xref: /openbmc/linux/fs/btrfs/super.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70 
71 static const char *btrfs_decode_error(int errno)
72 {
73 	char *errstr = "unknown";
74 
75 	switch (errno) {
76 	case -EIO:
77 		errstr = "IO failure";
78 		break;
79 	case -ENOMEM:
80 		errstr = "Out of memory";
81 		break;
82 	case -EROFS:
83 		errstr = "Readonly filesystem";
84 		break;
85 	case -EEXIST:
86 		errstr = "Object already exists";
87 		break;
88 	case -ENOSPC:
89 		errstr = "No space left";
90 		break;
91 	case -ENOENT:
92 		errstr = "No such entry";
93 		break;
94 	}
95 
96 	return errstr;
97 }
98 
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 	/*
102 	 * today we only save the error info into ram.  Long term we'll
103 	 * also send it down to the disk
104 	 */
105 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106 }
107 
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 	struct super_block *sb = fs_info->sb;
112 
113 	if (sb->s_flags & MS_RDONLY)
114 		return;
115 
116 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 		sb->s_flags |= MS_RDONLY;
118 		btrfs_info(fs_info, "forced readonly");
119 		/*
120 		 * Note that a running device replace operation is not
121 		 * canceled here although there is no way to update
122 		 * the progress. It would add the risk of a deadlock,
123 		 * therefore the canceling is ommited. The only penalty
124 		 * is that some I/O remains active until the procedure
125 		 * completes. The next time when the filesystem is
126 		 * mounted writeable again, the device replace
127 		 * operation continues.
128 		 */
129 	}
130 }
131 
132 #ifdef CONFIG_PRINTK
133 /*
134  * __btrfs_std_error decodes expected errors from the caller and
135  * invokes the approciate error response.
136  */
137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138 		       unsigned int line, int errno, const char *fmt, ...)
139 {
140 	struct super_block *sb = fs_info->sb;
141 	const char *errstr;
142 
143 	/*
144 	 * Special case: if the error is EROFS, and we're already
145 	 * under MS_RDONLY, then it is safe here.
146 	 */
147 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148   		return;
149 
150 	errstr = btrfs_decode_error(errno);
151 	if (fmt) {
152 		struct va_format vaf;
153 		va_list args;
154 
155 		va_start(args, fmt);
156 		vaf.fmt = fmt;
157 		vaf.va = &args;
158 
159 		printk(KERN_CRIT
160 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161 			sb->s_id, function, line, errno, errstr, &vaf);
162 		va_end(args);
163 	} else {
164 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165 			sb->s_id, function, line, errno, errstr);
166 	}
167 
168 	/* Don't go through full error handling during mount */
169 	save_error_info(fs_info);
170 	if (sb->s_flags & MS_BORN)
171 		btrfs_handle_error(fs_info);
172 }
173 
174 static const char * const logtypes[] = {
175 	"emergency",
176 	"alert",
177 	"critical",
178 	"error",
179 	"warning",
180 	"notice",
181 	"info",
182 	"debug",
183 };
184 
185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186 {
187 	struct super_block *sb = fs_info->sb;
188 	char lvl[4];
189 	struct va_format vaf;
190 	va_list args;
191 	const char *type = logtypes[4];
192 	int kern_level;
193 
194 	va_start(args, fmt);
195 
196 	kern_level = printk_get_level(fmt);
197 	if (kern_level) {
198 		size_t size = printk_skip_level(fmt) - fmt;
199 		memcpy(lvl, fmt,  size);
200 		lvl[size] = '\0';
201 		fmt += size;
202 		type = logtypes[kern_level - '0'];
203 	} else
204 		*lvl = '\0';
205 
206 	vaf.fmt = fmt;
207 	vaf.va = &args;
208 
209 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210 
211 	va_end(args);
212 }
213 
214 #else
215 
216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217 		       unsigned int line, int errno, const char *fmt, ...)
218 {
219 	struct super_block *sb = fs_info->sb;
220 
221 	/*
222 	 * Special case: if the error is EROFS, and we're already
223 	 * under MS_RDONLY, then it is safe here.
224 	 */
225 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226 		return;
227 
228 	/* Don't go through full error handling during mount */
229 	if (sb->s_flags & MS_BORN) {
230 		save_error_info(fs_info);
231 		btrfs_handle_error(fs_info);
232 	}
233 }
234 #endif
235 
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250 			       struct btrfs_root *root, const char *function,
251 			       unsigned int line, int errno)
252 {
253 	/*
254 	 * Report first abort since mount
255 	 */
256 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257 				&root->fs_info->fs_state)) {
258 		WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259 				errno);
260 	}
261 	trans->aborted = errno;
262 	/* Nothing used. The other threads that have joined this
263 	 * transaction may be able to continue. */
264 	if (!trans->blocks_used) {
265 		const char *errstr;
266 
267 		errstr = btrfs_decode_error(errno);
268 		btrfs_warn(root->fs_info,
269 		           "%s:%d: Aborting unused transaction(%s).",
270 		           function, line, errstr);
271 		return;
272 	}
273 	ACCESS_ONCE(trans->transaction->aborted) = errno;
274 	/* Wake up anybody who may be waiting on this transaction */
275 	wake_up(&root->fs_info->transaction_wait);
276 	wake_up(&root->fs_info->transaction_blocked_wait);
277 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
278 }
279 /*
280  * __btrfs_panic decodes unexpected, fatal errors from the caller,
281  * issues an alert, and either panics or BUGs, depending on mount options.
282  */
283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284 		   unsigned int line, int errno, const char *fmt, ...)
285 {
286 	char *s_id = "<unknown>";
287 	const char *errstr;
288 	struct va_format vaf = { .fmt = fmt };
289 	va_list args;
290 
291 	if (fs_info)
292 		s_id = fs_info->sb->s_id;
293 
294 	va_start(args, fmt);
295 	vaf.va = &args;
296 
297 	errstr = btrfs_decode_error(errno);
298 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300 			s_id, function, line, &vaf, errno, errstr);
301 
302 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303 		   function, line, &vaf, errno, errstr);
304 	va_end(args);
305 	/* Caller calls BUG() */
306 }
307 
308 static void btrfs_put_super(struct super_block *sb)
309 {
310 	(void)close_ctree(btrfs_sb(sb)->tree_root);
311 	/* FIXME: need to fix VFS to return error? */
312 	/* AV: return it _where_?  ->put_super() can be triggered by any number
313 	 * of async events, up to and including delivery of SIGKILL to the
314 	 * last process that kept it busy.  Or segfault in the aforementioned
315 	 * process...  Whom would you report that to?
