xref: /openbmc/linux/fs/btrfs/super.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/buffer_head.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/seq_file.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mount.h>
18 #include <linux/mpage.h>
19 #include <linux/swap.h>
20 #include <linux/writeback.h>
21 #include <linux/statfs.h>
22 #include <linux/compat.h>
23 #include <linux/parser.h>
24 #include <linux/ctype.h>
25 #include <linux/namei.h>
26 #include <linux/miscdevice.h>
27 #include <linux/magic.h>
28 #include <linux/slab.h>
29 #include <linux/cleancache.h>
30 #include <linux/ratelimit.h>
31 #include <linux/crc32c.h>
32 #include <linux/btrfs.h>
33 #include "delayed-inode.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "props.h"
40 #include "xattr.h"
41 #include "volumes.h"
42 #include "export.h"
43 #include "compression.h"
44 #include "rcu-string.h"
45 #include "dev-replace.h"
46 #include "free-space-cache.h"
47 #include "backref.h"
48 #include "tests/btrfs-tests.h"
49 
50 #include "qgroup.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/btrfs.h>
53 
54 static const struct super_operations btrfs_super_ops;
55 
56 /*
57  * Types for mounting the default subvolume and a subvolume explicitly
58  * requested by subvol=/path. That way the callchain is straightforward and we
59  * don't have to play tricks with the mount options and recursive calls to
60  * btrfs_mount.
61  *
62  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
63  */
64 static struct file_system_type btrfs_fs_type;
65 static struct file_system_type btrfs_root_fs_type;
66 
67 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
68 
69 const char *btrfs_decode_error(int errno)
70 {
71 	char *errstr = "unknown";
72 
73 	switch (errno) {
74 	case -EIO:
75 		errstr = "IO failure";
76 		break;
77 	case -ENOMEM:
78 		errstr = "Out of memory";
79 		break;
80 	case -EROFS:
81 		errstr = "Readonly filesystem";
82 		break;
83 	case -EEXIST:
84 		errstr = "Object already exists";
85 		break;
86 	case -ENOSPC:
87 		errstr = "No space left";
88 		break;
89 	case -ENOENT:
90 		errstr = "No such entry";
91 		break;
92 	}
93 
94 	return errstr;
95 }
96 
97 /*
98  * __btrfs_handle_fs_error decodes expected errors from the caller and
99  * invokes the approciate error response.
100  */
101 __cold
102 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
103 		       unsigned int line, int errno, const char *fmt, ...)
104 {
105 	struct super_block *sb = fs_info->sb;
106 #ifdef CONFIG_PRINTK
107 	const char *errstr;
108 #endif
109 
110 	/*
111 	 * Special case: if the error is EROFS, and we're already
112 	 * under SB_RDONLY, then it is safe here.
113 	 */
114 	if (errno == -EROFS && sb_rdonly(sb))
115   		return;
116 
117 #ifdef CONFIG_PRINTK
118 	errstr = btrfs_decode_error(errno);
119 	if (fmt) {
120 		struct va_format vaf;
121 		va_list args;
122 
123 		va_start(args, fmt);
124 		vaf.fmt = fmt;
125 		vaf.va = &args;
126 
127 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
128 			sb->s_id, function, line, errno, errstr, &vaf);
129 		va_end(args);
130 	} else {
131 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
132 			sb->s_id, function, line, errno, errstr);
133 	}
134 #endif
135 
136 	/*
137 	 * Today we only save the error info to memory.  Long term we'll
138 	 * also send it down to the disk
139 	 */
140 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
141 
142 	/* Don't go through full error handling during mount */
143 	if (!(sb->s_flags & SB_BORN))
144 		return;
145 
146 	if (sb_rdonly(sb))
147 		return;
148 
149 	/* btrfs handle error by forcing the filesystem readonly */
150 	sb->s_flags |= SB_RDONLY;
151 	btrfs_info(fs_info, "forced readonly");
152 	/*
153 	 * Note that a running device replace operation is not canceled here
154 	 * although there is no way to update the progress. It would add the
155 	 * risk of a deadlock, therefore the canceling is omitted. The only
156 	 * penalty is that some I/O remains active until the procedure
157 	 * completes. The next time when the filesystem is mounted writeable
158 	 * again, the device replace operation continues.
159 	 */
160 }
161 
162 #ifdef CONFIG_PRINTK
163 static const char * const logtypes[] = {
164 	"emergency",
165 	"alert",
166 	"critical",
167 	"error",
168 	"warning",
169 	"notice",
170 	"info",
171 	"debug",
172 };
173 
174 
175 /*
176  * Use one ratelimit state per log level so that a flood of less important
177  * messages doesn't cause more important ones to be dropped.
178  */
179 static struct ratelimit_state printk_limits[] = {
180 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
181 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
182 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
183 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
184 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
185 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
186 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
187 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
188 };
189 
190 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
191 {
192 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
193 	struct va_format vaf;
194 	va_list args;
195 	int kern_level;
196 	const char *type = logtypes[4];
197 	struct ratelimit_state *ratelimit = &printk_limits[4];
198 
199 	va_start(args, fmt);
200 
201 	while ((kern_level = printk_get_level(fmt)) != 0) {
202 		size_t size = printk_skip_level(fmt) - fmt;
203 
204 		if (kern_level >= '0' && kern_level <= '7') {
205 			memcpy(lvl, fmt,  size);
206 			lvl[size] = '\0';
207 			type = logtypes[kern_level - '0'];
208 			ratelimit = &printk_limits[kern_level - '0'];
209 		}
210 		fmt += size;
211 	}
212 
213 	vaf.fmt = fmt;
214 	vaf.va = &args;
215 
216 	if (__ratelimit(ratelimit))
217 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
218 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
219 
220 	va_end(args);
221 }
222 #endif
223 
224 /*
225  * We only mark the transaction aborted and then set the file system read-only.
226  * This will prevent new transactions from starting or trying to join this
227  * one.
228  *
229  * This means that error recovery at the call site is limited to freeing
230  * any local memory allocations and passing the error code up without
231  * further cleanup. The transaction should complete as it normally would
232  * in the call path but will return -EIO.
233  *
234  * We'll complete the cleanup in btrfs_end_transaction and
235  * btrfs_commit_transaction.
236  */
237 __cold
238 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
239 			       const char *function,
240 			       unsigned int line, int errno)
241 {
242 	struct btrfs_fs_info *fs_info = trans->fs_info;
243 
244 	trans->aborted = errno;
245 	/* Nothing used. The other threads that have joined this
246 	 * transaction may be able to continue. */
247 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
248 		const char *errstr;
249 
250 		errstr = btrfs_decode_error(errno);
251 		btrfs_warn(fs_info,
252 		           "%s:%d: Aborting unused transaction(%s).",
253 		           function, line, errstr);
254 		return;
255 	}
256 	WRITE_ONCE(trans->transaction->aborted, errno);
257 	/* Wake up anybody who may be waiting on this transaction */
258 	wake_up(&fs_info->transaction_wait);
259 	wake_up(&fs_info->transaction_blocked_wait);
260 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
261 }
262 /*
263  * __btrfs_panic decodes unexpected, fatal errors from the caller,
264  * issues an alert, and either panics or BUGs, depending on mount options.
265  */
266 __cold
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 		   unsigned int line, int errno, const char *fmt, ...)
