1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/buffer_head.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/seq_file.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/mount.h> 18 #include <linux/mpage.h> 19 #include <linux/swap.h> 20 #include <linux/writeback.h> 21 #include <linux/statfs.h> 22 #include <linux/compat.h> 23 #include <linux/parser.h> 24 #include <linux/ctype.h> 25 #include <linux/namei.h> 26 #include <linux/miscdevice.h> 27 #include <linux/magic.h> 28 #include <linux/slab.h> 29 #include <linux/cleancache.h> 30 #include <linux/ratelimit.h> 31 #include <linux/crc32c.h> 32 #include <linux/btrfs.h> 33 #include "delayed-inode.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "props.h" 40 #include "xattr.h" 41 #include "volumes.h" 42 #include "export.h" 43 #include "compression.h" 44 #include "rcu-string.h" 45 #include "dev-replace.h" 46 #include "free-space-cache.h" 47 #include "backref.h" 48 #include "tests/btrfs-tests.h" 49 50 #include "qgroup.h" 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/btrfs.h> 53 54 static const struct super_operations btrfs_super_ops; 55 56 /* 57 * Types for mounting the default subvolume and a subvolume explicitly 58 * requested by subvol=/path. That way the callchain is straightforward and we 59 * don't have to play tricks with the mount options and recursive calls to 60 * btrfs_mount. 61 * 62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 63 */ 64 static struct file_system_type btrfs_fs_type; 65 static struct file_system_type btrfs_root_fs_type; 66 67 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 68 69 const char *btrfs_decode_error(int errno) 70 { 71 char *errstr = "unknown"; 72 73 switch (errno) { 74 case -EIO: 75 errstr = "IO failure"; 76 break; 77 case -ENOMEM: 78 errstr = "Out of memory"; 79 break; 80 case -EROFS: 81 errstr = "Readonly filesystem"; 82 break; 83 case -EEXIST: 84 errstr = "Object already exists"; 85 break; 86 case -ENOSPC: 87 errstr = "No space left"; 88 break; 89 case -ENOENT: 90 errstr = "No such entry"; 91 break; 92 } 93 94 return errstr; 95 } 96 97 /* 98 * __btrfs_handle_fs_error decodes expected errors from the caller and 99 * invokes the approciate error response. 100 */ 101 __cold 102 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 103 unsigned int line, int errno, const char *fmt, ...) 104 { 105 struct super_block *sb = fs_info->sb; 106 #ifdef CONFIG_PRINTK 107 const char *errstr; 108 #endif 109 110 /* 111 * Special case: if the error is EROFS, and we're already 112 * under SB_RDONLY, then it is safe here. 113 */ 114 if (errno == -EROFS && sb_rdonly(sb)) 115 return; 116 117 #ifdef CONFIG_PRINTK 118 errstr = btrfs_decode_error(errno); 119 if (fmt) { 120 struct va_format vaf; 121 va_list args; 122 123 va_start(args, fmt); 124 vaf.fmt = fmt; 125 vaf.va = &args; 126 127 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 128 sb->s_id, function, line, errno, errstr, &vaf); 129 va_end(args); 130 } else { 131 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 132 sb->s_id, function, line, errno, errstr); 133 } 134 #endif 135 136 /* 137 * Today we only save the error info to memory. Long term we'll 138 * also send it down to the disk 139 */ 140 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 141 142 /* Don't go through full error handling during mount */ 143 if (!(sb->s_flags & SB_BORN)) 144 return; 145 146 if (sb_rdonly(sb)) 147 return; 148 149 /* btrfs handle error by forcing the filesystem readonly */ 150 sb->s_flags |= SB_RDONLY; 151 btrfs_info(fs_info, "forced readonly"); 152 /* 153 * Note that a running device replace operation is not canceled here 154 * although there is no way to update the progress. It would add the 155 * risk of a deadlock, therefore the canceling is omitted. The only 156 * penalty is that some I/O remains active until the procedure 157 * completes. The next time when the filesystem is mounted writeable 158 * again, the device replace operation continues. 159 */ 160 } 161 162 #ifdef CONFIG_PRINTK 163 static const char * const logtypes[] = { 164 "emergency", 165 "alert", 166 "critical", 167 "error", 168 "warning", 169 "notice", 170 "info", 171 "debug", 172 }; 173 174 175 /* 176 * Use one ratelimit state per log level so that a flood of less important 177 * messages doesn't cause more important ones to be dropped. 178 */ 179 static struct ratelimit_state printk_limits[] = { 180 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 181 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 182 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 183 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 184 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 185 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 186 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 187 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 188 }; 189 190 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 191 { 192 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 193 struct va_format vaf; 194 va_list args; 195 int kern_level; 196 const char *type = logtypes[4]; 197 struct ratelimit_state *ratelimit = &printk_limits[4]; 198 199 va_start(args, fmt); 200 201 while ((kern_level = printk_get_level(fmt)) != 0) { 202 size_t size = printk_skip_level(fmt) - fmt; 203 204 if (kern_level >= '0' && kern_level <= '7') { 205 memcpy(lvl, fmt, size); 206 lvl[size] = '\0'; 207 type = logtypes[kern_level - '0']; 208 ratelimit = &printk_limits[kern_level - '0']; 209 } 210 fmt += size; 211 } 212 213 vaf.fmt = fmt; 214 vaf.va = &args; 215 216 if (__ratelimit(ratelimit)) 217 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 218 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 219 220 va_end(args); 221 } 222 #endif 223 224 /* 225 * We only mark the transaction aborted and then set the file system read-only. 226 * This will prevent new transactions from starting or trying to join this 227 * one. 228 * 229 * This means that error recovery at the call site is limited to freeing 230 * any local memory allocations and passing the error code up without 231 * further cleanup. The transaction should complete as it normally would 232 * in the call path but will return -EIO. 233 * 234 * We'll complete the cleanup in btrfs_end_transaction and 235 * btrfs_commit_transaction. 236 */ 237 __cold 238 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 239 const char *function, 240 unsigned int line, int errno) 241 { 242 struct btrfs_fs_info *fs_info = trans->fs_info; 243 244 trans->aborted = errno; 245 /* Nothing used. The other threads that have joined this 246 * transaction may be able to continue. */ 247 if (!trans->dirty && list_empty(&trans->new_bgs)) { 248 const char *errstr; 249 250 errstr = btrfs_decode_error(errno); 251 btrfs_warn(fs_info, 252 "%s:%d: Aborting unused transaction(%s).", 253 function, line, errstr); 254 return; 255 } 256 WRITE_ONCE(trans->transaction->aborted, errno); 257 /* Wake up anybody who may be waiting on this transaction */ 258 wake_up(&fs_info->transaction_wait); 259 wake_up(&fs_info->transaction_blocked_wait); 260 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 261 } 262 /* 263 * __btrfs_panic decodes unexpected, fatal errors from the caller, 264 * issues an alert, and either panics or BUGs, depending on mount options. 265 */ 266 __cold 267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 268 unsigned int line, int errno, const char *fmt, ...) 269 { 270 char *s_id = "<unknown>"; 271 const char *errstr; 272 struct va_format vaf = { .fmt = fmt }; 273 va_list args; 274 275 if (fs_info) 276 s_id = fs_info->sb->s_id; 277 278 va_start(args, fmt); 279 vaf.va = &args; 280 281 errstr = btrfs_decode_error(errno); 282 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 283 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 284 s_id, function, line, &vaf, errno, errstr); 285 286 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 287 function, line, &vaf, errno, errstr); 288 va_end(args); 289 /* Caller calls BUG() */ 290 } 291 292 static void btrfs_put_super(struct super_block *sb) 293 { 294 close_ctree(btrfs_sb(sb)); 295 } 296 297 enum { 298 Opt_acl, Opt_noacl, 299 Opt_clear_cache, 300 Opt_commit_interval, 301 Opt_compress, 302 Opt_compress_force, 303 Opt_compress_force_type, 304 Opt_compress_type, 305 Opt_degraded, 306 Opt_device, 307 Opt_fatal_errors, 308 Opt_flushoncommit, Opt_noflushoncommit, 309 Opt_inode_cache, Opt_noinode_cache, 310 Opt_max_inline, 311 Opt_barrier, Opt_nobarrier, 312 Opt_datacow, Opt_nodatacow, 313 Opt_datasum, Opt_nodatasum, 314 Opt_defrag, Opt_nodefrag, 315 Opt_discard, Opt_nodiscard, 316 Opt_nologreplay, 317 Opt_norecovery, 318 Opt_ratio, 319 Opt_rescan_uuid_tree, 320 Opt_skip_balance, 321 Opt_space_cache, Opt_no_space_cache, 322 Opt_space_cache_version, 323 Opt_ssd, Opt_nossd, 324 Opt_ssd_spread, Opt_nossd_spread, 325 Opt_subvol, 326 Opt_subvol_empty, 327 Opt_subvolid, 328 Opt_thread_pool, 329 Opt_treelog, Opt_notreelog, 330 Opt_usebackuproot, 331 Opt_user_subvol_rm_allowed, 332 333 /* Deprecated options */ 334 Opt_alloc_start, 335 Opt_recovery, 336 Opt_subvolrootid, 337 338 /* Debugging options */ 339 Opt_check_integrity, 340 Opt_check_integrity_including_extent_data, 341 Opt_check_integrity_print_mask, 342 Opt_enospc_debug, Opt_noenospc_debug, 343 #ifdef CONFIG_BTRFS_DEBUG 344 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 345 #endif 346 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 347 Opt_ref_verify, 348 #endif 349 Opt_err, 350 }; 351 352 static const match_table_t tokens = { 353 {Opt_acl, "acl"}, 354 {Opt_noacl, "noacl"}, 355 {Opt_clear_cache, "clear_cache"}, 356 {Opt_commit_interval, "commit=%u"}, 357 {Opt_compress, "compress"}, 358 {Opt_compress_type, "compress=%s"}, 359 {Opt_compress_force, "compress-force"}, 360 {Opt_compress_force_type, "compress-force=%s"}, 361 {Opt_degraded, "degraded"}, 362 {Opt_device, "device=%s"}, 363 {Opt_fatal_errors, "fatal_errors=%s"}, 364 {Opt_flushoncommit, "flushoncommit"}, 365 {Opt_noflushoncommit, "noflushoncommit"}, 366 {Opt_inode_cache, "inode_cache"}, 367 {Opt_noinode_cache, "noinode_cache"}, 368 {Opt_max_inline, "max_inline=%s"}, 369 {Opt_barrier, "barrier"}, 370 {Opt_nobarrier, "nobarrier"}, 371 {Opt_datacow, "datacow"}, 372 {Opt_nodatacow, "nodatacow"}, 373 {Opt_datasum, "datasum"}, 374 {Opt_nodatasum, "nodatasum"}, 375 {Opt_defrag, "autodefrag"}, 376 {Opt_nodefrag, "noautodefrag"}, 377 {Opt_discard, "discard"}, 378 {Opt_nodiscard, "nodiscard"}, 379 {Opt_nologreplay, "nologreplay"}, 380 {Opt_norecovery, "norecovery"}, 381 {Opt_ratio, "metadata_ratio=%u"}, 382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 383 {Opt_skip_balance, "skip_balance"}, 384 {Opt_space_cache, "space_cache"}, 385 {Opt_no_space_cache, "nospace_cache"}, 386 {Opt_space_cache_version, "space_cache=%s"}, 387 {Opt_ssd, "ssd"}, 388 {Opt_nossd, "nossd"}, 389 {Opt_ssd_spread, "ssd_spread"}, 390 {Opt_nossd_spread, "nossd_spread"}, 391 {Opt_subvol, "subvol=%s"}, 392 {Opt_subvol_empty, "subvol="}, 393 {Opt_subvolid, "subvolid=%s"}, 394 {Opt_thread_pool, "thread_pool=%u"}, 395 {Opt_treelog, "treelog"}, 396 {Opt_notreelog, "notreelog"}, 397 {Opt_usebackuproot, "usebackuproot"}, 398 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 399 400 /* Deprecated options */ 401 {Opt_alloc_start, "alloc_start=%s"}, 402 {Opt_recovery, "recovery"}, 403 {Opt_subvolrootid, "subvolrootid=%d"}, 404 405 /* Debugging options */ 406 {Opt_check_integrity, "check_int"}, 407 {Opt_check_integrity_including_extent_data, "check_int_data"}, 408 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 409 {Opt_enospc_debug, "enospc_debug"}, 410 {Opt_noenospc_debug, "noenospc_debug"}, 411 #ifdef CONFIG_BTRFS_DEBUG 412 {Opt_fragment_data, "fragment=data"}, 413 {Opt_fragment_metadata, "fragment=metadata"}, 414 {Opt_fragment_all, "fragment=all"}, 415 #endif 416 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 417 {Opt_ref_verify, "ref_verify"}, 418 #endif 419 {Opt_err, NULL}, 420 }; 421 422 /* 423 * Regular mount options parser. Everything that is needed only when 424 * reading in a new superblock is parsed here. 425 * XXX JDM: This needs to be cleaned up for remount. 426 */ 427 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 428 unsigned long new_flags) 429 { 430 substring_t args[MAX_OPT_ARGS]; 431 char *p, *num; 432 u64 cache_gen; 433 int intarg; 434 int ret = 0; 435 char *compress_type; 436 bool compress_force = false; 437 enum btrfs_compression_type saved_compress_type; 438 bool saved_compress_force; 439 int no_compress = 0; 440 441 cache_gen = btrfs_super_cache_generation(info->super_copy); 442 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 443 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 444 else if (cache_gen) 445 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 446 447 /* 448 * Even the options are empty, we still need to do extra check 449 * against new flags 450 */ 451 if (!options) 452 goto check; 453 454 while ((p = strsep(&options, ",")) != NULL) { 455 int token; 456 if (!*p) 457 continue; 458 459 token = match_token(p, tokens, args); 460 switch (token) { 461 case Opt_degraded: 462 btrfs_info(info, "allowing degraded mounts"); 463 btrfs_set_opt(info->mount_opt, DEGRADED); 464 break; 465 case Opt_subvol: 466 case Opt_subvol_empty: 467 case Opt_subvolid: 468 case Opt_subvolrootid: 469 case Opt_device: 470 /* 471 * These are parsed by btrfs_parse_subvol_options 472 * and btrfs_parse_early_options 473 * and can be happily ignored here. 474 */ 475 break; 476 case Opt_nodatasum: 477 btrfs_set_and_info(info, NODATASUM, 478 "setting nodatasum"); 479 break; 480 case Opt_datasum: 481 if (btrfs_test_opt(info, NODATASUM)) { 482 if (btrfs_test_opt(info, NODATACOW)) 483 btrfs_info(info, 484 "setting datasum, datacow enabled"); 485 else 486 btrfs_info(info, "setting datasum"); 487 } 488 btrfs_clear_opt(info->mount_opt, NODATACOW); 489 btrfs_clear_opt(info->mount_opt, NODATASUM); 490 break; 491 case Opt_nodatacow: 492 if (!btrfs_test_opt(info, NODATACOW)) { 493 if (!btrfs_test_opt(info, COMPRESS) || 494 !btrfs_test_opt(info, FORCE_COMPRESS)) { 495 btrfs_info(info, 496 "setting nodatacow, compression disabled"); 497 } else { 498 btrfs_info(info, "setting nodatacow"); 499 } 500 } 501 btrfs_clear_opt(info->mount_opt, COMPRESS); 502 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 503 btrfs_set_opt(info->mount_opt, NODATACOW); 504 btrfs_set_opt(info->mount_opt, NODATASUM); 505 break; 506 case Opt_datacow: 507 btrfs_clear_and_info(info, NODATACOW, 508 "setting datacow"); 509 break; 510 case Opt_compress_force: 511 case Opt_compress_force_type: 512 compress_force = true; 513 /* Fallthrough */ 514 case Opt_compress: 515 case Opt_compress_type: 516 saved_compress_type = btrfs_test_opt(info, 517 COMPRESS) ? 518 info->compress_type : BTRFS_COMPRESS_NONE; 519 saved_compress_force = 520 btrfs_test_opt(info, FORCE_COMPRESS); 521 if (token == Opt_compress || 522 token == Opt_compress_force || 523 strncmp(args[0].from, "zlib", 4) == 0) { 524 compress_type = "zlib"; 525 526 info->compress_type = BTRFS_COMPRESS_ZLIB; 527 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 528 /* 529 * args[0] contains uninitialized data since 530 * for these tokens we don't expect any 531 * parameter. 532 */ 533 if (token != Opt_compress && 534 token != Opt_compress_force) 535 info->compress_level = 536 btrfs_compress_str2level(args[0].from); 537 btrfs_set_opt(info->mount_opt, COMPRESS); 538 btrfs_clear_opt(info->mount_opt, NODATACOW); 539 btrfs_clear_opt(info->mount_opt, NODATASUM); 540 no_compress = 0; 541 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 542 compress_type = "lzo"; 543 info->compress_type = BTRFS_COMPRESS_LZO; 544 btrfs_set_opt(info->mount_opt, COMPRESS); 545 btrfs_clear_opt(info->mount_opt, NODATACOW); 546 btrfs_clear_opt(info->mount_opt, NODATASUM); 547 btrfs_set_fs_incompat(info, COMPRESS_LZO); 548 no_compress = 0; 549 } else if (strcmp(args[0].from, "zstd") == 0) { 550 compress_type = "zstd"; 551 info->compress_type = BTRFS_COMPRESS_ZSTD; 552 btrfs_set_opt(info->mount_opt, COMPRESS); 553 btrfs_clear_opt(info->mount_opt, NODATACOW); 554 btrfs_clear_opt(info->mount_opt, NODATASUM); 555 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 556 no_compress = 0; 557 } else if (strncmp(args[0].from, "no", 2) == 0) { 558 compress_type = "no"; 559 btrfs_clear_opt(info->mount_opt, COMPRESS); 560 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 561 compress_force = false; 562 no_compress++; 563 } else { 564 ret = -EINVAL; 565 goto out; 566 } 567 568 if (compress_force) { 569 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 570 } else { 571 /* 572 * If we remount from compress-force=xxx to 573 * compress=xxx, we need clear FORCE_COMPRESS 574 * flag, otherwise, there is no way for users 575 * to disable forcible compression separately. 