316 	 */
317 }
318 
319 enum {
320 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
321 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
322 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
323 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
324 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
325 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
326 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
327 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
328 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
329 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
330 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
331 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
332 	Opt_datasum, Opt_treelog, Opt_noinode_cache,
333 	Opt_err,
334 };
335 
336 static match_table_t tokens = {
337 	{Opt_degraded, "degraded"},
338 	{Opt_subvol, "subvol=%s"},
339 	{Opt_subvolid, "subvolid=%s"},
340 	{Opt_device, "device=%s"},
341 	{Opt_nodatasum, "nodatasum"},
342 	{Opt_datasum, "datasum"},
343 	{Opt_nodatacow, "nodatacow"},
344 	{Opt_datacow, "datacow"},
345 	{Opt_nobarrier, "nobarrier"},
346 	{Opt_barrier, "barrier"},
347 	{Opt_max_inline, "max_inline=%s"},
348 	{Opt_alloc_start, "alloc_start=%s"},
349 	{Opt_thread_pool, "thread_pool=%d"},
350 	{Opt_compress, "compress"},
351 	{Opt_compress_type, "compress=%s"},
352 	{Opt_compress_force, "compress-force"},
353 	{Opt_compress_force_type, "compress-force=%s"},
354 	{Opt_ssd, "ssd"},
355 	{Opt_ssd_spread, "ssd_spread"},
356 	{Opt_nossd, "nossd"},
357 	{Opt_acl, "acl"},
358 	{Opt_noacl, "noacl"},
359 	{Opt_notreelog, "notreelog"},
360 	{Opt_treelog, "treelog"},
361 	{Opt_flushoncommit, "flushoncommit"},
362 	{Opt_noflushoncommit, "noflushoncommit"},
363 	{Opt_ratio, "metadata_ratio=%d"},
364 	{Opt_discard, "discard"},
365 	{Opt_nodiscard, "nodiscard"},
366 	{Opt_space_cache, "space_cache"},
367 	{Opt_clear_cache, "clear_cache"},
368 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369 	{Opt_enospc_debug, "enospc_debug"},
370 	{Opt_noenospc_debug, "noenospc_debug"},
371 	{Opt_subvolrootid, "subvolrootid=%d"},
372 	{Opt_defrag, "autodefrag"},
373 	{Opt_nodefrag, "noautodefrag"},
374 	{Opt_inode_cache, "inode_cache"},
375 	{Opt_noinode_cache, "noinode_cache"},
376 	{Opt_no_space_cache, "nospace_cache"},
377 	{Opt_recovery, "recovery"},
378 	{Opt_skip_balance, "skip_balance"},
379 	{Opt_check_integrity, "check_int"},
380 	{Opt_check_integrity_including_extent_data, "check_int_data"},
381 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 	{Opt_fatal_errors, "fatal_errors=%s"},
384 	{Opt_commit_interval, "commit=%d"},
385 	{Opt_err, NULL},
386 };
387 
388 #define btrfs_set_and_info(root, opt, fmt, args...)			\
389 {									\
390 	if (!btrfs_test_opt(root, opt))					\
391 		btrfs_info(root->fs_info, fmt, ##args);			\
392 	btrfs_set_opt(root->fs_info->mount_opt, opt);			\
393 }
394 
395 #define btrfs_clear_and_info(root, opt, fmt, args...)			\
396 {									\
397 	if (btrfs_test_opt(root, opt))					\
398 		btrfs_info(root->fs_info, fmt, ##args);			\
399 	btrfs_clear_opt(root->fs_info->mount_opt, opt);			\
400 }
401 
402 /*
403  * Regular mount options parser.  Everything that is needed only when
404  * reading in a new superblock is parsed here.
405  * XXX JDM: This needs to be cleaned up for remount.
406  */
407 int btrfs_parse_options(struct btrfs_root *root, char *options)
408 {
409 	struct btrfs_fs_info *info = root->fs_info;
410 	substring_t args[MAX_OPT_ARGS];
411 	char *p, *num, *orig = NULL;
412 	u64 cache_gen;
413 	int intarg;
414 	int ret = 0;
415 	char *compress_type;
416 	bool compress_force = false;
417 	bool compress = false;
418 
419 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
420 	if (cache_gen)
421 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
422 
423 	if (!options)
424 		goto out;
425 
426 	/*
427 	 * strsep changes the string, duplicate it because parse_options
428 	 * gets called twice
429 	 */
430 	options = kstrdup(options, GFP_NOFS);
431 	if (!options)
432 		return -ENOMEM;
433 
434 	orig = options;
435 
436 	while ((p = strsep(&options, ",")) != NULL) {
437 		int token;
438 		if (!*p)
439 			continue;
440 
441 		token = match_token(p, tokens, args);
442 		switch (token) {
443 		case Opt_degraded:
444 			btrfs_info(root->fs_info, "allowing degraded mounts");
445 			btrfs_set_opt(info->mount_opt, DEGRADED);
446 			break;
447 		case Opt_subvol:
448 		case Opt_subvolid:
449 		case Opt_subvolrootid:
450 		case Opt_device:
451 			/*
452 			 * These are parsed by btrfs_parse_early_options
453 			 * and can be happily ignored here.
454 			 */
455 			break;
456 		case Opt_nodatasum:
457 			btrfs_set_and_info(root, NODATASUM,
458 					   "setting nodatasum");
459 			break;
460 		case Opt_datasum:
461 			if (btrfs_test_opt(root, NODATASUM)) {
462 				if (btrfs_test_opt(root, NODATACOW))
463 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
464 				else
465 					btrfs_info(root->fs_info, "setting datasum");
466 			}
467 			btrfs_clear_opt(info->mount_opt, NODATACOW);
468 			btrfs_clear_opt(info->mount_opt, NODATASUM);
469 			break;
470 		case Opt_nodatacow:
471 			if (!btrfs_test_opt(root, NODATACOW)) {
472 				if (!btrfs_test_opt(root, COMPRESS) ||
473 				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
474 					btrfs_info(root->fs_info,
475 						   "setting nodatacow, compression disabled");
476 				} else {
477 					btrfs_info(root->fs_info, "setting nodatacow");
478 				}
479 			}
480 			btrfs_clear_opt(info->mount_opt, COMPRESS);
481 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
482 			btrfs_set_opt(info->mount_opt, NODATACOW);
483 			btrfs_set_opt(info->mount_opt, NODATASUM);
484 			break;
485 		case Opt_datacow:
486 			btrfs_clear_and_info(root, NODATACOW,
487 					     "setting datacow");
488 			break;
489 		case Opt_compress_force:
490 		case Opt_compress_force_type:
491 			compress_force = true;
492 			/* Fallthrough */
493 		case Opt_compress:
494 		case Opt_compress_type:
495 			compress = true;
496 			if (token == Opt_compress ||
497 			    token == Opt_compress_force ||
498 			    strcmp(args[0].from, "zlib") == 0) {
499 				compress_type = "zlib";
500 				info->compress_type = BTRFS_COMPRESS_ZLIB;
501 				btrfs_set_opt(info->mount_opt, COMPRESS);
502 				btrfs_clear_opt(info->mount_opt, NODATACOW);
503 				btrfs_clear_opt(info->mount_opt, NODATASUM);
504 			} else if (strcmp(args[0].from, "lzo") == 0) {
505 				compress_type = "lzo";
506 				info->compress_type = BTRFS_COMPRESS_LZO;
507 				btrfs_set_opt(info->mount_opt, COMPRESS);
508 				btrfs_clear_opt(info->mount_opt, NODATACOW);
509 				btrfs_clear_opt(info->mount_opt, NODATASUM);
510 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
511 			} else if (strncmp(args[0].from, "no", 2) == 0) {
512 				compress_type = "no";
513 				btrfs_clear_opt(info->mount_opt, COMPRESS);
514 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
515 				compress_force = false;
516 			} else {
517 				ret = -EINVAL;
518 				goto out;
519 			}
520 
521 			if (compress_force) {
522 				btrfs_set_and_info(root, FORCE_COMPRESS,
523 						   "force %s compression",
524 						   compress_type);
525 			} else if (compress) {
526 				if (!btrfs_test_opt(root, COMPRESS))
527 					btrfs_info(root->fs_info,
528 						   "btrfs: use %s compression\n",
529 						   compress_type);
530 			}
531 			break;
532 		case Opt_ssd:
533 			btrfs_set_and_info(root, SSD,
534 					   "use ssd allocation scheme");
535 			break;
536 		case Opt_ssd_spread:
537 			btrfs_set_and_info(root, SSD_SPREAD,
538 					   "use spread ssd allocation scheme");
539 			break;
540 		case Opt_nossd:
541 			btrfs_clear_and_info(root, NOSSD,
542 					     "not using ssd allocation scheme");
543 			btrfs_clear_opt(info->mount_opt, SSD);
544 			break;
545 		case Opt_barrier:
546 			btrfs_clear_and_info(root, NOBARRIER,
547 					     "turning on barriers");
548 			break;
549 		case Opt_nobarrier:
550 			btrfs_set_and_info(root, NOBARRIER,
551 					   "turning off barriers");
552 			break;
553 		case Opt_thread_pool:
554 			ret = match_int(&args[0], &intarg);
555 			if (ret) {
556 				goto out;
557 			} else if (intarg > 0) {
558 				info->thread_pool_size = intarg;
559 			} else {
560 				ret = -EINVAL;
561 				goto out;
562 			}
563 			break;
564 		case Opt_max_inline:
565 			num = match_strdup(&args[0]);
566 			if (num) {
567 				info->max_inline = memparse(num, NULL);
568 				kfree(num);
569 
570 				if (info->max_inline) {
571 					info->max_inline = min_t(u64,
572 						info->max_inline,
573 						root->sectorsize);
574 				}
575 				btrfs_info(root->fs_info, "max_inline at %llu",
576 					info->max_inline);
577 			} else {
578 				ret = -ENOMEM;
579 				goto out;
580 			}
581 			break;
582 		case Opt_alloc_start:
583 			num = match_strdup(&args[0]);
584 			if (num) {
585 				mutex_lock(&info->chunk_mutex);
586 				info->alloc_start = memparse(num, NULL);
587 				mutex_unlock(&info->chunk_mutex);
588 				kfree(num);
589 				btrfs_info(root->fs_info, "allocations start at %llu",
590 					info->alloc_start);
591 			} else {
592 				ret = -ENOMEM;
593 				goto out;
594 			}
595 			break;
596 		case Opt_acl:
597 			root->fs_info->sb->s_flags |= MS_POSIXACL;
598 			break;
599 		case Opt_noacl:
600 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
601 			break;
602 		case Opt_notreelog:
603 			btrfs_set_and_info(root, NOTREELOG,
604 					   "disabling tree log");
605 			break;
606 		case Opt_treelog:
607 			btrfs_clear_and_info(root, NOTREELOG,
608 					     "enabling tree log");
609 			break;
610 		case Opt_flushoncommit:
611 			btrfs_set_and_info(root, FLUSHONCOMMIT,
612 					   "turning on flush-on-commit");
613 			break;
614 		case Opt_noflushoncommit:
615 			btrfs_clear_and_info(root, FLUSHONCOMMIT,
616 					     "turning off flush-on-commit");
617 			break;
618 		case Opt_ratio:
619 			ret = match_int(&args[0], &intarg);
620 			if (ret) {
621 				goto out;
622 			} else if (intarg >= 0) {
623 				info->metadata_ratio = intarg;
624 				btrfs_info(root->fs_info, "metadata ratio %d",
625 				       info->metadata_ratio);
626 			} else {
627 				ret = -EINVAL;
628 				goto out;
629 			}
630 			break;
631 		case Opt_discard:
632 			btrfs_set_and_info(root, DISCARD,
633 					   "turning on discard");
634 			break;
635 		case Opt_nodiscard:
636 			btrfs_clear_and_info(root, DISCARD,
637 					     "turning off discard");
638 			break;
639 		case Opt_space_cache:
640 			btrfs_set_and_info(root, SPACE_CACHE,
641 					   "enabling disk space caching");
642 			break;
643 		case Opt_rescan_uuid_tree:
644 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
645 			break;
646 		case Opt_no_space_cache:
647 			btrfs_clear_and_info(root, SPACE_CACHE,
648 					     "disabling disk space caching");
649 			break;
650 		case Opt_inode_cache:
651 			btrfs_set_and_info(root, CHANGE_INODE_CACHE,
652 					   "enabling inode map caching");
653 			break;
654 		case Opt_noinode_cache:
655 			btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
656 					     "disabling inode map caching");
657 			break;
658 		case Opt_clear_cache:
659 			btrfs_set_and_info(root, CLEAR_CACHE,
660 					   "force clearing of disk cache");
661 			break;
662 		case Opt_user_subvol_rm_allowed:
663 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
664 			break;
665 		case Opt_enospc_debug:
666 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
667 			break;
668 		case Opt_noenospc_debug:
669 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
670 			break;
671 		case Opt_defrag:
672 			btrfs_set_and_info(root, AUTO_DEFRAG,
673 					   "enabling auto defrag");
674 			break;
675 		case Opt_nodefrag:
676 			btrfs_clear_and_info(root, AUTO_DEFRAG,
677 					     "disabling auto defrag");
678 			break;
679 		case Opt_recovery:
680 			btrfs_info(root->fs_info, "enabling auto recovery");
681 			btrfs_set_opt(info->mount_opt, RECOVERY);
682 			break;
683 		case Opt_skip_balance:
684 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
685 			break;
686 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
687 		case Opt_check_integrity_including_extent_data:
688 			btrfs_info(root->fs_info,
689 				   "enabling check integrity including extent data");
690 			btrfs_set_opt(info->mount_opt,
691 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
692 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
693 			break;
694 		case Opt_check_integrity:
695 			btrfs_info(root->fs_info, "enabling check integrity");
696 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
697 			break;
698 		case Opt_check_integrity_print_mask:
699 			ret = match_int(&args[0], &intarg);
700 			if (ret) {
701 				goto out;
702 			} else if (intarg >= 0) {
703 				info->check_integrity_print_mask = intarg;
704 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
705 				       info->check_integrity_print_mask);
706 			} else {
707 				ret = -EINVAL;
708 				goto out;
709 			}
710 			break;
711 #else
712 		case Opt_check_integrity_including_extent_data:
713 		case Opt_check_integrity:
714 		case Opt_check_integrity_print_mask:
715 			btrfs_err(root->fs_info,
716 				"support for check_integrity* not compiled in!");
717 			ret = -EINVAL;
718 			goto out;
719 #endif
720 		case Opt_fatal_errors:
721 			if (strcmp(args[0].from, "panic") == 0)
722 				btrfs_set_opt(info->mount_opt,
723 					      PANIC_ON_FATAL_ERROR);
724 			else if (strcmp(args[0].from, "bug") == 0)
725 				btrfs_clear_opt(info->mount_opt,
726 					      PANIC_ON_FATAL_ERROR);
727 			else {
728 				ret = -EINVAL;
729 				goto out;
730 			}
731 			break;
732 		case Opt_commit_interval:
733 			intarg = 0;
734 			ret = match_int(&args[0], &intarg);
735 			if (ret < 0) {
736 				btrfs_err(root->fs_info, "invalid commit interval");
737 				ret = -EINVAL;
738 				goto out;
739 			}
740 			if (intarg > 0) {
741 				if (intarg > 300) {
742 					btrfs_warn(root->fs_info, "excessive commit interval %d",
743 							intarg);
744 				}
745 				info->commit_interval = intarg;
746 			} else {
747 				btrfs_info(root->fs_info, "using default commit interval %ds",
748 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
749 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
750 			}
751 			break;
752 		case Opt_err:
753 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
754 			ret = -EINVAL;
755 			goto out;
756 		default:
757 			break;
758 		}
759 	}
760 out:
761 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
762 		btrfs_info(root->fs_info, "disk space caching is enabled");
763 	kfree(orig);
764 	return ret;
765 }
766 
767 /*
768  * Parse mount options that are required early in the mount process.
769  *
770  * All other options will be parsed on much later in the mount process and
771  * only when we need to allocate a new super block.