269 {
270 	char *s_id = "<unknown>";
271 	const char *errstr;
272 	struct va_format vaf = { .fmt = fmt };
273 	va_list args;
274 
275 	if (fs_info)
276 		s_id = fs_info->sb->s_id;
277 
278 	va_start(args, fmt);
279 	vaf.va = &args;
280 
281 	errstr = btrfs_decode_error(errno);
282 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
283 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
284 			s_id, function, line, &vaf, errno, errstr);
285 
286 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
287 		   function, line, &vaf, errno, errstr);
288 	va_end(args);
289 	/* Caller calls BUG() */
290 }
291 
292 static void btrfs_put_super(struct super_block *sb)
293 {
294 	close_ctree(btrfs_sb(sb));
295 }
296 
297 enum {
298 	Opt_acl, Opt_noacl,
299 	Opt_clear_cache,
300 	Opt_commit_interval,
301 	Opt_compress,
302 	Opt_compress_force,
303 	Opt_compress_force_type,
304 	Opt_compress_type,
305 	Opt_degraded,
306 	Opt_device,
307 	Opt_fatal_errors,
308 	Opt_flushoncommit, Opt_noflushoncommit,
309 	Opt_inode_cache, Opt_noinode_cache,
310 	Opt_max_inline,
311 	Opt_barrier, Opt_nobarrier,
312 	Opt_datacow, Opt_nodatacow,
313 	Opt_datasum, Opt_nodatasum,
314 	Opt_defrag, Opt_nodefrag,
315 	Opt_discard, Opt_nodiscard,
316 	Opt_nologreplay,
317 	Opt_norecovery,
318 	Opt_ratio,
319 	Opt_rescan_uuid_tree,
320 	Opt_skip_balance,
321 	Opt_space_cache, Opt_no_space_cache,
322 	Opt_space_cache_version,
323 	Opt_ssd, Opt_nossd,
324 	Opt_ssd_spread, Opt_nossd_spread,
325 	Opt_subvol,
326 	Opt_subvol_empty,
327 	Opt_subvolid,
328 	Opt_thread_pool,
329 	Opt_treelog, Opt_notreelog,
330 	Opt_usebackuproot,
331 	Opt_user_subvol_rm_allowed,
332 
333 	/* Deprecated options */
334 	Opt_alloc_start,
335 	Opt_recovery,
336 	Opt_subvolrootid,
337 
338 	/* Debugging options */
339 	Opt_check_integrity,
340 	Opt_check_integrity_including_extent_data,
341 	Opt_check_integrity_print_mask,
342 	Opt_enospc_debug, Opt_noenospc_debug,
343 #ifdef CONFIG_BTRFS_DEBUG
344 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
345 #endif
346 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
347 	Opt_ref_verify,
348 #endif
349 	Opt_err,
350 };
351 
352 static const match_table_t tokens = {
353 	{Opt_acl, "acl"},
354 	{Opt_noacl, "noacl"},
355 	{Opt_clear_cache, "clear_cache"},
356 	{Opt_commit_interval, "commit=%u"},
357 	{Opt_compress, "compress"},
358 	{Opt_compress_type, "compress=%s"},
359 	{Opt_compress_force, "compress-force"},
360 	{Opt_compress_force_type, "compress-force=%s"},
361 	{Opt_degraded, "degraded"},
362 	{Opt_device, "device=%s"},
363 	{Opt_fatal_errors, "fatal_errors=%s"},
364 	{Opt_flushoncommit, "flushoncommit"},
365 	{Opt_noflushoncommit, "noflushoncommit"},
366 	{Opt_inode_cache, "inode_cache"},
367 	{Opt_noinode_cache, "noinode_cache"},
368 	{Opt_max_inline, "max_inline=%s"},
369 	{Opt_barrier, "barrier"},
370 	{Opt_nobarrier, "nobarrier"},
371 	{Opt_datacow, "datacow"},
372 	{Opt_nodatacow, "nodatacow"},
373 	{Opt_datasum, "datasum"},
374 	{Opt_nodatasum, "nodatasum"},
375 	{Opt_defrag, "autodefrag"},
376 	{Opt_nodefrag, "noautodefrag"},
377 	{Opt_discard, "discard"},
378 	{Opt_nodiscard, "nodiscard"},
379 	{Opt_nologreplay, "nologreplay"},
380 	{Opt_norecovery, "norecovery"},
381 	{Opt_ratio, "metadata_ratio=%u"},
382 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 	{Opt_skip_balance, "skip_balance"},
384 	{Opt_space_cache, "space_cache"},
385 	{Opt_no_space_cache, "nospace_cache"},
386 	{Opt_space_cache_version, "space_cache=%s"},
387 	{Opt_ssd, "ssd"},
388 	{Opt_nossd, "nossd"},
389 	{Opt_ssd_spread, "ssd_spread"},
390 	{Opt_nossd_spread, "nossd_spread"},
391 	{Opt_subvol, "subvol=%s"},
392 	{Opt_subvol_empty, "subvol="},
393 	{Opt_subvolid, "subvolid=%s"},
394 	{Opt_thread_pool, "thread_pool=%u"},
395 	{Opt_treelog, "treelog"},
396 	{Opt_notreelog, "notreelog"},
397 	{Opt_usebackuproot, "usebackuproot"},
398 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
399 
400 	/* Deprecated options */
401 	{Opt_alloc_start, "alloc_start=%s"},
402 	{Opt_recovery, "recovery"},
403 	{Opt_subvolrootid, "subvolrootid=%d"},
404 
405 	/* Debugging options */
406 	{Opt_check_integrity, "check_int"},
407 	{Opt_check_integrity_including_extent_data, "check_int_data"},
408 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
409 	{Opt_enospc_debug, "enospc_debug"},
410 	{Opt_noenospc_debug, "noenospc_debug"},
411 #ifdef CONFIG_BTRFS_DEBUG
412 	{Opt_fragment_data, "fragment=data"},
413 	{Opt_fragment_metadata, "fragment=metadata"},
414 	{Opt_fragment_all, "fragment=all"},
415 #endif
416 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
417 	{Opt_ref_verify, "ref_verify"},
418 #endif
419 	{Opt_err, NULL},
420 };
421 
422 /*
423  * Regular mount options parser.  Everything that is needed only when
424  * reading in a new superblock is parsed here.
425  * XXX JDM: This needs to be cleaned up for remount.
426  */
427 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
428 			unsigned long new_flags)
429 {
430 	substring_t args[MAX_OPT_ARGS];
431 	char *p, *num;
432 	u64 cache_gen;
433 	int intarg;
434 	int ret = 0;
435 	char *compress_type;
436 	bool compress_force = false;
437 	enum btrfs_compression_type saved_compress_type;
438 	bool saved_compress_force;
439 	int no_compress = 0;
440 
441 	cache_gen = btrfs_super_cache_generation(info->super_copy);
442 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
443 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
444 	else if (cache_gen)
445 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
446 
447 	/*
448 	 * Even the options are empty, we still need to do extra check
449 	 * against new flags
450 	 */
451 	if (!options)
452 		goto check;
453 
454 	while ((p = strsep(&options, ",")) != NULL) {
455 		int token;
456 		if (!*p)
457 			continue;
458 
459 		token = match_token(p, tokens, args);
460 		switch (token) {
461 		case Opt_degraded:
462 			btrfs_info(info, "allowing degraded mounts");
463 			btrfs_set_opt(info->mount_opt, DEGRADED);
464 			break;
465 		case Opt_subvol:
466 		case Opt_subvol_empty:
467 		case Opt_subvolid:
468 		case Opt_subvolrootid:
469 		case Opt_device:
470 			/*
471 			 * These are parsed by btrfs_parse_subvol_options
472 			 * and btrfs_parse_early_options
473 			 * and can be happily ignored here.
474 			 */
475 			break;
476 		case Opt_nodatasum:
477 			btrfs_set_and_info(info, NODATASUM,
478 					   "setting nodatasum");
479 			break;
480 		case Opt_datasum:
481 			if (btrfs_test_opt(info, NODATASUM)) {
482 				if (btrfs_test_opt(info, NODATACOW))
483 					btrfs_info(info,
484 						   "setting datasum, datacow enabled");
485 				else
486 					btrfs_info(info, "setting datasum");
487 			}
488 			btrfs_clear_opt(info->mount_opt, NODATACOW);
489 			btrfs_clear_opt(info->mount_opt, NODATASUM);
490 			break;
491 		case Opt_nodatacow:
492 			if (!btrfs_test_opt(info, NODATACOW)) {
493 				if (!btrfs_test_opt(info, COMPRESS) ||
494 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
495 					btrfs_info(info,
496 						   "setting nodatacow, compression disabled");
497 				} else {
498 					btrfs_info(info, "setting nodatacow");
499 				}
500 			}
501 			btrfs_clear_opt(info->mount_opt, COMPRESS);
502 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
503 			btrfs_set_opt(info->mount_opt, NODATACOW);
504 			btrfs_set_opt(info->mount_opt, NODATASUM);
505 			break;
506 		case Opt_datacow:
507 			btrfs_clear_and_info(info, NODATACOW,
508 					     "setting datacow");
509 			break;
510 		case Opt_compress_force:
511 		case Opt_compress_force_type:
512 			compress_force = true;
513 			/* Fallthrough */
514 		case Opt_compress:
515 		case Opt_compress_type:
516 			saved_compress_type = btrfs_test_opt(info,
517 							     COMPRESS) ?
518 				info->compress_type : BTRFS_COMPRESS_NONE;
519 			saved_compress_force =
520 				btrfs_test_opt(info, FORCE_COMPRESS);
521 			if (token == Opt_compress ||
522 			    token == Opt_compress_force ||
523 			    strncmp(args[0].from, "zlib", 4) == 0) {
524 				compress_type = "zlib";
525 
526 				info->compress_type = BTRFS_COMPRESS_ZLIB;
527 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
528 				/*
529 				 * args[0] contains uninitialized data since
530 				 * for these tokens we don't expect any
531 				 * parameter.
532 				 */
533 				if (token != Opt_compress &&
534 				    token != Opt_compress_force)
535 					info->compress_level =
536 					  btrfs_compress_str2level(args[0].from);
537 				btrfs_set_opt(info->mount_opt, COMPRESS);
538 				btrfs_clear_opt(info->mount_opt, NODATACOW);
539 				btrfs_clear_opt(info->mount_opt, NODATASUM);
540 				no_compress = 0;
541 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
542 				compress_type = "lzo";
543 				info->compress_type = BTRFS_COMPRESS_LZO;
544 				btrfs_set_opt(info->mount_opt, COMPRESS);
545 				btrfs_clear_opt(info->mount_opt, NODATACOW);
546 				btrfs_clear_opt(info->mount_opt, NODATASUM);
547 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
548 				no_compress = 0;
549 			} else if (strcmp(args[0].from, "zstd") == 0) {
550 				compress_type = "zstd";
551 				info->compress_type = BTRFS_COMPRESS_ZSTD;
552 				btrfs_set_opt(info->mount_opt, COMPRESS);
553 				btrfs_clear_opt(info->mount_opt, NODATACOW);
554 				btrfs_clear_opt(info->mount_opt, NODATASUM);
555 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
556 				no_compress = 0;
557 			} else if (strncmp(args[0].from, "no", 2) == 0) {
558 				compress_type = "no";
559 				btrfs_clear_opt(info->mount_opt, COMPRESS);
560 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
561 				compress_force = false;
562 				no_compress++;
563 			} else {
564 				ret = -EINVAL;
565 				goto out;
566 			}
567 
568 			if (compress_force) {
569 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
570 			} else {
571 				/*
572 				 * If we remount from compress-force=xxx to
573 				 * compress=xxx, we need clear FORCE_COMPRESS
574 				 * flag, otherwise, there is no way for users
575 				 * to disable forcible compression separately.