576 */ 577 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 578 } 579 if ((btrfs_test_opt(info, COMPRESS) && 580 (info->compress_type != saved_compress_type || 581 compress_force != saved_compress_force)) || 582 (!btrfs_test_opt(info, COMPRESS) && 583 no_compress == 1)) { 584 btrfs_info(info, "%s %s compression, level %d", 585 (compress_force) ? "force" : "use", 586 compress_type, info->compress_level); 587 } 588 compress_force = false; 589 break; 590 case Opt_ssd: 591 btrfs_set_and_info(info, SSD, 592 "enabling ssd optimizations"); 593 btrfs_clear_opt(info->mount_opt, NOSSD); 594 break; 595 case Opt_ssd_spread: 596 btrfs_set_and_info(info, SSD, 597 "enabling ssd optimizations"); 598 btrfs_set_and_info(info, SSD_SPREAD, 599 "using spread ssd allocation scheme"); 600 btrfs_clear_opt(info->mount_opt, NOSSD); 601 break; 602 case Opt_nossd: 603 btrfs_set_opt(info->mount_opt, NOSSD); 604 btrfs_clear_and_info(info, SSD, 605 "not using ssd optimizations"); 606 /* Fallthrough */ 607 case Opt_nossd_spread: 608 btrfs_clear_and_info(info, SSD_SPREAD, 609 "not using spread ssd allocation scheme"); 610 break; 611 case Opt_barrier: 612 btrfs_clear_and_info(info, NOBARRIER, 613 "turning on barriers"); 614 break; 615 case Opt_nobarrier: 616 btrfs_set_and_info(info, NOBARRIER, 617 "turning off barriers"); 618 break; 619 case Opt_thread_pool: 620 ret = match_int(&args[0], &intarg); 621 if (ret) { 622 goto out; 623 } else if (intarg == 0) { 624 ret = -EINVAL; 625 goto out; 626 } 627 info->thread_pool_size = intarg; 628 break; 629 case Opt_max_inline: 630 num = match_strdup(&args[0]); 631 if (num) { 632 info->max_inline = memparse(num, NULL); 633 kfree(num); 634 635 if (info->max_inline) { 636 info->max_inline = min_t(u64, 637 info->max_inline, 638 info->sectorsize); 639 } 640 btrfs_info(info, "max_inline at %llu", 641 info->max_inline); 642 } else { 643 ret = -ENOMEM; 644 goto out; 645 } 646 break; 647 case Opt_alloc_start: 648 btrfs_info(info, 649 "option alloc_start is obsolete, ignored"); 650 break; 651 case Opt_acl: 652 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 653 info->sb->s_flags |= SB_POSIXACL; 654 break; 655 #else 656 btrfs_err(info, "support for ACL not compiled in!"); 657 ret = -EINVAL; 658 goto out; 659 #endif 660 case Opt_noacl: 661 info->sb->s_flags &= ~SB_POSIXACL; 662 break; 663 case Opt_notreelog: 664 btrfs_set_and_info(info, NOTREELOG, 665 "disabling tree log"); 666 break; 667 case Opt_treelog: 668 btrfs_clear_and_info(info, NOTREELOG, 669 "enabling tree log"); 670 break; 671 case Opt_norecovery: 672 case Opt_nologreplay: 673 btrfs_set_and_info(info, NOLOGREPLAY, 674 "disabling log replay at mount time"); 675 break; 676 case Opt_flushoncommit: 677 btrfs_set_and_info(info, FLUSHONCOMMIT, 678 "turning on flush-on-commit"); 679 break; 680 case Opt_noflushoncommit: 681 btrfs_clear_and_info(info, FLUSHONCOMMIT, 682 "turning off flush-on-commit"); 683 break; 684 case Opt_ratio: 685 ret = match_int(&args[0], &intarg); 686 if (ret) 687 goto out; 688 info->metadata_ratio = intarg; 689 btrfs_info(info, "metadata ratio %u", 690 info->metadata_ratio); 691 break; 692 case Opt_discard: 693 btrfs_set_and_info(info, DISCARD, 694 "turning on discard"); 695 break; 696 case Opt_nodiscard: 697 btrfs_clear_and_info(info, DISCARD, 698 "turning off discard"); 699 break; 700 case Opt_space_cache: 701 case Opt_space_cache_version: 702 if (token == Opt_space_cache || 703 strcmp(args[0].from, "v1") == 0) { 704 btrfs_clear_opt(info->mount_opt, 705 FREE_SPACE_TREE); 706 btrfs_set_and_info(info, SPACE_CACHE, 707 "enabling disk space caching"); 708 } else if (strcmp(args[0].from, "v2") == 0) { 709 btrfs_clear_opt(info->mount_opt, 710 SPACE_CACHE); 711 btrfs_set_and_info(info, FREE_SPACE_TREE, 712 "enabling free space tree"); 713 } else { 714 ret = -EINVAL; 715 goto out; 716 } 717 break; 718 case Opt_rescan_uuid_tree: 719 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 720 break; 721 case Opt_no_space_cache: 722 if (btrfs_test_opt(info, SPACE_CACHE)) { 723 btrfs_clear_and_info(info, SPACE_CACHE, 724 "disabling disk space caching"); 725 } 726 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 727 btrfs_clear_and_info(info, FREE_SPACE_TREE, 728 "disabling free space tree"); 729 } 730 break; 731 case Opt_inode_cache: 732 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 733 "enabling inode map caching"); 734 break; 735 case Opt_noinode_cache: 736 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 737 "disabling inode map caching"); 738 break; 739 case Opt_clear_cache: 740 btrfs_set_and_info(info, CLEAR_CACHE, 741 "force clearing of disk cache"); 742 break; 743 case Opt_user_subvol_rm_allowed: 744 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 745 break; 746 case Opt_enospc_debug: 747 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 748 break; 749 case Opt_noenospc_debug: 750 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 751 break; 752 case Opt_defrag: 753 btrfs_set_and_info(info, AUTO_DEFRAG, 754 "enabling auto defrag"); 755 break; 756 case Opt_nodefrag: 757 btrfs_clear_and_info(info, AUTO_DEFRAG, 758 "disabling auto defrag"); 759 break; 760 case Opt_recovery: 761 btrfs_warn(info, 762 "'recovery' is deprecated, use 'usebackuproot' instead"); 763 case Opt_usebackuproot: 764 btrfs_info(info, 765 "trying to use backup root at mount time"); 766 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 767 break; 768 case Opt_skip_balance: 769 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 770 break; 771 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 772 case Opt_check_integrity_including_extent_data: 773 btrfs_info(info, 774 "enabling check integrity including extent data"); 775 btrfs_set_opt(info->mount_opt, 776 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 777 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 778 break; 779 case Opt_check_integrity: 780 btrfs_info(info, "enabling check integrity"); 781 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 782 break; 783 case Opt_check_integrity_print_mask: 784 ret = match_int(&args[0], &intarg); 785 if (ret) 786 goto out; 787 info->check_integrity_print_mask = intarg; 788 btrfs_info(info, "check_integrity_print_mask 0x%x", 789 info->check_integrity_print_mask); 790 break; 791 #else 792 case Opt_check_integrity_including_extent_data: 793 case Opt_check_integrity: 794 case Opt_check_integrity_print_mask: 795 btrfs_err(info, 796 "support for check_integrity* not compiled in!"); 797 ret = -EINVAL; 798 goto out; 799 #endif 800 case Opt_fatal_errors: 801 if (strcmp(args[0].from, "panic") == 0) 802 btrfs_set_opt(info->mount_opt, 803 PANIC_ON_FATAL_ERROR); 804 else if (strcmp(args[0].from, "bug") == 0) 805 btrfs_clear_opt(info->mount_opt, 806 PANIC_ON_FATAL_ERROR); 807 else { 808 ret = -EINVAL; 809 goto out; 810 } 811 break; 812 case Opt_commit_interval: 813 intarg = 0; 814 ret = match_int(&args[0], &intarg); 815 if (ret) 816 goto out; 817 if (intarg == 0) { 818 btrfs_info(info, 819 "using default commit interval %us", 820 BTRFS_DEFAULT_COMMIT_INTERVAL); 821 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 822 } else if (intarg > 300) { 823 btrfs_warn(info, "excessive commit interval %d", 824 intarg); 825 } 826 info->commit_interval = intarg; 827 break; 828 #ifdef CONFIG_BTRFS_DEBUG 829 case Opt_fragment_all: 830 btrfs_info(info, "fragmenting all space"); 831 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 832 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 833 break; 834 case Opt_fragment_metadata: 835 btrfs_info(info, "fragmenting metadata"); 836 btrfs_set_opt(info->mount_opt, 837 FRAGMENT_METADATA); 838 break; 839 case Opt_fragment_data: 840 btrfs_info(info, "fragmenting data"); 841 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 842 break; 843 #endif 844 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 845 case Opt_ref_verify: 846 btrfs_info(info, "doing ref verification"); 847 btrfs_set_opt(info->mount_opt, REF_VERIFY); 848 break; 849 #endif 850 case Opt_err: 851 btrfs_info(info, "unrecognized mount option '%s'", p); 852 ret = -EINVAL; 853 goto out; 854 default: 855 break; 856 } 857 } 858 check: 859 /* 860 * Extra check for current option against current flag 861 */ 862 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 863 btrfs_err(info, 864 "nologreplay must be used with ro mount option"); 865 ret = -EINVAL; 866 } 867 out: 868 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 869 !btrfs_test_opt(info, FREE_SPACE_TREE) && 870 !btrfs_test_opt(info, CLEAR_CACHE)) { 871 btrfs_err(info, "cannot disable free space tree"); 872 ret = -EINVAL; 873 874 } 875 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 876 btrfs_info(info, "disk space caching is enabled"); 877 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 878 btrfs_info(info, "using free space tree"); 879 return ret; 880 } 881 882 /* 883 * Parse mount options that are required early in the mount process. 884 * 885 * All other options will be parsed on much later in the mount process and 886 * only when we need to allocate a new super block. 887 */ 888 static int btrfs_parse_early_options(const char *options, fmode_t flags, 889 void *holder, struct btrfs_fs_devices **fs_devices) 890 { 891 substring_t args[MAX_OPT_ARGS]; 892 char *device_name, *opts, *orig, *p; 893 int error = 0; 894 895 if (!options) 896 return 0; 897 898 /* 899 * strsep changes the string, duplicate it because btrfs_parse_options 900 * gets called later 901 */ 902 opts = kstrdup(options, GFP_KERNEL); 903 if (!opts) 904 return -ENOMEM; 905 orig = opts; 906 907 while ((p = strsep(&opts, ",")) != NULL) { 908 int token; 909 910 if (!*p) 911 continue; 912 913 token = match_token(p, tokens, args); 914 if (token == Opt_device) { 915 device_name = match_strdup(&args[0]); 916 if (!device_name) { 917 error = -ENOMEM; 918 goto out; 919 } 920 error = btrfs_scan_one_device(device_name, 921 flags, holder, fs_devices); 922 kfree(device_name); 923 if (error) 924 goto out; 925 } 926 } 927 928 out: 929 kfree(orig); 930 return error; 931 } 932 933 /* 934 * Parse mount options that are related to subvolume id 935 * 936 * The value is later passed to mount_subvol() 937 */ 938 static int btrfs_parse_subvol_options(const char *options, fmode_t flags, 939 char **subvol_name, u64 *subvol_objectid) 940 { 941 substring_t args[MAX_OPT_ARGS]; 942 char *opts, *orig, *p; 943 int error = 0; 944 u64 subvolid; 945 946 if (!options) 947 return 0; 948 949 /* 950 * strsep changes the string, duplicate it because 951 * btrfs_parse_early_options gets called later 952 */ 953 opts = kstrdup(options, GFP_KERNEL); 954 if (!opts) 955 return -ENOMEM; 956 orig = opts; 957 958 while ((p = strsep(&opts, ",")) != NULL) { 959 int token; 960 if (!