xref: /openbmc/linux/fs/btrfs/super.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/crc32c.h>
45 #include <linux/btrfs.h>
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 
69 /*
70  * Types for mounting the default subvolume and a subvolume explicitly
71  * requested by subvol=/path. That way the callchain is straightforward and we
72  * don't have to play tricks with the mount options and recursive calls to
73  * btrfs_mount.
74  *
75  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
76  */
77 static struct file_system_type btrfs_fs_type;
78 static struct file_system_type btrfs_root_fs_type;
79 
80 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
81 
82 const char *btrfs_decode_error(int errno)
83 {
84 	char *errstr = "unknown";
85 
86 	switch (errno) {
87 	case -EIO:
88 		errstr = "IO failure";
89 		break;
90 	case -ENOMEM:
91 		errstr = "Out of memory";
92 		break;
93 	case -EROFS:
94 		errstr = "Readonly filesystem";
95 		break;
96 	case -EEXIST:
97 		errstr = "Object already exists";
98 		break;
99 	case -ENOSPC:
100 		errstr = "No space left";
101 		break;
102 	case -ENOENT:
103 		errstr = "No such entry";
104 		break;
105 	}
106 
107 	return errstr;
108 }
109 
110 /*
111  * __btrfs_handle_fs_error decodes expected errors from the caller and
112  * invokes the approciate error response.
113  */
114 __cold
115 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
116 		       unsigned int line, int errno, const char *fmt, ...)
117 {
118 	struct super_block *sb = fs_info->sb;
119 #ifdef CONFIG_PRINTK
120 	const char *errstr;
121 #endif
122 
123 	/*
124 	 * Special case: if the error is EROFS, and we're already
125 	 * under SB_RDONLY, then it is safe here.
126 	 */
127 	if (errno == -EROFS && sb_rdonly(sb))
128   		return;
129 
130 #ifdef CONFIG_PRINTK
131 	errstr = btrfs_decode_error(errno);
132 	if (fmt) {
133 		struct va_format vaf;
134 		va_list args;
135 
136 		va_start(args, fmt);
137 		vaf.fmt = fmt;
138 		vaf.va = &args;
139 
140 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
141 			sb->s_id, function, line, errno, errstr, &vaf);
142 		va_end(args);
143 	} else {
144 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
145 			sb->s_id, function, line, errno, errstr);
146 	}
147 #endif
148 
149 	/*
150 	 * Today we only save the error info to memory.  Long term we'll
151 	 * also send it down to the disk
152 	 */
153 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
154 
155 	/* Don't go through full error handling during mount */
156 	if (!(sb->s_flags & SB_BORN))
157 		return;
158 
159 	if (sb_rdonly(sb))
160 		return;
161 
162 	/* btrfs handle error by forcing the filesystem readonly */
163 	sb->s_flags |= SB_RDONLY;
164 	btrfs_info(fs_info, "forced readonly");
165 	/*
166 	 * Note that a running device replace operation is not canceled here
167 	 * although there is no way to update the progress. It would add the
168 	 * risk of a deadlock, therefore the canceling is omitted. The only
169 	 * penalty is that some I/O remains active until the procedure
170 	 * completes. The next time when the filesystem is mounted writeable
171 	 * again, the device replace operation continues.
172 	 */
173 }
174 
175 #ifdef CONFIG_PRINTK
176 static const char * const logtypes[] = {
177 	"emergency",
178 	"alert",
179 	"critical",
180 	"error",
181 	"warning",
182 	"notice",
183 	"info",
184 	"debug",
185 };
186 
187 
188 /*
189  * Use one ratelimit state per log level so that a flood of less important
190  * messages doesn't cause more important ones to be dropped.
191  */
192 static struct ratelimit_state printk_limits[] = {
193 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
200 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
201 };
202 
203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
204 {
205 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
206 	struct va_format vaf;
207 	va_list args;
208 	int kern_level;
209 	const char *type = logtypes[4];
210 	struct ratelimit_state *ratelimit = &printk_limits[4];
211 
212 	va_start(args, fmt);
213 
214 	while ((kern_level = printk_get_level(fmt)) != 0) {
215 		size_t size = printk_skip_level(fmt) - fmt;
216 
217 		if (kern_level >= '0' && kern_level <= '7') {
218 			memcpy(lvl, fmt,  size);
219 			lvl[size] = '\0';
220 			type = logtypes[kern_level - '0'];
221 			ratelimit = &printk_limits[kern_level - '0'];
222 		}
223 		fmt += size;
224 	}
225 
226 	vaf.fmt = fmt;
227 	vaf.va = &args;
228 
229 	if (__ratelimit(ratelimit))
230 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
231 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
232 
233 	va_end(args);
234 }
235 #endif
236 
237 /*
238  * We only mark the transaction aborted and then set the file system read-only.