576 				 */
577 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
578 			}
579 			if ((btrfs_test_opt(info, COMPRESS) &&
580 			     (info->compress_type != saved_compress_type ||
581 			      compress_force != saved_compress_force)) ||
582 			    (!btrfs_test_opt(info, COMPRESS) &&
583 			     no_compress == 1)) {
584 				btrfs_info(info, "%s %s compression, level %d",
585 					   (compress_force) ? "force" : "use",
586 					   compress_type, info->compress_level);
587 			}
588 			compress_force = false;
589 			break;
590 		case Opt_ssd:
591 			btrfs_set_and_info(info, SSD,
592 					   "enabling ssd optimizations");
593 			btrfs_clear_opt(info->mount_opt, NOSSD);
594 			break;
595 		case Opt_ssd_spread:
596 			btrfs_set_and_info(info, SSD,
597 					   "enabling ssd optimizations");
598 			btrfs_set_and_info(info, SSD_SPREAD,
599 					   "using spread ssd allocation scheme");
600 			btrfs_clear_opt(info->mount_opt, NOSSD);
601 			break;
602 		case Opt_nossd:
603 			btrfs_set_opt(info->mount_opt, NOSSD);
604 			btrfs_clear_and_info(info, SSD,
605 					     "not using ssd optimizations");
606 			/* Fallthrough */
607 		case Opt_nossd_spread:
608 			btrfs_clear_and_info(info, SSD_SPREAD,
609 					     "not using spread ssd allocation scheme");
610 			break;
611 		case Opt_barrier:
612 			btrfs_clear_and_info(info, NOBARRIER,
613 					     "turning on barriers");
614 			break;
615 		case Opt_nobarrier:
616 			btrfs_set_and_info(info, NOBARRIER,
617 					   "turning off barriers");
618 			break;
619 		case Opt_thread_pool:
620 			ret = match_int(&args[0], &intarg);
621 			if (ret) {
622 				goto out;
623 			} else if (intarg == 0) {
624 				ret = -EINVAL;
625 				goto out;
626 			}
627 			info->thread_pool_size = intarg;
628 			break;
629 		case Opt_max_inline:
630 			num = match_strdup(&args[0]);
631 			if (num) {
632 				info->max_inline = memparse(num, NULL);
633 				kfree(num);
634 
635 				if (info->max_inline) {
636 					info->max_inline = min_t(u64,
637 						info->max_inline,
638 						info->sectorsize);
639 				}
640 				btrfs_info(info, "max_inline at %llu",
641 					   info->max_inline);
642 			} else {
643 				ret = -ENOMEM;
644 				goto out;
645 			}
646 			break;
647 		case Opt_alloc_start:
648 			btrfs_info(info,
649 				"option alloc_start is obsolete, ignored");
650 			break;
651 		case Opt_acl:
652 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
653 			info->sb->s_flags |= SB_POSIXACL;
654 			break;
655 #else
656 			btrfs_err(info, "support for ACL not compiled in!");
657 			ret = -EINVAL;
658 			goto out;
659 #endif
660 		case Opt_noacl:
661 			info->sb->s_flags &= ~SB_POSIXACL;
662 			break;
663 		case Opt_notreelog:
664 			btrfs_set_and_info(info, NOTREELOG,
665 					   "disabling tree log");
666 			break;
667 		case Opt_treelog:
668 			btrfs_clear_and_info(info, NOTREELOG,
669 					     "enabling tree log");
670 			break;
671 		case Opt_norecovery:
672 		case Opt_nologreplay:
673 			btrfs_set_and_info(info, NOLOGREPLAY,
674 					   "disabling log replay at mount time");
675 			break;
676 		case Opt_flushoncommit:
677 			btrfs_set_and_info(info, FLUSHONCOMMIT,
678 					   "turning on flush-on-commit");
679 			break;
680 		case Opt_noflushoncommit:
681 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
682 					     "turning off flush-on-commit");
683 			break;
684 		case Opt_ratio:
685 			ret = match_int(&args[0], &intarg);
686 			if (ret)
687 				goto out;
688 			info->metadata_ratio = intarg;
689 			btrfs_info(info, "metadata ratio %u",
690 				   info->metadata_ratio);
691 			break;
692 		case Opt_discard:
693 			btrfs_set_and_info(info, DISCARD,
694 					   "turning on discard");
695 			break;
696 		case Opt_nodiscard:
697 			btrfs_clear_and_info(info, DISCARD,
698 					     "turning off discard");
699 			break;
700 		case Opt_space_cache:
701 		case Opt_space_cache_version:
702 			if (token == Opt_space_cache ||
703 			    strcmp(args[0].from, "v1") == 0) {
704 				btrfs_clear_opt(info->mount_opt,
705 						FREE_SPACE_TREE);
706 				btrfs_set_and_info(info, SPACE_CACHE,
707 					   "enabling disk space caching");
708 			} else if (strcmp(args[0].from, "v2") == 0) {
709 				btrfs_clear_opt(info->mount_opt,
710 						SPACE_CACHE);
711 				btrfs_set_and_info(info, FREE_SPACE_TREE,
712 						   "enabling free space tree");
713 			} else {
714 				ret = -EINVAL;
715 				goto out;
716 			}
717 			break;
718 		case Opt_rescan_uuid_tree:
719 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
720 			break;
721 		case Opt_no_space_cache:
722 			if (btrfs_test_opt(info, SPACE_CACHE)) {
723 				btrfs_clear_and_info(info, SPACE_CACHE,
724 					     "disabling disk space caching");
725 			}
726 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
727 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
728 					     "disabling free space tree");
729 			}
730 			break;
731 		case Opt_inode_cache:
732 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
733 					   "enabling inode map caching");
734 			break;
735 		case Opt_noinode_cache:
736 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
737 					     "disabling inode map caching");
738 			break;
739 		case Opt_clear_cache:
740 			btrfs_set_and_info(info, CLEAR_CACHE,
741 					   "force clearing of disk cache");
742 			break;
743 		case Opt_user_subvol_rm_allowed:
744 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
745 			break;
746 		case Opt_enospc_debug:
747 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
748 			break;
749 		case Opt_noenospc_debug:
750 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
751 			break;
752 		case Opt_defrag:
753 			btrfs_set_and_info(info, AUTO_DEFRAG,
754 					   "enabling auto defrag");
755 			break;
756 		case Opt_nodefrag:
757 			btrfs_clear_and_info(info, AUTO_DEFRAG,
758 					     "disabling auto defrag");
759 			break;
760 		case Opt_recovery:
761 			btrfs_warn(info,
762 				   "'recovery' is deprecated, use 'usebackuproot' instead");
763 		case Opt_usebackuproot:
764 			btrfs_info(info,
765 				   "trying to use backup root at mount time");
766 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
767 			break;
768 		case Opt_skip_balance:
769 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
770 			break;
771 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
772 		case Opt_check_integrity_including_extent_data:
773 			btrfs_info(info,
774 				   "enabling check integrity including extent data");
775 			btrfs_set_opt(info->mount_opt,
776 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
777 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
778 			break;
779 		case Opt_check_integrity:
780 			btrfs_info(info, "enabling check integrity");
781 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
782 			break;
783 		case Opt_check_integrity_print_mask:
784 			ret = match_int(&args[0], &intarg);
785 			if (ret)
786 				goto out;
787 			info->check_integrity_print_mask = intarg;
788 			btrfs_info(info, "check_integrity_print_mask 0x%x",
789 				   info->check_integrity_print_mask);
790 			break;
791 #else
792 		case Opt_check_integrity_including_extent_data:
793 		case Opt_check_integrity:
794 		case Opt_check_integrity_print_mask:
795 			btrfs_err(info,
796 				  "support for check_integrity* not compiled in!");
797 			ret = -EINVAL;
798 			goto out;
799 #endif
800 		case Opt_fatal_errors:
801 			if (strcmp(args[0].from, "panic") == 0)
802 				btrfs_set_opt(info->mount_opt,
803 					      PANIC_ON_FATAL_ERROR);
804 			else if (strcmp(args[0].from, "bug") == 0)
805 				btrfs_clear_opt(info->mount_opt,
806 					      PANIC_ON_FATAL_ERROR);
807 			else {
808 				ret = -EINVAL;
809 				goto out;
810 			}
811 			break;
812 		case Opt_commit_interval:
813 			intarg = 0;
814 			ret = match_int(&args[0], &intarg);
815 			if (ret)
816 				goto out;
817 			if (intarg == 0) {
818 				btrfs_info(info,
819 					   "using default commit interval %us",
820 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
821 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
822 			} else if (intarg > 300) {
823 				btrfs_warn(info, "excessive commit interval %d",
824 					   intarg);
825 			}
826 			info->commit_interval = intarg;
827 			break;
828 #ifdef CONFIG_BTRFS_DEBUG
829 		case Opt_fragment_all:
830 			btrfs_info(info, "fragmenting all space");
831 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
832 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
833 			break;
834 		case Opt_fragment_metadata:
835 			btrfs_info(info, "fragmenting metadata");
836 			btrfs_set_opt(info->mount_opt,
837 				      FRAGMENT_METADATA);
838 			break;
839 		case Opt_fragment_data:
840 			btrfs_info(info, "fragmenting data");
841 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
842 			break;
843 #endif
844 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
845 		case Opt_ref_verify:
846 			btrfs_info(info, "doing ref verification");
847 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
848 			break;
849 #endif
850 		case Opt_err:
851 			btrfs_info(info, "unrecognized mount option '%s'", p);
852 			ret = -EINVAL;
853 			goto out;
854 		default:
855 			break;
856 		}
857 	}
858 check:
859 	/*
860 	 * Extra check for current option against current flag
861 	 */
862 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
863 		btrfs_err(info,
864 			  "nologreplay must be used with ro mount option");
865 		ret = -EINVAL;
866 	}
867 out:
868 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
869 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
870 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
871 		btrfs_err(info, "cannot disable free space tree");
872 		ret = -EINVAL;
873 
874 	}
875 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
876 		btrfs_info(info, "disk space caching is enabled");
877 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
878 		btrfs_info(info, "using free space tree");
879 	return ret;
880 }
881 
882 /*
883  * Parse mount options that are required early in the mount process.
884  *
885  * All other options will be parsed on much later in the mount process and
886  * only when we need to allocate a new super block.