*p) 961 continue; 962 963 token = match_token(p, tokens, args); 964 switch (token) { 965 case Opt_subvol: 966 kfree(*subvol_name); 967 *subvol_name = match_strdup(&args[0]); 968 if (!*subvol_name) { 969 error = -ENOMEM; 970 goto out; 971 } 972 break; 973 case Opt_subvolid: 974 error = match_u64(&args[0], &subvolid); 975 if (error) 976 goto out; 977 978 /* we want the original fs_tree */ 979 if (subvolid == 0) 980 subvolid = BTRFS_FS_TREE_OBJECTID; 981 982 *subvol_objectid = subvolid; 983 break; 984 case Opt_subvolrootid: 985 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 986 break; 987 default: 988 break; 989 } 990 } 991 992 out: 993 kfree(orig); 994 return error; 995 } 996 997 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 998 u64 subvol_objectid) 999 { 1000 struct btrfs_root *root = fs_info->tree_root; 1001 struct btrfs_root *fs_root; 1002 struct btrfs_root_ref *root_ref; 1003 struct btrfs_inode_ref *inode_ref; 1004 struct btrfs_key key; 1005 struct btrfs_path *path = NULL; 1006 char *name = NULL, *ptr; 1007 u64 dirid; 1008 int len; 1009 int ret; 1010 1011 path = btrfs_alloc_path(); 1012 if (!path) { 1013 ret = -ENOMEM; 1014 goto err; 1015 } 1016 path->leave_spinning = 1; 1017 1018 name = kmalloc(PATH_MAX, GFP_KERNEL); 1019 if (!name) { 1020 ret = -ENOMEM; 1021 goto err; 1022 } 1023 ptr = name + PATH_MAX - 1; 1024 ptr[0] = '\0'; 1025 1026 /* 1027 * Walk up the subvolume trees in the tree of tree roots by root 1028 * backrefs until we hit the top-level subvolume. 1029 */ 1030 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1031 key.objectid = subvol_objectid; 1032 key.type = BTRFS_ROOT_BACKREF_KEY; 1033 key.offset = (u64)-1; 1034 1035 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1036 if (ret < 0) { 1037 goto err; 1038 } else if (ret > 0) { 1039 ret = btrfs_previous_item(root, path, subvol_objectid, 1040 BTRFS_ROOT_BACKREF_KEY); 1041 if (ret < 0) { 1042 goto err; 1043 } else if (ret > 0) { 1044 ret = -ENOENT; 1045 goto err; 1046 } 1047 } 1048 1049 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1050 subvol_objectid = key.offset; 1051 1052 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1053 struct btrfs_root_ref); 1054 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1055 ptr -= len + 1; 1056 if (ptr < name) { 1057 ret = -ENAMETOOLONG; 1058 goto err; 1059 } 1060 read_extent_buffer(path->nodes[0], ptr + 1, 1061 (unsigned long)(root_ref + 1), len); 1062 ptr[0] = '/'; 1063 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1064 btrfs_release_path(path); 1065 1066 key.objectid = subvol_objectid; 1067 key.type = BTRFS_ROOT_ITEM_KEY; 1068 key.offset = (u64)-1; 1069 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1070 if (IS_ERR(fs_root)) { 1071 ret = PTR_ERR(fs_root); 1072 goto err; 1073 } 1074 1075 /* 1076 * Walk up the filesystem tree by inode refs until we hit the 1077 * root directory. 1078 */ 1079 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1080 key.objectid = dirid; 1081 key.type = BTRFS_INODE_REF_KEY; 1082 key.offset = (u64)-1; 1083 1084 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1085 if (ret < 0) { 1086 goto err; 1087 } else if (ret > 0) { 1088 ret = btrfs_previous_item(fs_root, path, dirid, 1089 BTRFS_INODE_REF_KEY); 1090 if (ret < 0) { 1091 goto err; 1092 } else if (ret > 0) { 1093 ret = -ENOENT; 1094 goto err; 1095 } 1096 } 1097 1098 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1099 dirid = key.offset; 1100 1101 inode_ref = btrfs_item_ptr(path->nodes[0], 1102 path->slots[0], 1103 struct btrfs_inode_ref); 1104 len = btrfs_inode_ref_name_len(path->nodes[0], 1105 inode_ref); 1106 ptr -= len + 1; 1107 if (ptr < name) { 1108 ret = -ENAMETOOLONG; 1109 goto err; 1110 } 1111 read_extent_buffer(path->nodes[0], ptr + 1, 1112 (unsigned long)(inode_ref + 1), len); 1113 ptr[0] = '/'; 1114 btrfs_release_path(path); 1115 } 1116 } 1117 1118 btrfs_free_path(path); 1119 if (ptr == name + PATH_MAX - 1) { 1120 name[0] = '/'; 1121 name[1] = '\0'; 1122 } else { 1123 memmove(name, ptr, name + PATH_MAX - ptr); 1124 } 1125 return name; 1126 1127 err: 1128 btrfs_free_path(path); 1129 kfree(name); 1130 return ERR_PTR(ret); 1131 } 1132 1133 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1134 { 1135 struct btrfs_root *root = fs_info->tree_root; 1136 struct btrfs_dir_item *di; 1137 struct btrfs_path *path; 1138 struct btrfs_key location; 1139 u64 dir_id; 1140 1141 path = btrfs_alloc_path(); 1142 if (!path) 1143 return -ENOMEM; 1144 path->leave_spinning = 1; 1145 1146 /* 1147 * Find the "default" dir item which points to the root item that we 1148 * will mount by default if we haven't been given a specific subvolume 1149 * to mount. 1150 */ 1151 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1152 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1153 if (IS_ERR(di)) { 1154 btrfs_free_path(path); 1155 return PTR_ERR(di); 1156 } 1157 if (!di) { 1158 /* 1159 * Ok the default dir item isn't there. This is weird since 1160 * it's always been there, but don't freak out, just try and 1161 * mount the top-level subvolume. 1162 */ 1163 btrfs_free_path(path); 1164 *objectid = BTRFS_FS_TREE_OBJECTID; 1165 return 0; 1166 } 1167 1168 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1169 btrfs_free_path(path); 1170 *objectid = location.objectid; 1171 return 0; 1172 } 1173 1174 static int btrfs_fill_super(struct super_block *sb, 1175 struct btrfs_fs_devices *fs_devices, 1176 void *data) 1177 { 1178 struct inode *inode; 1179 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1180 struct btrfs_key key; 1181 int err; 1182 1183 sb->s_maxbytes = MAX_LFS_FILESIZE; 1184 sb->s_magic = BTRFS_SUPER_MAGIC; 1185 sb->s_op = &btrfs_super_ops; 1186 sb->s_d_op = &btrfs_dentry_operations; 1187 sb->s_export_op = &btrfs_export_ops; 1188 sb->s_xattr = btrfs_xattr_handlers; 1189 sb->s_time_gran = 1; 1190 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1191 sb->s_flags |= SB_POSIXACL; 1192 #endif 1193 sb->s_flags |= SB_I_VERSION; 1194 sb->s_iflags |= SB_I_CGROUPWB; 1195 1196 err = super_setup_bdi(sb); 1197 if (err) { 1198 btrfs_err(fs_info, "super_setup_bdi failed"); 1199 return err; 1200 } 1201 1202 err = open_ctree(sb, fs_devices, (char *)data); 1203 if (err) { 1204 btrfs_err(fs_info, "open_ctree failed"); 1205 return err; 1206 } 1207 1208 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1209 key.type = BTRFS_INODE_ITEM_KEY; 1210 key.offset = 0; 1211 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1212 if (IS_ERR(inode)) { 1213 err = PTR_ERR(inode); 1214 goto fail_close; 1215 } 1216 1217 sb->s_root = d_make_root(inode); 1218 if (!sb->s_root) { 1219 err = -ENOMEM; 1220 goto fail_close; 1221 } 1222 1223 cleancache_init_fs(sb); 1224 sb->s_flags |= SB_ACTIVE; 1225 return 0; 1226 1227 fail_close: 1228 close_ctree(fs_info); 1229 return err; 1230 } 1231 1232 int btrfs_sync_fs(struct super_block *sb, int wait) 1233 { 1234 struct btrfs_trans_handle *trans; 1235 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1236 struct btrfs_root *root = fs_info->tree_root; 1237 1238 trace_btrfs_sync_fs(fs_info, wait); 1239 1240 if (!wait) { 1241 filemap_flush(fs_info->btree_inode->i_mapping); 1242 return 0; 1243 } 1244 1245 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1246 1247 trans = btrfs_attach_transaction_barrier(root); 1248 if (IS_ERR(trans)) { 1249 /* no transaction, don't bother */ 1250 if (PTR_ERR(trans) == -ENOENT) { 1251 /* 1252 * Exit unless we have some pending changes 1253 * that need to go through commit 1254 */ 1255 if (fs_info->pending_changes == 0) 1256 return 0; 1257 /* 1258 * A non-blocking test if the fs is frozen. We must not 1259 * start a new transaction here otherwise a deadlock 1260 * happens. The pending operations are delayed to the 1261 * next commit after thawing. 