1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/crc32c.h> 45 #include <linux/btrfs.h> 46 #include "delayed-inode.h" 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 69 /* 70 * Types for mounting the default subvolume and a subvolume explicitly 71 * requested by subvol=/path. That way the callchain is straightforward and we 72 * don't have to play tricks with the mount options and recursive calls to 73 * btrfs_mount. 74 * 75 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 76 */ 77 static struct file_system_type btrfs_fs_type; 78 static struct file_system_type btrfs_root_fs_type; 79 80 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 81 82 const char *btrfs_decode_error(int errno) 83 { 84 char *errstr = "unknown"; 85 86 switch (errno) { 87 case -EIO: 88 errstr = "IO failure"; 89 break; 90 case -ENOMEM: 91 errstr = "Out of memory"; 92 break; 93 case -EROFS: 94 errstr = "Readonly filesystem"; 95 break; 96 case -EEXIST: 97 errstr = "Object already exists"; 98 break; 99 case -ENOSPC: 100 errstr = "No space left"; 101 break; 102 case -ENOENT: 103 errstr = "No such entry"; 104 break; 105 } 106 107 return errstr; 108 } 109 110 /* 111 * __btrfs_handle_fs_error decodes expected errors from the caller and 112 * invokes the approciate error response. 113 */ 114 __cold 115 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 116 unsigned int line, int errno, const char *fmt, ...) 117 { 118 struct super_block *sb = fs_info->sb; 119 #ifdef CONFIG_PRINTK 120 const char *errstr; 121 #endif 122 123 /* 124 * Special case: if the error is EROFS, and we're already 125 * under SB_RDONLY, then it is safe here. 126 */ 127 if (errno == -EROFS && sb_rdonly(sb)) 128 return; 129 130 #ifdef CONFIG_PRINTK 131 errstr = btrfs_decode_error(errno); 132 if (fmt) { 133 struct va_format vaf; 134 va_list args; 135 136 va_start(args, fmt); 137 vaf.fmt = fmt; 138 vaf.va = &args; 139 140 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 141 sb->s_id, function, line, errno, errstr, &vaf); 142 va_end(args); 143 } else { 144 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 145 sb->s_id, function, line, errno, errstr); 146 } 147 #endif 148 149 /* 150 * Today we only save the error info to memory. Long term we'll 151 * also send it down to the disk 152 */ 153 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 154 155 /* Don't go through full error handling during mount */ 156 if (!(sb->s_flags & SB_BORN)) 157 return; 158 159 if (sb_rdonly(sb)) 160 return; 161 162 /* btrfs handle error by forcing the filesystem readonly */ 163 sb->s_flags |= SB_RDONLY; 164 btrfs_info(fs_info, "forced readonly"); 165 /* 166 * Note that a running device replace operation is not canceled here 167 * although there is no way to update the progress. It would add the 168 * risk of a deadlock, therefore the canceling is omitted. The only 169 * penalty is that some I/O remains active until the procedure 170 * completes. The next time when the filesystem is mounted writeable 171 * again, the device replace operation continues. 172 */ 173 } 174 175 #ifdef CONFIG_PRINTK 176 static const char * const logtypes[] = { 177 "emergency", 178 "alert", 179 "critical", 180 "error", 181 "warning", 182 "notice", 183 "info", 184 "debug", 185 }; 186 187 188 /* 189 * Use one ratelimit state per log level so that a flood of less important 190 * messages doesn't cause more important ones to be dropped. 191 */ 192 static struct ratelimit_state printk_limits[] = { 193 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 200 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 201 }; 202 203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 204 { 205 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 206 struct va_format vaf; 207 va_list args; 208 int kern_level; 209 const char *type = logtypes[4]; 210 struct ratelimit_state *ratelimit = &printk_limits[4]; 211 212 va_start(args, fmt); 213 214 while ((kern_level = printk_get_level(fmt)) != 0) { 215 size_t size = printk_skip_level(fmt) - fmt; 216 217 if (kern_level >= '0' && kern_level <= '7') { 218 memcpy(lvl, fmt, size); 219 lvl[size] = '\0'; 220 type = logtypes[kern_level - '0']; 221 ratelimit = &printk_limits[kern_level - '0']; 222 } 223 fmt += size; 224 } 225 226 vaf.fmt = fmt; 227 vaf.va = &args; 228 229 if (__ratelimit(ratelimit)) 230 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 231 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 232 233 va_end(args); 234 } 235 #endif 236 237 /* 238 * We only mark the transaction aborted and then set the file system read-only. 239 * This will prevent new transactions from starting or trying to join this 240 * one. 241 * 242 * This means that error recovery at the call site is limited to freeing 243 * any local memory allocations and passing the error code up without 244 * further cleanup. The transaction should complete as it normally would 245 * in the call path but will return -EIO. 246 * 247 * We'll complete the cleanup in btrfs_end_transaction and 248 * btrfs_commit_transaction. 249 */ 250 __cold 251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 252 const char *function, 253 unsigned int line, int errno) 254 { 255 struct btrfs_fs_info *fs_info = trans->fs_info; 256 257 trans->aborted = errno; 258 /* Nothing used. The other threads that have joined this 259 * transaction may be able to continue. */ 260 if (!trans->dirty && list_empty(&trans->new_bgs)) { 261 const char *errstr; 262 263 errstr = btrfs_decode_error(errno); 264 btrfs_warn(fs_info, 265 "%s:%d: Aborting unused transaction(%s).", 266 function, line, errstr); 267 return; 268 } 269 WRITE_ONCE(trans->transaction->aborted, errno); 270 /* Wake up anybody who may be waiting on this transaction */ 271 wake_up(&fs_info->transaction_wait); 272 wake_up(&fs_info->transaction_blocked_wait); 273 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 274 } 275 /* 276 * __btrfs_panic decodes unexpected, fatal errors from the caller, 277 * issues an alert, and either panics or BUGs, depending on mount options. 278 */ 279 __cold 280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 281 unsigned int line, int errno, const char *fmt, ...) 282 { 283 char *s_id = "<unknown>"; 284 const char *errstr; 285 struct va_format vaf = { .fmt = fmt }; 286 va_list args; 287 288 if (fs_info) 289 s_id = fs_info->sb->s_id; 290 291 va_start(args, fmt); 292 vaf.va = &args; 293 294 errstr = btrfs_decode_error(errno); 295 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 296 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 297 s_id, function, line, &vaf, errno, errstr); 298 299 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 300 function, line, &vaf, errno, errstr); 301 va_end(args); 302 /* Caller calls BUG() */ 303 } 304 305 static void btrfs_put_super(struct super_block *sb) 306 { 307 close_ctree(btrfs_sb(sb)); 308 } 309 310 enum { 311 Opt_acl, Opt_noacl, 312 Opt_clear_cache, 313 Opt_commit_interval, 314 Opt_compress, 315 Opt_compress_force, 316 Opt_compress_force_type, 317 Opt_compress_type, 318 Opt_degraded, 319 Opt_device, 320 Opt_fatal_errors, 321 Opt_flushoncommit, Opt_noflushoncommit, 322 Opt_inode_cache, Opt_noinode_cache, 323 Opt_max_inline, 324 Opt_barrier, Opt_nobarrier, 325 Opt_datacow, Opt_nodatacow, 326 Opt_datasum, Opt_nodatasum, 327 Opt_defrag, Opt_nodefrag, 328 Opt_discard, Opt_nodiscard, 329 Opt_nologreplay, 330 Opt_norecovery, 331 Opt_ratio, 332 Opt_rescan_uuid_tree, 333 Opt_skip_balance, 334 Opt_space_cache, Opt_no_space_cache, 335 Opt_space_cache_version, 336 Opt_ssd, Opt_nossd, 337 Opt_ssd_spread, Opt_nossd_spread, 338 Opt_subvol, 339 Opt_subvolid, 340 Opt_thread_pool, 341 Opt_treelog, Opt_notreelog, 342 Opt_usebackuproot, 343 Opt_user_subvol_rm_allowed, 344 345 /* Deprecated options */ 346 Opt_alloc_start, 347 Opt_recovery, 348 Opt_subvolrootid, 349 350 /* Debugging options */ 351 Opt_check_integrity, 352 Opt_check_integrity_including_extent_data, 353 Opt_check_integrity_print_mask, 354 Opt_enospc_debug, Opt_noenospc_debug, 355 #ifdef CONFIG_BTRFS_DEBUG 356 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 357 #endif 358 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 359 Opt_ref_verify, 360 #endif 361 Opt_err, 362 }; 363 364 static const match_table_t tokens = { 365 {Opt_acl, "acl"}, 366 {Opt_noacl, "noacl"}, 367 {Opt_clear_cache, "clear_cache"}, 368 {Opt_commit_interval, "commit=%u"}, 369 {Opt_compress, "compress"}, 370 {Opt_compress_type, "compress=%s"}, 371 {Opt_compress_force, "compress-force"}, 372 {Opt_compress_force_type, "compress-force=%s"}, 373 {Opt_degraded, "degraded"}, 374 {Opt_device, "device=%s"}, 375 {Opt_fatal_errors, "fatal_errors=%s"}, 376 {Opt_flushoncommit, "flushoncommit"}, 377 {Opt_noflushoncommit, "noflushoncommit"}, 378 {Opt_inode_cache, "inode_cache"}, 379 {Opt_noinode_cache, "noinode_cache"}, 380 {Opt_max_inline, "max_inline=%s"}, 381 {Opt_barrier, "barrier"}, 382 {Opt_nobarrier, "nobarrier"}, 383 {Opt_datacow, "datacow"}, 384 {Opt_nodatacow, "nodatacow"}, 385 {Opt_datasum, "datasum"}, 386 {Opt_nodatasum, "nodatasum"}, 387 {Opt_defrag, "autodefrag"}, 388 {Opt_nodefrag, "noautodefrag"}, 389 {Opt_discard, "discard"}, 390 {Opt_nodiscard, "nodiscard"}, 391 {Opt_nologreplay, "nologreplay"}, 392 {Opt_norecovery, "norecovery"}, 393 {Opt_ratio, "metadata_ratio=%u"}, 394 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 395 {Opt_skip_balance, "skip_balance"}, 396 {Opt_space_cache, "space_cache"}, 397 {Opt_no_space_cache, "nospace_cache"}, 398 {Opt_space_cache_version, "space_cache=%s"}, 399 {Opt_ssd, "ssd"}, 400 {Opt_nossd, "nossd"}, 401 {Opt_ssd_spread, "ssd_spread"}, 402 {Opt_nossd_spread, "nossd_spread"}, 403 {Opt_subvol, "subvol=%s"}, 404 {Opt_subvolid, "subvolid=%s"}, 405 {Opt_thread_pool, "thread_pool=%u"}, 406 {Opt_treelog, "treelog"}, 407 {Opt_notreelog, "notreelog"}, 408 {Opt_usebackuproot, "usebackuproot"}, 409 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 410 411 /* Deprecated options */ 412 {Opt_alloc_start, "alloc_start=%s"}, 413 {Opt_recovery, "recovery"}, 414 {Opt_subvolrootid, "subvolrootid=%d"}, 415 416 /* Debugging options */ 417 {Opt_check_integrity, "check_int"}, 418 {Opt_check_integrity_including_extent_data, "check_int_data"}, 419 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 420 {Opt_enospc_debug, "enospc_debug"}, 421 {Opt_noenospc_debug, "noenospc_debug"}, 422 #ifdef CONFIG_BTRFS_DEBUG 423 {Opt_fragment_data, "fragment=data"}, 424 {Opt_fragment_metadata, "fragment=metadata"}, 425 {Opt_fragment_all, "fragment=all"}, 426 #endif 427 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 428 {Opt_ref_verify, "ref_verify"}, 429 #endif 430 {Opt_err, NULL}, 431 }; 432 433 /* 434 * Regular mount options parser. Everything that is needed only when 435 * reading in a new superblock is parsed here. 436 * XXX JDM: This needs to be cleaned up for remount. 437 */ 438 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 439 unsigned long new_flags) 440 { 441 substring_t args[MAX_OPT_ARGS]; 442 char *p, *num; 443 u64 cache_gen; 444 int intarg; 445 int ret = 0; 446 char *compress_type; 447 bool compress_force = false; 448 enum btrfs_compression_type saved_compress_type; 449 bool saved_compress_force; 450 int no_compress = 0; 451 452 cache_gen = btrfs_super_cache_generation(info->super_copy); 453 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 454 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 455 else if (cache_gen) 456 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 457 458 /* 459 * Even the options are empty, we still need to do extra check 460 * against new flags 461 */ 462 if (!options) 463 goto check; 464 465 while ((p = strsep(&options, ",")) != NULL) { 466 int token; 467 if (!*p) 468 continue; 469 470 token = match_token(p, tokens, args); 471 switch (token) { 472 case Opt_degraded: 473 btrfs_info(info, "allowing degraded mounts"); 474 btrfs_set_opt(info->mount_opt, DEGRADED); 475 break; 476 case Opt_subvol: 477 case Opt_subvolid: 478 case Opt_subvolrootid: 479 case Opt_device: 480 /* 481 * These are parsed by btrfs_parse_subvol_options 482 * and btrfs_parse_early_options 483 * and can be happily ignored here. 484 */ 485 break; 486 case Opt_nodatasum: 487 btrfs_set_and_info(info, NODATASUM, 488 "setting nodatasum"); 489 break; 490 case Opt_datasum: 491 if (btrfs_test_opt(info, NODATASUM)) { 492 if (btrfs_test_opt(info, NODATACOW)) 493 btrfs_info(info, 494 "setting datasum, datacow enabled"); 495 else 496 btrfs_info(info, "setting datasum"); 497 } 498 btrfs_clear_opt(info->mount_opt, NODATACOW); 499 btrfs_clear_opt(info->mount_opt, NODATASUM); 500 break; 501 case Opt_nodatacow: 502 if (!btrfs_test_opt(info, NODATACOW)) { 503 if (!btrfs_test_opt(info, COMPRESS) || 504 !btrfs_test_opt(info, FORCE_COMPRESS)) { 505 btrfs_info(info, 506 "setting nodatacow, compression disabled"); 507 } else { 508 btrfs_info(info, "setting nodatacow"); 509 } 510 } 511 btrfs_clear_opt(info->mount_opt, COMPRESS); 512 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 513 btrfs_set_opt(info->mount_opt, NODATACOW); 514 btrfs_set_opt(info->mount_opt, NODATASUM); 515 break; 516 case Opt_datacow: 517 btrfs_clear_and_info(info, NODATACOW, 518 "setting datacow"); 519 break; 520 case Opt_compress_force: 521 case Opt_compress_force_type: 522 compress_force = true; 523 /* Fallthrough */ 524 case Opt_compress: 525 case Opt_compress_type: 526 saved_compress_type = btrfs_test_opt(info, 527 COMPRESS) ? 528 info->compress_type : BTRFS_COMPRESS_NONE; 529 saved_compress_force = 530 btrfs_test_opt(info, FORCE_COMPRESS); 531 if (token == Opt_compress || 532 token == Opt_compress_force || 533 strncmp(args[0].from, "zlib", 4) == 0) { 534 compress_type = "zlib"; 535 536 info->compress_type = BTRFS_COMPRESS_ZLIB; 537 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 538 /* 539 * args[0] contains uninitialized data since 540 * for these tokens we don't expect any 541 * parameter. 542 */ 543 if (token != Opt_compress && 544 token != Opt_compress_force) 545 info->compress_level = 546 btrfs_compress_str2level(args[0].from); 547 btrfs_set_opt(info->mount_opt, COMPRESS); 548 btrfs_clear_opt(info->mount_opt, NODATACOW); 549 btrfs_clear_opt(info->mount_opt, NODATASUM); 550 no_compress = 0; 551 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 552 compress_type = "lzo"; 553 info->compress_type = BTRFS_COMPRESS_LZO; 554 btrfs_set_opt(info->mount_opt, COMPRESS); 555 btrfs_clear_opt(info->mount_opt, NODATACOW); 556 btrfs_clear_opt(info->mount_opt, NODATASUM); 557 btrfs_set_fs_incompat(info, COMPRESS_LZO); 558 no_compress = 0; 559 } else if (strcmp(args[0].from, "zstd") == 0) { 560 compress_type = "zstd"; 561 info->compress_type = BTRFS_COMPRESS_ZSTD; 562 btrfs_set_opt(info->mount_opt, COMPRESS); 563 btrfs_clear_opt(info->mount_opt, NODATACOW); 564 btrfs_clear_opt(info->mount_opt, NODATASUM); 565 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 566 no_compress = 0; 567 } else if (strncmp(args[0].from, "no", 2) == 0) { 568 compress_type = "no"; 569 btrfs_clear_opt(info->mount_opt, COMPRESS); 570 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 571 compress_force = false; 572 no_compress++; 573 } else { 574 ret = -EINVAL; 575 goto out; 576 } 577 578 if (compress_force) { 579 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 580 } else { 581 /* 582 * If we remount from compress-force=xxx to 583 * compress=xxx, we need clear FORCE_COMPRESS 584 * flag, otherwise, there is no way for users 585 * to disable forcible compression separately. 586 */ 587 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 588 } 589 if ((btrfs_test_opt(info, COMPRESS) && 590 (info->compress_type != saved_compress_type || 591 compress_force != saved_compress_force)) || 592 (!btrfs_test_opt(info, COMPRESS) && 593 no_compress == 1)) { 594 btrfs_info(info, "%s %s compression, level %d", 595 (compress_force) ? "force" : "use", 596 compress_type, info->compress_level); 597 } 598 compress_force = false; 599 break; 600 case Opt_ssd: 601 btrfs_set_and_info(info, SSD, 602 "enabling ssd optimizations"); 603 btrfs_clear_opt(info->mount_opt, NOSSD); 604 break; 605 case Opt_ssd_spread: 606 btrfs_set_and_info(info, SSD, 607 "enabling ssd optimizations"); 608 btrfs_set_and_info(info, SSD_SPREAD, 609 "using spread ssd allocation scheme"); 610 btrfs_clear_opt(info->mount_opt, NOSSD); 611 break; 612 case Opt_nossd: 613 btrfs_set_opt(info->mount_opt, NOSSD); 614 btrfs_clear_and_info(info, SSD, 615 "not using ssd optimizations"); 616 /* Fallthrough */ 617 case Opt_nossd_spread: 618 btrfs_clear_and_info(info, SSD_SPREAD, 619 "not using spread ssd allocation scheme"); 620 break; 621 case Opt_barrier: 622 btrfs_clear_and_info(info, NOBARRIER, 623 "turning on barriers"); 624 break; 625 case Opt_nobarrier: 626 btrfs_set_and_info(info, NOBARRIER, 627 "turning off barriers"); 628 break; 629 case Opt_thread_pool: 630 ret = match_int(&args[0], &intarg); 631 if (ret) { 632 goto out; 633 } else if (intarg == 0) { 634 ret = -EINVAL; 635 goto out; 636 } 637 info->thread_pool_size = intarg; 638 break; 639 case Opt_max_inline: 640 num = match_strdup(&args[0]); 641 if (num) { 642 info->max_inline = memparse(num, NULL); 643 kfree(num); 644 645 if (info->max_inline) { 646 info->max_inline = min_t(u64, 647 info->max_inline, 648 info->sectorsize); 649 } 650 btrfs_info(info, "max_inline at %llu", 651 info->max_inline); 652 } else { 653 ret = -ENOMEM; 654 goto out; 655 } 656 break; 657 case Opt_alloc_start: 658 btrfs_info(info, 659 "option alloc_start is obsolete, ignored"); 660 break; 661 case Opt_acl: 662 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 663 info->sb->s_flags |= SB_POSIXACL; 664 break; 665 #else 666 btrfs_err(info, "support for ACL not compiled in!"); 667 ret = -EINVAL; 668 goto out; 669 #endif 670 case Opt_noacl: 671 info->sb->s_flags &= ~SB_POSIXACL; 672 break; 673 case Opt_notreelog: 674 btrfs_set_and_info(info, NOTREELOG, 675 "disabling tree log"); 676 break; 677 case Opt_treelog: 678 btrfs_clear_and_info(info, NOTREELOG, 679 "enabling tree log"); 680 break; 681 case Opt_norecovery: 682 case Opt_nologreplay: 683 btrfs_set_and_info(info, NOLOGREPLAY, 684 "disabling log replay at mount time"); 685 break; 686 case Opt_flushoncommit: 687 btrfs_set_and_info(info, FLUSHONCOMMIT, 688 "turning on flush-on-commit"); 689 break; 690 case Opt_noflushoncommit: 691 btrfs_clear_and_info(info, FLUSHONCOMMIT, 692 "turning off flush-on-commit"); 693 break; 694 case Opt_ratio: 695 ret = match_int(&args[0], &intarg); 696 if (ret) 697 goto out; 698 info->metadata_ratio = intarg; 699 btrfs_info(info, "metadata ratio %u", 700 info->metadata_ratio); 701 break; 702 case Opt_discard: 703 btrfs_set_and_info(info, DISCARD, 704 "turning on discard"); 705 break; 706 case Opt_nodiscard: 707 btrfs_clear_and_info(info, DISCARD, 708 "turning off discard"); 709 break; 710 case Opt_space_cache: 711 case Opt_space_cache_version: 712 if (token == Opt_space_cache || 713 strcmp(args[0].from, "v1") == 0) { 714 btrfs_clear_opt(info->mount_opt, 715 FREE_SPACE_TREE); 716 btrfs_set_and_info(info, SPACE_CACHE, 717 "enabling disk space caching"); 718 } else if (strcmp(args[0].from, "v2") == 0) { 719 btrfs_clear_opt(info->mount_opt, 720 SPACE_CACHE); 721 btrfs_set_and_info(info, FREE_SPACE_TREE, 722 "enabling free space tree"); 723 } else { 724 ret = -EINVAL; 725 goto out; 726 } 727 break; 728 case Opt_rescan_uuid_tree: 729 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 730 break; 731 case Opt_no_space_cache: 732 if (btrfs_test_opt(info, SPACE_CACHE)) { 733 btrfs_clear_and_info(info, SPACE_CACHE, 734 "disabling disk space caching"); 735 } 736 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 737 btrfs_clear_and_info(info, FREE_SPACE_TREE, 738 "disabling free space tree"); 739 } 740 break; 741 case Opt_inode_cache: 742 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 743 "enabling inode map caching"); 744 break; 745 case Opt_noinode_cache: 746 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 747 "disabling inode map caching"); 748 break; 749 case Opt_clear_cache: 750 btrfs_set_and_info(info, CLEAR_CACHE, 751 "force clearing of disk cache"); 752 break; 753 case Opt_user_subvol_rm_allowed: 754 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 755 break; 756 case Opt_enospc_debug: 757 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 758 break; 759 case Opt_noenospc_debug: 760 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 761 break; 762 case Opt_defrag: 763 btrfs_set_and_info(info, AUTO_DEFRAG, 764 "enabling auto defrag"); 765 break; 766 case Opt_nodefrag: 767 btrfs_clear_and_info(info, AUTO_DEFRAG, 768 "disabling auto defrag"); 769 break; 770 case Opt_recovery: 771 btrfs_warn(info, 772 "'recovery' is deprecated, use 'usebackuproot' instead"); 773 case Opt_usebackuproot: 774 btrfs_info(info, 775 "trying to use backup root at mount time"); 776 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 777 break; 778 case Opt_skip_balance: 779 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 780 break; 781 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 782 case Opt_check_integrity_including_extent_data: 783 btrfs_info(info, 784 "enabling check integrity including extent data"); 785 btrfs_set_opt(info->mount_opt, 786 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 787 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 788 break; 789 case Opt_check_integrity: 790 btrfs_info(info, "enabling check integrity"); 791 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 792 break; 793 case Opt_check_integrity_print_mask: 794 ret = match_int(&args[0], &intarg); 795 if (ret) 796 goto out; 797 info->check_integrity_print_mask = intarg; 798 btrfs_info(info, "check_integrity_print_mask 0x%x", 799 info->check_integrity_print_mask); 800 break; 801 #else 802 case Opt_check_integrity_including_extent_data: 803 case Opt_check_integrity: 804 case Opt_check_integrity_print_mask: 805 btrfs_err(info, 806 "support for check_integrity* not compiled in!"); 807 ret = -EINVAL; 808 goto out; 809 #endif 810 case Opt_fatal_errors: 811 if (strcmp(args[0].from, "panic") == 0) 812 btrfs_set_opt(info->mount_opt, 813 PANIC_ON_FATAL_ERROR); 814 else if (strcmp(args[0].from, "bug") == 0) 815 btrfs_clear_opt(info->mount_opt, 816 PANIC_ON_FATAL_ERROR); 817 else { 818 ret = -EINVAL; 819 goto out; 820 } 821 break; 822 case Opt_commit_interval: 823 intarg = 0; 824 ret = match_int(&args[0], &intarg); 825 if (ret) 826 goto out; 827 if (intarg == 0) { 828 btrfs_info(info, 829 "using default commit interval %us", 830 BTRFS_DEFAULT_COMMIT_INTERVAL); 831 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 832 } else if (intarg > 300) { 833 btrfs_warn(info, "excessive commit interval %d", 834 intarg); 835 } 836 info->commit_interval = intarg; 837 break; 838 #ifdef CONFIG_BTRFS_DEBUG 839 case Opt_fragment_all: 840 btrfs_info(info, "fragmenting all space"); 841 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 842 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 843 break; 844 case Opt_fragment_metadata: 845 btrfs_info(info, "fragmenting metadata"); 846 btrfs_set_opt(info->mount_opt, 847 FRAGMENT_METADATA); 848 break; 849 case Opt_fragment_data: 850 btrfs_info(info, "fragmenting data"); 851 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 852 break; 853 #endif 854 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 855 case Opt_ref_verify: 856 btrfs_info(info, "doing ref verification"); 857 btrfs_set_opt(info->mount_opt, REF_VERIFY); 858 break; 859 #endif 860 case Opt_err: 861 btrfs_info(info, "unrecognized mount option '%s'", p); 862 ret = -EINVAL; 863 goto out; 864 default: 865 break; 866 } 867 } 868 check: 869 /* 870 * Extra check for current option against current flag 871 */ 872 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 873 btrfs_err(info, 874 "nologreplay must be used with ro mount option"); 875 ret = -EINVAL; 876 } 877 out: 878 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 879 !btrfs_test_opt(info, FREE_SPACE_TREE) && 880 !btrfs_test_opt(info, CLEAR_CACHE)) { 881 btrfs_err(info, "cannot disable free space tree"); 882 ret = -EINVAL; 883 884 } 885 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 886 btrfs_info(info, "disk space caching is enabled"); 887 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 888 btrfs_info(info, "using free space tree"); 889 return ret; 890 } 891 892 /* 893 * Parse mount options that are required early in the mount process. 894 * 895 * All other options will be parsed on much later in the mount process and 896 * only when we need to allocate a new super block. 897 */ 898 static int btrfs_parse_early_options(const char *options, fmode_t flags, 899 void *holder, struct btrfs_fs_devices **fs_devices) 900 { 901 substring_t args[MAX_OPT_ARGS]; 902 char *device_name, *opts, *orig, *p; 903 int error = 0; 904 905 if (!options) 906 return 0; 907 908 /* 909 * strsep changes the string, duplicate it because btrfs_parse_options 910 * gets called later 911 */ 912 opts = kstrdup(options, GFP_KERNEL); 913 if (!opts) 914 return -ENOMEM; 915 orig = opts; 916 917 while ((p = strsep(&opts, ",")) != NULL) { 918 int token; 919 920 if (!*p) 921 continue; 922 923 token = match_token(p, tokens, args); 924 if (token == Opt_device) { 925 device_name = match_strdup(&args[0]); 926 if (!device_name) { 927 error = -ENOMEM; 928 goto out; 929 } 930 error = btrfs_scan_one_device(device_name, 931 flags, holder, fs_devices); 932 kfree(device_name); 933 if (error) 934 goto out; 935 } 936 } 937 938 out: 939 kfree(orig); 940 return error; 941 } 942 943 /* 944 * Parse mount options that are related to subvolume id 945 * 946 * The value is later passed to mount_subvol() 947 */ 948 static int btrfs_parse_subvol_options(const char *options, fmode_t flags, 949 char **subvol_name, u64 *subvol_objectid) 950 { 951 substring_t args[MAX_OPT_ARGS]; 952 char *opts, *orig, *p; 953 int error = 0; 954 u64 subvolid; 955 956 if (!options) 957 return 0; 958 959 /* 960 * strsep changes the string, duplicate it because 961 * btrfs_parse_early_options gets called later 962 */ 963 opts = kstrdup(options, GFP_KERNEL); 964 if (!opts) 965 return -ENOMEM; 966 orig = opts; 967 968 while ((p = strsep(&opts, ",")) != NULL) { 969 int token; 970 if (!*p) 971 continue; 972 973 token = match_token(p, tokens, args); 974 switch (token) { 975 case Opt_subvol: 976 kfree(*subvol_name); 977 *subvol_name = match_strdup(&args[0]); 978 if (!