887  */
888 static int btrfs_parse_early_options(const char *options, fmode_t flags,
889 		void *holder, struct btrfs_fs_devices **fs_devices)
890 {
891 	substring_t args[MAX_OPT_ARGS];
892 	char *device_name, *opts, *orig, *p;
893 	int error = 0;
894 
895 	if (!options)
896 		return 0;
897 
898 	/*
899 	 * strsep changes the string, duplicate it because btrfs_parse_options
900 	 * gets called later
901 	 */
902 	opts = kstrdup(options, GFP_KERNEL);
903 	if (!opts)
904 		return -ENOMEM;
905 	orig = opts;
906 
907 	while ((p = strsep(&opts, ",")) != NULL) {
908 		int token;
909 
910 		if (!*p)
911 			continue;
912 
913 		token = match_token(p, tokens, args);
914 		if (token == Opt_device) {
915 			device_name = match_strdup(&args[0]);
916 			if (!device_name) {
917 				error = -ENOMEM;
918 				goto out;
919 			}
920 			error = btrfs_scan_one_device(device_name,
921 					flags, holder, fs_devices);
922 			kfree(device_name);
923 			if (error)
924 				goto out;
925 		}
926 	}
927 
928 out:
929 	kfree(orig);
930 	return error;
931 }
932 
933 /*
934  * Parse mount options that are related to subvolume id
935  *
936  * The value is later passed to mount_subvol()
937  */
938 static int btrfs_parse_subvol_options(const char *options, fmode_t flags,
939 		char **subvol_name, u64 *subvol_objectid)
940 {
941 	substring_t args[MAX_OPT_ARGS];
942 	char *opts, *orig, *p;
943 	int error = 0;
944 	u64 subvolid;
945 
946 	if (!options)
947 		return 0;
948 
949 	/*
950 	 * strsep changes the string, duplicate it because
951 	 * btrfs_parse_early_options gets called later
952 	 */
953 	opts = kstrdup(options, GFP_KERNEL);
954 	if (!opts)
955 		return -ENOMEM;
956 	orig = opts;
957 
958 	while ((p = strsep(&opts, ",")) != NULL) {
959 		int token;
960 		if (!*p)
961 			continue;
962 
963 		token = match_token(p, tokens, args);
964 		switch (token) {
965 		case Opt_subvol:
966 			kfree(*subvol_name);
967 			*subvol_name = match_strdup(&args[0]);
968 			if (!*subvol_name) {
969 				error = -ENOMEM;
970 				goto out;
971 			}
972 			break;
973 		case Opt_subvolid:
974 			error = match_u64(&args[0], &subvolid);
975 			if (error)
976 				goto out;
977 
978 			/* we want the original fs_tree */
979 			if (subvolid == 0)
980 				subvolid = BTRFS_FS_TREE_OBJECTID;
981 
982 			*subvol_objectid = subvolid;
983 			break;
984 		case Opt_subvolrootid:
985 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
986 			break;
987 		default:
988 			break;
989 		}
990 	}
991 
992 out:
993 	kfree(orig);
994 	return error;
995 }
996 
997 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
998 					   u64 subvol_objectid)
999 {
1000 	struct btrfs_root *root = fs_info->tree_root;
1001 	struct btrfs_root *fs_root;
1002 	struct btrfs_root_ref *root_ref;
1003 	struct btrfs_inode_ref *inode_ref;
1004 	struct btrfs_key key;
1005 	struct btrfs_path *path = NULL;
1006 	char *name = NULL, *ptr;
1007 	u64 dirid;
1008 	int len;
1009 	int ret;
1010 
1011 	path = btrfs_alloc_path();
1012 	if (!path) {
1013 		ret = -ENOMEM;
1014 		goto err;
1015 	}
1016 	path->leave_spinning = 1;
1017 
1018 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1019 	if (!name) {
1020 		ret = -ENOMEM;
1021 		goto err;
1022 	}
1023 	ptr = name + PATH_MAX - 1;
1024 	ptr[0] = '\0';
1025 
1026 	/*
1027 	 * Walk up the subvolume trees in the tree of tree roots by root
1028 	 * backrefs until we hit the top-level subvolume.
1029 	 */
1030 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1031 		key.objectid = subvol_objectid;
1032 		key.type = BTRFS_ROOT_BACKREF_KEY;
1033 		key.offset = (u64)-1;
1034 
1035 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1036 		if (ret < 0) {
1037 			goto err;
1038 		} else if (ret > 0) {
1039 			ret = btrfs_previous_item(root, path, subvol_objectid,
1040 						  BTRFS_ROOT_BACKREF_KEY);
1041 			if (ret < 0) {
1042 				goto err;
1043 			} else if (ret > 0) {
1044 				ret = -ENOENT;
1045 				goto err;
1046 			}
1047 		}
1048 
1049 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1050 		subvol_objectid = key.offset;
1051 
1052 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1053 					  struct btrfs_root_ref);
1054 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1055 		ptr -= len + 1;
1056 		if (ptr < name) {
1057 			ret = -ENAMETOOLONG;
1058 			goto err;
1059 		}
1060 		read_extent_buffer(path->nodes[0], ptr + 1,
1061 				   (unsigned long)(root_ref + 1), len);
1062 		ptr[0] = '/';
1063 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1064 		btrfs_release_path(path);
1065 
1066 		key.objectid = subvol_objectid;
1067 		key.type = BTRFS_ROOT_ITEM_KEY;
1068 		key.offset = (u64)-1;
1069 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1070 		if (IS_ERR(fs_root)) {
1071 			ret = PTR_ERR(fs_root);
1072 			goto err;
1073 		}
1074 
1075 		/*
1076 		 * Walk up the filesystem tree by inode refs until we hit the
1077 		 * root directory.
1078 		 */
1079 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1080 			key.objectid = dirid;
1081 			key.type = BTRFS_INODE_REF_KEY;
1082 			key.offset = (u64)-1;
1083 
1084 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1085 			if (ret < 0) {
1086 				goto err;
1087 			} else if (ret > 0) {
1088 				ret = btrfs_previous_item(fs_root, path, dirid,
1089 							  BTRFS_INODE_REF_KEY);
1090 				if (ret < 0) {
1091 					goto err;
1092 				} else if (ret > 0) {
1093 					ret = -ENOENT;
1094 					goto err;
1095 				}
1096 			}
1097 
1098 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1099 			dirid = key.offset;
1100 
1101 			inode_ref = btrfs_item_ptr(path->nodes[0],
1102 						   path->slots[0],
1103 						   struct btrfs_inode_ref);
1104 			len = btrfs_inode_ref_name_len(path->nodes[0],
1105 						       inode_ref);
1106 			ptr -= len + 1;
1107 			if (ptr < name) {
1108 				ret = -ENAMETOOLONG;
1109 				goto err;
1110 			}
1111 			read_extent_buffer(path->nodes[0], ptr + 1,
1112 					   (unsigned long)(inode_ref + 1), len);
1113 			ptr[0] = '/';
1114 			btrfs_release_path(path);
1115 		}
1116 	}
1117 
1118 	btrfs_free_path(path);
1119 	if (ptr == name + PATH_MAX - 1) {
1120 		name[0] = '/';
1121 		name[1] = '\0';
1122 	} else {
1123 		memmove(name, ptr, name + PATH_MAX - ptr);
1124 	}
1125 	return name;
1126 
1127 err:
1128 	btrfs_free_path(path);
1129 	kfree(name);
1130 	return ERR_PTR(ret);
1131 }
1132 
1133 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1134 {
1135 	struct btrfs_root *root = fs_info->tree_root;
1136 	struct btrfs_dir_item *di;
1137 	struct btrfs_path *path;
1138 	struct btrfs_key location;
1139 	u64 dir_id;
1140 
1141 	path = btrfs_alloc_path();
1142 	if (!path)
1143 		return -ENOMEM;
1144 	path->leave_spinning = 1;
1145 
1146 	/*
1147 	 * Find the "default" dir item which points to the root item that we
1148 	 * will mount by default if we haven't been given a specific subvolume
1149 	 * to mount.
1150 	 */
1151 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1152 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1153 	if (IS_ERR(di)) {
1154 		btrfs_free_path(path);
1155 		return PTR_ERR(di);
1156 	}
1157 	if (!di) {
1158 		/*
1159 		 * Ok the default dir item isn't there.  This is weird since
1160 		 * it's always been there, but don't freak out, just try and
1161 		 * mount the top-level subvolume.
1162 		 */
1163 		btrfs_free_path(path);
1164 		*objectid = BTRFS_FS_TREE_OBJECTID;
1165 		return 0;
1166 	}
1167 
1168 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1169 	btrfs_free_path(path);
1170 	*objectid = location.objectid;
1171 	return 0;
1172 }
1173 
1174 static int btrfs_fill_super(struct super_block *sb,
1175 			    struct btrfs_fs_devices *fs_devices,
1176 			    void *data)
1177 {
1178 	struct inode *inode;
1179 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1180 	struct btrfs_key key;
1181 	int err;
1182 
1183 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1184 	sb->s_magic = BTRFS_SUPER_MAGIC;
1185 	sb->s_op = &btrfs_super_ops;
1186 	sb->s_d_op = &btrfs_dentry_operations;
1187 	sb->s_export_op = &btrfs_export_ops;
1188 	sb->s_xattr = btrfs_xattr_handlers;
1189 	sb->s_time_gran = 1;
1190 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1191 	sb->s_flags |= SB_POSIXACL;
1192 #endif
1193 	sb->s_flags |= SB_I_VERSION;
1194 	sb->s_iflags |= SB_I_CGROUPWB;
1195 
1196 	err = super_setup_bdi(sb);
1197 	if (err) {
1198 		btrfs_err(fs_info, "super_setup_bdi failed");
1199 		return err;
1200 	}
1201 
1202 	err = open_ctree(sb, fs_devices, (char *)data);
1203 	if (err) {
1204 		btrfs_err(fs_info, "open_ctree failed");
1205 		return err;
1206 	}
1207 
1208 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1209 	key.type = BTRFS_INODE_ITEM_KEY;
1210 	key.offset = 0;
1211 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1212 	if (IS_ERR(inode)) {
1213 		err = PTR_ERR(inode);
1214 		goto fail_close;
1215 	}
1216 
1217 	sb->s_root = d_make_root(inode);
1218 	if (!sb->s_root) {
1219 		err = -ENOMEM;
1220 		goto fail_close;
1221 	}
1222 
1223 	cleancache_init_fs(sb);
1224 	sb->s_flags |= SB_ACTIVE;
1225 	return 0;
1226 
1227 fail_close:
1228 	close_ctree(fs_info);
1229 	return err;
1230 }
1231 
1232 int btrfs_sync_fs(struct super_block *sb, int wait)
1233 {
1234 	struct btrfs_trans_handle *trans;
1235 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1236 	struct btrfs_root *root = fs_info->tree_root;
1237 
1238 	trace_btrfs_sync_fs(fs_info, wait);
1239 
1240 	if (!wait) {
1241 		filemap_flush(fs_info->btree_inode->i_mapping);
1242 		return 0;
1243 	}
1244 
1245 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1246 
1247 	trans = btrfs_attach_transaction_barrier(root);
1248 	if (IS_ERR(trans)) {
1249 		/* no transaction, don't bother */
1250 		if (PTR_ERR(trans) == -ENOENT) {
1251 			/*
1252 			 * Exit unless we have some pending changes
1253 			 * that need to go through commit
1254 			 */
1255 			if (fs_info->pending_changes == 0)
1256 				return 0;
1257 			/*
1258 			 * A non-blocking test if the fs is frozen. We must not
1259 			 * start a new transaction here otherwise a deadlock
1260 			 * happens. The pending operations are delayed to the
1261 			 * next commit after thawing.