1262 */ 1263 if (sb_start_write_trylock(sb)) 1264 sb_end_write(sb); 1265 else 1266 return 0; 1267 trans = btrfs_start_transaction(root, 0); 1268 } 1269 if (IS_ERR(trans)) 1270 return PTR_ERR(trans); 1271 } 1272 return btrfs_commit_transaction(trans); 1273 } 1274 1275 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1276 { 1277 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1278 const char *compress_type; 1279 1280 if (btrfs_test_opt(info, DEGRADED)) 1281 seq_puts(seq, ",degraded"); 1282 if (btrfs_test_opt(info, NODATASUM)) 1283 seq_puts(seq, ",nodatasum"); 1284 if (btrfs_test_opt(info, NODATACOW)) 1285 seq_puts(seq, ",nodatacow"); 1286 if (btrfs_test_opt(info, NOBARRIER)) 1287 seq_puts(seq, ",nobarrier"); 1288 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1289 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1290 if (info->thread_pool_size != min_t(unsigned long, 1291 num_online_cpus() + 2, 8)) 1292 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1293 if (btrfs_test_opt(info, COMPRESS)) { 1294 compress_type = btrfs_compress_type2str(info->compress_type); 1295 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1296 seq_printf(seq, ",compress-force=%s", compress_type); 1297 else 1298 seq_printf(seq, ",compress=%s", compress_type); 1299 if (info->compress_level) 1300 seq_printf(seq, ":%d", info->compress_level); 1301 } 1302 if (btrfs_test_opt(info, NOSSD)) 1303 seq_puts(seq, ",nossd"); 1304 if (btrfs_test_opt(info, SSD_SPREAD)) 1305 seq_puts(seq, ",ssd_spread"); 1306 else if (btrfs_test_opt(info, SSD)) 1307 seq_puts(seq, ",ssd"); 1308 if (btrfs_test_opt(info, NOTREELOG)) 1309 seq_puts(seq, ",notreelog"); 1310 if (btrfs_test_opt(info, NOLOGREPLAY)) 1311 seq_puts(seq, ",nologreplay"); 1312 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1313 seq_puts(seq, ",flushoncommit"); 1314 if (btrfs_test_opt(info, DISCARD)) 1315 seq_puts(seq, ",discard"); 1316 if (!(info->sb->s_flags & SB_POSIXACL)) 1317 seq_puts(seq, ",noacl"); 1318 if (btrfs_test_opt(info, SPACE_CACHE)) 1319 seq_puts(seq, ",space_cache"); 1320 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1321 seq_puts(seq, ",space_cache=v2"); 1322 else 1323 seq_puts(seq, ",nospace_cache"); 1324 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1325 seq_puts(seq, ",rescan_uuid_tree"); 1326 if (btrfs_test_opt(info, CLEAR_CACHE)) 1327 seq_puts(seq, ",clear_cache"); 1328 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1329 seq_puts(seq, ",user_subvol_rm_allowed"); 1330 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1331 seq_puts(seq, ",enospc_debug"); 1332 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1333 seq_puts(seq, ",autodefrag"); 1334 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1335 seq_puts(seq, ",inode_cache"); 1336 if (btrfs_test_opt(info, SKIP_BALANCE)) 1337 seq_puts(seq, ",skip_balance"); 1338 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1339 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1340 seq_puts(seq, ",check_int_data"); 1341 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1342 seq_puts(seq, ",check_int"); 1343 if (info->check_integrity_print_mask) 1344 seq_printf(seq, ",check_int_print_mask=%d", 1345 info->check_integrity_print_mask); 1346 #endif 1347 if (info->metadata_ratio) 1348 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1349 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1350 seq_puts(seq, ",fatal_errors=panic"); 1351 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1352 seq_printf(seq, ",commit=%u", info->commit_interval); 1353 #ifdef CONFIG_BTRFS_DEBUG 1354 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1355 seq_puts(seq, ",fragment=data"); 1356 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1357 seq_puts(seq, ",fragment=metadata"); 1358 #endif 1359 if (btrfs_test_opt(info, REF_VERIFY)) 1360 seq_puts(seq, ",ref_verify"); 1361 seq_printf(seq, ",subvolid=%llu", 1362 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1363 seq_puts(seq, ",subvol="); 1364 seq_dentry(seq, dentry, " \t\n\\"); 1365 return 0; 1366 } 1367 1368 static int btrfs_test_super(struct super_block *s, void *data) 1369 { 1370 struct btrfs_fs_info *p = data; 1371 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1372 1373 return fs_info->fs_devices == p->fs_devices; 1374 } 1375 1376 static int btrfs_set_super(struct super_block *s, void *data) 1377 { 1378 int err = set_anon_super(s, data); 1379 if (!err) 1380 s->s_fs_info = data; 1381 return err; 1382 } 1383 1384 /* 1385 * subvolumes are identified by ino 256 1386 */ 1387 static inline int is_subvolume_inode(struct inode *inode) 1388 { 1389 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1390 return 1; 1391 return 0; 1392 } 1393 1394 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1395 const char *device_name, struct vfsmount *mnt) 1396 { 1397 struct dentry *root; 1398 int ret; 1399 1400 if (!subvol_name) { 1401 if (!subvol_objectid) { 1402 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1403 &subvol_objectid); 1404 if (ret) { 1405 root = ERR_PTR(ret); 1406 goto out; 1407 } 1408 } 1409 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1410 subvol_objectid); 1411 if (IS_ERR(subvol_name)) { 1412 root = ERR_CAST(subvol_name); 1413 subvol_name = NULL; 1414 goto out; 1415 } 1416 1417 } 1418 1419 root = mount_subtree(mnt, subvol_name); 1420 /* mount_subtree() drops our reference on the vfsmount. */ 1421 mnt = NULL; 1422 1423 if (!IS_ERR(root)) { 1424 struct super_block *s = root->d_sb; 1425 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1426 struct inode *root_inode = d_inode(root); 1427 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1428 1429 ret = 0; 1430 if (!is_subvolume_inode(root_inode)) { 1431 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1432 subvol_name); 1433 ret = -EINVAL; 1434 } 1435 if (subvol_objectid && root_objectid != subvol_objectid) { 1436 /* 1437 * This will also catch a race condition where a 1438 * subvolume which was passed by ID is renamed and 1439 * another subvolume is renamed over the old location. 1440 */ 1441 btrfs_err(fs_info, 1442 "subvol '%s' does not match subvolid %llu", 1443 subvol_name, subvol_objectid); 1444 ret = -EINVAL; 1445 } 1446 if (ret) { 1447 dput(root); 1448 root = ERR_PTR(ret); 1449 deactivate_locked_super(s); 1450 } 1451 } 1452 1453 out: 1454 mntput(mnt); 1455 kfree(subvol_name); 1456 return root; 1457 } 1458 1459 static int parse_security_options(char *orig_opts, 1460 struct security_mnt_opts *sec_opts) 1461 { 1462 char *secdata = NULL; 1463 int ret = 0; 1464 1465 secdata = alloc_secdata(); 1466 if (!secdata) 1467 return -ENOMEM; 1468 ret = security_sb_copy_data(orig_opts, secdata); 1469 if (ret) { 1470 free_secdata(secdata); 1471 return ret; 1472 } 1473 ret = security_sb_parse_opts_str(secdata, sec_opts); 1474 free_secdata(secdata); 1475 return ret; 1476 } 1477 1478 static int setup_security_options(struct btrfs_fs_info *fs_info, 1479 struct super_block *sb, 1480 struct security_mnt_opts *sec_opts) 1481 { 1482 int ret = 0; 1483 1484 /* 1485 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1486 * is valid. 1487 */ 1488 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1489 if (ret) 1490 return ret; 1491 1492 #ifdef CONFIG_SECURITY 1493 if (!fs_info->security_opts.num_mnt_opts) { 1494 /* first time security setup, copy sec_opts to fs_info */ 1495 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1496 } else { 1497 /* 1498 * Since SELinux (the only one supporting security_mnt_opts) 1499 * does NOT support changing context during remount/mount of 1500 * the same sb, this must be the same or part of the same 1501 * security options, just free it. 1502 */ 1503 security_free_mnt_opts(sec_opts); 1504 } 1505 #endif 1506 return ret; 1507 } 1508 1509 /* 1510 * Find a superblock for the given device / mount point. 1511 * 1512 * Note: This is based on mount_bdev from fs/super.c with a few additions 1513 * for multiple device setup. Make sure to keep it in sync. 1514 */ 1515 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1516 int flags, const char *device_name, void *data) 1517 { 1518 struct block_device *bdev = NULL; 1519 struct super_block *s; 1520 struct btrfs_fs_devices *fs_devices = NULL; 1521 struct btrfs_fs_info *fs_info = NULL; 1522 struct security_mnt_opts new_sec_opts; 1523 fmode_t mode = FMODE_READ; 1524 int error = 0; 1525 1526 if (!(flags & SB_RDONLY)) 1527 mode |= FMODE_WRITE; 1528 1529 error = btrfs_parse_early_options(data, mode, fs_type, 1530 &fs_devices); 1531 if (error) { 1532 return ERR_PTR(error); 1533 } 1534 1535 security_init_mnt_opts(&new_sec_opts); 1536 if (data) { 1537 error = parse_security_options(data, &new_sec_opts); 1538 if (error) 1539 return ERR_PTR(error); 1540 } 1541 1542 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1543 if (error) 1544 goto error_sec_opts; 1545 1546 /* 1547 * Setup a dummy root and fs_info for test/set super. This is because 1548 * we don't actually fill this stuff out until open_ctree, but we need 1549 * it for searching for existing supers, so this lets us do that and 1550 * then open_ctree will properly initialize everything later. 