 SPACE_CACHE, 699 "disabling disk space caching"); 700 } 701 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 702 btrfs_clear_and_info(info, 703 FREE_SPACE_TREE, 704 "disabling free space tree"); 705 } 706 break; 707 case Opt_inode_cache: 708 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 709 "enabling inode map caching"); 710 break; 711 case Opt_noinode_cache: 712 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 713 "disabling inode map caching"); 714 break; 715 case Opt_clear_cache: 716 btrfs_set_and_info(info, CLEAR_CACHE, 717 "force clearing of disk cache"); 718 break; 719 case Opt_user_subvol_rm_allowed: 720 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 721 break; 722 case Opt_enospc_debug: 723 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 724 break; 725 case Opt_noenospc_debug: 726 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 727 break; 728 case Opt_defrag: 729 btrfs_set_and_info(info, AUTO_DEFRAG, 730 "enabling auto defrag"); 731 break; 732 case Opt_nodefrag: 733 btrfs_clear_and_info(info, AUTO_DEFRAG, 734 "disabling auto defrag"); 735 break; 736 case Opt_recovery: 737 btrfs_warn(root->fs_info, 738 "'recovery' is deprecated, use 'usebackuproot' instead"); 739 case Opt_usebackuproot: 740 btrfs_info(root->fs_info, 741 "trying to use backup root at mount time"); 742 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 743 break; 744 case Opt_skip_balance: 745 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 746 break; 747 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 748 case Opt_check_integrity_including_extent_data: 749 btrfs_info(root->fs_info, 750 "enabling check integrity including extent data"); 751 btrfs_set_opt(info->mount_opt, 752 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 753 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 754 break; 755 case Opt_check_integrity: 756 btrfs_info(root->fs_info, "enabling check integrity"); 757 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 758 break; 759 case Opt_check_integrity_print_mask: 760 ret = match_int(&args[0], &intarg); 761 if (ret) { 762 goto out; 763 } else if (intarg >= 0) { 764 info->check_integrity_print_mask = intarg; 765 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x", 766 info->check_integrity_print_mask); 767 } else { 768 ret = -EINVAL; 769 goto out; 770 } 771 break; 772 #else 773 case Opt_check_integrity_including_extent_data: 774 case Opt_check_integrity: 775 case Opt_check_integrity_print_mask: 776 btrfs_err(root->fs_info, 777 "support for check_integrity* not compiled in!"); 778 ret = -EINVAL; 779 goto out; 780 #endif 781 case Opt_fatal_errors: 782 if (strcmp(args[0].from, "panic") == 0) 783 btrfs_set_opt(info->mount_opt, 784 PANIC_ON_FATAL_ERROR); 785 else if (strcmp(args[0].from, "bug") == 0) 786 btrfs_clear_opt(info->mount_opt, 787 PANIC_ON_FATAL_ERROR); 788 else { 789 ret = -EINVAL; 790 goto out; 791 } 792 break; 793 case Opt_commit_interval: 794 intarg = 0; 795 ret = match_int(&args[0], &intarg); 796 if (ret < 0) { 797 btrfs_err(root->fs_info, "invalid commit interval"); 798 ret = -EINVAL; 799 goto out; 800 } 801 if (intarg > 0) { 802 if (intarg > 300) { 803 btrfs_warn(root->fs_info, "excessive commit interval %d", 804 intarg); 805 } 806 info->commit_interval = intarg; 807 } else { 808 btrfs_info(root->fs_info, "using default commit interval %ds", 809 BTRFS_DEFAULT_COMMIT_INTERVAL); 810 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 811 } 812 break; 813 #ifdef CONFIG_BTRFS_DEBUG 814 case Opt_fragment_all: 815 btrfs_info(root->fs_info, "fragmenting all space"); 816 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 817 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 818 break; 819 case Opt_fragment_metadata: 820 btrfs_info(root->fs_info, "fragmenting metadata"); 821 btrfs_set_opt(info->mount_opt, 822 FRAGMENT_METADATA); 823 break; 824 case Opt_fragment_data: 825 btrfs_info(root->fs_info, "fragmenting data"); 826 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 827 break; 828 #endif 829 case Opt_err: 830 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p); 831 ret = -EINVAL; 832 goto out; 833 default: 834 break; 835 } 836 } 837 check: 838 /* 839 * Extra check for current option against current flag 840 */ 841 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) { 842 btrfs_err(root->fs_info, 843 "nologreplay must be used with ro mount option"); 844 ret = -EINVAL; 845 } 846 out: 847 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) && 848 !btrfs_test_opt(info, FREE_SPACE_TREE) && 849 !btrfs_test_opt(info, CLEAR_CACHE)) { 850 btrfs_err(root->fs_info, "cannot disable free space tree"); 851 ret = -EINVAL; 852 853 } 854 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 855 btrfs_info(root->fs_info, "disk space caching is enabled"); 856 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 857 btrfs_info(root->fs_info, "using free space tree"); 858 kfree(orig); 859 return ret; 860 } 861 862 /* 863 * Parse mount options that are required early in the mount process. 864 * 865 * All other options will be parsed on much later in the mount process and 866 * only when we need to allocate a new super block. 867 */ 868 static int btrfs_parse_early_options(const char *options, fmode_t flags, 869 void *holder, char **subvol_name, u64 *subvol_objectid, 870 struct btrfs_fs_devices **fs_devices) 871 { 872 substring_t args[MAX_OPT_ARGS]; 873 char *device_name, *opts, *orig, *p; 874 char *num = NULL; 875 int error = 0; 876 877 if (!options) 878 return 0; 879 880 /* 881 * strsep changes the string, duplicate it because parse_options 882 * gets called twice 883 */ 884 opts = kstrdup(options, GFP_KERNEL); 885 if (!opts) 886 return -ENOMEM; 887 orig = opts; 888 889 while ((p = strsep(&opts, ",")) != NULL) { 890 int token; 891 if (!*p) 892 continue; 893 894 token = match_token(p, tokens, args); 895 switch (token) { 896 case Opt_subvol: 897 kfree(*subvol_name); 898 *subvol_name = match_strdup(&args[0]); 899 if (!*subvol_name) { 900 error = -ENOMEM; 901 goto out; 902 } 903 break; 904 case Opt_subvolid: 905 num = match_strdup(&args[0]); 906 if (num) { 907 *subvol_objectid = memparse(num, NULL); 908 kfree(num); 909 /* we want the original fs_tree */ 910 if (!