*subvol_name) { 979 error = -ENOMEM; 980 goto out; 981 } 982 break; 983 case Opt_subvolid: 984 error = match_u64(&args[0], &subvolid); 985 if (error) 986 goto out; 987 988 /* we want the original fs_tree */ 989 if (subvolid == 0) 990 subvolid = BTRFS_FS_TREE_OBJECTID; 991 992 *subvol_objectid = subvolid; 993 break; 994 case Opt_subvolrootid: 995 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 996 break; 997 default: 998 break; 999 } 1000 } 1001 1002 out: 1003 kfree(orig); 1004 return error; 1005 } 1006 1007 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1008 u64 subvol_objectid) 1009 { 1010 struct btrfs_root *root = fs_info->tree_root; 1011 struct btrfs_root *fs_root; 1012 struct btrfs_root_ref *root_ref; 1013 struct btrfs_inode_ref *inode_ref; 1014 struct btrfs_key key; 1015 struct btrfs_path *path = NULL; 1016 char *name = NULL, *ptr; 1017 u64 dirid; 1018 int len; 1019 int ret; 1020 1021 path = btrfs_alloc_path(); 1022 if (!path) { 1023 ret = -ENOMEM; 1024 goto err; 1025 } 1026 path->leave_spinning = 1; 1027 1028 name = kmalloc(PATH_MAX, GFP_KERNEL); 1029 if (!name) { 1030 ret = -ENOMEM; 1031 goto err; 1032 } 1033 ptr = name + PATH_MAX - 1; 1034 ptr[0] = '\0'; 1035 1036 /* 1037 * Walk up the subvolume trees in the tree of tree roots by root 1038 * backrefs until we hit the top-level subvolume. 1039 */ 1040 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1041 key.objectid = subvol_objectid; 1042 key.type = BTRFS_ROOT_BACKREF_KEY; 1043 key.offset = (u64)-1; 1044 1045 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1046 if (ret < 0) { 1047 goto err; 1048 } else if (ret > 0) { 1049 ret = btrfs_previous_item(root, path, subvol_objectid, 1050 BTRFS_ROOT_BACKREF_KEY); 1051 if (ret < 0) { 1052 goto err; 1053 } else if (ret > 0) { 1054 ret = -ENOENT; 1055 goto err; 1056 } 1057 } 1058 1059 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1060 subvol_objectid = key.offset; 1061 1062 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1063 struct btrfs_root_ref); 1064 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1065 ptr -= len + 1; 1066 if (ptr < name) { 1067 ret = -ENAMETOOLONG; 1068 goto err; 1069 } 1070 read_extent_buffer(path->nodes[0], ptr + 1, 1071 (unsigned long)(root_ref + 1), len); 1072 ptr[0] = '/'; 1073 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1074 btrfs_release_path(path); 1075 1076 key.objectid = subvol_objectid; 1077 key.type = BTRFS_ROOT_ITEM_KEY; 1078 key.offset = (u64)-1; 1079 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1080 if (IS_ERR(fs_root)) { 1081 ret = PTR_ERR(fs_root); 1082 goto err; 1083 } 1084 1085 /* 1086 * Walk up the filesystem tree by inode refs until we hit the 1087 * root directory. 1088 */ 1089 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1090 key.objectid = dirid; 1091 key.type = BTRFS_INODE_REF_KEY; 1092 key.offset = (u64)-1; 1093 1094 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1095 if (ret < 0) { 1096 goto err; 1097 } else if (ret > 0) { 1098 ret = btrfs_previous_item(fs_root, path, dirid, 1099 BTRFS_INODE_REF_KEY); 1100 if (ret < 0) { 1101 goto err; 1102 } else if (ret > 0) { 1103 ret = -ENOENT; 1104 goto err; 1105 } 1106 } 1107 1108 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1109 dirid = key.offset; 1110 1111 inode_ref = btrfs_item_ptr(path->nodes[0], 1112 path->slots[0], 1113 struct btrfs_inode_ref); 1114 len = btrfs_inode_ref_name_len(path->nodes[0], 1115 inode_ref); 1116 ptr -= len + 1; 1117 if (ptr < name) { 1118 ret = -ENAMETOOLONG; 1119 goto err; 1120 } 1121 read_extent_buffer(path->nodes[0], ptr + 1, 1122 (unsigned long)(inode_ref + 1), len); 1123 ptr[0] = '/'; 1124 btrfs_release_path(path); 1125 } 1126 } 1127 1128 btrfs_free_path(path); 1129 if (ptr == name + PATH_MAX - 1) { 1130 name[0] = '/'; 1131 name[1] = '\0'; 1132 } else { 1133 memmove(name, ptr, name + PATH_MAX - ptr); 1134 } 1135 return name; 1136 1137 err: 1138 btrfs_free_path(path); 1139 kfree(name); 1140 return ERR_PTR(ret); 1141 } 1142 1143 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1144 { 1145 struct btrfs_root *root = fs_info->tree_root; 1146 struct btrfs_dir_item *di; 1147 struct btrfs_path *path; 1148 struct btrfs_key location; 1149 u64 dir_id; 1150 1151 path = btrfs_alloc_path(); 1152 if (!path) 1153 return -ENOMEM; 1154 path->leave_spinning = 1; 1155 1156 /* 1157 * Find the "default" dir item which points to the root item that we 1158 * will mount by default if we haven't been given a specific subvolume 1159 * to mount. 1160 */ 1161 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1162 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1163 if (IS_ERR(di)) { 1164 btrfs_free_path(path); 1165 return PTR_ERR(di); 1166 } 1167 if (!di) { 1168 /* 1169 * Ok the default dir item isn't there. This is weird since 1170 * it's always been there, but don't freak out, just try and 1171 * mount the top-level subvolume. 1172 */ 1173 btrfs_free_path(path); 1174 *objectid = BTRFS_FS_TREE_OBJECTID; 1175 return 0; 1176 } 1177 1178 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1179 btrfs_free_path(path); 1180 *objectid = location.objectid; 1181 return 0; 1182 } 1183 1184 static int btrfs_fill_super(struct super_block *sb, 1185 struct btrfs_fs_devices *fs_devices, 1186 void *data) 1187 { 1188 struct inode *inode; 1189 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1190 struct btrfs_key key; 1191 int err; 1192 1193 sb->s_maxbytes = MAX_LFS_FILESIZE; 1194 sb->s_magic = BTRFS_SUPER_MAGIC; 1195 sb->s_op = &btrfs_super_ops; 1196 sb->s_d_op = &btrfs_dentry_operations; 1197 sb->s_export_op = &btrfs_export_ops; 1198 sb->s_xattr = btrfs_xattr_handlers; 1199 sb->s_time_gran = 1; 1200 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1201 sb->s_flags |= SB_POSIXACL; 1202 #endif 1203 sb->s_flags |= SB_I_VERSION; 1204 sb->s_iflags |= SB_I_CGROUPWB; 1205 1206 err = super_setup_bdi(sb); 1207 if (err) { 1208 btrfs_err(fs_info, "super_setup_bdi failed"); 1209 return err; 1210 } 1211 1212 err = open_ctree(sb, fs_devices, (char *)data); 1213 if (err) { 1214 btrfs_err(fs_info, "open_ctree failed"); 1215 return err; 1216 } 1217 1218 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1219 key.type = BTRFS_INODE_ITEM_KEY; 1220 key.offset = 0; 1221 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1222 if (IS_ERR(inode)) { 1223 err = PTR_ERR(inode); 1224 goto fail_close; 1225 } 1226 1227 sb->s_root = d_make_root(inode); 1228 if (!sb->s_root) { 1229 err = -ENOMEM; 1230 goto fail_close; 1231 } 1232 1233 cleancache_init_fs(sb); 1234 sb->s_flags |= SB_ACTIVE; 1235 return 0; 1236 1237 fail_close: 1238 close_ctree(fs_info); 1239 return err; 1240 } 1241 1242 int btrfs_sync_fs(struct super_block *sb, int wait) 1243 { 1244 struct btrfs_trans_handle *trans; 1245 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1246 struct btrfs_root *root = fs_info->tree_root; 1247 1248 trace_btrfs_sync_fs(fs_info, wait); 1249 1250 if (!wait) { 1251 filemap_flush(fs_info->btree_inode->i_mapping); 1252 return 0; 1253 } 1254 1255 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1256 1257 trans = btrfs_attach_transaction_barrier(root); 1258 if (IS_ERR(trans)) { 1259 /* no transaction, don't bother */ 1260 if (PTR_ERR(trans) == -ENOENT) { 1261 /* 1262 * Exit unless we have some pending changes 1263 * that need to go through commit 1264 */ 1265 if (fs_info->pending_changes == 0) 1266 return 0; 1267 /* 1268 * A non-blocking test if the fs is frozen. We must not 1269 * start a new transaction here otherwise a deadlock 1270 * happens. The pending operations are delayed to the 1271 * next commit after thawing. 1272 */ 1273 if (sb_start_write_trylock(sb)) 1274 sb_end_write(sb); 1275 else 1276 return 0; 1277 trans = btrfs_start_transaction(root, 0); 1278 } 1279 if (IS_ERR(trans)) 1280 return PTR_ERR(trans); 1281 } 1282 return btrfs_commit_transaction(trans); 1283 } 1284 1285 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1286 { 1287 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1288 const char *compress_type; 1289 1290 if (btrfs_test_opt(info, DEGRADED)) 1291 seq_puts(seq, ",degraded"); 1292 if (btrfs_test_opt(info, NODATASUM)) 1293 seq_puts(seq, ",nodatasum"); 1294 if (btrfs_test_opt(info, NODATACOW)) 1295 seq_puts(seq, ",nodatacow"); 1296 if (btrfs_test_opt(info, NOBARRIER)) 1297 seq_puts(seq, ",nobarrier"); 1298 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1299 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1300 if (info->thread_pool_size != min_t(unsigned long, 1301 num_online_cpus() + 2, 8)) 1302 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1303 if (btrfs_test_opt(info, COMPRESS)) { 1304 compress_type = btrfs_compress_type2str(info->compress_type); 1305 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1306 seq_printf(seq, ",compress-force=%s", compress_type); 1307 else 1308 seq_printf(seq, ",compress=%s", compress_type); 1309 if (info->compress_level) 1310 seq_printf(seq, ":%d", info->compress_level); 1311 } 1312 if (btrfs_test_opt(info, NOSSD)) 1313 seq_puts(seq, ",nossd"); 1314 if (btrfs_test_opt(info, SSD_SPREAD)) 1315 seq_puts(seq, ",ssd_spread"); 1316 else if (btrfs_test_opt(info, SSD)) 1317 seq_puts(seq, ",ssd"); 1318 if (btrfs_test_opt(info, NOTREELOG)) 1319 seq_puts(seq, ",notreelog"); 1320 if (btrfs_test_opt(info, NOLOGREPLAY)) 1321 seq_puts(seq, ",nologreplay"); 1322 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1323 seq_puts(seq, ",flushoncommit"); 1324 if (btrfs_test_opt(info, DISCARD)) 1325 seq_puts(seq, ",discard"); 1326 if (!