1262 			 */
1263 			if (sb_start_write_trylock(sb))
1264 				sb_end_write(sb);
1265 			else
1266 				return 0;
1267 			trans = btrfs_start_transaction(root, 0);
1268 		}
1269 		if (IS_ERR(trans))
1270 			return PTR_ERR(trans);
1271 	}
1272 	return btrfs_commit_transaction(trans);
1273 }
1274 
1275 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1276 {
1277 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1278 	const char *compress_type;
1279 
1280 	if (btrfs_test_opt(info, DEGRADED))
1281 		seq_puts(seq, ",degraded");
1282 	if (btrfs_test_opt(info, NODATASUM))
1283 		seq_puts(seq, ",nodatasum");
1284 	if (btrfs_test_opt(info, NODATACOW))
1285 		seq_puts(seq, ",nodatacow");
1286 	if (btrfs_test_opt(info, NOBARRIER))
1287 		seq_puts(seq, ",nobarrier");
1288 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1289 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1290 	if (info->thread_pool_size !=  min_t(unsigned long,
1291 					     num_online_cpus() + 2, 8))
1292 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1293 	if (btrfs_test_opt(info, COMPRESS)) {
1294 		compress_type = btrfs_compress_type2str(info->compress_type);
1295 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1296 			seq_printf(seq, ",compress-force=%s", compress_type);
1297 		else
1298 			seq_printf(seq, ",compress=%s", compress_type);
1299 		if (info->compress_level)
1300 			seq_printf(seq, ":%d", info->compress_level);
1301 	}
1302 	if (btrfs_test_opt(info, NOSSD))
1303 		seq_puts(seq, ",nossd");
1304 	if (btrfs_test_opt(info, SSD_SPREAD))
1305 		seq_puts(seq, ",ssd_spread");
1306 	else if (btrfs_test_opt(info, SSD))
1307 		seq_puts(seq, ",ssd");
1308 	if (btrfs_test_opt(info, NOTREELOG))
1309 		seq_puts(seq, ",notreelog");
1310 	if (btrfs_test_opt(info, NOLOGREPLAY))
1311 		seq_puts(seq, ",nologreplay");
1312 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1313 		seq_puts(seq, ",flushoncommit");
1314 	if (btrfs_test_opt(info, DISCARD))
1315 		seq_puts(seq, ",discard");
1316 	if (!(info->sb->s_flags & SB_POSIXACL))
1317 		seq_puts(seq, ",noacl");
1318 	if (btrfs_test_opt(info, SPACE_CACHE))
1319 		seq_puts(seq, ",space_cache");
1320 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1321 		seq_puts(seq, ",space_cache=v2");
1322 	else
1323 		seq_puts(seq, ",nospace_cache");
1324 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1325 		seq_puts(seq, ",rescan_uuid_tree");
1326 	if (btrfs_test_opt(info, CLEAR_CACHE))
1327 		seq_puts(seq, ",clear_cache");
1328 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1329 		seq_puts(seq, ",user_subvol_rm_allowed");
1330 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1331 		seq_puts(seq, ",enospc_debug");
1332 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1333 		seq_puts(seq, ",autodefrag");
1334 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1335 		seq_puts(seq, ",inode_cache");
1336 	if (btrfs_test_opt(info, SKIP_BALANCE))
1337 		seq_puts(seq, ",skip_balance");
1338 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1339 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1340 		seq_puts(seq, ",check_int_data");
1341 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1342 		seq_puts(seq, ",check_int");
1343 	if (info->check_integrity_print_mask)
1344 		seq_printf(seq, ",check_int_print_mask=%d",
1345 				info->check_integrity_print_mask);
1346 #endif
1347 	if (info->metadata_ratio)
1348 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1349 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1350 		seq_puts(seq, ",fatal_errors=panic");
1351 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1352 		seq_printf(seq, ",commit=%u", info->commit_interval);
1353 #ifdef CONFIG_BTRFS_DEBUG
1354 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1355 		seq_puts(seq, ",fragment=data");
1356 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1357 		seq_puts(seq, ",fragment=metadata");
1358 #endif
1359 	if (btrfs_test_opt(info, REF_VERIFY))
1360 		seq_puts(seq, ",ref_verify");
1361 	seq_printf(seq, ",subvolid=%llu",
1362 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1363 	seq_puts(seq, ",subvol=");
1364 	seq_dentry(seq, dentry, " \t\n\\");
1365 	return 0;
1366 }
1367 
1368 static int btrfs_test_super(struct super_block *s, void *data)
1369 {
1370 	struct btrfs_fs_info *p = data;
1371 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1372 
1373 	return fs_info->fs_devices == p->fs_devices;
1374 }
1375 
1376 static int btrfs_set_super(struct super_block *s, void *data)
1377 {
1378 	int err = set_anon_super(s, data);
1379 	if (!err)
1380 		s->s_fs_info = data;
1381 	return err;
1382 }
1383 
1384 /*
1385  * subvolumes are identified by ino 256
1386  */
1387 static inline int is_subvolume_inode(struct inode *inode)
1388 {
1389 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1390 		return 1;
1391 	return 0;
1392 }
1393 
1394 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1395 				   const char *device_name, struct vfsmount *mnt)
1396 {
1397 	struct dentry *root;
1398 	int ret;
1399 
1400 	if (!subvol_name) {
1401 		if (!subvol_objectid) {
1402 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1403 							  &subvol_objectid);
1404 			if (ret) {
1405 				root = ERR_PTR(ret);
1406 				goto out;
1407 			}
1408 		}
1409 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1410 							    subvol_objectid);
1411 		if (IS_ERR(subvol_name)) {
1412 			root = ERR_CAST(subvol_name);
1413 			subvol_name = NULL;
1414 			goto out;
1415 		}
1416 
1417 	}
1418 
1419 	root = mount_subtree(mnt, subvol_name);
1420 	/* mount_subtree() drops our reference on the vfsmount. */
1421 	mnt = NULL;
1422 
1423 	if (!IS_ERR(root)) {
1424 		struct super_block *s = root->d_sb;
1425 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1426 		struct inode *root_inode = d_inode(root);
1427 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1428 
1429 		ret = 0;
1430 		if (!is_subvolume_inode(root_inode)) {
1431 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1432 			       subvol_name);
1433 			ret = -EINVAL;
1434 		}
1435 		if (subvol_objectid && root_objectid != subvol_objectid) {
1436 			/*
1437 			 * This will also catch a race condition where a
1438 			 * subvolume which was passed by ID is renamed and
1439 			 * another subvolume is renamed over the old location.
1440 			 */
1441 			btrfs_err(fs_info,
1442 				  "subvol '%s' does not match subvolid %llu",
1443 				  subvol_name, subvol_objectid);
1444 			ret = -EINVAL;
1445 		}
1446 		if (ret) {
1447 			dput(root);
1448 			root = ERR_PTR(ret);
1449 			deactivate_locked_super(s);
1450 		}
1451 	}
1452 
1453 out:
1454 	mntput(mnt);
1455 	kfree(subvol_name);
1456 	return root;
1457 }
1458 
1459 static int parse_security_options(char *orig_opts,
1460 				  struct security_mnt_opts *sec_opts)
1461 {
1462 	char *secdata = NULL;
1463 	int ret = 0;
1464 
1465 	secdata = alloc_secdata();
1466 	if (!secdata)
1467 		return -ENOMEM;
1468 	ret = security_sb_copy_data(orig_opts, secdata);
1469 	if (ret) {
1470 		free_secdata(secdata);
1471 		return ret;
1472 	}
1473 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1474 	free_secdata(secdata);
1475 	return ret;
1476 }
1477 
1478 static int setup_security_options(struct btrfs_fs_info *fs_info,
1479 				  struct super_block *sb,
1480 				  struct security_mnt_opts *sec_opts)
1481 {
1482 	int ret = 0;
1483 
1484 	/*
1485 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1486 	 * is valid.
1487 	 */
1488 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1489 	if (ret)
1490 		return ret;
1491 
1492 #ifdef CONFIG_SECURITY
1493 	if (!fs_info->security_opts.num_mnt_opts) {
1494 		/* first time security setup, copy sec_opts to fs_info */
1495 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1496 	} else {
1497 		/*
1498 		 * Since SELinux (the only one supporting security_mnt_opts)
1499 		 * does NOT support changing context during remount/mount of
1500 		 * the same sb, this must be the same or part of the same
1501 		 * security options, just free it.
1502 		 */
1503 		security_free_mnt_opts(sec_opts);
1504 	}
1505 #endif
1506 	return ret;
1507 }
1508 
1509 /*
1510  * Find a superblock for the given device / mount point.
1511  *
1512  * Note: This is based on mount_bdev from fs/super.c with a few additions
1513  *       for multiple device setup.  Make sure to keep it in sync.
1514  */
1515 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1516 		int flags, const char *device_name, void *data)
1517 {
1518 	struct block_device *bdev = NULL;
1519 	struct super_block *s;
1520 	struct btrfs_fs_devices *fs_devices = NULL;
1521 	struct btrfs_fs_info *fs_info = NULL;
1522 	struct security_mnt_opts new_sec_opts;
1523 	fmode_t mode = FMODE_READ;
1524 	int error = 0;
1525 
1526 	if (!(flags & SB_RDONLY))
1527 		mode |= FMODE_WRITE;
1528 
1529 	error = btrfs_parse_early_options(data, mode, fs_type,
1530 					  &fs_devices);
1531 	if (error) {
1532 		return ERR_PTR(error);
1533 	}
1534 
1535 	security_init_mnt_opts(&new_sec_opts);
1536 	if (data) {
1537 		error = parse_security_options(data, &new_sec_opts);
1538 		if (error)
1539 			return ERR_PTR(error);
1540 	}
1541 
1542 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1543 	if (error)
1544 		goto error_sec_opts;
1545 
1546 	/*
1547 	 * Setup a dummy root and fs_info for test/set super.  This is because
1548 	 * we don't actually fill this stuff out until open_ctree, but we need
1549 	 * it for searching for existing supers, so this lets us do that and
1550 	 * then open_ctree will properly initialize everything later.