*subvol_objectid) 911 *subvol_objectid = 912 BTRFS_FS_TREE_OBJECTID; 913 } else { 914 error = -EINVAL; 915 goto out; 916 } 917 break; 918 case Opt_subvolrootid: 919 printk(KERN_WARNING 920 "BTRFS: 'subvolrootid' mount option is deprecated and has " 921 "no effect\n"); 922 break; 923 case Opt_device: 924 device_name = match_strdup(&args[0]); 925 if (!device_name) { 926 error = -ENOMEM; 927 goto out; 928 } 929 error = btrfs_scan_one_device(device_name, 930 flags, holder, fs_devices); 931 kfree(device_name); 932 if (error) 933 goto out; 934 break; 935 default: 936 break; 937 } 938 } 939 940 out: 941 kfree(orig); 942 return error; 943 } 944 945 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 946 u64 subvol_objectid) 947 { 948 struct btrfs_root *root = fs_info->tree_root; 949 struct btrfs_root *fs_root; 950 struct btrfs_root_ref *root_ref; 951 struct btrfs_inode_ref *inode_ref; 952 struct btrfs_key key; 953 struct btrfs_path *path = NULL; 954 char *name = NULL, *ptr; 955 u64 dirid; 956 int len; 957 int ret; 958 959 path = btrfs_alloc_path(); 960 if (!path) { 961 ret = -ENOMEM; 962 goto err; 963 } 964 path->leave_spinning = 1; 965 966 name = kmalloc(PATH_MAX, GFP_NOFS); 967 if (!name) { 968 ret = -ENOMEM; 969 goto err; 970 } 971 ptr = name + PATH_MAX - 1; 972 ptr[0] = '\0'; 973 974 /* 975 * Walk up the subvolume trees in the tree of tree roots by root 976 * backrefs until we hit the top-level subvolume. 977 */ 978 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 979 key.objectid = subvol_objectid; 980 key.type = BTRFS_ROOT_BACKREF_KEY; 981 key.offset = (u64)-1; 982 983 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 984 if (ret < 0) { 985 goto err; 986 } else if (ret > 0) { 987 ret = btrfs_previous_item(root, path, subvol_objectid, 988 BTRFS_ROOT_BACKREF_KEY); 989 if (ret < 0) { 990 goto err; 991 } else if (ret > 0) { 992 ret = -ENOENT; 993 goto err; 994 } 995 } 996 997 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 998 subvol_objectid = key.offset; 999 1000 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1001 struct btrfs_root_ref); 1002 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1003 ptr -= len + 1; 1004 if (ptr < name) { 1005 ret = -ENAMETOOLONG; 1006 goto err; 1007 } 1008 read_extent_buffer(path->nodes[0], ptr + 1, 1009 (unsigned long)(root_ref + 1), len); 1010 ptr[0] = '/'; 1011 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1012 btrfs_release_path(path); 1013 1014 key.objectid = subvol_objectid; 1015 key.type = BTRFS_ROOT_ITEM_KEY; 1016 key.offset = (u64)-1; 1017 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1018 if (IS_ERR(fs_root)) { 1019 ret = PTR_ERR(fs_root); 1020 goto err; 1021 } 1022 1023 /* 1024 * Walk up the filesystem tree by inode refs until we hit the 1025 * root directory. 1026 */ 1027 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1028 key.objectid = dirid; 1029 key.type = BTRFS_INODE_REF_KEY; 1030 key.offset = (u64)-1; 1031 1032 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1033 if (ret < 0) { 1034 goto err; 1035 } else if (ret > 0) { 1036 ret = btrfs_previous_item(fs_root, path, dirid, 1037 BTRFS_INODE_REF_KEY); 1038 if (ret < 0) { 1039 goto err; 1040 } else if (ret > 0) { 1041 ret = -ENOENT; 1042 goto err; 1043 } 1044 } 1045 1046 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1047 dirid = key.offset; 1048 1049 inode_ref = btrfs_item_ptr(path->nodes[0], 1050 path->slots[0], 1051 struct btrfs_inode_ref); 1052 len = btrfs_inode_ref_name_len(path->nodes[0], 1053 inode_ref); 1054 ptr -= len + 1; 1055 if (ptr < name) { 1056 ret = -ENAMETOOLONG; 1057 goto err; 1058 } 1059 read_extent_buffer(path->nodes[0], ptr + 1, 1060 (unsigned long)(inode_ref + 1), len); 1061 ptr[0] = '/'; 1062 btrfs_release_path(path); 1063 } 1064 } 1065 1066 btrfs_free_path(path); 1067 if (ptr == name + PATH_MAX - 1) { 1068 name[0] = '/'; 1069 name[1] = '\0'; 1070 } else { 1071 memmove(name, ptr, name + PATH_MAX - ptr); 1072 } 1073 return name; 1074 1075 err: 1076 btrfs_free_path(path); 1077 kfree(name); 1078 return ERR_PTR(ret); 1079 } 1080 1081 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1082 { 1083 struct btrfs_root *root = fs_info->tree_root; 1084 struct btrfs_dir_item *di; 1085 struct btrfs_path *path; 1086 struct btrfs_key location; 1087 u64 dir_id; 1088 1089 path = btrfs_alloc_path(); 1090 if (!path) 1091 return -ENOMEM; 1092 path->leave_spinning = 1; 1093 1094 /* 1095 * Find the "default" dir item which points to the root item that we 1096 * will mount by default if we haven't been given a specific subvolume 1097 * to mount. 1098 */ 1099 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1100 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1101 if (IS_ERR(di)) { 1102 btrfs_free_path(path); 1103 return PTR_ERR(di); 1104 } 1105 if (!di) { 1106 /* 1107 * Ok the default dir item isn't there. This is weird since 1108 * it's always been there, but don't freak out, just try and 1109 * mount the top-level subvolume. 1110 */ 1111 btrfs_free_path(path); 1112 *objectid = BTRFS_FS_TREE_OBJECTID; 1113 return 0; 1114 } 1115 1116 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1117 btrfs_free_path(path); 1118 *objectid = location.objectid; 1119 return 0; 1120 } 1121 1122 static int btrfs_fill_super(struct super_block *sb, 1123 struct btrfs_fs_devices *fs_devices, 1124 void *data, int silent) 1125 { 1126 struct inode *inode; 1127 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1128 struct btrfs_key key; 1129 int err; 1130 1131 sb->s_maxbytes = MAX_LFS_FILESIZE; 1132 sb->s_magic = BTRFS_SUPER_MAGIC; 1133 sb->s_op = &btrfs_super_ops; 1134 sb->s_d_op = &btrfs_dentry_operations; 1135 sb->s_export_op = &btrfs_export_ops; 1136 sb->s_xattr = btrfs_xattr_handlers; 1137 sb->s_time_gran = 1; 1138 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1139 sb->s_flags |= MS_POSIXACL; 1140 #endif 1141 sb->s_flags |= MS_I_VERSION; 1142 sb->s_iflags |= SB_I_CGROUPWB; 1143 err = open_ctree(sb, fs_devices, (char *)data); 1144 if (err) { 1145 printk(KERN_ERR "BTRFS: open_ctree failed\n"); 1146 return err; 1147 } 1148 1149 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1150 key.type = BTRFS_INODE_ITEM_KEY; 1151 key.offset = 0; 1152 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1153 if (IS_ERR(inode)) { 1154 err = PTR_ERR(inode); 1155 goto fail_close; 1156 } 1157 1158 sb->s_root = d_make_root(inode); 1159 if (!sb->s_root) { 1160 err = -ENOMEM; 1161 goto fail_close; 1162 } 1163 1164 save_mount_options(sb, data); 1165 cleancache_init_fs(sb); 1166 sb->s_flags |= MS_ACTIVE; 1167 return 