(info->sb->s_flags & SB_POSIXACL)) 1327 seq_puts(seq, ",noacl"); 1328 if (btrfs_test_opt(info, SPACE_CACHE)) 1329 seq_puts(seq, ",space_cache"); 1330 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1331 seq_puts(seq, ",space_cache=v2"); 1332 else 1333 seq_puts(seq, ",nospace_cache"); 1334 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1335 seq_puts(seq, ",rescan_uuid_tree"); 1336 if (btrfs_test_opt(info, CLEAR_CACHE)) 1337 seq_puts(seq, ",clear_cache"); 1338 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1339 seq_puts(seq, ",user_subvol_rm_allowed"); 1340 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1341 seq_puts(seq, ",enospc_debug"); 1342 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1343 seq_puts(seq, ",autodefrag"); 1344 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1345 seq_puts(seq, ",inode_cache"); 1346 if (btrfs_test_opt(info, SKIP_BALANCE)) 1347 seq_puts(seq, ",skip_balance"); 1348 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1349 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1350 seq_puts(seq, ",check_int_data"); 1351 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1352 seq_puts(seq, ",check_int"); 1353 if (info->check_integrity_print_mask) 1354 seq_printf(seq, ",check_int_print_mask=%d", 1355 info->check_integrity_print_mask); 1356 #endif 1357 if (info->metadata_ratio) 1358 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1359 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1360 seq_puts(seq, ",fatal_errors=panic"); 1361 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1362 seq_printf(seq, ",commit=%u", info->commit_interval); 1363 #ifdef CONFIG_BTRFS_DEBUG 1364 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1365 seq_puts(seq, ",fragment=data"); 1366 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1367 seq_puts(seq, ",fragment=metadata"); 1368 #endif 1369 if (btrfs_test_opt(info, REF_VERIFY)) 1370 seq_puts(seq, ",ref_verify"); 1371 seq_printf(seq, ",subvolid=%llu", 1372 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1373 seq_puts(seq, ",subvol="); 1374 seq_dentry(seq, dentry, " \t\n\\"); 1375 return 0; 1376 } 1377 1378 static int btrfs_test_super(struct super_block *s, void *data) 1379 { 1380 struct btrfs_fs_info *p = data; 1381 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1382 1383 return fs_info->fs_devices == p->fs_devices; 1384 } 1385 1386 static int btrfs_set_super(struct super_block *s, void *data) 1387 { 1388 int err = set_anon_super(s, data); 1389 if (!err) 1390 s->s_fs_info = data; 1391 return err; 1392 } 1393 1394 /* 1395 * subvolumes are identified by ino 256 1396 */ 1397 static inline int is_subvolume_inode(struct inode *inode) 1398 { 1399 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1400 return 1; 1401 return 0; 1402 } 1403 1404 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1405 const char *device_name, struct vfsmount *mnt) 1406 { 1407 struct dentry *root; 1408 int ret; 1409 1410 if (!subvol_name) { 1411 if (!subvol_objectid) { 1412 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1413 &subvol_objectid); 1414 if (ret) { 1415 root = ERR_PTR(ret); 1416 goto out; 1417 } 1418 } 1419 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1420 subvol_objectid); 1421 if (IS_ERR(subvol_name)) { 1422 root = ERR_CAST(subvol_name); 1423 subvol_name = NULL; 1424 goto out; 1425 } 1426 1427 } 1428 1429 root = mount_subtree(mnt, subvol_name); 1430 /* mount_subtree() drops our reference on the vfsmount. */ 1431 mnt = NULL; 1432 1433 if (!IS_ERR(root)) { 1434 struct super_block *s = root->d_sb; 1435 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1436 struct inode *root_inode = d_inode(root); 1437 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1438 1439 ret = 0; 1440 if (!is_subvolume_inode(root_inode)) { 1441 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1442 subvol_name); 1443 ret = -EINVAL; 1444 } 1445 if (subvol_objectid && root_objectid != subvol_objectid) { 1446 /* 1447 * This will also catch a race condition where a 1448 * subvolume which was passed by ID is renamed and 1449 * another subvolume is renamed over the old location. 1450 */ 1451 btrfs_err(fs_info, 1452 "subvol '%s' does not match subvolid %llu", 1453 subvol_name, subvol_objectid); 1454 ret = -EINVAL; 1455 } 1456 if (ret) { 1457 dput(root); 1458 root = ERR_PTR(ret); 1459 deactivate_locked_super(s); 1460 } 1461 } 1462 1463 out: 1464 mntput(mnt); 1465 kfree(subvol_name); 1466 return root; 1467 } 1468 1469 static int parse_security_options(char *orig_opts, 1470 struct security_mnt_opts *sec_opts) 1471 { 1472 char *secdata = NULL; 1473 int ret = 0; 1474 1475 secdata = alloc_secdata(); 1476 if (!secdata) 1477 return -ENOMEM; 1478 ret = security_sb_copy_data(orig_opts, secdata); 1479 if (ret) { 1480 free_secdata(secdata); 1481 return ret; 1482 } 1483 ret = security_sb_parse_opts_str(secdata, sec_opts); 1484 free_secdata(secdata); 1485 return ret; 1486 } 1487 1488 static int setup_security_options(struct btrfs_fs_info *fs_info, 1489 struct super_block *sb, 1490 struct security_mnt_opts *sec_opts) 1491 { 1492 int ret = 0; 1493 1494 /* 1495 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1496 * is valid. 1497 */ 1498 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1499 if (ret) 1500 return ret; 1501 1502 #ifdef CONFIG_SECURITY 1503 if (!fs_info->security_opts.num_mnt_opts) { 1504 /* first time security setup, copy sec_opts to fs_info */ 1505 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1506 } else { 1507 /* 1508 * Since SELinux (the only one supporting security_mnt_opts) 1509 * does NOT support changing context during remount/mount of 1510 * the same sb, this must be the same or part of the same 1511 * security options, just free it. 1512 */ 1513 security_free_mnt_opts(sec_opts); 1514 } 1515 #endif 1516 return ret; 1517 } 1518 1519 /* 1520 * Find a superblock for the given device / mount point. 1521 * 1522 * Note: This is based on mount_bdev from fs/super.c with a few additions 1523 * for multiple device setup. Make sure to keep it in sync. 1524 */ 1525 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1526 int flags, const char *device_name, void *data) 1527 { 1528 struct block_device *bdev = NULL; 1529 struct super_block *s; 1530 struct btrfs_fs_devices *fs_devices = NULL; 1531 struct btrfs_fs_info *fs_info = NULL; 1532 struct security_mnt_opts new_sec_opts; 1533 fmode_t mode = FMODE_READ; 1534 int error = 0; 1535 1536 if (!(flags & SB_RDONLY)) 1537 mode |= FMODE_WRITE; 1538 1539 error = btrfs_parse_early_options(data, mode, fs_type, 1540 &fs_devices); 1541 if (error) { 1542 return ERR_PTR(error); 1543 } 1544 1545 security_init_mnt_opts(&new_sec_opts); 1546 if (data) { 1547 error = parse_security_options(data, &new_sec_opts); 1548 if (error) 1549 return ERR_PTR(error); 1550 } 1551 1552 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1553 if (error) 1554 goto error_sec_opts; 1555 1556 /* 1557 * Setup a dummy root and fs_info for test/set super. This is because 1558 * we don't actually fill this stuff out until open_ctree, but we need 1559 * it for searching for existing supers, so this lets us do that and 1560 * then open_ctree will properly initialize everything later. 1561 */ 1562 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1563 if (!fs_info) { 1564 error = -ENOMEM; 1565 goto error_sec_opts; 1566 } 1567 1568 fs_info->fs_devices = fs_devices; 1569 1570 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1571 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1572 security_init_mnt_opts(&fs_info->security_opts); 1573 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1574 error = -ENOMEM; 1575 goto error_fs_info; 1576 } 1577 1578 error = btrfs_open_devices(fs_devices, mode, fs_type); 1579 if (error) 1580 goto error_fs_info; 1581 1582 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1583 error = -EACCES; 1584 goto error_close_devices; 1585 } 1586 1587 bdev = fs_devices->latest_bdev; 1588 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1589 fs_info); 1590 if (IS_ERR(s)) { 1591 error = PTR_ERR(s); 1592 goto error_close_devices; 1593 } 1594 1595 if (s->s_root) { 1596 btrfs_close_devices(fs_devices); 1597 free_fs_info(fs_info); 1598 if ((flags ^ s->s_flags) & SB_RDONLY) 1599 error = -EBUSY; 1600 } else { 1601 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1602 btrfs_sb(s)->bdev_holder = fs_type; 1603 error = btrfs_fill_super(s, fs_devices, data); 1604 } 1605 if (error) { 1606 deactivate_locked_super(s); 1607 goto error_sec_opts; 1608 } 1609 1610 fs_info = btrfs_sb(s); 1611 error = setup_security_options(fs_info, s, &new_sec_opts); 1612 if (error) { 1613 deactivate_locked_super(s); 1614 goto error_sec_opts; 1615 } 1616 1617 return dget(s->s_root); 1618 1619 error_close_devices: 1620 btrfs_close_devices(fs_devices); 1621 error_fs_info: 1622 free_fs_info(fs_info); 1623 error_sec_opts: 1624 security_free_mnt_opts(&new_sec_opts); 1625 return ERR_PTR(error); 1626 } 1627 1628 /* 1629 * Mount function which is called by VFS layer. 