1551 	 */
1552 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1553 	if (!fs_info) {
1554 		error = -ENOMEM;
1555 		goto error_sec_opts;
1556 	}
1557 
1558 	fs_info->fs_devices = fs_devices;
1559 
1560 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1561 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1562 	security_init_mnt_opts(&fs_info->security_opts);
1563 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1564 		error = -ENOMEM;
1565 		goto error_fs_info;
1566 	}
1567 
1568 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1569 	if (error)
1570 		goto error_fs_info;
1571 
1572 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1573 		error = -EACCES;
1574 		goto error_close_devices;
1575 	}
1576 
1577 	bdev = fs_devices->latest_bdev;
1578 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1579 		 fs_info);
1580 	if (IS_ERR(s)) {
1581 		error = PTR_ERR(s);
1582 		goto error_close_devices;
1583 	}
1584 
1585 	if (s->s_root) {
1586 		btrfs_close_devices(fs_devices);
1587 		free_fs_info(fs_info);
1588 		if ((flags ^ s->s_flags) & SB_RDONLY)
1589 			error = -EBUSY;
1590 	} else {
1591 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1592 		btrfs_sb(s)->bdev_holder = fs_type;
1593 		error = btrfs_fill_super(s, fs_devices, data);
1594 	}
1595 	if (error) {
1596 		deactivate_locked_super(s);
1597 		goto error_sec_opts;
1598 	}
1599 
1600 	fs_info = btrfs_sb(s);
1601 	error = setup_security_options(fs_info, s, &new_sec_opts);
1602 	if (error) {
1603 		deactivate_locked_super(s);
1604 		goto error_sec_opts;
1605 	}
1606 
1607 	return dget(s->s_root);
1608 
1609 error_close_devices:
1610 	btrfs_close_devices(fs_devices);
1611 error_fs_info:
1612 	free_fs_info(fs_info);
1613 error_sec_opts:
1614 	security_free_mnt_opts(&new_sec_opts);
1615 	return ERR_PTR(error);
1616 }
1617 
1618 /*
1619  * Mount function which is called by VFS layer.
1620  *
1621  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1622  * which needs vfsmount* of device's root (/).  This means device's root has to
1623  * be mounted internally in any case.
1624  *
1625  * Operation flow:
1626  *   1. Parse subvol id related options for later use in mount_subvol().
1627  *
1628  *   2. Mount device's root (/) by calling vfs_kern_mount().
1629  *
1630  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1631  *      first place. In order to avoid calling btrfs_mount() again, we use
1632  *      different file_system_type which is not registered to VFS by
1633  *      register_filesystem() (btrfs_root_fs_type). As a result,
1634  *      btrfs_mount_root() is called. The return value will be used by
1635  *      mount_subtree() in mount_subvol().
1636  *
1637  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1638  *      "btrfs subvolume set-default", mount_subvol() is called always.
1639  */
1640 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1641 		const char *device_name, void *data)
1642 {
1643 	struct vfsmount *mnt_root;
1644 	struct dentry *root;
1645 	fmode_t mode = FMODE_READ;
1646 	char *subvol_name = NULL;
1647 	u64 subvol_objectid = 0;
1648 	int error = 0;
1649 
1650 	if (!(flags & SB_RDONLY))
1651 		mode |= FMODE_WRITE;
1652 
1653 	error = btrfs_parse_subvol_options(data, mode,
1654 					  &subvol_name, &subvol_objectid);
1655 	if (error) {
1656 		kfree(subvol_name);
1657 		return ERR_PTR(error);
1658 	}
1659 
1660 	/* mount device's root (/) */
1661 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1662 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1663 		if (flags & SB_RDONLY) {
1664 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1665 				flags & ~SB_RDONLY, device_name, data);
1666 		} else {
1667 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1668 				flags | SB_RDONLY, device_name, data);
1669 			if (IS_ERR(mnt_root)) {
1670 				root = ERR_CAST(mnt_root);
1671 				goto out;
1672 			}
1673 
1674 			down_write(&mnt_root->mnt_sb->s_umount);
1675 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1676 			up_write(&mnt_root->mnt_sb->s_umount);
1677 			if (error < 0) {
1678 				root = ERR_PTR(error);
1679 				mntput(mnt_root);
1680 				goto out;
1681 			}
1682 		}
1683 	}
1684 	if (IS_ERR(mnt_root)) {
1685 		root = ERR_CAST(mnt_root);
1686 		goto out;
1687 	}
1688 
1689 	/* mount_subvol() will free subvol_name and mnt_root */
1690 	root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1691 
1692 out:
1693 	return root;
1694 }
1695 
1696 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1697 				     u32 new_pool_size, u32 old_pool_size)
1698 {
1699 	if (new_pool_size == old_pool_size)
1700 		return;
1701 
1702 	fs_info->thread_pool_size = new_pool_size;
1703 
1704 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1705 	       old_pool_size, new_pool_size);
1706 
1707 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1708 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1709 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1710 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1711 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1712 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1713 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1714 				new_pool_size);
1715 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1716 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1717 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1718 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1719 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1720 				new_pool_size);
1721 }
1722 
1723 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1724 {
1725 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1726 }
1727 
1728 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1729 				       unsigned long old_opts, int flags)
1730 {
1731 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1732 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1733 	     (flags & SB_RDONLY))) {
1734 		/* wait for any defraggers to finish */
1735 		wait_event(fs_info->transaction_wait,
1736 			   (atomic_read(&fs_info->defrag_running) == 0));
1737 		if (flags & SB_RDONLY)
1738 			sync_filesystem(fs_info->sb);
1739 	}
1740 }
1741 
1742 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1743 					 unsigned long old_opts)
1744 {
1745 	/*
1746 	 * We need to cleanup all defragable inodes if the autodefragment is
1747 	 * close or the filesystem is read only.
1748 	 */
1749 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1750 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1751 		btrfs_cleanup_defrag_inodes(fs_info);
1752 	}
1753 
1754 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1755 }
1756 
1757 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1758 {
1759 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1760 	struct btrfs_root *root = fs_info->tree_root;
1761 	unsigned old_flags = sb->s_flags;
1762 	unsigned long old_opts = fs_info->mount_opt;
1763 	unsigned long old_compress_type = fs_info->compress_type;
1764 	u64 old_max_inline = fs_info->max_inline;
1765 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1766 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1767 	int ret;
1768 
1769 	sync_filesystem(sb);
1770 	btrfs_remount_prepare(fs_info);
1771 
1772 	if (data) {
1773 		struct security_mnt_opts new_sec_opts;
1774 
1775 		security_init_mnt_opts(&new_sec_opts);
1776 		ret = parse_security_options(data, &new_sec_opts);
1777 		if (ret)
1778 			goto restore;
1779 		ret = setup_security_options(fs_info, sb,
1780 					     &new_sec_opts);
1781 		if (ret) {
1782 			security_free_mnt_opts(&new_sec_opts);
1783 			goto restore;
1784 		}
1785 	}
1786 
1787 	ret = btrfs_parse_options(fs_info, data, *flags);
1788 	if (ret)
1789 		goto restore;
1790 
1791 	btrfs_remount_begin(fs_info, old_opts, *flags);
1792 	btrfs_resize_thread_pool(fs_info,
1793 		fs_info->thread_pool_size, old_thread_pool_size);
1794 
1795 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1796 		goto out;
1797 
1798 	if (*flags & SB_RDONLY) {
1799 		/*
1800 		 * this also happens on 'umount -rf' or on shutdown, when
1801 		 * the filesystem is busy.
1802 		 */
1803 		cancel_work_sync(&fs_info->async_reclaim_work);
1804 
1805 		/* wait for the uuid_scan task to finish */
1806 		down(&fs_info->uuid_tree_rescan_sem);
1807 		/* avoid complains from lockdep et al. */
1808 		up(&fs_info->uuid_tree_rescan_sem);
1809 
1810 		sb->s_flags |= SB_RDONLY;
1811 
1812 		/*
1813 		 * Setting SB_RDONLY will put the cleaner thread to
1814 		 * sleep at the next loop if it's already active.
1815 		 * If it's already asleep, we'll leave unused block
1816 		 * groups on disk until we're mounted read-write again
1817 		 * unless we clean them up here.