0; 1168 1169 fail_close: 1170 close_ctree(fs_info->tree_root); 1171 return err; 1172 } 1173 1174 int btrfs_sync_fs(struct super_block *sb, int wait) 1175 { 1176 struct btrfs_trans_handle *trans; 1177 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1178 struct btrfs_root *root = fs_info->tree_root; 1179 1180 trace_btrfs_sync_fs(fs_info, wait); 1181 1182 if (!wait) { 1183 filemap_flush(fs_info->btree_inode->i_mapping); 1184 return 0; 1185 } 1186 1187 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1188 1189 trans = btrfs_attach_transaction_barrier(root); 1190 if (IS_ERR(trans)) { 1191 /* no transaction, don't bother */ 1192 if (PTR_ERR(trans) == -ENOENT) { 1193 /* 1194 * Exit unless we have some pending changes 1195 * that need to go through commit 1196 */ 1197 if (fs_info->pending_changes == 0) 1198 return 0; 1199 /* 1200 * A non-blocking test if the fs is frozen. We must not 1201 * start a new transaction here otherwise a deadlock 1202 * happens. The pending operations are delayed to the 1203 * next commit after thawing. 1204 */ 1205 if (__sb_start_write(sb, SB_FREEZE_WRITE, false)) 1206 __sb_end_write(sb, SB_FREEZE_WRITE); 1207 else 1208 return 0; 1209 trans = btrfs_start_transaction(root, 0); 1210 } 1211 if (IS_ERR(trans)) 1212 return PTR_ERR(trans); 1213 } 1214 return btrfs_commit_transaction(trans, root); 1215 } 1216 1217 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1218 { 1219 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1220 struct btrfs_root *root = info->tree_root; 1221 char *compress_type; 1222 1223 if (btrfs_test_opt(info, DEGRADED)) 1224 seq_puts(seq, ",degraded"); 1225 if (btrfs_test_opt(info, NODATASUM)) 1226 seq_puts(seq, ",nodatasum"); 1227 if (btrfs_test_opt(info, NODATACOW)) 1228 seq_puts(seq, ",nodatacow"); 1229 if (btrfs_test_opt(info, NOBARRIER)) 1230 seq_puts(seq, ",nobarrier"); 1231 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1232 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1233 if (info->alloc_start != 0) 1234 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1235 if (info->thread_pool_size != min_t(unsigned long, 1236 num_online_cpus() + 2, 8)) 1237 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1238 if (btrfs_test_opt(info, COMPRESS)) { 1239 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1240 compress_type = "zlib"; 1241 else 1242 compress_type = "lzo"; 1243 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1244 seq_printf(seq, ",compress-force=%s", compress_type); 1245 else 1246 seq_printf(seq, ",compress=%s", compress_type); 1247 } 1248 if (btrfs_test_opt(info, NOSSD)) 1249 seq_puts(seq, ",nossd"); 1250 if (btrfs_test_opt(info, SSD_SPREAD)) 1251 seq_puts(seq, ",ssd_spread"); 1252 else if (btrfs_test_opt(info, SSD)) 1253 seq_puts(seq, ",ssd"); 1254 if (btrfs_test_opt(info, NOTREELOG)) 1255 seq_puts(seq, ",notreelog"); 1256 if (btrfs_test_opt(info, NOLOGREPLAY)) 1257 seq_puts(seq, ",nologreplay"); 1258 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1259 seq_puts(seq, ",flushoncommit"); 1260 if (btrfs_test_opt(info, DISCARD)) 1261 seq_puts(seq, ",discard"); 1262 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 1263 seq_puts(seq, ",noacl"); 1264 if (btrfs_test_opt(info, SPACE_CACHE)) 1265 seq_puts(seq, ",space_cache"); 1266 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1267 seq_puts(seq, ",space_cache=v2"); 1268 else 1269 seq_puts(seq, ",nospace_cache"); 1270 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1271 seq_puts(seq, ",rescan_uuid_tree"); 1272 if (btrfs_test_opt(info, CLEAR_CACHE)) 1273 seq_puts(seq, ",clear_cache"); 1274 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1275 seq_puts(seq, ",user_subvol_rm_allowed"); 1276 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1277 seq_puts(seq, ",enospc_debug"); 1278 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1279 seq_puts(seq, ",autodefrag"); 1280 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1281 seq_puts(seq, ",inode_cache"); 1282 if (btrfs_test_opt(info, SKIP_BALANCE)) 1283 seq_puts(seq, ",skip_balance"); 1284 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1285 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1286 seq_puts(seq, ",check_int_data"); 1287 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1288 seq_puts(seq, ",check_int"); 1289 if (info->check_integrity_print_mask) 1290 seq_printf(seq, ",check_int_print_mask=%d", 1291 info->check_integrity_print_mask); 1292 #endif 1293 if (info->metadata_ratio) 1294 seq_printf(seq, ",metadata_ratio=%d", 1295 info->metadata_ratio); 1296 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1297 seq_puts(seq, ",fatal_errors=panic"); 1298 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1299 seq_printf(seq, ",commit=%d", info->commit_interval); 1300 #ifdef CONFIG_BTRFS_DEBUG 1301 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1302 seq_puts(seq, ",fragment=data"); 1303 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1304 seq_puts(seq, ",fragment=metadata"); 1305 #endif 1306 seq_printf(seq, ",subvolid=%llu", 1307 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1308 seq_puts(seq, ",subvol="); 1309 seq_dentry(seq, dentry, " \t\n\\"); 1310 return 0; 1311 } 1312 1313 static int btrfs_test_super(struct super_block *s, void *data) 1314 { 1315 struct btrfs_fs_info *p = data; 1316 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1317 1318 return fs_info->fs_devices == p->fs_devices; 1319 } 1320 1321 static int btrfs_set_super(struct super_block *s, void *data) 1322 { 1323 int err = set_anon_super(s, data); 1324 if (!err) 1325 s->s_fs_info = data; 1326 return err; 1327 } 1328 1329 /* 1330 * subvolumes are identified by ino 256 1331 */ 1332 static inline int is_subvolume_inode(struct inode *inode) 1333 { 1334 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1335 return 1; 1336 return 0; 1337 } 1338 1339 /* 1340 * This will add subvolid=0 to the argument string while removing any subvol= 1341 * and subvolid= arguments to make sure we get the top-level root for path 1342 * walking to the subvol we want. 1343 */ 1344 static char *setup_root_args(char *args) 1345 { 1346 char *buf, *dst, *sep; 1347 1348 if (!args) 1349 return kstrdup("subvolid=0", GFP_NOFS); 1350 1351 /* The worst case is that we add ",subvolid=0" to the end. */ 1352 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS); 1353 if (!buf) 1354 return NULL; 1355 