772  */
773 static int btrfs_parse_early_options(const char *options, fmode_t flags,
774 		void *holder, char **subvol_name, u64 *subvol_objectid,
775 		struct btrfs_fs_devices **fs_devices)
776 {
777 	substring_t args[MAX_OPT_ARGS];
778 	char *device_name, *opts, *orig, *p;
779 	char *num = NULL;
780 	int error = 0;
781 
782 	if (!options)
783 		return 0;
784 
785 	/*
786 	 * strsep changes the string, duplicate it because parse_options
787 	 * gets called twice
788 	 */
789 	opts = kstrdup(options, GFP_KERNEL);
790 	if (!opts)
791 		return -ENOMEM;
792 	orig = opts;
793 
794 	while ((p = strsep(&opts, ",")) != NULL) {
795 		int token;
796 		if (!*p)
797 			continue;
798 
799 		token = match_token(p, tokens, args);
800 		switch (token) {
801 		case Opt_subvol:
802 			kfree(*subvol_name);
803 			*subvol_name = match_strdup(&args[0]);
804 			if (!*subvol_name) {
805 				error = -ENOMEM;
806 				goto out;
807 			}
808 			break;
809 		case Opt_subvolid:
810 			num = match_strdup(&args[0]);
811 			if (num) {
812 				*subvol_objectid = memparse(num, NULL);
813 				kfree(num);
814 				/* we want the original fs_tree */
815 				if (!*subvol_objectid)
816 					*subvol_objectid =
817 						BTRFS_FS_TREE_OBJECTID;
818 			} else {
819 				error = -EINVAL;
820 				goto out;
821 			}
822 			break;
823 		case Opt_subvolrootid:
824 			printk(KERN_WARNING
825 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
826 				"no effect\n");
827 			break;
828 		case Opt_device:
829 			device_name = match_strdup(&args[0]);
830 			if (!device_name) {
831 				error = -ENOMEM;
832 				goto out;
833 			}
834 			error = btrfs_scan_one_device(device_name,
835 					flags, holder, fs_devices);
836 			kfree(device_name);
837 			if (error)
838 				goto out;
839 			break;
840 		default:
841 			break;
842 		}
843 	}
844 
845 out:
846 	kfree(orig);
847 	return error;
848 }
849 
850 static struct dentry *get_default_root(struct super_block *sb,
851 				       u64 subvol_objectid)
852 {
853 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
854 	struct btrfs_root *root = fs_info->tree_root;
855 	struct btrfs_root *new_root;
856 	struct btrfs_dir_item *di;
857 	struct btrfs_path *path;
858 	struct btrfs_key location;
859 	struct inode *inode;
860 	struct dentry *dentry;
861 	u64 dir_id;
862 	int new = 0;
863 
864 	/*
865 	 * We have a specific subvol we want to mount, just setup location and
866 	 * go look up the root.
867 	 */
868 	if (subvol_objectid) {
869 		location.objectid = subvol_objectid;
870 		location.type = BTRFS_ROOT_ITEM_KEY;
871 		location.offset = (u64)-1;
872 		goto find_root;
873 	}
874 
875 	path = btrfs_alloc_path();
876 	if (!path)
877 		return ERR_PTR(-ENOMEM);
878 	path->leave_spinning = 1;
879 
880 	/*
881 	 * Find the "default" dir item which points to the root item that we
882 	 * will mount by default if we haven't been given a specific subvolume
883 	 * to mount.
884 	 */
885 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
886 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
887 	if (IS_ERR(di)) {
888 		btrfs_free_path(path);
889 		return ERR_CAST(di);
890 	}
891 	if (!di) {
892 		/*
893 		 * Ok the default dir item isn't there.  This is weird since
894 		 * it's always been there, but don't freak out, just try and
895 		 * mount to root most subvolume.
896 		 */
897 		btrfs_free_path(path);
898 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
899 		new_root = fs_info->fs_root;
900 		goto setup_root;
901 	}
902 
903 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
904 	btrfs_free_path(path);
905 
906 find_root:
907 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
908 	if (IS_ERR(new_root))
909 		return ERR_CAST(new_root);
910 
911 	dir_id = btrfs_root_dirid(&new_root->root_item);
912 setup_root:
913 	location.objectid = dir_id;
914 	location.type = BTRFS_INODE_ITEM_KEY;
915 	location.offset = 0;
916 
917 	inode = btrfs_iget(sb, &location, new_root, &new);
918 	if (IS_ERR(inode))
919 		return ERR_CAST(inode);
920 
921 	/*
922 	 * If we're just mounting the root most subvol put the inode and return
923 	 * a reference to the dentry.  We will have already gotten a reference
924 	 * to the inode in btrfs_fill_super so we're good to go.
925 	 */
926 	if (!new && sb->s_root->d_inode == inode) {
927 		iput(inode);
928 		return dget(sb->s_root);
929 	}
930 
931 	dentry = d_obtain_alias(inode);
932 	if (!IS_ERR(dentry)) {
933 		spin_lock(&dentry->d_lock);
934 		dentry->d_flags &= ~DCACHE_DISCONNECTED;
935 		spin_unlock(&dentry->d_lock);
936 	}
937 	return dentry;
938 }
939 
940 static int btrfs_fill_super(struct super_block *sb,
941 			    struct btrfs_fs_devices *fs_devices,
942 			    void *data, int silent)
943 {
944 	struct inode *inode;
945 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
946 	struct btrfs_key key;
947 	int err;
948 
949 	sb->s_maxbytes = MAX_LFS_FILESIZE;
950 	sb->s_magic = BTRFS_SUPER_MAGIC;
951 	sb->s_op = &btrfs_super_ops;
952 	sb->s_d_op = &btrfs_dentry_operations;
953 	sb->s_export_op = &btrfs_export_ops;
954 	sb->s_xattr = btrfs_xattr_handlers;
955 	sb->s_time_gran = 1;
956 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
957 	sb->s_flags |= MS_POSIXACL;
958 #endif
959 	sb->s_flags |= MS_I_VERSION;
960 	err = open_ctree(sb, fs_devices, (char *)data);
961 	if (err) {
962 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
963 		return err;
964 	}
965 
966 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
967 	key.type = BTRFS_INODE_ITEM_KEY;
968 	key.offset = 0;
969 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
970 	if (IS_ERR(inode)) {
971 		err = PTR_ERR(inode);
972 		goto fail_close;
973 	}
974 
975 	sb->s_root = d_make_root(inode);
976 	if (!sb->s_root) {
977 		err = -ENOMEM;
978 		goto fail_close;
979 	}
980 
981 	save_mount_options(sb, data);
982 	cleancache_init_fs(sb);
983 	sb->s_flags |= MS_ACTIVE;
984 	return 0;
985 
986 fail_close:
987 	close_ctree(fs_info->tree_root);
988 	return err;
989 }
990 
991 int btrfs_sync_fs(struct super_block *sb, int wait)
992 {
993 	struct btrfs_trans_handle *trans;
994 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
995 	struct btrfs_root *root = fs_info->tree_root;
996 
997 	trace_btrfs_sync_fs(wait);
998 
999 	if (!wait) {
1000 		filemap_flush(fs_info->btree_inode->i_mapping);
1001 		return 0;
1002 	}
1003 
1004 	btrfs_wait_ordered_roots(fs_info, -1);
1005 
1006 	trans = btrfs_attach_transaction_barrier(root);
1007 	if (IS_ERR(trans)) {
1008 		/* no transaction, don't bother */
1009 		if (PTR_ERR(trans) == -ENOENT)
1010 			return 0;
1011 		return PTR_ERR(trans);
1012 	}
1013 	return btrfs_commit_transaction(trans, root);
1014 }
1015 
1016 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1017 {
1018 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1019 	struct btrfs_root *root = info->tree_root;
1020 	char *compress_type;
1021 
1022 	if (btrfs_test_opt(root, DEGRADED))
1023 		seq_puts(seq, ",degraded");
1024 	if (btrfs_test_opt(root, NODATASUM))
1025 		seq_puts(seq, ",nodatasum");
1026 	if (btrfs_test_opt(root, NODATACOW))
1027 		seq_puts(seq, ",nodatacow");
1028 	if (btrfs_test_opt(root, NOBARRIER))
1029 		seq_puts(seq, ",nobarrier");
1030 	if (info->max_inline != 8192 * 1024)
1031 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1032 	if (info->alloc_start != 0)
1033 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1034 	if (info->thread_pool_size !=  min_t(unsigned long,
1035 					     num_online_cpus() + 2, 8))