1630 * 1631 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1632 * which needs vfsmount* of device's root (/). This means device's root has to 1633 * be mounted internally in any case. 1634 * 1635 * Operation flow: 1636 * 1. Parse subvol id related options for later use in mount_subvol(). 1637 * 1638 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1639 * 1640 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1641 * first place. In order to avoid calling btrfs_mount() again, we use 1642 * different file_system_type which is not registered to VFS by 1643 * register_filesystem() (btrfs_root_fs_type). As a result, 1644 * btrfs_mount_root() is called. The return value will be used by 1645 * mount_subtree() in mount_subvol(). 1646 * 1647 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1648 * "btrfs subvolume set-default", mount_subvol() is called always. 1649 */ 1650 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1651 const char *device_name, void *data) 1652 { 1653 struct vfsmount *mnt_root; 1654 struct dentry *root; 1655 fmode_t mode = FMODE_READ; 1656 char *subvol_name = NULL; 1657 u64 subvol_objectid = 0; 1658 int error = 0; 1659 1660 if (!(flags & SB_RDONLY)) 1661 mode |= FMODE_WRITE; 1662 1663 error = btrfs_parse_subvol_options(data, mode, 1664 &subvol_name, &subvol_objectid); 1665 if (error) { 1666 kfree(subvol_name); 1667 return ERR_PTR(error); 1668 } 1669 1670 /* mount device's root (/) */ 1671 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1672 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1673 if (flags & SB_RDONLY) { 1674 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1675 flags & ~SB_RDONLY, device_name, data); 1676 } else { 1677 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1678 flags | SB_RDONLY, device_name, data); 1679 if (IS_ERR(mnt_root)) { 1680 root = ERR_CAST(mnt_root); 1681 goto out; 1682 } 1683 1684 down_write(&mnt_root->mnt_sb->s_umount); 1685 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1686 up_write(&mnt_root->mnt_sb->s_umount); 1687 if (error < 0) { 1688 root = ERR_PTR(error); 1689 mntput(mnt_root); 1690 goto out; 1691 } 1692 } 1693 } 1694 if (IS_ERR(mnt_root)) { 1695 root = ERR_CAST(mnt_root); 1696 goto out; 1697 } 1698 1699 /* mount_subvol() will free subvol_name and mnt_root */ 1700 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root); 1701 1702 out: 1703 return root; 1704 } 1705 1706 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1707 u32 new_pool_size, u32 old_pool_size) 1708 { 1709 if (new_pool_size == old_pool_size) 1710 return; 1711 1712 fs_info->thread_pool_size = new_pool_size; 1713 1714 btrfs_info(fs_info, "resize thread pool %d -> %d", 1715 old_pool_size, new_pool_size); 1716 1717 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1718 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1719 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1720 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1721 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1722 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1723 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1724 new_pool_size); 1725 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1726 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1727 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1728 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1729 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1730 new_pool_size); 1731 } 1732 1733 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1734 { 1735 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1736 } 1737 1738 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1739 unsigned long old_opts, int flags) 1740 { 1741 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1742 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1743 (flags & SB_RDONLY))) { 1744 /* wait for any defraggers to finish */ 1745 wait_event(fs_info->transaction_wait, 1746 (atomic_read(&fs_info->defrag_running) == 0)); 1747 if (flags & SB_RDONLY) 1748 sync_filesystem(fs_info->sb); 1749 } 1750 } 1751 1752 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1753 unsigned long old_opts) 1754 { 1755 /* 1756 * We need to cleanup all defragable inodes if the autodefragment is 1757 * close or the filesystem is read only. 1758 */ 1759 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1760 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1761 btrfs_cleanup_defrag_inodes(fs_info); 1762 } 1763 1764 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1765 } 1766 1767 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1768 { 1769 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1770 struct btrfs_root *root = fs_info->tree_root; 1771 unsigned old_flags = sb->s_flags; 1772 unsigned long old_opts = fs_info->mount_opt; 1773 unsigned long old_compress_type = fs_info->compress_type; 1774 u64 old_max_inline = fs_info->max_inline; 1775 u32 old_thread_pool_size = fs_info->thread_pool_size; 1776 u32 old_metadata_ratio = fs_info->metadata_ratio; 1777 int ret; 1778 1779 sync_filesystem(sb); 1780 btrfs_remount_prepare(fs_info); 1781 1782 if (data) { 1783 struct security_mnt_opts new_sec_opts; 1784 1785 security_init_mnt_opts(&new_sec_opts); 1786 ret = parse_security_options(data, &new_sec_opts); 1787 if (ret) 1788 goto restore; 1789 ret = setup_security_options(fs_info, sb, 1790 &new_sec_opts); 1791 if (ret) { 1792 security_free_mnt_opts(&new_sec_opts); 1793 goto restore; 1794 } 1795 } 1796 1797 ret = btrfs_parse_options(fs_info, data, *flags); 1798 if (ret) { 1799 ret = -EINVAL; 1800 goto restore; 1801 } 1802 1803 btrfs_remount_begin(fs_info, old_opts, *flags); 1804 btrfs_resize_thread_pool(fs_info, 1805 fs_info->thread_pool_size, old_thread_pool_size); 1806 1807 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1808 goto out; 1809 1810 if (*flags & SB_RDONLY) { 1811 /* 1812 * this also happens on 'umount -rf' or on shutdown, when 1813 * the filesystem is busy. 1814 */ 1815 cancel_work_sync(&fs_info->async_reclaim_work); 1816 1817 /* wait for the uuid_scan task to finish */ 1818 down(&fs_info->uuid_tree_rescan_sem); 1819 /* avoid complains from lockdep et al. */ 1820 up(&fs_info->uuid_tree_rescan_sem); 1821 1822 sb->s_flags |= SB_RDONLY; 1823 1824 /* 1825 * Setting SB_RDONLY will put the cleaner thread to 1826 * sleep at the next loop if it's already active. 1827 * If it's already asleep, we'll leave unused block 1828 * groups on disk until we're mounted read-write again 1829 * unless we clean them up here. 1830 */ 1831 btrfs_delete_unused_bgs(fs_info); 1832 1833 btrfs_dev_replace_suspend_for_unmount(fs_info); 1834 btrfs_scrub_cancel(fs_info); 1835 btrfs_pause_balance(fs_info); 1836 1837 ret = btrfs_commit_super(fs_info); 1838 if (ret) 1839 goto restore; 1840 } else { 1841 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1842 btrfs_err(fs_info, 1843 "Remounting read-write after error is not allowed"); 1844 ret = -EINVAL; 1845 goto restore; 1846 } 1847 if (fs_info->fs_devices->rw_devices == 0) { 1848 ret = -EACCES; 1849 goto restore; 1850 } 1851 1852 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1853 btrfs_warn(fs_info, 1854 "too many missing devices, writeable remount is not allowed"); 1855 ret = -EACCES; 1856 goto restore; 1857 } 1858 1859 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1860 ret = -EINVAL; 1861 goto restore; 1862 } 1863 1864 ret = btrfs_cleanup_fs_roots(fs_info); 1865 if (ret) 1866 goto restore; 1867 1868 /* recover relocation */ 1869 mutex_lock(&fs_info->cleaner_mutex); 1870 ret = btrfs_recover_relocation(root); 1871 mutex_unlock(&fs_info->cleaner_mutex); 1872 if (ret) 1873 goto restore; 1874 1875 ret = btrfs_resume_balance_async(fs_info); 1876 if (ret) 1877 goto restore; 1878 1879 ret = btrfs_resume_dev_replace_async(fs_info); 1880 if (ret) { 1881 btrfs_warn(fs_info, "failed to resume dev_replace"); 1882 goto restore; 1883 } 1884 1885 btrfs_qgroup_rescan_resume(fs_info); 1886 1887 if (!fs_info->uuid_root) { 1888 btrfs_info(fs_info, "creating UUID tree"); 1889 ret = btrfs_create_uuid_tree(fs_info); 1890 if (ret) { 1891 btrfs_warn(fs_info, 1892 "failed to create the UUID tree %d", 1893 ret); 1894 goto restore; 1895 } 1896 } 1897 sb->s_flags &= ~SB_RDONLY; 1898 1899 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1900 } 1901 out: 1902 wake_up_process(fs_info->transaction_kthread); 1903 btrfs_remount_cleanup(fs_info, old_opts); 1904 return 0; 1905 1906 restore: 1907 /* We've hit an error - don't reset SB_RDONLY */ 1908 if (sb_rdonly(sb)) 1909 old_flags |= SB_RDONLY; 1910 sb->s_flags = old_flags; 1911 fs_info->mount_opt = old_opts; 1912 fs_info->compress_type = old_compress_type; 1913 fs_info->max_inline = old_max_inline; 1914 btrfs_resize_thread_pool(fs_info, 1915 old_thread_pool_size, fs_info->thread_pool_size); 1916 fs_info->metadata_ratio = old_metadata_ratio; 1917 btrfs_remount_cleanup(fs_info, old_opts); 1918 return ret; 1919 } 1920 1921 /* Used to sort the devices by max_avail(descending sort) */ 1922 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1923 const void *dev_info2) 1924 { 1925 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1926 ((struct btrfs_device_info *)dev_info2)->max_avail) 1927 return -1; 1928 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1929 ((struct btrfs_device_info *)dev_info2)->max_avail) 1930 return 1; 1931 else 1932 return 0; 1933 } 1934 1935 /* 1936 * sort the devices by max_avail, in which max free extent size of each device 1937 * is stored.