1356 while (1) { 1357 sep = strchrnul(args, ','); 1358 if (!strstarts(args, "subvol=") && 1359 !strstarts(args, "subvolid=")) { 1360 memcpy(dst, args, sep - args); 1361 dst += sep - args; 1362 *dst++ = ','; 1363 } 1364 if (*sep) 1365 args = sep + 1; 1366 else 1367 break; 1368 } 1369 strcpy(dst, "subvolid=0"); 1370 1371 return buf; 1372 } 1373 1374 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1375 int flags, const char *device_name, 1376 char *data) 1377 { 1378 struct dentry *root; 1379 struct vfsmount *mnt = NULL; 1380 char *newargs; 1381 int ret; 1382 1383 newargs = setup_root_args(data); 1384 if (!newargs) { 1385 root = ERR_PTR(-ENOMEM); 1386 goto out; 1387 } 1388 1389 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); 1390 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { 1391 if (flags & MS_RDONLY) { 1392 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, 1393 device_name, newargs); 1394 } else { 1395 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, 1396 device_name, newargs); 1397 if (IS_ERR(mnt)) { 1398 root = ERR_CAST(mnt); 1399 mnt = NULL; 1400 goto out; 1401 } 1402 1403 down_write(&mnt->mnt_sb->s_umount); 1404 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1405 up_write(&mnt->mnt_sb->s_umount); 1406 if (ret < 0) { 1407 root = ERR_PTR(ret); 1408 goto out; 1409 } 1410 } 1411 } 1412 if (IS_ERR(mnt)) { 1413 root = ERR_CAST(mnt); 1414 mnt = NULL; 1415 goto out; 1416 } 1417 1418 if (!subvol_name) { 1419 if (!subvol_objectid) { 1420 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1421 &subvol_objectid); 1422 if (ret) { 1423 root = ERR_PTR(ret); 1424 goto out; 1425 } 1426 } 1427 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1428 subvol_objectid); 1429 if (IS_ERR(subvol_name)) { 1430 root = ERR_CAST(subvol_name); 1431 subvol_name = NULL; 1432 goto out; 1433 } 1434 1435 } 1436 1437 root = mount_subtree(mnt, subvol_name); 1438 /* mount_subtree() drops our reference on the vfsmount. */ 1439 mnt = NULL; 1440 1441 if (!IS_ERR(root)) { 1442 struct super_block *s = root->d_sb; 1443 struct inode *root_inode = d_inode(root); 1444 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1445 1446 ret = 0; 1447 if (!is_subvolume_inode(root_inode)) { 1448 pr_err("BTRFS: '%s' is not a valid subvolume\n", 1449 subvol_name); 1450 ret = -EINVAL; 1451 } 1452 if (subvol_objectid && root_objectid != subvol_objectid) { 1453 /* 1454 * This will also catch a race condition where a 1455 * subvolume which was passed by ID is renamed and 1456 * another subvolume is renamed over the old location. 1457 */ 1458 pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n", 1459 subvol_name, subvol_objectid); 1460 ret = -EINVAL; 1461 } 1462 if (ret) { 1463 dput(root); 1464 root = ERR_PTR(ret); 1465 deactivate_locked_super(s); 1466 } 1467 } 1468 1469 out: 1470 mntput(mnt); 1471 kfree(newargs); 1472 kfree(subvol_name); 1473 return root; 1474 } 1475 1476 static int parse_security_options(char *orig_opts, 1477 struct security_mnt_opts *sec_opts) 1478 { 1479 char *secdata = NULL; 1480 int ret = 0; 1481 1482 secdata = alloc_secdata(); 1483 if (!secdata) 1484 return -ENOMEM; 1485 ret = security_sb_copy_data(orig_opts, secdata); 1486 if (ret) { 1487 free_secdata(secdata); 1488 return ret; 1489 } 1490 ret = security_sb_parse_opts_str(secdata, sec_opts); 1491 free_secdata(secdata); 1492 return ret; 1493 } 1494 1495 static int setup_security_options(struct btrfs_fs_info *fs_info, 1496 struct super_block *sb, 1497 struct security_mnt_opts *sec_opts) 1498 { 1499 int ret = 0; 1500 1501 /* 1502 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1503 * is valid. 1504 */ 1505 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1506 if (ret) 1507 return ret; 1508 1509 #ifdef CONFIG_SECURITY 1510 if (!fs_info->security_opts.num_mnt_opts) { 1511 /* first time security setup, copy sec_opts to fs_info */ 1512 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1513 } else { 1514 /* 1515 * Since SELinux (the only one supporting security_mnt_opts) 1516 * does NOT support changing context during remount/mount of 1517 * the same sb, this must be the same or part of the same 1518 * security options, just free it. 1519 */ 1520 security_free_mnt_opts(sec_opts); 1521 } 1522 #endif 1523 return ret; 1524 } 1525 1526 /* 1527 * Find a superblock for the given device / mount point. 1528 * 1529 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1530 * for multiple device setup. Make sure to keep it in sync. 1531 */ 1532 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1533 const char *device_name, void *data) 1534 { 1535 struct block_device *bdev = NULL; 1536 struct super_block *s; 1537 struct btrfs_fs_devices *fs_devices = NULL; 1538 struct btrfs_fs_info *fs_info = NULL; 1539 struct security_mnt_opts new_sec_opts; 1540 fmode_t mode = FMODE_READ; 1541 char *subvol_name = NULL; 1542 u64 subvol_objectid = 0; 1543 int error = 0; 1544 1545 if (!(flags & MS_RDONLY)) 1546 mode |= FMODE_WRITE; 1547 1548 error = btrfs_parse_early_options(data, mode, fs_type, 1549 &subvol_name, &subvol_objectid, 1550 &fs_devices); 1551 if (error) { 1552 kfree(subvol_name); 1553 return ERR_PTR(error); 1554 } 1555 1556 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1557 /* mount_subvol() will free subvol_name. */ 1558 return mount_subvol(subvol_name, subvol_objectid, flags, 1559 device_name, data); 1560 } 1561 1562 security_init_mnt_opts(&new_sec_opts); 1563 if (data) { 1564 error = parse_security_options(data, &new_sec_opts); 1565 if (error) 1566 return ERR_PTR(error); 1567 } 1568 1569 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1570 if (error) 1571 goto error_sec_opts; 1572 1573 /* 1574 * Setup a dummy root and fs_info for test/set super. This is because 1575 * we don't actually fill this stuff out until open_ctree, but we need 1576 * it for searching for existing supers, so this lets us do that and 1577 * then open_ctree will properly initialize everything later. 