1036 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1037 	if (btrfs_test_opt(root, COMPRESS)) {
1038 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1039 			compress_type = "zlib";
1040 		else
1041 			compress_type = "lzo";
1042 		if (btrfs_test_opt(root, FORCE_COMPRESS))
1043 			seq_printf(seq, ",compress-force=%s", compress_type);
1044 		else
1045 			seq_printf(seq, ",compress=%s", compress_type);
1046 	}
1047 	if (btrfs_test_opt(root, NOSSD))
1048 		seq_puts(seq, ",nossd");
1049 	if (btrfs_test_opt(root, SSD_SPREAD))
1050 		seq_puts(seq, ",ssd_spread");
1051 	else if (btrfs_test_opt(root, SSD))
1052 		seq_puts(seq, ",ssd");
1053 	if (btrfs_test_opt(root, NOTREELOG))
1054 		seq_puts(seq, ",notreelog");
1055 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1056 		seq_puts(seq, ",flushoncommit");
1057 	if (btrfs_test_opt(root, DISCARD))
1058 		seq_puts(seq, ",discard");
1059 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1060 		seq_puts(seq, ",noacl");
1061 	if (btrfs_test_opt(root, SPACE_CACHE))
1062 		seq_puts(seq, ",space_cache");
1063 	else
1064 		seq_puts(seq, ",nospace_cache");
1065 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1066 		seq_puts(seq, ",rescan_uuid_tree");
1067 	if (btrfs_test_opt(root, CLEAR_CACHE))
1068 		seq_puts(seq, ",clear_cache");
1069 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1070 		seq_puts(seq, ",user_subvol_rm_allowed");
1071 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1072 		seq_puts(seq, ",enospc_debug");
1073 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1074 		seq_puts(seq, ",autodefrag");
1075 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1076 		seq_puts(seq, ",inode_cache");
1077 	if (btrfs_test_opt(root, SKIP_BALANCE))
1078 		seq_puts(seq, ",skip_balance");
1079 	if (btrfs_test_opt(root, RECOVERY))
1080 		seq_puts(seq, ",recovery");
1081 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1082 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1083 		seq_puts(seq, ",check_int_data");
1084 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1085 		seq_puts(seq, ",check_int");
1086 	if (info->check_integrity_print_mask)
1087 		seq_printf(seq, ",check_int_print_mask=%d",
1088 				info->check_integrity_print_mask);
1089 #endif
1090 	if (info->metadata_ratio)
1091 		seq_printf(seq, ",metadata_ratio=%d",
1092 				info->metadata_ratio);
1093 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1094 		seq_puts(seq, ",fatal_errors=panic");
1095 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1096 		seq_printf(seq, ",commit=%d", info->commit_interval);
1097 	return 0;
1098 }
1099 
1100 static int btrfs_test_super(struct super_block *s, void *data)
1101 {
1102 	struct btrfs_fs_info *p = data;
1103 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1104 
1105 	return fs_info->fs_devices == p->fs_devices;
1106 }
1107 
1108 static int btrfs_set_super(struct super_block *s, void *data)
1109 {
1110 	int err = set_anon_super(s, data);
1111 	if (!err)
1112 		s->s_fs_info = data;
1113 	return err;
1114 }
1115 
1116 /*
1117  * subvolumes are identified by ino 256
1118  */
1119 static inline int is_subvolume_inode(struct inode *inode)
1120 {
1121 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1122 		return 1;
1123 	return 0;
1124 }
1125 
1126 /*
1127  * This will strip out the subvol=%s argument for an argument string and add
1128  * subvolid=0 to make sure we get the actual tree root for path walking to the
1129  * subvol we want.
1130  */
1131 static char *setup_root_args(char *args)
1132 {
1133 	unsigned len = strlen(args) + 2 + 1;
1134 	char *src, *dst, *buf;
1135 
1136 	/*
1137 	 * We need the same args as before, but with this substitution:
1138 	 * s!subvol=[^,]+!subvolid=0!
1139 	 *
1140 	 * Since the replacement string is up to 2 bytes longer than the
1141 	 * original, allocate strlen(args) + 2 + 1 bytes.
1142 	 */
1143 
1144 	src = strstr(args, "subvol=");
1145 	/* This shouldn't happen, but just in case.. */
1146 	if (!src)
1147 		return NULL;
1148 
1149 	buf = dst = kmalloc(len, GFP_NOFS);
1150 	if (!buf)
1151 		return NULL;
1152 
1153 	/*
1154 	 * If the subvol= arg is not at the start of the string,
1155 	 * copy whatever precedes it into buf.
1156 	 */
1157 	if (src != args) {
1158 		*src++ = '\0';
1159 		strcpy(buf, args);
1160 		dst += strlen(args);
1161 	}
1162 
1163 	strcpy(dst, "subvolid=0");
1164 	dst += strlen("subvolid=0");
1165 
1166 	/*
1167 	 * If there is a "," after the original subvol=... string,
1168 	 * copy that suffix into our buffer.  Otherwise, we're done.
1169 	 */
1170 	src = strchr(src, ',');
1171 	if (src)
1172 		strcpy(dst, src);
1173 
1174 	return buf;
1175 }
1176 
1177 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1178 				   const char *device_name, char *data)
1179 {
1180 	struct dentry *root;
1181 	struct vfsmount *mnt;
1182 	char *newargs;
1183 
1184 	newargs = setup_root_args(data);
1185 	if (!newargs)
1186 		return ERR_PTR(-ENOMEM);
1187 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1188 			     newargs);
1189 	kfree(newargs);
1190 
1191 	if (PTR_RET(mnt) == -EBUSY) {
1192 		if (flags & MS_RDONLY) {
1193 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1194 					     newargs);
1195 		} else {
1196 			int r;
1197 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1198 					     newargs);
1199 			if (IS_ERR(mnt))
1200 				return ERR_CAST(mnt);
1201 
1202 			r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1203 			if (r < 0) {
1204 				/* FIXME: release vfsmount mnt ??*/
1205 				return ERR_PTR(r);
1206 			}
1207 		}
1208 	}
1209 
1210 	if (IS_ERR(mnt))
1211 		return ERR_CAST(mnt);
1212 
1213 	root = mount_subtree(mnt, subvol_name);
1214 
1215 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1216 		struct super_block *s = root->d_sb;
1217 		dput(root);
1218 		root = ERR_PTR(-EINVAL);
1219 		deactivate_locked_super(s);
1220 		printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1221 				subvol_name);
1222 	}
1223 
1224 	return root;
1225 }
1226 
1227 /*
1228  * Find a superblock for the given device / mount point.
1229  *
1230  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1231  *	  for multiple device setup.  Make sure to keep it in sync.
1232  */
1233 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1234 		const char *device_name, void *data)
1235 {
1236 	struct block_device *bdev = NULL;
1237 	struct super_block *s;
1238 	struct dentry *root;
1239 	struct btrfs_fs_devices *fs_devices = NULL;
1240 	struct btrfs_fs_info *fs_info = NULL;
1241 	fmode_t mode = FMODE_READ;
1242 	char *subvol_name = NULL;
1243 	u64 subvol_objectid = 0;
1244 	int error = 0;
1245 
1246 	if (!(flags & MS_RDONLY))
1247 		mode |= FMODE_WRITE;
1248 
1249 	error = btrfs_parse_early_options(data, mode, fs_type,
1250 					  &subvol_name, &subvol_objectid,
1251 					  &fs_devices);
1252 	if (error) {
1253 		kfree(subvol_name);
1254 		return ERR_PTR(error);
1255 	}
1256 
1257 	if (subvol_name) {
1258 		root = mount_subvol(subvol_name, flags, device_name, data);
1259 		kfree(subvol_name);
1260 		return root;
1261 	}
1262 
1263 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1264 	if (error)
1265 		return ERR_PTR(error);
1266 
1267 	/*
1268 	 * Setup a dummy root and fs_info for test/set super.  This is because
1269 	 * we don't actually fill this stuff out until open_ctree, but we need
1270 	 * it for searching for existing supers, so this lets us do that and
1271 	 * then open_ctree will properly initialize everything later.