(Descending Sort) 1938 */ 1939 static inline void btrfs_descending_sort_devices( 1940 struct btrfs_device_info *devices, 1941 size_t nr_devices) 1942 { 1943 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1944 btrfs_cmp_device_free_bytes, NULL); 1945 } 1946 1947 /* 1948 * The helper to calc the free space on the devices that can be used to store 1949 * file data. 1950 */ 1951 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1952 u64 *free_bytes) 1953 { 1954 struct btrfs_device_info *devices_info; 1955 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1956 struct btrfs_device *device; 1957 u64 skip_space; 1958 u64 type; 1959 u64 avail_space; 1960 u64 min_stripe_size; 1961 int min_stripes = 1, num_stripes = 1; 1962 int i = 0, nr_devices; 1963 1964 /* 1965 * We aren't under the device list lock, so this is racy-ish, but good 1966 * enough for our purposes. 1967 */ 1968 nr_devices = fs_info->fs_devices->open_devices; 1969 if (!nr_devices) { 1970 smp_mb(); 1971 nr_devices = fs_info->fs_devices->open_devices; 1972 ASSERT(nr_devices); 1973 if (!nr_devices) { 1974 *free_bytes = 0; 1975 return 0; 1976 } 1977 } 1978 1979 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1980 GFP_KERNEL); 1981 if (!devices_info) 1982 return -ENOMEM; 1983 1984 /* calc min stripe number for data space allocation */ 1985 type = btrfs_data_alloc_profile(fs_info); 1986 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1987 min_stripes = 2; 1988 num_stripes = nr_devices; 1989 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1990 min_stripes = 2; 1991 num_stripes = 2; 1992 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1993 min_stripes = 4; 1994 num_stripes = 4; 1995 } 1996 1997 if (type & BTRFS_BLOCK_GROUP_DUP) 1998 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1999 else 2000 min_stripe_size = BTRFS_STRIPE_LEN; 2001 2002 rcu_read_lock(); 2003 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2004 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2005 &device->dev_state) || 2006 !device->bdev || 2007 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2008 continue; 2009 2010 if (i >= nr_devices) 2011 break; 2012 2013 avail_space = device->total_bytes - device->bytes_used; 2014 2015 /* align with stripe_len */ 2016 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 2017 avail_space *= BTRFS_STRIPE_LEN; 2018 2019 /* 2020 * In order to avoid overwriting the superblock on the drive, 2021 * btrfs starts at an offset of at least 1MB when doing chunk 2022 * allocation. 2023 */ 2024 skip_space = SZ_1M; 2025 2026 /* 2027 * we can use the free space in [0, skip_space - 1], subtract 2028 * it from the total. 2029 */ 2030 if (avail_space && avail_space >= skip_space) 2031 avail_space -= skip_space; 2032 else 2033 avail_space = 0; 2034 2035 if (avail_space < min_stripe_size) 2036 continue; 2037 2038 devices_info[i].dev = device; 2039 devices_info[i].max_avail = avail_space; 2040 2041 i++; 2042 } 2043 rcu_read_unlock(); 2044 2045 nr_devices = i; 2046 2047 btrfs_descending_sort_devices(devices_info, nr_devices); 2048 2049 i = nr_devices - 1; 2050 avail_space = 0; 2051 while (nr_devices >= min_stripes) { 2052 if (num_stripes > nr_devices) 2053 num_stripes = nr_devices; 2054 2055 if (devices_info[i].max_avail >= min_stripe_size) { 2056 int j; 2057 u64 alloc_size; 2058 2059 avail_space += devices_info[i].max_avail * num_stripes; 2060 alloc_size = devices_info[i].max_avail; 2061 for (j = i + 1 - num_stripes; j <= i; j++) 2062 devices_info[j].max_avail -= alloc_size; 2063 } 2064 i--; 2065 nr_devices--; 2066 } 2067 2068 kfree(devices_info); 2069 *free_bytes = avail_space; 2070 return 0; 2071 } 2072 2073 /* 2074 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2075 * 2076 * If there's a redundant raid level at DATA block groups, use the respective 2077 * multiplier to scale the sizes. 2078 * 2079 * Unused device space usage is based on simulating the chunk allocator 2080 * algorithm that respects the device sizes and order of allocations. This is 2081 * a close approximation of the actual use but there are other factors that may 2082 * change the result (like a new metadata chunk). 2083 * 2084 * If metadata is exhausted, f_bavail will be 0. 2085 */ 2086 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2087 { 2088 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2089 struct btrfs_super_block *disk_super = fs_info->super_copy; 2090 struct list_head *head = &fs_info->space_info; 2091 struct btrfs_space_info *found; 2092 u64 total_used = 0; 2093 u64 total_free_data = 0; 2094 u64 total_free_meta = 0; 2095 int bits = dentry->d_sb->s_blocksize_bits; 2096 __be32 *fsid = (__be32 *)fs_info->fsid; 2097 unsigned factor = 1; 2098 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2099 int ret; 2100 u64 thresh = 0; 2101 int mixed = 0; 2102 2103 rcu_read_lock(); 2104 list_for_each_entry_rcu(found, head, list) { 2105 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2106 int i; 2107 2108 total_free_data += found->disk_total - found->disk_used; 2109 total_free_data -= 2110 btrfs_account_ro_block_groups_free_space(found); 2111 2112 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2113 if (!list_empty(&found->block_groups[i])) { 2114 switch (i) { 2115 case BTRFS_RAID_DUP: 2116 case BTRFS_RAID_RAID1: 2117 case BTRFS_RAID_RAID10: 2118 factor = 2; 2119 } 2120 } 2121 } 2122 } 2123 2124 /* 2125 * Metadata in mixed block goup profiles are accounted in data 2126 */ 2127 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2128 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2129 mixed = 1; 2130 else 2131 total_free_meta += found->disk_total - 2132 found->disk_used; 2133 } 2134 2135 total_used += found->disk_used; 2136 } 2137 2138 rcu_read_unlock(); 2139 2140 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2141 buf->f_blocks >>= bits; 2142 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2143 2144 /* Account global block reserve as used, it's in logical size already */ 2145 spin_lock(&block_rsv->lock); 2146 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2147 if (buf->f_bfree >= block_rsv->size >> bits) 2148 buf->f_bfree -= block_rsv->size >> bits; 2149 else 2150 buf->f_bfree = 0; 2151 spin_unlock(&block_rsv->lock); 2152 2153 buf->f_bavail = div_u64(total_free_data, factor); 2154 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2155 if (ret) 2156 return ret; 2157 buf->f_bavail += div_u64(total_free_data, factor); 2158 buf->f_bavail = buf->f_bavail >> bits; 2159 2160 /* 2161 * We calculate the remaining metadata space minus global reserve. If 2162 * this is (supposedly) smaller than zero, there's no space. But this 2163 * does not hold in practice, the exhausted state happens where's still 2164 * some positive delta. So we apply some guesswork and compare the 2165 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2166 * 2167 * We probably cannot calculate the exact threshold value because this 2168 * depends on the internal reservations requested by various 2169 * operations, so some operations that consume a few metadata will 2170 * succeed even if the Avail is zero. But this is better than the other 2171 * way around. 