1818 		 */
1819 		btrfs_delete_unused_bgs(fs_info);
1820 
1821 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1822 		btrfs_scrub_cancel(fs_info);
1823 		btrfs_pause_balance(fs_info);
1824 
1825 		ret = btrfs_commit_super(fs_info);
1826 		if (ret)
1827 			goto restore;
1828 	} else {
1829 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1830 			btrfs_err(fs_info,
1831 				"Remounting read-write after error is not allowed");
1832 			ret = -EINVAL;
1833 			goto restore;
1834 		}
1835 		if (fs_info->fs_devices->rw_devices == 0) {
1836 			ret = -EACCES;
1837 			goto restore;
1838 		}
1839 
1840 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1841 			btrfs_warn(fs_info,
1842 				"too many missing devices, writeable remount is not allowed");
1843 			ret = -EACCES;
1844 			goto restore;
1845 		}
1846 
1847 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1848 			ret = -EINVAL;
1849 			goto restore;
1850 		}
1851 
1852 		ret = btrfs_cleanup_fs_roots(fs_info);
1853 		if (ret)
1854 			goto restore;
1855 
1856 		/* recover relocation */
1857 		mutex_lock(&fs_info->cleaner_mutex);
1858 		ret = btrfs_recover_relocation(root);
1859 		mutex_unlock(&fs_info->cleaner_mutex);
1860 		if (ret)
1861 			goto restore;
1862 
1863 		ret = btrfs_resume_balance_async(fs_info);
1864 		if (ret)
1865 			goto restore;
1866 
1867 		ret = btrfs_resume_dev_replace_async(fs_info);
1868 		if (ret) {
1869 			btrfs_warn(fs_info, "failed to resume dev_replace");
1870 			goto restore;
1871 		}
1872 
1873 		btrfs_qgroup_rescan_resume(fs_info);
1874 
1875 		if (!fs_info->uuid_root) {
1876 			btrfs_info(fs_info, "creating UUID tree");
1877 			ret = btrfs_create_uuid_tree(fs_info);
1878 			if (ret) {
1879 				btrfs_warn(fs_info,
1880 					   "failed to create the UUID tree %d",
1881 					   ret);
1882 				goto restore;
1883 			}
1884 		}
1885 		sb->s_flags &= ~SB_RDONLY;
1886 
1887 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1888 	}
1889 out:
1890 	wake_up_process(fs_info->transaction_kthread);
1891 	btrfs_remount_cleanup(fs_info, old_opts);
1892 	return 0;
1893 
1894 restore:
1895 	/* We've hit an error - don't reset SB_RDONLY */
1896 	if (sb_rdonly(sb))
1897 		old_flags |= SB_RDONLY;
1898 	sb->s_flags = old_flags;
1899 	fs_info->mount_opt = old_opts;
1900 	fs_info->compress_type = old_compress_type;
1901 	fs_info->max_inline = old_max_inline;
1902 	btrfs_resize_thread_pool(fs_info,
1903 		old_thread_pool_size, fs_info->thread_pool_size);
1904 	fs_info->metadata_ratio = old_metadata_ratio;
1905 	btrfs_remount_cleanup(fs_info, old_opts);
1906 	return ret;
1907 }
1908 
1909 /* Used to sort the devices by max_avail(descending sort) */
1910 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1911 				       const void *dev_info2)
1912 {
1913 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1914 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1915 		return -1;
1916 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1917 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1918 		return 1;
1919 	else
1920 	return 0;
1921 }
1922 
1923 /*
1924  * sort the devices by max_avail, in which max free extent size of each device
1925  * is stored.(Descending Sort)
1926  */
1927 static inline void btrfs_descending_sort_devices(
1928 					struct btrfs_device_info *devices,
1929 					size_t nr_devices)
1930 {
1931 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1932 	     btrfs_cmp_device_free_bytes, NULL);
1933 }
1934 
1935 /*
1936  * The helper to calc the free space on the devices that can be used to store
1937  * file data.
1938  */
1939 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1940 				       u64 *free_bytes)
1941 {
1942 	struct btrfs_device_info *devices_info;
1943 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1944 	struct btrfs_device *device;
1945 	u64 skip_space;
1946 	u64 type;
1947 	u64 avail_space;
1948 	u64 min_stripe_size;
1949 	int min_stripes = 1, num_stripes = 1;
1950 	int i = 0, nr_devices;
1951 
1952 	/*
1953 	 * We aren't under the device list lock, so this is racy-ish, but good
1954 	 * enough for our purposes.
1955 	 */
1956 	nr_devices = fs_info->fs_devices->open_devices;
1957 	if (!nr_devices) {
1958 		smp_mb();
1959 		nr_devices = fs_info->fs_devices->open_devices;
1960 		ASSERT(nr_devices);
1961 		if (!nr_devices) {
1962 			*free_bytes = 0;
1963 			return 0;
1964 		}
1965 	}
1966 
1967 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1968 			       GFP_KERNEL);
1969 	if (!devices_info)
1970 		return -ENOMEM;
1971 
1972 	/* calc min stripe number for data space allocation */
1973 	type = btrfs_data_alloc_profile(fs_info);
1974 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1975 		min_stripes = 2;
1976 		num_stripes = nr_devices;
1977 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1978 		min_stripes = 2;
1979 		num_stripes = 2;
1980 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1981 		min_stripes = 4;
1982 		num_stripes = 4;
1983 	}
1984 
1985 	if (type & BTRFS_BLOCK_GROUP_DUP)
1986 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1987 	else
1988 		min_stripe_size = BTRFS_STRIPE_LEN;
1989 
1990 	rcu_read_lock();
1991 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1992 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1993 						&device->dev_state) ||
1994 		    !device->bdev ||
1995 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1996 			continue;
1997 
1998 		if (i >= nr_devices)
1999 			break;
2000 
2001 		avail_space = device->total_bytes - device->bytes_used;
2002 
2003 		/* align with stripe_len */
2004 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2005 		avail_space *= BTRFS_STRIPE_LEN;
2006 
2007 		/*
2008 		 * In order to avoid overwriting the superblock on the drive,
2009 		 * btrfs starts at an offset of at least 1MB when doing chunk
2010 		 * allocation.
2011 		 */
2012 		skip_space = SZ_1M;
2013 
2014 		/*
2015 		 * we can use the free space in [0, skip_space - 1], subtract
2016 		 * it from the total.
2017 		 */
2018 		if (avail_space && avail_space >= skip_space)
2019 			avail_space -= skip_space;
2020 		else
2021 			avail_space = 0;
2022 
2023 		if (avail_space < min_stripe_size)
2024 			continue;
2025 
2026 		devices_info[i].dev = device;
2027 		devices_info[i].max_avail = avail_space;
2028 
2029 		i++;
2030 	}
2031 	rcu_read_unlock();
2032 
2033 	nr_devices = i;
2034 
2035 	btrfs_descending_sort_devices(devices_info, nr_devices);
2036 
2037 	i = nr_devices - 1;
2038 	avail_space = 0;
2039 	while (nr_devices >= min_stripes) {
2040 		if (num_stripes > nr_devices)
2041 			num_stripes = nr_devices;
2042 
2043 		if (devices_info[i].max_avail >= min_stripe_size) {
2044 			int j;
2045 			u64 alloc_size;
2046 
2047 			avail_space += devices_info[i].max_avail * num_stripes;
2048 			alloc_size = devices_info[i].max_avail;
2049 			for (j = i + 1 - num_stripes; j <= i; j++)
2050 				devices_info[j].max_avail -= alloc_size;
2051 		}
2052 		i--;
2053 		nr_devices--;
2054 	}
2055 
2056 	kfree(devices_info);
2057 	*free_bytes = avail_space;
2058 	return 0;
2059 }
2060 
2061 /*
2062  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2063  *
2064  * If there's a redundant raid level at DATA block groups, use the respective
2065  * multiplier to scale the sizes.
2066  *
2067  * Unused device space usage is based on simulating the chunk allocator
2068  * algorithm that respects the device sizes and order of allocations.  This is
2069  * a close approximation of the actual use but there are other factors that may
2070  * change the result (like a new metadata chunk).
2071  *
2072  * If metadata is exhausted, f_bavail will be 0.
2073  */
2074 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2075 {
2076 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2077 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2078 	struct list_head *head = &fs_info->space_info;
2079 	struct btrfs_space_info *found;
2080 	u64 total_used = 0;
2081 	u64 total_free_data = 0;
2082 	u64 total_free_meta = 0;
2083 	int bits = dentry->d_sb->s_blocksize_bits;
2084 	__be32 *fsid = (__be32 *)fs_info->fsid;
2085 	unsigned factor = 1;
2086 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2087 	int ret;
2088 	u64 thresh = 0;
2089 	int mixed = 0;
2090 
2091 	rcu_read_lock();
2092 	list_for_each_entry_rcu(found, head, list) {
2093 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2094 			int i;
2095 
2096 			total_free_data += found->disk_total - found->disk_used;
2097 			total_free_data -=
2098 				btrfs_account_ro_block_groups_free_space(found);
2099 
2100 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2101 				if (!list_empty(&found->block_groups[i])) {
2102 					switch (i) {
2103 					case BTRFS_RAID_DUP:
2104 					case BTRFS_RAID_RAID1:
2105 					case BTRFS_RAID_RAID10:
2106 						factor = 2;
2107 					}
2108 				}
2109 			}
2110 		}
2111 
2112 		/*
2113 		 * Metadata in mixed block goup profiles are accounted in data
2114 		 */
2115 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2116 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2117 				mixed = 1;
2118 			else
2119 				total_free_meta += found->disk_total -
2120 					found->disk_used;
2121 		}
2122 
2123 		total_used += found->disk_used;
2124 	}
2125 
2126 	rcu_read_unlock();
2127 
2128 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2129 	buf->f_blocks >>= bits;
2130 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2131 
2132 	/* Account global block reserve as used, it's in logical size already */
2133 	spin_lock(&block_rsv->lock);
2134 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2135 	if (buf->f_bfree >= block_rsv->size >> bits)
2136 		buf->f_bfree -= block_rsv->size >> bits;
2137 	else
2138 		buf->f_bfree = 0;
2139 	spin_unlock(&block_rsv->lock);
2140 
2141 	buf->f_bavail = div_u64(total_free_data, factor);
2142 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2143 	if (ret)
2144 		return ret;
2145 	buf->f_bavail += div_u64(total_free_data, factor);
2146 	buf->f_bavail = buf->f_bavail >> bits;
2147 
2148 	/*
2149 	 * We calculate the remaining metadata space minus global reserve. If
2150 	 * this is (supposedly) smaller than zero, there's no space. But this
2151 	 * does not hold in practice, the exhausted state happens where's still
2152 	 * some positive delta. So we apply some guesswork and compare the
2153 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2154 	 *
2155 	 * We probably cannot calculate the exact threshold value because this
2156 	 * depends on the internal reservations requested by various
2157 	 * operations, so some operations that consume a few metadata will
2158 	 * succeed even if the Avail is zero. But this is better than the other
2159 	 * way around.
2160 	 */
2161 	thresh = SZ_4M;
2162 
2163 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2164 		buf->f_bavail = 0;
2165 
2166 	buf->f_type = BTRFS_SUPER_MAGIC;
2167 	buf->f_bsize = dentry->d_sb->s_blocksize;
2168 	buf->f_namelen = BTRFS_NAME_LEN;
2169 
2170 	/* We treat it as constant endianness (it doesn't matter _which_)
2171 	   because we want the fsid to come out the same whether mounted
2172 	   on a big-endian or little-endian host */
2173 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2174 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2175 	/* Mask in the root object ID too, to disambiguate subvols */
2176 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2177 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2178 
2179 	return 0;
2180 }
2181 
2182 static void btrfs_kill_super(struct super_block *sb)
2183 {
2184 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2185 	kill_anon_super(sb);
2186 	free_fs_info(fs_info);
2187 }
2188 
2189 static struct file_system_type btrfs_fs_type = {
2190 	.owner		= THIS_MODULE,
2191 	.name		= "btrfs",
2192 	.mount		= btrfs_mount,
2193 	.kill_sb	= btrfs_kill_super,
2194 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2195 };
2196 
2197 static struct file_system_type btrfs_root_fs_type = {
2198 	.owner		= THIS_MODULE,
2199 	.name		= "btrfs",
2200 	.mount		= btrfs_mount_root,
2201 	.kill_sb	= btrfs_kill_super,
2202 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2203 };
2204 
2205 MODULE_ALIAS_FS("btrfs");
2206 
2207 static int btrfs_control_open(struct inode *inode, struct file *file)
2208 {
2209 	/*
2210 	 * The control file's private_data is used to hold the
2211 	 * transaction when it is started and is used to keep
2212 	 * track of whether a transaction is already in progress.