1578 */ 1579 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1580 if (!fs_info) { 1581 error = -ENOMEM; 1582 goto error_sec_opts; 1583 } 1584 1585 fs_info->fs_devices = fs_devices; 1586 1587 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1588 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1589 security_init_mnt_opts(&fs_info->security_opts); 1590 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1591 error = -ENOMEM; 1592 goto error_fs_info; 1593 } 1594 1595 error = btrfs_open_devices(fs_devices, mode, fs_type); 1596 if (error) 1597 goto error_fs_info; 1598 1599 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1600 error = -EACCES; 1601 goto error_close_devices; 1602 } 1603 1604 bdev = fs_devices->latest_bdev; 1605 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1606 fs_info); 1607 if (IS_ERR(s)) { 1608 error = PTR_ERR(s); 1609 goto error_close_devices; 1610 } 1611 1612 if (s->s_root) { 1613 btrfs_close_devices(fs_devices); 1614 free_fs_info(fs_info); 1615 if ((flags ^ s->s_flags) & MS_RDONLY) 1616 error = -EBUSY; 1617 } else { 1618 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1619 btrfs_sb(s)->bdev_holder = fs_type; 1620 error = btrfs_fill_super(s, fs_devices, data, 1621 flags & MS_SILENT ? 1 : 0); 1622 } 1623 if (error) { 1624 deactivate_locked_super(s); 1625 goto error_sec_opts; 1626 } 1627 1628 fs_info = btrfs_sb(s); 1629 error = setup_security_options(fs_info, s, &new_sec_opts); 1630 if (error) { 1631 deactivate_locked_super(s); 1632 goto error_sec_opts; 1633 } 1634 1635 return dget(s->s_root); 1636 1637 error_close_devices: 1638 btrfs_close_devices(fs_devices); 1639 error_fs_info: 1640 free_fs_info(fs_info); 1641 error_sec_opts: 1642 security_free_mnt_opts(&new_sec_opts); 1643 return ERR_PTR(error); 1644 } 1645 1646 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1647 int new_pool_size, int old_pool_size) 1648 { 1649 if (new_pool_size == old_pool_size) 1650 return; 1651 1652 fs_info->thread_pool_size = new_pool_size; 1653 1654 btrfs_info(fs_info, "resize thread pool %d -> %d", 1655 old_pool_size, new_pool_size); 1656 1657 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1658 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1659 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1660 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1661 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1662 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1663 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1664 new_pool_size); 1665 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1666 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1667 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1668 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1669 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1670 new_pool_size); 1671 } 1672 1673 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1674 { 1675 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1676 } 1677 1678 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1679 unsigned long old_opts, int flags) 1680 { 1681 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1682 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1683 (flags & MS_RDONLY))) { 1684 /* wait for any defraggers to finish */ 1685 wait_event(fs_info->transaction_wait, 1686 (atomic_read(&fs_info->defrag_running) == 0)); 1687 if (flags & MS_RDONLY) 1688 sync_filesystem(fs_info->sb); 1689 } 1690 } 1691 1692 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1693 unsigned long old_opts) 1694 { 1695 /* 1696 * We need to cleanup all defragable inodes if the autodefragment is 1697 * close or the filesystem is read only. 1698 */ 1699 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1700 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1701 (fs_info->sb->s_flags & MS_RDONLY))) { 1702 btrfs_cleanup_defrag_inodes(fs_info); 1703 } 1704 1705 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1706 } 1707 1708 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1709 { 1710 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1711 struct btrfs_root *root = fs_info->tree_root; 1712 unsigned old_flags = sb->s_flags; 1713 unsigned long old_opts = fs_info->mount_opt; 1714 unsigned long old_compress_type = fs_info->compress_type; 1715 u64 old_max_inline = fs_info->max_inline; 1716 u64 old_alloc_start = fs_info->alloc_start; 1717 int old_thread_pool_size = fs_info->thread_pool_size; 1718 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1719 int ret; 1720 1721 sync_filesystem(sb); 1722 btrfs_remount_prepare(fs_info); 1723 1724 if (data) { 1725 struct security_mnt_opts new_sec_opts; 1726 1727 security_init_mnt_opts(&new_sec_opts); 1728 ret = parse_security_options(data, &new_sec_opts); 1729 if (ret) 1730 goto restore; 1731 ret = setup_security_options(fs_info, sb, 1732 &new_sec_opts); 1733 if (ret) { 1734 security_free_mnt_opts(&new_sec_opts); 1735 goto restore; 1736 } 1737 } 1738 1739 ret = btrfs_parse_options(root, data, *flags); 1740 if (ret) { 1741 ret = -EINVAL; 1742 goto restore; 1743 } 1744 1745 btrfs_remount_begin(fs_info, old_opts, *flags); 1746 btrfs_resize_thread_pool(fs_info, 1747 fs_info->thread_pool_size, old_thread_pool_size); 1748 1749 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1750 goto out; 1751 1752 if (*flags & MS_RDONLY) { 1753 /* 1754 * this also happens on 'umount -rf' or on shutdown, when 1755 * the filesystem is busy. 1756 */ 1757 cancel_work_sync(&fs_info->async_reclaim_work); 1758 1759 /* wait for the uuid_scan task to finish */ 1760 down(&fs_info->uuid_tree_rescan_sem); 1761 /* avoid complains from lockdep et al. */ 1762 up(&fs_info->uuid_tree_rescan_sem); 1763 1764 sb->s_flags |= MS_RDONLY; 1765 1766 /* 1767 * Setting MS_RDONLY will put the cleaner thread to 1768 * sleep at the next loop if it's already active. 1769 * If it's already asleep, we'll leave unused block 1770 * groups on disk until we're mounted read-write again 1771 * unless we clean them up here. 1772 */ 1773 btrfs_delete_unused_bgs(fs_info); 1774 1775 btrfs_dev_replace_suspend_for_unmount(fs_info); 1776 btrfs_scrub_cancel(fs_info); 1777 btrfs_pause_balance(fs_info); 1778 1779 ret = btrfs_commit_super(root); 1780 if (ret) 1781 goto restore; 1782 } else { 1783 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1784 btrfs_err(fs_info, 1785 "Remounting read-write after error is not allowed"); 1786 ret = -EINVAL; 1787 goto restore; 1788 } 1789 if (fs_info->fs_devices->rw_devices == 0) { 1790 ret = -EACCES; 1791 goto restore; 1792 } 1793 1794 if (fs_info->fs_devices->missing_devices > 1795 fs_info->num_tolerated_disk_barrier_failures && 1796 !