1272 	 */
1273 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1274 	if (!fs_info)
1275 		return ERR_PTR(-ENOMEM);
1276 
1277 	fs_info->fs_devices = fs_devices;
1278 
1279 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1280 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1281 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1282 		error = -ENOMEM;
1283 		goto error_fs_info;
1284 	}
1285 
1286 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1287 	if (error)
1288 		goto error_fs_info;
1289 
1290 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1291 		error = -EACCES;
1292 		goto error_close_devices;
1293 	}
1294 
1295 	bdev = fs_devices->latest_bdev;
1296 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1297 		 fs_info);
1298 	if (IS_ERR(s)) {
1299 		error = PTR_ERR(s);
1300 		goto error_close_devices;
1301 	}
1302 
1303 	if (s->s_root) {
1304 		btrfs_close_devices(fs_devices);
1305 		free_fs_info(fs_info);
1306 		if ((flags ^ s->s_flags) & MS_RDONLY)
1307 			error = -EBUSY;
1308 	} else {
1309 		char b[BDEVNAME_SIZE];
1310 
1311 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1312 		btrfs_sb(s)->bdev_holder = fs_type;
1313 		error = btrfs_fill_super(s, fs_devices, data,
1314 					 flags & MS_SILENT ? 1 : 0);
1315 	}
1316 
1317 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1318 	if (IS_ERR(root))
1319 		deactivate_locked_super(s);
1320 
1321 	return root;
1322 
1323 error_close_devices:
1324 	btrfs_close_devices(fs_devices);
1325 error_fs_info:
1326 	free_fs_info(fs_info);
1327 	return ERR_PTR(error);
1328 }
1329 
1330 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1331 				     int new_pool_size, int old_pool_size)
1332 {
1333 	if (new_pool_size == old_pool_size)
1334 		return;
1335 
1336 	fs_info->thread_pool_size = new_pool_size;
1337 
1338 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1339 	       old_pool_size, new_pool_size);
1340 
1341 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1342 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1343 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1344 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1345 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1346 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1347 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1348 				new_pool_size);
1349 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1350 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1351 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1352 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1353 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1354 				new_pool_size);
1355 }
1356 
1357 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1358 {
1359 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1360 }
1361 
1362 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1363 				       unsigned long old_opts, int flags)
1364 {
1365 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1366 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1367 	     (flags & MS_RDONLY))) {
1368 		/* wait for any defraggers to finish */
1369 		wait_event(fs_info->transaction_wait,
1370 			   (atomic_read(&fs_info->defrag_running) == 0));
1371 		if (flags & MS_RDONLY)
1372 			sync_filesystem(fs_info->sb);
1373 	}
1374 }
1375 
1376 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1377 					 unsigned long old_opts)
1378 {
1379 	/*
1380 	 * We need cleanup all defragable inodes if the autodefragment is
1381 	 * close or the fs is R/O.
1382 	 */
1383 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1384 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1385 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1386 		btrfs_cleanup_defrag_inodes(fs_info);
1387 	}
1388 
1389 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1390 }
1391 
1392 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1393 {
1394 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1395 	struct btrfs_root *root = fs_info->tree_root;
1396 	unsigned old_flags = sb->s_flags;
1397 	unsigned long old_opts = fs_info->mount_opt;
1398 	unsigned long old_compress_type = fs_info->compress_type;
1399 	u64 old_max_inline = fs_info->max_inline;
1400 	u64 old_alloc_start = fs_info->alloc_start;
1401 	int old_thread_pool_size = fs_info->thread_pool_size;
1402 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1403 	int ret;
1404 
1405 	sync_filesystem(sb);
1406 	btrfs_remount_prepare(fs_info);
1407 
1408 	ret = btrfs_parse_options(root, data);
1409 	if (ret) {
1410 		ret = -EINVAL;
1411 		goto restore;
1412 	}
1413 
1414 	btrfs_remount_begin(fs_info, old_opts, *flags);
1415 	btrfs_resize_thread_pool(fs_info,
1416 		fs_info->thread_pool_size, old_thread_pool_size);
1417 
1418 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1419 		goto out;
1420 
1421 	if (*flags & MS_RDONLY) {
1422 		/*
1423 		 * this also happens on 'umount -rf' or on shutdown, when
1424 		 * the filesystem is busy.
1425 		 */
1426 
1427 		/* wait for the uuid_scan task to finish */
1428 		down(&fs_info->uuid_tree_rescan_sem);
1429 		/* avoid complains from lockdep et al. */
1430 		up(&fs_info->uuid_tree_rescan_sem);
1431 
1432 		sb->s_flags |= MS_RDONLY;
1433 
1434 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1435 		btrfs_scrub_cancel(fs_info);
1436 		btrfs_pause_balance(fs_info);
1437 
1438 		ret = btrfs_commit_super(root);
1439 		if (ret)
1440 			goto restore;
1441 	} else {
1442 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1443 			btrfs_err(fs_info,
1444 				"Remounting read-write after error is not allowed");
1445 			ret = -EINVAL;
1446 			goto restore;
1447 		}
1448 		if (fs_info->fs_devices->rw_devices == 0) {
1449 			ret = -EACCES;
1450 			goto restore;
1451 		}
1452 
1453 		if (fs_info->fs_devices->missing_devices >
1454 		     fs_info->num_tolerated_disk_barrier_failures &&
1455 		    !(*flags & MS_RDONLY)) {
1456 			btrfs_warn(fs_info,
1457 				"too many missing devices, writeable remount is not allowed");
1458 			ret = -EACCES;
1459 			goto restore;
1460 		}
1461 
1462 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1463 			ret = -EINVAL;
1464 			goto restore;
1465 		}
1466 
1467 		ret = btrfs_cleanup_fs_roots(fs_info);
1468 		if (ret)
1469 			goto restore;
1470 
1471 		/* recover relocation */
1472 		ret = btrfs_recover_relocation(root);
1473 		if (ret)
1474 			goto restore;
1475 
1476 		ret = btrfs_resume_balance_async(fs_info);
1477 		if (ret)
1478 			goto restore;
1479 
1480 		ret = btrfs_resume_dev_replace_async(fs_info);
1481 		if (ret) {
1482 			btrfs_warn(fs_info, "failed to resume dev_replace");
1483 			goto restore;
1484 		}
1485 
1486 		if (!fs_info->uuid_root) {
1487 			btrfs_info(fs_info, "creating UUID tree");
1488 			ret = btrfs_create_uuid_tree(fs_info);
1489 			if (ret) {
1490 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1491 				goto restore;
1492 			}
1493 		}
1494 		sb->s_flags &= ~MS_RDONLY;
1495 	}
1496 out:
1497 	wake_up_process(fs_info->transaction_kthread);
1498 	btrfs_remount_cleanup(fs_info, old_opts);
1499 	return 0;
1500 
1501 restore:
1502 	/* We've hit an error - don't reset MS_RDONLY */
1503 	if (sb->s_flags & MS_RDONLY)
1504 		old_flags |= MS_RDONLY;
1505 	sb->s_flags = old_flags;
1506 	fs_info->mount_opt = old_opts;
1507 	fs_info->compress_type = old_compress_type;
1508 	fs_info->max_inline = old_max_inline;
1509 	mutex_lock(&fs_info->chunk_mutex);
1510 	fs_info->alloc_start = old_alloc_start;
1511 	mutex_unlock(&fs_info->chunk_mutex);
1512 	btrfs_resize_thread_pool(fs_info,
1513 		old_thread_pool_size, fs_info->thread_pool_size);
1514 	fs_info->metadata_ratio = old_metadata_ratio;
1515 	btrfs_remount_cleanup(fs_info, old_opts);
1516 	return ret;
1517 }
1518 
1519 /* Used to sort the devices by max_avail(descending sort) */
1520 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1521 				       const void *dev_info2)
1522 {
1523 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1524 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1525 		return -1;
1526 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1527 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1528 		return 1;
1529 	else
1530 	return 0;
1531 }
1532 
1533 /*
1534  * sort the devices by max_avail, in which max free extent size of each device
1535  * is stored.(Descending Sort)
1536  */
1537 static inline void btrfs_descending_sort_devices(
1538 					struct btrfs_device_info *devices,
1539 					size_t nr_devices)
1540 {
1541 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1542 	     btrfs_cmp_device_free_bytes, NULL);
1543 }
1544 
1545 /*
1546  * The helper to calc the free space on the devices that can be used to store
1547  * file data.