239  * This will prevent new transactions from starting or trying to join this
240  * one.
241  *
242  * This means that error recovery at the call site is limited to freeing
243  * any local memory allocations and passing the error code up without
244  * further cleanup. The transaction should complete as it normally would
245  * in the call path but will return -EIO.
246  *
247  * We'll complete the cleanup in btrfs_end_transaction and
248  * btrfs_commit_transaction.
249  */
250 __cold
251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
252 			       const char *function,
253 			       unsigned int line, int errno)
254 {
255 	struct btrfs_fs_info *fs_info = trans->fs_info;
256 
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno);
264 		btrfs_warn(fs_info,
265 		           "%s:%d: Aborting unused transaction(%s).",
266 		           function, line, errstr);
267 		return;
268 	}
269 	WRITE_ONCE(trans->transaction->aborted, errno);
270 	/* Wake up anybody who may be waiting on this transaction */
271 	wake_up(&fs_info->transaction_wait);
272 	wake_up(&fs_info->transaction_blocked_wait);
273 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 __cold
280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
281 		   unsigned int line, int errno, const char *fmt, ...)
282 {
283 	char *s_id = "<unknown>";
284 	const char *errstr;
285 	struct va_format vaf = { .fmt = fmt };
286 	va_list args;
287 
288 	if (fs_info)
289 		s_id = fs_info->sb->s_id;
290 
291 	va_start(args, fmt);
292 	vaf.va = &args;
293 
294 	errstr = btrfs_decode_error(errno);
295 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
296 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
297 			s_id, function, line, &vaf, errno, errstr);
298 
299 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
300 		   function, line, &vaf, errno, errstr);
301 	va_end(args);
302 	/* Caller calls BUG() */
303 }
304 
305 static void btrfs_put_super(struct super_block *sb)
306 {
307 	close_ctree(btrfs_sb(sb));
308 }
309 
310 enum {
311 	Opt_acl, Opt_noacl,
312 	Opt_clear_cache,
313 	Opt_commit_interval,
314 	Opt_compress,
315 	Opt_compress_force,
316 	Opt_compress_force_type,
317 	Opt_compress_type,
318 	Opt_degraded,
319 	Opt_device,
320 	Opt_fatal_errors,
321 	Opt_flushoncommit, Opt_noflushoncommit,
322 	Opt_inode_cache, Opt_noinode_cache,
323 	Opt_max_inline,
324 	Opt_barrier, Opt_nobarrier,
325 	Opt_datacow, Opt_nodatacow,
326 	Opt_datasum, Opt_nodatasum,
327 	Opt_defrag, Opt_nodefrag,
328 	Opt_discard, Opt_nodiscard,
329 	Opt_nologreplay,
330 	Opt_norecovery,
331 	Opt_ratio,
332 	Opt_rescan_uuid_tree,
333 	Opt_skip_balance,
334 	Opt_space_cache, Opt_no_space_cache,
335 	Opt_space_cache_version,
336 	Opt_ssd, Opt_nossd,
337 	Opt_ssd_spread, Opt_nossd_spread,
338 	Opt_subvol,
339 	Opt_subvolid,
340 	Opt_thread_pool,
341 	Opt_treelog, Opt_notreelog,
342 	Opt_usebackuproot,
343 	Opt_user_subvol_rm_allowed,
344 
345 	/* Deprecated options */
346 	Opt_alloc_start,
347 	Opt_recovery,
348 	Opt_subvolrootid,
349 
350 	/* Debugging options */
351 	Opt_check_integrity,
352 	Opt_check_integrity_including_extent_data,
353 	Opt_check_integrity_print_mask,
354 	Opt_enospc_debug, Opt_noenospc_debug,
355 #ifdef CONFIG_BTRFS_DEBUG
356 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
357 #endif
358 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
359 	Opt_ref_verify,
360 #endif
361 	Opt_err,
362 };
363 
364 static const match_table_t tokens = {
365 	{Opt_acl, "acl"},
366 	{Opt_noacl, "noacl"},
367 	{Opt_clear_cache, "clear_cache"},
368 	{Opt_commit_interval, "commit=%u"},
369 	{Opt_compress, "compress"},
370 	{Opt_compress_type, "compress=%s"},
371 	{Opt_compress_force, "compress-force"},
372 	{Opt_compress_force_type, "compress-force=%s"},
373 	{Opt_degraded, "degraded"},
374 	{Opt_device, "device=%s"},
375 	{Opt_fatal_errors, "fatal_errors=%s"},
376 	{Opt_flushoncommit, "flushoncommit"},