(*flags & MS_RDONLY)) { 1797 btrfs_warn(fs_info, 1798 "too many missing devices, writeable remount is not allowed"); 1799 ret = -EACCES; 1800 goto restore; 1801 } 1802 1803 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1804 ret = -EINVAL; 1805 goto restore; 1806 } 1807 1808 ret = btrfs_cleanup_fs_roots(fs_info); 1809 if (ret) 1810 goto restore; 1811 1812 /* recover relocation */ 1813 mutex_lock(&fs_info->cleaner_mutex); 1814 ret = btrfs_recover_relocation(root); 1815 mutex_unlock(&fs_info->cleaner_mutex); 1816 if (ret) 1817 goto restore; 1818 1819 ret = btrfs_resume_balance_async(fs_info); 1820 if (ret) 1821 goto restore; 1822 1823 ret = btrfs_resume_dev_replace_async(fs_info); 1824 if (ret) { 1825 btrfs_warn(fs_info, "failed to resume dev_replace"); 1826 goto restore; 1827 } 1828 1829 if (!fs_info->uuid_root) { 1830 btrfs_info(fs_info, "creating UUID tree"); 1831 ret = btrfs_create_uuid_tree(fs_info); 1832 if (ret) { 1833 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret); 1834 goto restore; 1835 } 1836 } 1837 sb->s_flags &= ~MS_RDONLY; 1838 1839 fs_info->open = 1; 1840 } 1841 out: 1842 wake_up_process(fs_info->transaction_kthread); 1843 btrfs_remount_cleanup(fs_info, old_opts); 1844 return 0; 1845 1846 restore: 1847 /* We've hit an error - don't reset MS_RDONLY */ 1848 if (sb->s_flags & MS_RDONLY) 1849 old_flags |= MS_RDONLY; 1850 sb->s_flags = old_flags; 1851 fs_info->mount_opt = old_opts; 1852 fs_info->compress_type = old_compress_type; 1853 fs_info->max_inline = old_max_inline; 1854 mutex_lock(&fs_info->chunk_mutex); 1855 fs_info->alloc_start = old_alloc_start; 1856 mutex_unlock(&fs_info->chunk_mutex); 1857 btrfs_resize_thread_pool(fs_info, 1858 old_thread_pool_size, fs_info->thread_pool_size); 1859 fs_info->metadata_ratio = old_metadata_ratio; 1860 btrfs_remount_cleanup(fs_info, old_opts); 1861 return ret; 1862 } 1863 1864 /* Used to sort the devices by max_avail(descending sort) */ 1865 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1866 const void *dev_info2) 1867 { 1868 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1869 ((struct btrfs_device_info *)dev_info2)->max_avail) 1870 return -1; 1871 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1872 ((struct btrfs_device_info *)dev_info2)->max_avail) 1873 return 1; 1874 else 1875 return 0; 1876 } 1877 1878 /* 1879 * sort the devices by max_avail, in which max free extent size of each device 1880 * is stored.(Descending Sort) 1881 */ 1882 static inline void btrfs_descending_sort_devices( 1883 struct btrfs_device_info *devices, 1884 size_t nr_devices) 1885 { 1886 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1887 btrfs_cmp_device_free_bytes, NULL); 1888 } 1889 1890 /* 1891 * The helper to calc the free space on the devices that can be used to store 1892 * file data. 1893 */ 1894 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1895 { 1896 struct btrfs_fs_info *fs_info = root->fs_info; 1897 struct btrfs_device_info *devices_info; 1898 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1899 struct btrfs_device *device; 1900 u64 skip_space; 1901 u64 type; 1902 u64 avail_space; 1903 u64 used_space; 1904 u64 min_stripe_size; 1905 int min_stripes = 1, num_stripes = 1; 1906 int i = 0, nr_devices; 1907 int ret; 1908 1909 /* 1910 * We aren't under the device list lock, so this is racy-ish, but good 1911 * enough for our purposes. 1912 */ 1913 nr_devices = fs_info->fs_devices->open_devices; 1914 if (!nr_devices) { 1915 smp_mb(); 1916 nr_devices = fs_info->fs_devices->open_devices; 1917 ASSERT(nr_devices); 1918 if (!nr_devices) { 1919 *free_bytes = 0; 1920 return 0; 1921 } 1922 } 1923 1924 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1925 GFP_NOFS); 1926 if (!devices_info) 1927 return -ENOMEM; 1928 1929 /* calc min stripe number for data space allocation */ 1930 type = btrfs_get_alloc_profile(root, 1); 1931 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1932 min_stripes = 2; 1933 num_stripes = nr_devices; 1934 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1935 min_stripes = 2; 1936 num_stripes = 2; 1937 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1938 min_stripes = 4; 1939 num_stripes = 4; 1940 } 1941 1942 if (type & BTRFS_BLOCK_GROUP_DUP) 1943 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1944 else 1945 min_stripe_size = BTRFS_STRIPE_LEN; 1946 1947 if (fs_info->alloc_start) 1948 mutex_lock(&fs_devices->device_list_mutex); 1949 rcu_read_lock(); 1950 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1951 if (!device->in_fs_metadata || !device->bdev || 1952 device->is_tgtdev_for_dev_replace) 1953 continue; 1954 1955 if (i >= nr_devices) 1956 break; 1957 1958 avail_space = device->total_bytes - device->bytes_used; 1959 1960 /* align with stripe_len */ 1961 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1962 avail_space *= BTRFS_STRIPE_LEN; 1963 1964 /* 1965 * In order to avoid overwriting the superblock on the drive, 1966 * btrfs starts at an offset of at least 1MB when doing chunk 1967 * allocation. 1968 */ 1969 skip_space = SZ_1M; 1970 1971 /* user can set the offset in fs_info->alloc_start. */ 1972 if (fs_info->alloc_start && 1973 fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1974 device->total_bytes) { 1975 rcu_read_unlock(); 1976 skip_space = max(fs_info->alloc_start, skip_space); 1977 1978 /* 1979 * btrfs can not use the free space in 1980 * [0, skip_space - 1], we must subtract it from the 1981 * total. In order to implement it, we account the used 1982 * space in this range first. 1983 */ 1984 ret = btrfs_account_dev_extents_size(device, 0, 1985 skip_space - 1, 1986 &used_space); 1987 if (ret) { 1988 kfree(devices_info); 1989 mutex_unlock(&fs_devices->device_list_mutex); 1990 return ret; 1991 } 1992 1993 rcu_read_lock(); 1994 1995 /* calc the free space in [0, skip_space - 1] */ 1996 skip_space -= used_space; 1997 } 1998 1999 /* 2000 * we can use the free space in [0, skip_space - 1], subtract 2001 * it from the total. 