1551 */ 1552 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1553 if (!fs_info) { 1554 error = -ENOMEM; 1555 goto error_sec_opts; 1556 } 1557 1558 fs_info->fs_devices = fs_devices; 1559 1560 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1561 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1562 security_init_mnt_opts(&fs_info->security_opts); 1563 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1564 error = -ENOMEM; 1565 goto error_fs_info; 1566 } 1567 1568 error = btrfs_open_devices(fs_devices, mode, fs_type); 1569 if (error) 1570 goto error_fs_info; 1571 1572 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1573 error = -EACCES; 1574 goto error_close_devices; 1575 } 1576 1577 bdev = fs_devices->latest_bdev; 1578 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1579 fs_info); 1580 if (IS_ERR(s)) { 1581 error = PTR_ERR(s); 1582 goto error_close_devices; 1583 } 1584 1585 if (s->s_root) { 1586 btrfs_close_devices(fs_devices); 1587 free_fs_info(fs_info); 1588 if ((flags ^ s->s_flags) & SB_RDONLY) 1589 error = -EBUSY; 1590 } else { 1591 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1592 btrfs_sb(s)->bdev_holder = fs_type; 1593 error = btrfs_fill_super(s, fs_devices, data); 1594 } 1595 if (error) { 1596 deactivate_locked_super(s); 1597 goto error_sec_opts; 1598 } 1599 1600 fs_info = btrfs_sb(s); 1601 error = setup_security_options(fs_info, s, &new_sec_opts); 1602 if (error) { 1603 deactivate_locked_super(s); 1604 goto error_sec_opts; 1605 } 1606 1607 return dget(s->s_root); 1608 1609 error_close_devices: 1610 btrfs_close_devices(fs_devices); 1611 error_fs_info: 1612 free_fs_info(fs_info); 1613 error_sec_opts: 1614 security_free_mnt_opts(&new_sec_opts); 1615 return ERR_PTR(error); 1616 } 1617 1618 /* 1619 * Mount function which is called by VFS layer. 1620 * 1621 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1622 * which needs vfsmount* of device's root (/). This means device's root has to 1623 * be mounted internally in any case. 1624 * 1625 * Operation flow: 1626 * 1. Parse subvol id related options for later use in mount_subvol(). 1627 * 1628 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1629 * 1630 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1631 * first place. In order to avoid calling btrfs_mount() again, we use 1632 * different file_system_type which is not registered to VFS by 1633 * register_filesystem() (btrfs_root_fs_type). As a result, 1634 * btrfs_mount_root() is called. The return value will be used by 1635 * mount_subtree() in mount_subvol(). 1636 * 1637 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1638 * "btrfs subvolume set-default", mount_subvol() is called always. 1639 */ 1640 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1641 const char *device_name, void *data) 1642 { 1643 struct vfsmount *mnt_root; 1644 struct dentry *root; 1645 fmode_t mode = FMODE_READ; 1646 char *subvol_name = NULL; 1647 u64 subvol_objectid = 0; 1648 int error = 0; 1649 1650 if (!(flags & SB_RDONLY)) 1651 mode |= FMODE_WRITE; 1652 1653 error = btrfs_parse_subvol_options(data, mode, 1654 &subvol_name, &subvol_objectid); 1655 if (error) { 1656 kfree(subvol_name); 1657 return ERR_PTR(error); 1658 } 1659 1660 /* mount device's root (/) */ 1661 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1662 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1663 if (flags & SB_RDONLY) { 1664 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1665 flags & ~SB_RDONLY, device_name, data); 1666 } else { 1667 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1668 flags | SB_RDONLY, device_name, data); 1669 if (IS_ERR(mnt_root)) { 1670 root = ERR_CAST(mnt_root); 1671 goto out; 1672 } 1673 1674 down_write(&mnt_root->mnt_sb->s_umount); 1675 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1676 up_write(&mnt_root->mnt_sb->s_umount); 1677 if (error < 0) { 1678 root = ERR_PTR(error); 1679 mntput(mnt_root); 1680 goto out; 1681 } 1682 } 1683 } 1684 if (IS_ERR(mnt_root)) { 1685 root = ERR_CAST(mnt_root); 1686 goto out; 1687 } 1688 1689 /* mount_subvol() will free subvol_name and mnt_root */ 1690 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root); 1691 1692 out: 1693 return root; 1694 } 1695 1696 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1697 u32 new_pool_size, u32 old_pool_size) 1698 { 1699 if (new_pool_size == old_pool_size) 1700 return; 1701 1702 fs_info->thread_pool_size = new_pool_size; 1703 1704 btrfs_info(fs_info, "resize thread pool %d -> %d", 1705 old_pool_size, new_pool_size); 1706 1707 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1708 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1709 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1710 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1711 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1712 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1713 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1714 new_pool_size); 1715 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1716 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1717 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1718 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1719 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1720 new_pool_size); 1721 } 1722 1723 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1724 { 1725 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1726 } 1727 1728 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1729 unsigned long old_opts, int flags) 1730 { 1731 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1732 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1733 (flags & SB_RDONLY))) { 1734 /* wait for any defraggers to finish */ 1735 wait_event(fs_info->transaction_wait, 1736 (atomic_read(&fs_info->defrag_running) == 0)); 1737 if (flags & SB_RDONLY) 1738 sync_filesystem(fs_info->sb); 1739 } 1740 } 1741 1742 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1743 unsigned long old_opts) 1744 { 1745 /* 1746 * We need to cleanup all defragable inodes if the autodefragment is 1747 * close or the filesystem is read only. 1748 */ 1749 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1750 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1751 btrfs_cleanup_defrag_inodes(fs_info); 1752 } 1753 1754 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1755 } 1756 1757 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1758 { 1759 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1760 struct btrfs_root *root = fs_info->tree_root; 1761 unsigned old_flags = sb->s_flags; 1762 unsigned long old_opts = fs_info->mount_opt; 1763 unsigned long old_compress_type = fs_info->compress_type; 1764 u64 old_max_inline = fs_info->max_inline; 1765 u32 old_thread_pool_size = fs_info->thread_pool_size; 1766 u32 old_metadata_ratio = fs_info->metadata_ratio; 1767 int ret; 1768 1769 sync_filesystem(sb); 1770 btrfs_remount_prepare(fs_info); 1771 1772 if (data) { 1773 struct security_mnt_opts new_sec_opts; 1774 1775 security_init_mnt_opts(&new_sec_opts); 1776 ret = parse_security_options(data, &new_sec_opts); 1777 if (ret) 1778 goto restore; 1779 ret = setup_security_options(fs_info, sb, 1780 &new_sec_opts); 1781 if (ret) { 1782 security_free_mnt_opts(&new_sec_opts); 1783 goto restore; 1784 } 1785 } 1786 1787 ret = btrfs_parse_options(fs_info, data, *flags); 1788 if (ret) 1789 goto restore; 1790 1791 btrfs_remount_begin(fs_info, old_opts, *flags); 1792 btrfs_resize_thread_pool(fs_info, 1793 fs_info->thread_pool_size, old_thread_pool_size); 1794 1795 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1796 goto out; 1797 1798 if (*flags & SB_RDONLY) { 1799 /* 1800 * this also happens on 'umount -rf' or on shutdown, when 1801 * the filesystem is busy. 1802 */ 1803 cancel_work_sync(&fs_info->async_reclaim_work); 1804 1805 /* wait for the uuid_scan task to finish */ 1806 down(&fs_info->uuid_tree_rescan_sem); 1807 /* avoid complains from lockdep et al. */ 1808 up(&fs_info->uuid_tree_rescan_sem); 1809 1810 sb->s_flags |= SB_RDONLY; 1811 1812 /* 1813 * Setting SB_RDONLY will put the cleaner thread to 1814 * sleep at the next loop if it's already active. 1815 * If it's already asleep, we'll leave unused block 1816 * groups on disk until we're mounted read-write again 1817 * unless we clean them up here. 1818 */ 1819 btrfs_delete_unused_bgs(fs_info); 1820 1821 btrfs_dev_replace_suspend_for_unmount(fs_info); 1822 btrfs_scrub_cancel(fs_info); 1823 btrfs_pause_balance(fs_info); 1824 1825 ret = btrfs_commit_super(fs_info); 1826 if (ret) 1827 goto restore; 1828 } else { 1829 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1830 btrfs_err(fs_info, 1831 "Remounting read-write after error is not allowed"); 1832 ret = -EINVAL; 1833 goto restore; 1834 } 1835 if (fs_info->fs_devices->rw_devices == 0) { 1836 ret = -EACCES; 1837 goto restore; 1838 } 1839 1840 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1841 btrfs_warn(fs_info, 1842 "too many missing devices, writeable remount is not allowed"); 1843 ret = -EACCES; 1844 goto restore; 1845 } 1846 1847 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1848 ret = -EINVAL; 1849 goto restore; 1850 } 1851 1852 ret = btrfs_cleanup_fs_roots(fs_info); 1853 if (ret) 1854 goto restore; 1855 1856 /* recover relocation */ 1857 mutex_lock(&fs_info->cleaner_mutex); 1858 ret = btrfs_recover_relocation(root); 1859 mutex_unlock(&fs_info->cleaner_mutex); 1860 if (ret) 1861 goto restore; 1862 1863 ret = btrfs_resume_balance_async(fs_info); 1864 if (ret) 1865 goto restore; 1866 1867 ret = btrfs_resume_dev_replace_async(fs_info); 1868 if (ret) { 1869 btrfs_warn(fs_info, "failed