1548  */
1549 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1550 {
1551 	struct btrfs_fs_info *fs_info = root->fs_info;
1552 	struct btrfs_device_info *devices_info;
1553 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1554 	struct btrfs_device *device;
1555 	u64 skip_space;
1556 	u64 type;
1557 	u64 avail_space;
1558 	u64 used_space;
1559 	u64 min_stripe_size;
1560 	int min_stripes = 1, num_stripes = 1;
1561 	int i = 0, nr_devices;
1562 	int ret;
1563 
1564 	nr_devices = fs_info->fs_devices->open_devices;
1565 	BUG_ON(!nr_devices);
1566 
1567 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1568 			       GFP_NOFS);
1569 	if (!devices_info)
1570 		return -ENOMEM;
1571 
1572 	/* calc min stripe number for data space alloction */
1573 	type = btrfs_get_alloc_profile(root, 1);
1574 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1575 		min_stripes = 2;
1576 		num_stripes = nr_devices;
1577 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1578 		min_stripes = 2;
1579 		num_stripes = 2;
1580 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1581 		min_stripes = 4;
1582 		num_stripes = 4;
1583 	}
1584 
1585 	if (type & BTRFS_BLOCK_GROUP_DUP)
1586 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1587 	else
1588 		min_stripe_size = BTRFS_STRIPE_LEN;
1589 
1590 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1591 		if (!device->in_fs_metadata || !device->bdev ||
1592 		    device->is_tgtdev_for_dev_replace)
1593 			continue;
1594 
1595 		avail_space = device->total_bytes - device->bytes_used;
1596 
1597 		/* align with stripe_len */
1598 		do_div(avail_space, BTRFS_STRIPE_LEN);
1599 		avail_space *= BTRFS_STRIPE_LEN;
1600 
1601 		/*
1602 		 * In order to avoid overwritting the superblock on the drive,
1603 		 * btrfs starts at an offset of at least 1MB when doing chunk
1604 		 * allocation.
1605 		 */
1606 		skip_space = 1024 * 1024;
1607 
1608 		/* user can set the offset in fs_info->alloc_start. */
1609 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1610 		    device->total_bytes)
1611 			skip_space = max(fs_info->alloc_start, skip_space);
1612 
1613 		/*
1614 		 * btrfs can not use the free space in [0, skip_space - 1],
1615 		 * we must subtract it from the total. In order to implement
1616 		 * it, we account the used space in this range first.
1617 		 */
1618 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1619 						     &used_space);
1620 		if (ret) {
1621 			kfree(devices_info);
1622 			return ret;
1623 		}
1624 
1625 		/* calc the free space in [0, skip_space - 1] */
1626 		skip_space -= used_space;
1627 
1628 		/*
1629 		 * we can use the free space in [0, skip_space - 1], subtract
1630 		 * it from the total.
1631 		 */
1632 		if (avail_space && avail_space >= skip_space)
1633 			avail_space -= skip_space;
1634 		else
1635 			avail_space = 0;
1636 
1637 		if (avail_space < min_stripe_size)
1638 			continue;
1639 
1640 		devices_info[i].dev = device;
1641 		devices_info[i].max_avail = avail_space;
1642 
1643 		i++;
1644 	}
1645 
1646 	nr_devices = i;
1647 
1648 	btrfs_descending_sort_devices(devices_info, nr_devices);
1649 
1650 	i = nr_devices - 1;
1651 	avail_space = 0;
1652 	while (nr_devices >= min_stripes) {
1653 		if (num_stripes > nr_devices)
1654 			num_stripes = nr_devices;
1655 
1656 		if (devices_info[i].max_avail >= min_stripe_size) {
1657 			int j;
1658 			u64 alloc_size;
1659 
1660 			avail_space += devices_info[i].max_avail * num_stripes;
1661 			alloc_size = devices_info[i].max_avail;
1662 			for (j = i + 1 - num_stripes; j <= i; j++)
1663 				devices_info[j].max_avail -= alloc_size;
1664 		}
1665 		i--;
1666 		nr_devices--;
1667 	}
1668 
1669 	kfree(devices_info);
1670 	*free_bytes = avail_space;
1671 	return 0;
1672 }
1673 
1674 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1675 {
1676 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1677 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1678 	struct list_head *head = &fs_info->space_info;
1679 	struct btrfs_space_info *found;
1680 	u64 total_used = 0;
1681 	u64 total_free_data = 0;
1682 	int bits = dentry->d_sb->s_blocksize_bits;
1683 	__be32 *fsid = (__be32 *)fs_info->fsid;
1684 	int ret;
1685 
1686 	/* holding chunk_muext to avoid allocating new chunks */
1687 	mutex_lock(&fs_info->chunk_mutex);
1688 	rcu_read_lock();
1689 	list_for_each_entry_rcu(found, head, list) {
1690 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1691 			total_free_data += found->disk_total - found->disk_used;
1692 			total_free_data -=
1693 				btrfs_account_ro_block_groups_free_space(found);
1694 		}
1695 
1696 		total_used += found->disk_used;
1697 	}
1698 	rcu_read_unlock();
1699 
1700 	buf->f_namelen = BTRFS_NAME_LEN;
1701 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1702 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1703 	buf->f_bsize = dentry->d_sb->s_blocksize;
1704 	buf->f_type = BTRFS_SUPER_MAGIC;
1705 	buf->f_bavail = total_free_data;
1706 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1707 	if (ret) {
1708 		mutex_unlock(&fs_info->chunk_mutex);
1709 		return ret;
1710 	}
1711 	buf->f_bavail += total_free_data;
1712 	buf->f_bavail = buf->f_bavail >> bits;
1713 	mutex_unlock(&fs_info->chunk_mutex);
1714 
1715 	/* We treat it as constant endianness (it doesn't matter _which_)
1716 	   because we want the fsid to come out the same whether mounted
1717 	   on a big-endian or little-endian host */
1718 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1719 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1720 	/* Mask in the root object ID too, to disambiguate subvols */
1721 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1722 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1723 
1724 	return 0;
1725 }
1726 
1727 static void btrfs_kill_super(struct super_block *sb)
1728 {
1729 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1730 	kill_anon_super(sb);
1731 	free_fs_info(fs_info);
1732 }
1733 
1734 static struct file_system_type btrfs_fs_type = {
1735 	.owner		= THIS_MODULE,
1736 	.name		= "btrfs",
1737 	.mount		= btrfs_mount,
1738 	.kill_sb	= btrfs_kill_super,
1739 	.fs_flags	= FS_REQUIRES_DEV,
1740 };
1741 MODULE_ALIAS_FS("btrfs");
1742 
1743 /*
1744  * used by btrfsctl to scan devices when no FS is mounted
1745  */
1746 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1747 				unsigned long arg)
1748 {
1749 	struct btrfs_ioctl_vol_args *vol;
1750 	struct btrfs_fs_devices *fs_devices;
1751 	int ret = -ENOTTY;
1752 
1753 	if (!capable(CAP_SYS_ADMIN))
1754 		return -EPERM;
1755 
1756 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1757 	if (IS_ERR(vol))
1758 		return PTR_ERR(vol);