2002 */ 2003 if (avail_space && avail_space >= skip_space) 2004 avail_space -= skip_space; 2005 else 2006 avail_space = 0; 2007 2008 if (avail_space < min_stripe_size) 2009 continue; 2010 2011 devices_info[i].dev = device; 2012 devices_info[i].max_avail = avail_space; 2013 2014 i++; 2015 } 2016 rcu_read_unlock(); 2017 if (fs_info->alloc_start) 2018 mutex_unlock(&fs_devices->device_list_mutex); 2019 2020 nr_devices = i; 2021 2022 btrfs_descending_sort_devices(devices_info, nr_devices); 2023 2024 i = nr_devices - 1; 2025 avail_space = 0; 2026 while (nr_devices >= min_stripes) { 2027 if (num_stripes > nr_devices) 2028 num_stripes = nr_devices; 2029 2030 if (devices_info[i].max_avail >= min_stripe_size) { 2031 int j; 2032 u64 alloc_size; 2033 2034 avail_space += devices_info[i].max_avail * num_stripes; 2035 alloc_size = devices_info[i].max_avail; 2036 for (j = i + 1 - num_stripes; j <= i; j++) 2037 devices_info[j].max_avail -= alloc_size; 2038 } 2039 i--; 2040 nr_devices--; 2041 } 2042 2043 kfree(devices_info); 2044 *free_bytes = avail_space; 2045 return 0; 2046 } 2047 2048 /* 2049 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2050 * 2051 * If there's a redundant raid level at DATA block groups, use the respective 2052 * multiplier to scale the sizes. 2053 * 2054 * Unused device space usage is based on simulating the chunk allocator 2055 * algorithm that respects the device sizes, order of allocations and the 2056 * 'alloc_start' value, this is a close approximation of the actual use but 2057 * there are other factors that may change the result (like a new metadata 2058 * chunk). 2059 * 2060 * If metadata is exhausted, f_bavail will be 0. 2061 */ 2062 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2063 { 2064 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2065 struct btrfs_super_block *disk_super = fs_info->super_copy; 2066 struct list_head *head = &fs_info->space_info; 2067 struct btrfs_space_info *found; 2068 u64 total_used = 0; 2069 u64 total_free_data = 0; 2070 u64 total_free_meta = 0; 2071 int bits = dentry->d_sb->s_blocksize_bits; 2072 __be32 *fsid = (__be32 *)fs_info->fsid; 2073 unsigned factor = 1; 2074 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2075 int ret; 2076 u64 thresh = 0; 2077 int mixed = 0; 2078 2079 /* 2080 * holding chunk_mutex to avoid allocating new chunks, holding 2081 * device_list_mutex to avoid the device being removed 2082 */ 2083 rcu_read_lock(); 2084 list_for_each_entry_rcu(found, head, list) { 2085 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2086 int i; 2087 2088 total_free_data += found->disk_total - found->disk_used; 2089 total_free_data -= 2090 btrfs_account_ro_block_groups_free_space(found); 2091 2092 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2093 if (!list_empty(&found->block_groups[i])) { 2094 switch (i) { 2095 case BTRFS_RAID_DUP: 2096 case BTRFS_RAID_RAID1: 2097 case BTRFS_RAID_RAID10: 2098 factor = 2; 2099 } 2100 } 2101 } 2102 } 2103 2104 /* 2105 * Metadata in mixed block goup profiles are accounted in data 2106 */ 2107 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2108 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2109 mixed = 1; 2110 else 2111 total_free_meta += found->disk_total - 2112 found->disk_used; 2113 } 2114 2115 total_used += found->disk_used; 2116 } 2117 2118 rcu_read_unlock(); 2119 2120 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2121 buf->f_blocks >>= bits; 2122 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2123 2124 /* Account global block reserve as used, it's in logical size already */ 2125 spin_lock(&block_rsv->lock); 2126 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2127 if (buf->f_bfree >= block_rsv->size >> bits) 2128 buf->f_bfree -= block_rsv->size >> bits; 2129 else 2130 buf->f_bfree = 0; 2131 spin_unlock(&block_rsv->lock); 2132 2133 buf->f_bavail = div_u64(total_free_data, factor); 2134 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 2135 if (ret) 2136 return ret; 2137 buf->f_bavail += div_u64(total_free_data, factor); 2138 buf->f_bavail = buf->f_bavail >> bits; 2139 2140 /* 2141 * We calculate the remaining metadata space minus global reserve. If 2142 * this is (supposedly) smaller than zero, there's no space. But this 2143 * does not hold in practice, the exhausted state happens where's still 2144 * some positive delta. So we apply some guesswork and compare the 2145 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2146 * 2147 * We probably cannot calculate the exact threshold value because this 2148 * depends on the internal reservations requested by various 2149 * operations, so some operations that consume a few metadata will 2150 * succeed even if the Avail is zero. But this is better than the other 2151 * way around. 2152 */ 2153 thresh = 4 * 1024 * 1024; 2154 2155 if (!mixed && total_free_meta - thresh < block_rsv->size) 2156 buf->f_bavail = 0; 2157 2158 buf->f_type = BTRFS_SUPER_MAGIC; 2159 buf->f_bsize = dentry->d_sb->s_blocksize; 2160 buf->f_namelen = BTRFS_NAME_LEN; 2161 2162 /* We treat it as constant endianness (it doesn't matter _which_) 2163 because we want the fsid to come out the same whether mounted 2164 on a big-endian or little-endian host */ 2165 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2166 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2167 /* Mask in the root object ID too, to disambiguate subvols */ 2168 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2169 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2170 2171 return 0; 2172 } 2173 2174 static void btrfs_kill_super(struct super_block *sb) 2175 { 2176 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2177 kill_anon_super(sb); 2178 free_fs_info(fs_info); 2179 } 2180 2181 static struct file_system_type btrfs_fs_type = { 2182 .owner = THIS_MODULE, 2183 .name = "btrfs", 2184 .mount = btrfs_mount, 2185 .kill_sb = btrfs_kill_super, 2186 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2187 }; 2188 MODULE_ALIAS_FS("btrfs"); 2189 2190 static int btrfs_control_open(struct inode *inode, struct file *file) 2191 { 2192 /* 2193 * The control file's private_data is used to hold the 2194 * transaction when it is started and is used to keep 2195 * track of whether a transaction is already in progress. 2196 */ 2197 file->private_data = NULL; 2198 return 0; 2199 } 2200 2201 /* 2202 * used by btrfsctl to scan devices when no FS is mounted 2203 */ 2204 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2205 unsigned long arg) 2206 { 2207 struct btrfs_ioctl_vol_args *vol; 2208 struct btrfs_fs_devices *fs_devices; 2209 int ret = -ENOTTY; 2210 2211 if (!capable(CAP_SYS_ADMIN)) 2212 return -EPERM; 2213 2214 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2215 if (IS_ERR(vol)) 2216 return PTR_ERR(vol); 2217 2218 switch (cmd) { 2219 case BTRFS_IOC_SCAN_DEV: 2220 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2221 &btrfs_fs_type, &fs_devices); 2222 break; 2223 case BTRFS_IOC_DEVICES_READY: 2224 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2225 &btrfs_fs_type, &fs_devices); 2226 if (ret) 2227 break; 2228 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2229 break; 2230 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2231 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2232 break; 2233 } 2234 2235 kfree(vol); 2236 return ret; 2237 } 2238 2239 static int btrfs_freeze(struct super_block *sb) 2240 { 2241 struct btrfs_trans_handle *trans; 2242 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 2243 2244 root->fs_info->fs_frozen = 1; 2245 /* 2246 * We don't need a barrier here, we'll wait for any transaction that 2247 * could be in progress on other threads (and do delayed iputs that 2248 * we want to avoid on a frozen filesystem), or do the commit 2249 * ourselves. 