to resume dev_replace"); 1870 goto restore; 1871 } 1872 1873 btrfs_qgroup_rescan_resume(fs_info); 1874 1875 if (!fs_info->uuid_root) { 1876 btrfs_info(fs_info, "creating UUID tree"); 1877 ret = btrfs_create_uuid_tree(fs_info); 1878 if (ret) { 1879 btrfs_warn(fs_info, 1880 "failed to create the UUID tree %d", 1881 ret); 1882 goto restore; 1883 } 1884 } 1885 sb->s_flags &= ~SB_RDONLY; 1886 1887 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1888 } 1889 out: 1890 wake_up_process(fs_info->transaction_kthread); 1891 btrfs_remount_cleanup(fs_info, old_opts); 1892 return 0; 1893 1894 restore: 1895 /* We've hit an error - don't reset SB_RDONLY */ 1896 if (sb_rdonly(sb)) 1897 old_flags |= SB_RDONLY; 1898 sb->s_flags = old_flags; 1899 fs_info->mount_opt = old_opts; 1900 fs_info->compress_type = old_compress_type; 1901 fs_info->max_inline = old_max_inline; 1902 btrfs_resize_thread_pool(fs_info, 1903 old_thread_pool_size, fs_info->thread_pool_size); 1904 fs_info->metadata_ratio = old_metadata_ratio; 1905 btrfs_remount_cleanup(fs_info, old_opts); 1906 return ret; 1907 } 1908 1909 /* Used to sort the devices by max_avail(descending sort) */ 1910 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1911 const void *dev_info2) 1912 { 1913 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1914 ((struct btrfs_device_info *)dev_info2)->max_avail) 1915 return -1; 1916 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1917 ((struct btrfs_device_info *)dev_info2)->max_avail) 1918 return 1; 1919 else 1920 return 0; 1921 } 1922 1923 /* 1924 * sort the devices by max_avail, in which max free extent size of each device 1925 * is stored.(Descending Sort) 1926 */ 1927 static inline void btrfs_descending_sort_devices( 1928 struct btrfs_device_info *devices, 1929 size_t nr_devices) 1930 { 1931 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1932 btrfs_cmp_device_free_bytes, NULL); 1933 } 1934 1935 /* 1936 * The helper to calc the free space on the devices that can be used to store 1937 * file data. 1938 */ 1939 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1940 u64 *free_bytes) 1941 { 1942 struct btrfs_device_info *devices_info; 1943 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1944 struct btrfs_device *device; 1945 u64 skip_space; 1946 u64 type; 1947 u64 avail_space; 1948 u64 min_stripe_size; 1949 int min_stripes = 1, num_stripes = 1; 1950 int i = 0, nr_devices; 1951 1952 /* 1953 * We aren't under the device list lock, so this is racy-ish, but good 1954 * enough for our purposes. 1955 */ 1956 nr_devices = fs_info->fs_devices->open_devices; 1957 if (!nr_devices) { 1958 smp_mb(); 1959 nr_devices = fs_info->fs_devices->open_devices; 1960 ASSERT(nr_devices); 1961 if (!nr_devices) { 1962 *free_bytes = 0; 1963 return 0; 1964 } 1965 } 1966 1967 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1968 GFP_KERNEL); 1969 if (!devices_info) 1970 return -ENOMEM; 1971 1972 /* calc min stripe number for data space allocation */ 1973 type = btrfs_data_alloc_profile(fs_info); 1974 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1975 min_stripes = 2; 1976 num_stripes = nr_devices; 1977 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1978 min_stripes = 2; 1979 num_stripes = 2; 1980 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1981 min_stripes = 4; 1982 num_stripes = 4; 1983 } 1984 1985 if (type & BTRFS_BLOCK_GROUP_DUP) 1986 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1987 else 1988 min_stripe_size = BTRFS_STRIPE_LEN; 1989 1990 rcu_read_lock(); 1991 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1992 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1993 &device->dev_state) || 1994 !device->bdev || 1995 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1996 continue; 1997 1998 if (i >= nr_devices) 1999 break; 2000 2001 avail_space = device->total_bytes - device->bytes_used; 2002 2003 /* align with stripe_len */ 2004 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 2005 avail_space *= BTRFS_STRIPE_LEN; 2006 2007 /* 2008 * In order to avoid overwriting the superblock on the drive, 2009 * btrfs starts at an offset of at least 1MB when doing chunk 2010 * allocation. 2011 */ 2012 skip_space = SZ_1M; 2013 2014 /* 2015 * we can use the free space in [0, skip_space - 1], subtract 2016 * it from the total. 2017 */ 2018 if (avail_space && avail_space >= skip_space) 2019 avail_space -= skip_space; 2020 else 2021 avail_space = 0; 2022 2023 if (avail_space < min_stripe_size) 2024 continue; 2025 2026 devices_info[i].dev = device; 2027 devices_info[i].max_avail = avail_space; 2028 2029 i++; 2030 } 2031 rcu_read_unlock(); 2032 2033 nr_devices = i; 2034 2035 btrfs_descending_sort_devices(devices_info, nr_devices); 2036 2037 i = nr_devices - 1; 2038 avail_space = 0; 2039 while (nr_devices >= min_stripes) { 2040 if (num_stripes > nr_devices) 2041 num_stripes = nr_devices; 2042 2043 if (devices_info[i].max_avail >= min_stripe_size) { 2044 int j; 2045 u64 alloc_size; 2046 2047 avail_space += devices_info[i].max_avail * num_stripes; 2048 alloc_size = devices_info[i].max_avail; 2049 for (j = i + 1 - num_stripes; j <= i; j++) 2050 devices_info[j].max_avail -= alloc_size; 2051 } 2052 i--; 2053 nr_devices--; 2054 } 2055 2056 kfree(devices_info); 2057 *free_bytes = avail_space; 2058 return 0; 2059 } 2060 2061 /* 2062 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2063 * 2064 * If there's a redundant raid level at DATA block groups, use the respective 2065 * multiplier to scale the sizes. 2066 * 2067 * Unused device space usage is based on simulating the chunk allocator 2068 * algorithm that respects the device sizes and order of allocations. This is 2069 * a close approximation of the actual use but there are other factors that may 2070 * change the result (like a new metadata chunk). 2071 * 2072 * If metadata is exhausted, f_bavail will be 0. 2073 */ 2074 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2075 { 2076 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2077 struct btrfs_super_block *disk_super = fs_info->super_copy; 2078 struct list_head *head = &fs_info->space_info; 2079 struct btrfs_space_info *found; 2080 u64 total_used = 0; 2081 u64 total_free_data = 0; 2082 u64 total_free_meta = 0; 2083 int bits = dentry->d_sb->s_blocksize_bits; 2084 __be32 *fsid = (__be32 *)fs_info->fsid; 2085 unsigned factor = 1; 2086 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2087 int ret; 2088 u64 thresh = 0; 2089 int mixed = 0; 2090 2091 rcu_read_lock(); 2092 list_for_each_entry_rcu(found, head, list) { 2093 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2094 int i; 2095 2096 total_free_data += found->disk_total - found->disk_used; 2097 total_free_data -= 2098 btrfs_account_ro_block_groups_free_space(found); 2099 2100 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2101 if (!list_empty(&found->block_groups[i])) { 2102 switch (i) { 2103 case BTRFS_RAID_DUP: 2104 case BTRFS_RAID_RAID1: 2105 case BTRFS_RAID_RAID10: 2106 factor = 2; 2107 } 2108 } 2109 } 2110 } 2111 2112 /* 2113 * Metadata in mixed block goup profiles are accounted in data 2114 */ 2115 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2116 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2117 mixed = 1; 2118 else 2119 total_free_meta += found->disk_total - 2120 found->disk_used; 2121 } 2122 2123 total_used += found->disk_used; 2124 } 2125 2126 rcu_read_unlock(); 2127 2128 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2129 buf->f_blocks >>= bits; 2130 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2131 2132 /* Account global block reserve as used, it's in logical size already */ 2133 spin_lock(&block_rsv->lock); 2134 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2135 if (buf->f_bfree >= block_rsv->size >> bits) 2136 buf->f_bfree -= block_rsv->size >> bits; 2137 else 2138 buf->f_bfree = 0; 2139 spin_unlock(&block_rsv->lock); 2140 2141 buf->f_bavail = div_u64(total_free_data, factor); 2142 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2143 if (ret) 2144 return ret; 2145 buf->f_bavail += div_u64(total_free_data, factor); 2146 buf->f_bavail = buf->f_bavail >> bits; 2147 2148 /* 2149 * We calculate the remaining metadata space minus global reserve. If 2150 * this is (supposedly) smaller than zero, there's no space. But this 2151 * does not hold in practice, the exhausted state happens where's still 2152 * some positive delta. So we apply some guesswork and compare the 2153 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2154 * 2155 * We probably cannot calculate the exact threshold value because this 2156 * depends on the internal reservations requested by various 2157 * operations, so some operations that consume a few metadata will 2158 * succeed even if the Avail is zero. But this is better than the other 2159 * way around. 