2213 	 */
2214 	file->private_data = NULL;
2215 	return 0;
2216 }
2217 
2218 /*
2219  * used by btrfsctl to scan devices when no FS is mounted
2220  */
2221 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2222 				unsigned long arg)
2223 {
2224 	struct btrfs_ioctl_vol_args *vol;
2225 	struct btrfs_fs_devices *fs_devices;
2226 	int ret = -ENOTTY;
2227 
2228 	if (!capable(CAP_SYS_ADMIN))
2229 		return -EPERM;
2230 
2231 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2232 	if (IS_ERR(vol))
2233 		return PTR_ERR(vol);
2234 
2235 	switch (cmd) {
2236 	case BTRFS_IOC_SCAN_DEV:
2237 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2238 					    &btrfs_root_fs_type, &fs_devices);
2239 		break;
2240 	case BTRFS_IOC_DEVICES_READY:
2241 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2242 					    &btrfs_root_fs_type, &fs_devices);
2243 		if (ret)
2244 			break;
2245 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2246 		break;
2247 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2248 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2249 		break;
2250 	}
2251 
2252 	kfree(vol);
2253 	return ret;
2254 }
2255 
2256 static int btrfs_freeze(struct super_block *sb)
2257 {
2258 	struct btrfs_trans_handle *trans;
2259 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2260 	struct btrfs_root *root = fs_info->tree_root;
2261 
2262 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2263 	/*
2264 	 * We don't need a barrier here, we'll wait for any transaction that
2265 	 * could be in progress on other threads (and do delayed iputs that
2266 	 * we want to avoid on a frozen filesystem), or do the commit
2267 	 * ourselves.
2268 	 */
2269 	trans = btrfs_attach_transaction_barrier(root);
2270 	if (IS_ERR(trans)) {
2271 		/* no transaction, don't bother */
2272 		if (PTR_ERR(trans) == -ENOENT)
2273 			return 0;
2274 		return PTR_ERR(trans);
2275 	}
2276 	return btrfs_commit_transaction(trans);
2277 }
2278 
2279 static int btrfs_unfreeze(struct super_block *sb)
2280 {
2281 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2282 
2283 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2284 	return 0;
2285 }
2286 
2287 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2288 {
2289 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2290 	struct btrfs_fs_devices *cur_devices;
2291 	struct btrfs_device *dev, *first_dev = NULL;
2292 	struct list_head *head;
2293 	struct rcu_string *name;
2294 
2295 	/*
2296 	 * Lightweight locking of the devices. We should not need
2297 	 * device_list_mutex here as we only read the device data and the list
2298 	 * is protected by RCU.  Even if a device is deleted during the list
2299 	 * traversals, we'll get valid data, the freeing callback will wait at
2300 	 * least until until the rcu_read_unlock.
2301 	 */
2302 	rcu_read_lock();
2303 	cur_devices = fs_info->fs_devices;
2304 	while (cur_devices) {
2305 		head = &cur_devices->devices;
2306 		list_for_each_entry_rcu(dev, head, dev_list) {
2307 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2308 				continue;
2309 			if (!dev->name)
2310 				continue;
2311 			if (!first_dev || dev->devid < first_dev->devid)
2312 				first_dev = dev;
2313 		}
2314 		cur_devices = cur_devices->seed;
2315 	}
2316 
2317 	if (first_dev) {
2318 		name = rcu_dereference(first_dev->name);
2319 		seq_escape(m, name->str, " \t\n\\");
2320 	} else {
2321 		WARN_ON(1);
2322 	}
2323 	rcu_read_unlock();
2324 	return 0;
2325 }
2326 
2327 static const struct super_operations btrfs_super_ops = {
2328 	.drop_inode	= btrfs_drop_inode,
2329 	.evict_inode	= btrfs_evict_inode,
2330 	.put_super	= btrfs_put_super,
2331 	.sync_fs	= btrfs_sync_fs,
2332 	.show_options	= btrfs_show_options,
2333 	.show_devname	= btrfs_show_devname,
2334 	.write_inode	= btrfs_write_inode,
2335 	.alloc_inode	= btrfs_alloc_inode,
2336 	.destroy_inode	= btrfs_destroy_inode,
2337 	.statfs		= btrfs_statfs,
2338 	.remount_fs	= btrfs_remount,
2339 	.freeze_fs	= btrfs_freeze,
2340 	.unfreeze_fs	= btrfs_unfreeze,
2341 };
2342 
2343 static const struct file_operations btrfs_ctl_fops = {
2344 	.open = btrfs_control_open,
2345 	.unlocked_ioctl	 = btrfs_control_ioctl,
2346 	.compat_ioctl = btrfs_control_ioctl,
2347 	.owner	 = THIS_MODULE,
2348 	.llseek = noop_llseek,
2349 };
2350 
2351 static struct miscdevice btrfs_misc = {
2352 	.minor		= BTRFS_MINOR,
2353 	.name		= "btrfs-control",
2354 	.fops		= &btrfs_ctl_fops
2355 };
2356 
2357 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2358 MODULE_ALIAS("devname:btrfs-control");
2359 
2360 static int __init btrfs_interface_init(void)
2361 {
2362 	return misc_register(&btrfs_misc);
2363 }
2364 
2365 static __cold void btrfs_interface_exit(void)
2366 {
2367 	misc_deregister(&btrfs_misc);
2368 }
2369 
2370 static void __init btrfs_print_mod_info(void)
2371 {
2372 	pr_info("Btrfs loaded, crc32c=%s"
2373 #ifdef CONFIG_BTRFS_DEBUG
2374 			", debug=on"
2375 #endif
2376 #ifdef CONFIG_BTRFS_ASSERT
2377 			", assert=on"
2378 #endif
2379 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2380 			", integrity-checker=on"
2381 #endif
2382 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2383 			", ref-verify=on"
2384 #endif
2385 			"\n",
2386 			crc32c_impl());
2387 }
2388 
2389 static int __init init_btrfs_fs(void)
2390 {
2391 	int err;
2392 
2393 	btrfs_props_init();
2394 
2395 	err = btrfs_init_sysfs();
2396 	if (err)
2397 		return err;
2398 
2399 	btrfs_init_compress();
2400 
2401 	err = btrfs_init_cachep();
2402 	if (err)
2403 		goto free_compress;
2404 
2405 	err = extent_io_init();
2406 	if (err)
2407 		goto free_cachep;
2408 
2409 	err = extent_map_init();
2410 	if (err)
2411 		goto free_extent_io;
2412 
2413 	err = ordered_data_init();
2414 	if (err)
2415 		goto free_extent_map;
2416 
2417 	err = btrfs_delayed_inode_init();
2418 	if (err)
2419 		goto free_ordered_data;
2420 
2421 	err = btrfs_auto_defrag_init();
2422 	if (err)
2423 		goto free_delayed_inode;
2424 
2425 	err = btrfs_delayed_ref_init();
2426 	if (err)
2427 		goto free_auto_defrag;
2428 
2429 	err = btrfs_prelim_ref_init();
2430 	if (err)
2431 		goto free_delayed_ref;
2432 
2433 	err = btrfs_end_io_wq_init();
2434 	if (err)
2435 		goto free_prelim_ref;
2436 
2437 	err = btrfs_interface_init();
2438 	if (err)
2439 		goto free_end_io_wq;
2440 
2441 	btrfs_init_lockdep();
2442 
2443 	btrfs_print_mod_info();
2444 
2445 	err = btrfs_run_sanity_tests();
2446 	if (err)
2447 		goto unregister_ioctl;
2448 
2449 	err = register_filesystem(&btrfs_fs_type);
2450 	if (err)
2451 		goto unregister_ioctl;
2452 
2453 	return 0;
2454 
2455 unregister_ioctl:
2456 	btrfs_interface_exit();
2457 free_end_io_wq:
2458 	btrfs_end_io_wq_exit();
2459 free_prelim_ref:
2460 	btrfs_prelim_ref_exit();
2461 free_delayed_ref:
2462 	btrfs_delayed_ref_exit();
2463 free_auto_defrag:
2464 	btrfs_auto_defrag_exit();
2465 free_delayed_inode:
2466 	btrfs_delayed_inode_exit();
2467 free_ordered_data:
2468 	ordered_data_exit();
2469 free_extent_map:
2470 	extent_map_exit();
2471 free_extent_io:
2472 	extent_io_exit();
2473 free_cachep:
2474 	btrfs_destroy_cachep();
2475 free_compress:
2476 	btrfs_exit_compress();
2477 	btrfs_exit_sysfs();
2478 
2479 	return err;
2480 }
2481 
2482 static void __exit exit_btrfs_fs(void)
2483 {
2484 	btrfs_destroy_cachep();
2485 	btrfs_delayed_ref_exit();
2486 	btrfs_auto_defrag_exit();
2487 	btrfs_delayed_inode_exit();
2488 	btrfs_prelim_ref_exit();
2489 	ordered_data_exit();
2490 	extent_map_exit();
2491 	extent_io_exit();
2492 	btrfs_interface_exit();
2493 	btrfs_end_io_wq_exit();
2494 	unregister_filesystem(&btrfs_fs_type);
2495 	btrfs_exit_sysfs();
2496 	btrfs_cleanup_fs_uuids();
2497 	btrfs_exit_compress();
2498 }
2499 
2500 late_initcall(init_btrfs_fs);
2501 module_exit(exit_btrfs_fs)
2502 
2503 MODULE_LICENSE("GPL");
2504