2250 */ 2251 trans = btrfs_attach_transaction_barrier(root); 2252 if (IS_ERR(trans)) { 2253 /* no transaction, don't bother */ 2254 if (PTR_ERR(trans) == -ENOENT) 2255 return 0; 2256 return PTR_ERR(trans); 2257 } 2258 return btrfs_commit_transaction(trans, root); 2259 } 2260 2261 static int btrfs_unfreeze(struct super_block *sb) 2262 { 2263 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 2264 2265 root->fs_info->fs_frozen = 0; 2266 return 0; 2267 } 2268 2269 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2270 { 2271 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2272 struct btrfs_fs_devices *cur_devices; 2273 struct btrfs_device *dev, *first_dev = NULL; 2274 struct list_head *head; 2275 struct rcu_string *name; 2276 2277 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2278 cur_devices = fs_info->fs_devices; 2279 while (cur_devices) { 2280 head = &cur_devices->devices; 2281 list_for_each_entry(dev, head, dev_list) { 2282 if (dev->missing) 2283 continue; 2284 if (!dev->name) 2285 continue; 2286 if (!first_dev || dev->devid < first_dev->devid) 2287 first_dev = dev; 2288 } 2289 cur_devices = cur_devices->seed; 2290 } 2291 2292 if (first_dev) { 2293 rcu_read_lock(); 2294 name = rcu_dereference(first_dev->name); 2295 seq_escape(m, name->str, " \t\n\\"); 2296 rcu_read_unlock(); 2297 } else { 2298 WARN_ON(1); 2299 } 2300 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2301 return 0; 2302 } 2303 2304 static const struct super_operations btrfs_super_ops = { 2305 .drop_inode = btrfs_drop_inode, 2306 .evict_inode = btrfs_evict_inode, 2307 .put_super = btrfs_put_super, 2308 .sync_fs = btrfs_sync_fs, 2309 .show_options = btrfs_show_options, 2310 .show_devname = btrfs_show_devname, 2311 .write_inode = btrfs_write_inode, 2312 .alloc_inode = btrfs_alloc_inode, 2313 .destroy_inode = btrfs_destroy_inode, 2314 .statfs = btrfs_statfs, 2315 .remount_fs = btrfs_remount, 2316 .freeze_fs = btrfs_freeze, 2317 .unfreeze_fs = btrfs_unfreeze, 2318 }; 2319 2320 static const struct file_operations btrfs_ctl_fops = { 2321 .open = btrfs_control_open, 2322 .unlocked_ioctl = btrfs_control_ioctl, 2323 .compat_ioctl = btrfs_control_ioctl, 2324 .owner = THIS_MODULE, 2325 .llseek = noop_llseek, 2326 }; 2327 2328 static struct miscdevice btrfs_misc = { 2329 .minor = BTRFS_MINOR, 2330 .name = "btrfs-control", 2331 .fops = &btrfs_ctl_fops 2332 }; 2333 2334 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2335 MODULE_ALIAS("devname:btrfs-control"); 2336 2337 static int btrfs_interface_init(void) 2338 { 2339 return misc_register(&btrfs_misc); 2340 } 2341 2342 static void btrfs_interface_exit(void) 2343 { 2344 misc_deregister(&btrfs_misc); 2345 } 2346 2347 static void btrfs_print_mod_info(void) 2348 { 2349 printk(KERN_INFO "Btrfs loaded, crc32c=%s" 2350 #ifdef CONFIG_BTRFS_DEBUG 2351 ", debug=on" 2352 #endif 2353 #ifdef CONFIG_BTRFS_ASSERT 2354 ", assert=on" 2355 #endif 2356 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2357 ", integrity-checker=on" 2358 #endif 2359 "\n", 2360 btrfs_crc32c_impl()); 2361 } 2362 2363 static int __init init_btrfs_fs(void) 2364 { 2365 int err; 2366 2367 err = btrfs_hash_init(); 2368 if (err) 2369 return err; 2370 2371 btrfs_props_init(); 2372 2373 err = btrfs_init_sysfs(); 2374 if (err) 2375 goto free_hash; 2376 2377 btrfs_init_compress(); 2378 2379 err = btrfs_init_cachep(); 2380 if (err) 2381 goto free_compress; 2382 2383 err = extent_io_init(); 2384 if (err) 2385 goto free_cachep; 2386 2387 err = extent_map_init(); 2388 if (err) 2389 goto free_extent_io; 2390 2391 err = ordered_data_init(); 2392 if (err) 2393 goto free_extent_map; 2394 2395 err = btrfs_delayed_inode_init(); 2396 if (err) 2397 goto free_ordered_data; 2398 2399 err = btrfs_auto_defrag_init(); 2400 if (err) 2401 goto free_delayed_inode; 2402 2403 err = btrfs_delayed_ref_init(); 2404 if (err) 2405 goto free_auto_defrag; 2406 2407 err = btrfs_prelim_ref_init(); 2408 if (err) 2409 goto free_delayed_ref; 2410 2411 err = btrfs_end_io_wq_init(); 2412 if (err) 2413 goto free_prelim_ref; 2414 2415 err = btrfs_interface_init(); 2416 if (err) 2417 goto free_end_io_wq; 2418 2419 btrfs_init_lockdep(); 2420 2421 btrfs_print_mod_info(); 2422 2423 err = btrfs_run_sanity_tests(); 2424 if (err) 2425 goto unregister_ioctl; 2426 2427 err = register_filesystem(&btrfs_fs_type); 2428 if (err) 2429 goto unregister_ioctl; 2430 2431 return 0; 2432 2433 unregister_ioctl: 2434 btrfs_interface_exit(); 2435 free_end_io_wq: 2436 btrfs_end_io_wq_exit(); 2437 free_prelim_ref: 2438 btrfs_prelim_ref_exit(); 2439 free_delayed_ref: 2440 btrfs_delayed_ref_exit(); 2441 free_auto_defrag: 2442 btrfs_auto_defrag_exit(); 2443 free_delayed_inode: 2444 btrfs_delayed_inode_exit(); 2445 free_ordered_data: 2446 ordered_data_exit(); 2447 free_extent_map: 2448 extent_map_exit(); 2449 free_extent_io: 2450 extent_io_exit(); 2451 free_cachep: 2452 btrfs_destroy_cachep(); 2453 free_compress: 2454 btrfs_exit_compress(); 2455 btrfs_exit_sysfs(); 2456 free_hash: 2457 btrfs_hash_exit(); 2458 return err; 2459 } 2460 2461 static void __exit exit_btrfs_fs(void) 2462 { 2463 btrfs_destroy_cachep(); 2464 btrfs_delayed_ref_exit(); 2465 btrfs_auto_defrag_exit(); 2466 btrfs_delayed_inode_exit(); 2467 btrfs_prelim_ref_exit(); 2468 ordered_data_exit(); 2469 extent_map_exit(); 2470 extent_io_exit(); 2471 btrfs_interface_exit(); 2472 btrfs_end_io_wq_exit(); 2473 unregister_filesystem(&btrfs_fs_type); 2474 btrfs_exit_sysfs(); 2475 btrfs_cleanup_fs_uuids(); 2476 btrfs_exit_compress(); 2477 btrfs_hash_exit(); 2478 } 2479 2480 late_initcall(init_btrfs_fs); 2481 module_exit(exit_btrfs_fs) 2482 2483 MODULE_LICENSE("GPL"); 2484