1759 
1760 	switch (cmd) {
1761 	case BTRFS_IOC_SCAN_DEV:
1762 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1763 					    &btrfs_fs_type, &fs_devices);
1764 		break;
1765 	case BTRFS_IOC_DEVICES_READY:
1766 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1767 					    &btrfs_fs_type, &fs_devices);
1768 		if (ret)
1769 			break;
1770 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1771 		break;
1772 	}
1773 
1774 	kfree(vol);
1775 	return ret;
1776 }
1777 
1778 static int btrfs_freeze(struct super_block *sb)
1779 {
1780 	struct btrfs_trans_handle *trans;
1781 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1782 
1783 	trans = btrfs_attach_transaction_barrier(root);
1784 	if (IS_ERR(trans)) {
1785 		/* no transaction, don't bother */
1786 		if (PTR_ERR(trans) == -ENOENT)
1787 			return 0;
1788 		return PTR_ERR(trans);
1789 	}
1790 	return btrfs_commit_transaction(trans, root);
1791 }
1792 
1793 static int btrfs_unfreeze(struct super_block *sb)
1794 {
1795 	return 0;
1796 }
1797 
1798 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1799 {
1800 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1801 	struct btrfs_fs_devices *cur_devices;
1802 	struct btrfs_device *dev, *first_dev = NULL;
1803 	struct list_head *head;
1804 	struct rcu_string *name;
1805 
1806 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1807 	cur_devices = fs_info->fs_devices;
1808 	while (cur_devices) {
1809 		head = &cur_devices->devices;
1810 		list_for_each_entry(dev, head, dev_list) {
1811 			if (dev->missing)
1812 				continue;
1813 			if (!first_dev || dev->devid < first_dev->devid)
1814 				first_dev = dev;
1815 		}
1816 		cur_devices = cur_devices->seed;
1817 	}
1818 
1819 	if (first_dev) {
1820 		rcu_read_lock();
1821 		name = rcu_dereference(first_dev->name);
1822 		seq_escape(m, name->str, " \t\n\\");
1823 		rcu_read_unlock();
1824 	} else {
1825 		WARN_ON(1);
1826 	}
1827 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1828 	return 0;
1829 }
1830 
1831 static const struct super_operations btrfs_super_ops = {
1832 	.drop_inode	= btrfs_drop_inode,
1833 	.evict_inode	= btrfs_evict_inode,
1834 	.put_super	= btrfs_put_super,
1835 	.sync_fs	= btrfs_sync_fs,
1836 	.show_options	= btrfs_show_options,
1837 	.show_devname	= btrfs_show_devname,
1838 	.write_inode	= btrfs_write_inode,
1839 	.alloc_inode	= btrfs_alloc_inode,
1840 	.destroy_inode	= btrfs_destroy_inode,
1841 	.statfs		= btrfs_statfs,
1842 	.remount_fs	= btrfs_remount,
1843 	.freeze_fs	= btrfs_freeze,
1844 	.unfreeze_fs	= btrfs_unfreeze,
1845 };
1846 
1847 static const struct file_operations btrfs_ctl_fops = {
1848 	.unlocked_ioctl	 = btrfs_control_ioctl,
1849 	.compat_ioctl = btrfs_control_ioctl,
1850 	.owner	 = THIS_MODULE,
1851 	.llseek = noop_llseek,
1852 };
1853 
1854 static struct miscdevice btrfs_misc = {
1855 	.minor		= BTRFS_MINOR,
1856 	.name		= "btrfs-control",
1857 	.fops		= &btrfs_ctl_fops
1858 };
1859 
1860 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1861 MODULE_ALIAS("devname:btrfs-control");
1862 
1863 static int btrfs_interface_init(void)
1864 {
1865 	return misc_register(&btrfs_misc);
1866 }
1867 
1868 static void btrfs_interface_exit(void)
1869 {
1870 	if (misc_deregister(&btrfs_misc) < 0)
1871 		printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1872 }
1873 
1874 static void btrfs_print_info(void)
1875 {
1876 	printk(KERN_INFO "Btrfs loaded"
1877 #ifdef CONFIG_BTRFS_DEBUG
1878 			", debug=on"
1879 #endif
1880 #ifdef CONFIG_BTRFS_ASSERT
1881 			", assert=on"
1882 #endif
1883 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1884 			", integrity-checker=on"
1885 #endif
1886 			"\n");
1887 }
1888 
1889 static int btrfs_run_sanity_tests(void)
1890 {
1891 	int ret;
1892 
1893 	ret = btrfs_init_test_fs();
1894 	if (ret)
1895 		return ret;
1896 
1897 	ret = btrfs_test_free_space_cache();
1898 	if (ret)
1899 		goto out;
1900 	ret = btrfs_test_extent_buffer_operations();
1901 	if (ret)
1902 		goto out;
1903 	ret = btrfs_test_extent_io();
1904 	if (ret)
1905 		goto out;
1906 	ret = btrfs_test_inodes();
1907 out:
1908 	btrfs_destroy_test_fs();
1909 	return ret;
1910 }
1911 
1912 static int __init init_btrfs_fs(void)
1913 {
1914 	int err;
1915 
1916 	err = btrfs_hash_init();
1917 	if (err)
1918 		return err;
1919 
1920 	btrfs_props_init();
1921 
1922 	err = btrfs_init_sysfs();
1923 	if (err)
1924 		goto free_hash;
1925 
1926 	btrfs_init_compress();
1927 
1928 	err = btrfs_init_cachep();
1929 	if (err)
1930 		goto free_compress;
1931 
1932 	err = extent_io_init();
1933 	if (err)
1934 		goto free_cachep;
1935 
1936 	err = extent_map_init();
1937 	if (err)
1938 		goto free_extent_io;
1939 
1940 	err = ordered_data_init();
1941 	if (err)
1942 		goto free_extent_map;
1943 
1944 	err = btrfs_delayed_inode_init();
1945 	if (err)
1946 		goto free_ordered_data;
1947 
1948 	err = btrfs_auto_defrag_init();
1949 	if (err)
1950 		goto free_delayed_inode;
1951 
1952 	err = btrfs_delayed_ref_init();
1953 	if (err)
1954 		goto free_auto_defrag;
1955 
1956 	err = btrfs_prelim_ref_init();
1957 	if (err)
1958 		goto free_prelim_ref;
1959 
1960 	err = btrfs_interface_init();
1961 	if (err)
1962 		goto free_delayed_ref;
1963 
1964 	btrfs_init_lockdep();
1965 
1966 	btrfs_print_info();
1967 
1968 	err = btrfs_run_sanity_tests();
1969 	if (err)
1970 		goto unregister_ioctl;
1971 
1972 	err = register_filesystem(&btrfs_fs_type);
1973 	if (err)
1974 		goto unregister_ioctl;
1975 
1976 	return 0;
1977 
1978 unregister_ioctl:
1979 	btrfs_interface_exit();
1980 free_prelim_ref:
1981 	btrfs_prelim_ref_exit();
1982 free_delayed_ref:
1983 	btrfs_delayed_ref_exit();
1984 free_auto_defrag:
1985 	btrfs_auto_defrag_exit();
1986 free_delayed_inode:
1987 	btrfs_delayed_inode_exit();
1988 free_ordered_data:
1989 	ordered_data_exit();
1990 free_extent_map:
1991 	extent_map_exit();
1992 free_extent_io:
1993 	extent_io_exit();
1994 free_cachep:
1995 	btrfs_destroy_cachep();
1996 free_compress:
1997 	btrfs_exit_compress();
1998 	btrfs_exit_sysfs();
1999 free_hash:
2000 	btrfs_hash_exit();
2001 	return err;
2002 }
2003 
2004 static void __exit exit_btrfs_fs(void)
2005 {
2006 	btrfs_destroy_cachep();
2007 	btrfs_delayed_ref_exit();
2008 	btrfs_auto_defrag_exit();
2009 	btrfs_delayed_inode_exit();
2010 	btrfs_prelim_ref_exit();
2011 	ordered_data_exit();
2012 	extent_map_exit();
2013 	extent_io_exit();
2014 	btrfs_interface_exit();
2015 	unregister_filesystem(&btrfs_fs_type);
2016 	btrfs_exit_sysfs();
2017 	btrfs_cleanup_fs_uuids();
2018 	btrfs_exit_compress();
2019 	btrfs_hash_exit();
2020 }
2021 
2022 late_initcall(init_btrfs_fs);
2023 module_exit(exit_btrfs_fs)
2024 
2025 MODULE_LICENSE("GPL");
2026