2160 */ 2161 thresh = SZ_4M; 2162 2163 if (!mixed && total_free_meta - thresh < block_rsv->size) 2164 buf->f_bavail = 0; 2165 2166 buf->f_type = BTRFS_SUPER_MAGIC; 2167 buf->f_bsize = dentry->d_sb->s_blocksize; 2168 buf->f_namelen = BTRFS_NAME_LEN; 2169 2170 /* We treat it as constant endianness (it doesn't matter _which_) 2171 because we want the fsid to come out the same whether mounted 2172 on a big-endian or little-endian host */ 2173 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2174 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2175 /* Mask in the root object ID too, to disambiguate subvols */ 2176 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2177 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2178 2179 return 0; 2180 } 2181 2182 static void btrfs_kill_super(struct super_block *sb) 2183 { 2184 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2185 kill_anon_super(sb); 2186 free_fs_info(fs_info); 2187 } 2188 2189 static struct file_system_type btrfs_fs_type = { 2190 .owner = THIS_MODULE, 2191 .name = "btrfs", 2192 .mount = btrfs_mount, 2193 .kill_sb = btrfs_kill_super, 2194 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2195 }; 2196 2197 static struct file_system_type btrfs_root_fs_type = { 2198 .owner = THIS_MODULE, 2199 .name = "btrfs", 2200 .mount = btrfs_mount_root, 2201 .kill_sb = btrfs_kill_super, 2202 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2203 }; 2204 2205 MODULE_ALIAS_FS("btrfs"); 2206 2207 static int btrfs_control_open(struct inode *inode, struct file *file) 2208 { 2209 /* 2210 * The control file's private_data is used to hold the 2211 * transaction when it is started and is used to keep 2212 * track of whether a transaction is already in progress. 2213 */ 2214 file->private_data = NULL; 2215 return 0; 2216 } 2217 2218 /* 2219 * used by btrfsctl to scan devices when no FS is mounted 2220 */ 2221 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2222 unsigned long arg) 2223 { 2224 struct btrfs_ioctl_vol_args *vol; 2225 struct btrfs_fs_devices *fs_devices; 2226 int ret = -ENOTTY; 2227 2228 if (!capable(CAP_SYS_ADMIN)) 2229 return -EPERM; 2230 2231 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2232 if (IS_ERR(vol)) 2233 return PTR_ERR(vol); 2234 2235 switch (cmd) { 2236 case BTRFS_IOC_SCAN_DEV: 2237 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2238 &btrfs_root_fs_type, &fs_devices); 2239 break; 2240 case BTRFS_IOC_DEVICES_READY: 2241 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2242 &btrfs_root_fs_type, &fs_devices); 2243 if (ret) 2244 break; 2245 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2246 break; 2247 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2248 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2249 break; 2250 } 2251 2252 kfree(vol); 2253 return ret; 2254 } 2255 2256 static int btrfs_freeze(struct super_block *sb) 2257 { 2258 struct btrfs_trans_handle *trans; 2259 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2260 struct btrfs_root *root = fs_info->tree_root; 2261 2262 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2263 /* 2264 * We don't need a barrier here, we'll wait for any transaction that 2265 * could be in progress on other threads (and do delayed iputs that 2266 * we want to avoid on a frozen filesystem), or do the commit 2267 * ourselves. 2268 */ 2269 trans = btrfs_attach_transaction_barrier(root); 2270 if (IS_ERR(trans)) { 2271 /* no transaction, don't bother */ 2272 if (PTR_ERR(trans) == -ENOENT) 2273 return 0; 2274 return PTR_ERR(trans); 2275 } 2276 return btrfs_commit_transaction(trans); 2277 } 2278 2279 static int btrfs_unfreeze(struct super_block *sb) 2280 { 2281 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2282 2283 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2284 return 0; 2285 } 2286 2287 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2288 { 2289 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2290 struct btrfs_fs_devices *cur_devices; 2291 struct btrfs_device *dev, *first_dev = NULL; 2292 struct list_head *head; 2293 struct rcu_string *name; 2294 2295 /* 2296 * Lightweight locking of the devices. We should not need 2297 * device_list_mutex here as we only read the device data and the list 2298 * is protected by RCU. Even if a device is deleted during the list 2299 * traversals, we'll get valid data, the freeing callback will wait at 2300 * least until until the rcu_read_unlock. 2301 */ 2302 rcu_read_lock(); 2303 cur_devices = fs_info->fs_devices; 2304 while (cur_devices) { 2305 head = &cur_devices->devices; 2306 list_for_each_entry_rcu(dev, head, dev_list) { 2307 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2308 continue; 2309 if (!dev->name) 2310 continue; 2311 if (!first_dev || dev->devid < first_dev->devid) 2312 first_dev = dev; 2313 } 2314 cur_devices = cur_devices->seed; 2315 } 2316 2317 if (first_dev) { 2318 name = rcu_dereference(first_dev->name); 2319 seq_escape(m, name->str, " \t\n\\"); 2320 } else { 2321 WARN_ON(1); 2322 } 2323 rcu_read_unlock(); 2324 return 0; 2325 } 2326 2327 static const struct super_operations btrfs_super_ops = { 2328 .drop_inode = btrfs_drop_inode, 2329 .evict_inode = btrfs_evict_inode, 2330 .put_super = btrfs_put_super, 2331 .sync_fs = btrfs_sync_fs, 2332 .show_options = btrfs_show_options, 2333 .show_devname = btrfs_show_devname, 2334 .write_inode = btrfs_write_inode, 2335 .alloc_inode = btrfs_alloc_inode, 2336 .destroy_inode = btrfs_destroy_inode, 2337 .statfs = btrfs_statfs, 2338 .remount_fs = btrfs_remount, 2339 .freeze_fs = btrfs_freeze, 2340 .unfreeze_fs = btrfs_unfreeze, 2341 }; 2342 2343 static const struct file_operations btrfs_ctl_fops = { 2344 .open = btrfs_control_open, 2345 .unlocked_ioctl = btrfs_control_ioctl, 2346 .compat_ioctl = btrfs_control_ioctl, 2347 .owner = THIS_MODULE, 2348 .llseek = noop_llseek, 2349 }; 2350 2351 static struct miscdevice btrfs_misc = { 2352 .minor = BTRFS_MINOR, 2353 .name = "btrfs-control", 2354 .fops = &btrfs_ctl_fops 2355 }; 2356 2357 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2358 MODULE_ALIAS("devname:btrfs-control"); 2359 2360 static int __init btrfs_interface_init(void) 2361 { 2362 return misc_register(&btrfs_misc); 2363 } 2364 2365 static __cold void btrfs_interface_exit(void) 2366 { 2367 misc_deregister(&btrfs_misc); 2368 } 2369 2370 static void __init btrfs_print_mod_info(void) 2371 { 2372 pr_info("Btrfs loaded, crc32c=%s" 2373 #ifdef CONFIG_BTRFS_DEBUG 2374 ", debug=on" 2375 #endif 2376 #ifdef CONFIG_BTRFS_ASSERT 2377 ", assert=on" 2378 #endif 2379 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2380 ", integrity-checker=on" 2381 #endif 2382 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2383 ", ref-verify=on" 2384 #endif 2385 "\n", 2386 crc32c_impl()); 2387 } 2388 2389 static int __init init_btrfs_fs(void) 2390 { 2391 int err; 2392 2393 btrfs_props_init(); 2394 2395 err = btrfs_init_sysfs(); 2396 if (err) 2397 return err; 2398 2399 btrfs_init_compress(); 2400 2401 err = btrfs_init_cachep(); 2402 if (err) 2403 goto free_compress; 2404 2405 err = extent_io_init(); 2406 if (err) 2407 goto free_cachep; 2408 2409 err = extent_map_init(); 2410 if (err) 2411 goto free_extent_io; 2412 2413 err = ordered_data_init(); 2414 if (err) 2415 goto free_extent_map; 2416 2417 err = btrfs_delayed_inode_init(); 2418 if (err) 2419 goto free_ordered_data; 2420 2421 err = btrfs_auto_defrag_init(); 2422 if (err) 2423 goto free_delayed_inode; 2424 2425 err = btrfs_delayed_ref_init(); 2426 if (err) 2427 goto free_auto_defrag; 2428 2429 err = btrfs_prelim_ref_init(); 2430 if (err) 2431 goto free_delayed_ref; 2432 2433 err = btrfs_end_io_wq_init(); 2434 if (err) 2435 goto free_prelim_ref; 2436 2437 err = btrfs_interface_init(); 2438 if (err) 2439 goto free_end_io_wq; 2440 2441 btrfs_init_lockdep(); 2442 2443 btrfs_print_mod_info(); 2444 2445 err = btrfs_run_sanity_tests(); 2446 if (err) 2447 goto unregister_ioctl; 2448 2449 err = register_filesystem(&btrfs_fs_type); 2450 if (err) 2451 goto unregister_ioctl; 2452 2453 return 0; 2454 2455 unregister_ioctl: 2456 btrfs_interface_exit(); 2457 free_end_io_wq: 2458 btrfs_end_io_wq_exit(); 2459 free_prelim_ref: 2460 btrfs_prelim_ref_exit(); 2461 free_delayed_ref: 2462 btrfs_delayed_ref_exit(); 2463 free_auto_defrag: 2464 btrfs_auto_defrag_exit(); 2465 free_delayed_inode: 2466 btrfs_delayed_inode_exit(); 2467 free_ordered_data: 2468 ordered_data_exit(); 2469 free_extent_map: 2470 extent_map_exit(); 2471 free_extent_io: 2472 extent_io_exit(); 2473 free_cachep: 2474 btrfs_destroy_cachep(); 2475 free_compress: 2476 btrfs_exit_compress(); 2477 btrfs_exit_sysfs(); 2478 2479 return err; 2480 } 2481 2482 static void __exit exit_btrfs_fs(void) 2483 { 2484 btrfs_destroy_cachep(); 2485 btrfs_delayed_ref_exit(); 2486 btrfs_auto_defrag_exit(); 2487 btrfs_delayed_inode_exit(); 2488 btrfs_prelim_ref_exit(); 2489 ordered_data_exit(); 2490 extent_map_exit(); 2491 extent_io_exit(); 2492 btrfs_interface_exit(); 2493 btrfs_end_io_wq_exit(); 2494 unregister_filesystem(&btrfs_fs_type); 2495 btrfs_exit_sysfs(); 2496 btrfs_cleanup_fs_uuids(); 2497 btrfs_exit_compress(); 2498 } 2499 2500 late_initcall(init_btrfs_fs); 2501 module_exit(exit_btrfs_fs) 2502 2503 MODULE_LICENSE("GPL"); 2504