2172 */ 2173 thresh = SZ_4M; 2174 2175 if (!mixed && total_free_meta - thresh < block_rsv->size) 2176 buf->f_bavail = 0; 2177 2178 buf->f_type = BTRFS_SUPER_MAGIC; 2179 buf->f_bsize = dentry->d_sb->s_blocksize; 2180 buf->f_namelen = BTRFS_NAME_LEN; 2181 2182 /* We treat it as constant endianness (it doesn't matter _which_) 2183 because we want the fsid to come out the same whether mounted 2184 on a big-endian or little-endian host */ 2185 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2186 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2187 /* Mask in the root object ID too, to disambiguate subvols */ 2188 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2189 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2190 2191 return 0; 2192 } 2193 2194 static void btrfs_kill_super(struct super_block *sb) 2195 { 2196 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2197 kill_anon_super(sb); 2198 free_fs_info(fs_info); 2199 } 2200 2201 static struct file_system_type btrfs_fs_type = { 2202 .owner = THIS_MODULE, 2203 .name = "btrfs", 2204 .mount = btrfs_mount, 2205 .kill_sb = btrfs_kill_super, 2206 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2207 }; 2208 2209 static struct file_system_type btrfs_root_fs_type = { 2210 .owner = THIS_MODULE, 2211 .name = "btrfs", 2212 .mount = btrfs_mount_root, 2213 .kill_sb = btrfs_kill_super, 2214 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2215 }; 2216 2217 MODULE_ALIAS_FS("btrfs"); 2218 2219 static int btrfs_control_open(struct inode *inode, struct file *file) 2220 { 2221 /* 2222 * The control file's private_data is used to hold the 2223 * transaction when it is started and is used to keep 2224 * track of whether a transaction is already in progress. 2225 */ 2226 file->private_data = NULL; 2227 return 0; 2228 } 2229 2230 /* 2231 * used by btrfsctl to scan devices when no FS is mounted 2232 */ 2233 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2234 unsigned long arg) 2235 { 2236 struct btrfs_ioctl_vol_args *vol; 2237 struct btrfs_fs_devices *fs_devices; 2238 int ret = -ENOTTY; 2239 2240 if (!capable(CAP_SYS_ADMIN)) 2241 return -EPERM; 2242 2243 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2244 if (IS_ERR(vol)) 2245 return PTR_ERR(vol); 2246 2247 switch (cmd) { 2248 case BTRFS_IOC_SCAN_DEV: 2249 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2250 &btrfs_root_fs_type, &fs_devices); 2251 break; 2252 case BTRFS_IOC_DEVICES_READY: 2253 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2254 &btrfs_root_fs_type, &fs_devices); 2255 if (ret) 2256 break; 2257 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2258 break; 2259 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2260 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2261 break; 2262 } 2263 2264 kfree(vol); 2265 return ret; 2266 } 2267 2268 static int btrfs_freeze(struct super_block *sb) 2269 { 2270 struct btrfs_trans_handle *trans; 2271 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2272 struct btrfs_root *root = fs_info->tree_root; 2273 2274 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2275 /* 2276 * We don't need a barrier here, we'll wait for any transaction that 2277 * could be in progress on other threads (and do delayed iputs that 2278 * we want to avoid on a frozen filesystem), or do the commit 2279 * ourselves. 2280 */ 2281 trans = btrfs_attach_transaction_barrier(root); 2282 if (IS_ERR(trans)) { 2283 /* no transaction, don't bother */ 2284 if (PTR_ERR(trans) == -ENOENT) 2285 return 0; 2286 return PTR_ERR(trans); 2287 } 2288 return btrfs_commit_transaction(trans); 2289 } 2290 2291 static int btrfs_unfreeze(struct super_block *sb) 2292 { 2293 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2294 2295 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2296 return 0; 2297 } 2298 2299 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2300 { 2301 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2302 struct btrfs_fs_devices *cur_devices; 2303 struct btrfs_device *dev, *first_dev = NULL; 2304 struct list_head *head; 2305 struct rcu_string *name; 2306 2307 /* 2308 * Lightweight locking of the devices. We should not need 2309 * device_list_mutex here as we only read the device data and the list 2310 * is protected by RCU. Even if a device is deleted during the list 2311 * traversals, we'll get valid data, the freeing callback will wait at 2312 * least until until the rcu_read_unlock. 2313 */ 2314 rcu_read_lock(); 2315 cur_devices = fs_info->fs_devices; 2316 while (cur_devices) { 2317 head = &cur_devices->devices; 2318 list_for_each_entry_rcu(dev, head, dev_list) { 2319 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2320 continue; 2321 if (!dev->name) 2322 continue; 2323 if (!first_dev || dev->devid < first_dev->devid) 2324 first_dev = dev; 2325 } 2326 cur_devices = cur_devices->seed; 2327 } 2328 2329 if (first_dev) { 2330 name = rcu_dereference(first_dev->name); 2331 seq_escape(m, name->str, " \t\n\\"); 2332 } else { 2333 WARN_ON(1); 2334 } 2335 rcu_read_unlock(); 2336 return 0; 2337 } 2338 2339 static const struct super_operations btrfs_super_ops = { 2340 .drop_inode = btrfs_drop_inode, 2341 .evict_inode = btrfs_evict_inode, 2342 .put_super = btrfs_put_super, 2343 .sync_fs = btrfs_sync_fs, 2344 .show_options = btrfs_show_options, 2345 .show_devname = btrfs_show_devname, 2346 .write_inode = btrfs_write_inode, 2347 .alloc_inode = btrfs_alloc_inode, 2348 .destroy_inode = btrfs_destroy_inode, 2349 .statfs = btrfs_statfs, 2350 .remount_fs = btrfs_remount, 2351 .freeze_fs = btrfs_freeze, 2352 .unfreeze_fs = btrfs_unfreeze, 2353 }; 2354 2355 static const struct file_operations btrfs_ctl_fops = { 2356 .open = btrfs_control_open, 2357 .unlocked_ioctl = btrfs_control_ioctl, 2358 .compat_ioctl = btrfs_control_ioctl, 2359 .owner = THIS_MODULE, 2360 .llseek = noop_llseek, 2361 }; 2362 2363 static struct miscdevice btrfs_misc = { 2364 .minor = BTRFS_MINOR, 2365 .name = "btrfs-control", 2366 .fops = &btrfs_ctl_fops 2367 }; 2368 2369 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2370 MODULE_ALIAS("devname:btrfs-control"); 2371 2372 static int __init btrfs_interface_init(void) 2373 { 2374 return misc_register(&btrfs_misc); 2375 } 2376 2377 static __cold void btrfs_interface_exit(void) 2378 { 2379 misc_deregister(&btrfs_misc); 2380 } 2381 2382 static void __init btrfs_print_mod_info(void) 2383 { 2384 pr_info("Btrfs loaded, crc32c=%s" 2385 #ifdef CONFIG_BTRFS_DEBUG 2386 ", debug=on" 2387 #endif 2388 #ifdef CONFIG_BTRFS_ASSERT 2389 ", assert=on" 2390 #endif 2391 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2392 ", integrity-checker=on" 2393 #endif 2394 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2395 ", ref-verify=on" 2396 #endif 2397 "\n", 2398 crc32c_impl()); 2399 } 2400 2401 static int __init init_btrfs_fs(void) 2402 { 2403 int err; 2404 2405 btrfs_props_init(); 2406 2407 err = btrfs_init_sysfs(); 2408 if (err) 2409 return err; 2410 2411 btrfs_init_compress(); 2412 2413 err = btrfs_init_cachep(); 2414 if (err) 2415 goto free_compress; 2416 2417 err = extent_io_init(); 2418 if (err) 2419 goto free_cachep; 2420 2421 err = extent_map_init(); 2422 if (err) 2423 goto free_extent_io; 2424 2425 err = ordered_data_init(); 2426 if (err) 2427 goto free_extent_map; 2428 2429 err = btrfs_delayed_inode_init(); 2430 if (err) 2431 goto free_ordered_data; 2432 2433 err = btrfs_auto_defrag_init(); 2434 if (err) 2435 goto free_delayed_inode; 2436 2437 err = btrfs_delayed_ref_init(); 2438 if (err) 2439 goto free_auto_defrag; 2440 2441 err = btrfs_prelim_ref_init(); 2442 if (err) 2443 goto free_delayed_ref; 2444 2445 err = btrfs_end_io_wq_init(); 2446 if (err) 2447 goto free_prelim_ref; 2448 2449 err = btrfs_interface_init(); 2450 if (err) 2451 goto free_end_io_wq; 2452 2453 btrfs_init_lockdep(); 2454 2455 btrfs_print_mod_info(); 2456 2457 err = btrfs_run_sanity_tests(); 2458 if (err) 2459 goto unregister_ioctl; 2460 2461 err = register_filesystem(&btrfs_fs_type); 2462 if (err) 2463 goto unregister_ioctl; 2464 2465 return 0; 2466 2467 unregister_ioctl: 2468 btrfs_interface_exit(); 2469 free_end_io_wq: 2470 btrfs_end_io_wq_exit(); 2471 free_prelim_ref: 2472 btrfs_prelim_ref_exit(); 2473 free_delayed_ref: 2474 btrfs_delayed_ref_exit(); 2475 free_auto_defrag: 2476 btrfs_auto_defrag_exit(); 2477 free_delayed_inode: 2478 btrfs_delayed_inode_exit(); 2479 free_ordered_data: 2480 ordered_data_exit(); 2481 free_extent_map: 2482 extent_map_exit(); 2483 free_extent_io: 2484 extent_io_exit(); 2485 free_cachep: 2486 btrfs_destroy_cachep(); 2487 free_compress: 2488 btrfs_exit_compress(); 2489 btrfs_exit_sysfs(); 2490 2491 return err; 2492 } 2493 2494 static void __exit exit_btrfs_fs(void) 2495 { 2496 btrfs_destroy_cachep(); 2497 btrfs_delayed_ref_exit(); 2498 btrfs_auto_defrag_exit(); 2499 btrfs_delayed_inode_exit(); 2500 btrfs_prelim_ref_exit(); 2501 ordered_data_exit(); 2502 extent_map_exit(); 2503 extent_io_exit(); 2504 btrfs_interface_exit(); 2505 btrfs_end_io_wq_exit(); 2506 unregister_filesystem(&btrfs_fs_type); 2507 btrfs_exit_sysfs(); 2508 btrfs_cleanup_fs_uuids(); 2509 btrfs_exit_compress(); 2510 } 2511 2512 late_initcall(init_btrfs_fs); 2513 module_exit(exit_btrfs_fs) 2514 2515 MODULE_LICENSE("GPL"); 2516