377 	{Opt_noflushoncommit, "noflushoncommit"},
378 	{Opt_inode_cache, "inode_cache"},
379 	{Opt_noinode_cache, "noinode_cache"},
380 	{Opt_max_inline, "max_inline=%s"},
381 	{Opt_barrier, "barrier"},
382 	{Opt_nobarrier, "nobarrier"},
383 	{Opt_datacow, "datacow"},
384 	{Opt_nodatacow, "nodatacow"},
385 	{Opt_datasum, "datasum"},
386 	{Opt_nodatasum, "nodatasum"},
387 	{Opt_defrag, "autodefrag"},
388 	{Opt_nodefrag, "noautodefrag"},
389 	{Opt_discard, "discard"},
390 	{Opt_nodiscard, "nodiscard"},
391 	{Opt_nologreplay, "nologreplay"},
392 	{Opt_norecovery, "norecovery"},
393 	{Opt_ratio, "metadata_ratio=%u"},
394 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
395 	{Opt_skip_balance, "skip_balance"},
396 	{Opt_space_cache, "space_cache"},
397 	{Opt_no_space_cache, "nospace_cache"},
398 	{Opt_space_cache_version, "space_cache=%s"},
399 	{Opt_ssd, "ssd"},
400 	{Opt_nossd, "nossd"},
401 	{Opt_ssd_spread, "ssd_spread"},
402 	{Opt_nossd_spread, "nossd_spread"},
403 	{Opt_subvol, "subvol=%s"},
404 	{Opt_subvolid, "subvolid=%s"},
405 	{Opt_thread_pool, "thread_pool=%u"},
406 	{Opt_treelog, "treelog"},
407 	{Opt_notreelog, "notreelog"},
408 	{Opt_usebackuproot, "usebackuproot"},
409 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
410 
411 	/* Deprecated options */
412 	{Opt_alloc_start, "alloc_start=%s"},
413 	{Opt_recovery, "recovery"},
414 	{Opt_subvolrootid, "subvolrootid=%d"},
415 
416 	/* Debugging options */
417 	{Opt_check_integrity, "check_int"},
418 	{Opt_check_integrity_including_extent_data, "check_int_data"},
419 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
420 	{Opt_enospc_debug, "enospc_debug"},
421 	{Opt_noenospc_debug, "noenospc_debug"},
422 #ifdef CONFIG_BTRFS_DEBUG
423 	{Opt_fragment_data, "fragment=data"},
424 	{Opt_fragment_metadata, "fragment=metadata"},
425 	{Opt_fragment_all, "fragment=all"},
426 #endif
427 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
428 	{Opt_ref_verify, "ref_verify"},
429 #endif
430 	{Opt_err, NULL},
431 };
432 
433 /*
434  * Regular mount options parser.  Everything that is needed only when
435  * reading in a new superblock is parsed here.
436  * XXX JDM: This needs to be cleaned up for remount.
437  */
438 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
439 			unsigned long new_flags)
440 {
441 	substring_t args[MAX_OPT_ARGS];
442 	char *p, *num;
443 	u64 cache_gen;
444 	int intarg;
445 	int ret = 0;
446 	char *compress_type;
447 	bool compress_force = false;
448 	enum btrfs_compression_type saved_compress_type;
449 	bool saved_compress_force;
450 	int no_compress = 0;
451 
452 	cache_gen = btrfs_super_cache_generation(info->super_copy);
453 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
454 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
455 	else if (cache_gen)
456 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
457 
458 	/*
459 	 * Even the options are empty, we still need to do extra check
460 	 * against new flags
461 	 */
462 	if (!options)
463 		goto check;
464 
465 	while ((p = strsep(&options, ",")) != NULL) {
466 		int token;
467 		if (!*p)
468 			continue;
469 
470 		token = match_token(p, tokens, args);
471 		switch (token) {
472 		case Opt_degraded:
473 			btrfs_info(info, "allowing degraded mounts");
474 			btrfs_set_opt(info->mount_opt, DEGRADED);
475 			break;
476 		case Opt_subvol:
477 		case Opt_subvolid:
478 		case Opt_subvolrootid:
479 		case Opt_device:
480 			/*
481 			 * These are parsed by btrfs_parse_subvol_options
482 			 * and btrfs_parse_early_options
483 			 * and can be happily ignored here.
484 			 */
485 			break;
486 		case Opt_nodatasum:
487 			btrfs_set_and_info(info, NODATASUM,
488 					   "setting nodatasum");
489 			break;
490 		case Opt_datasum:
491 			if (btrfs_test_opt(info, NODATASUM)) {
492 				if (btrfs_test_opt(info, NODATACOW))
493 					btrfs_info(info,
494 						   "setting datasum, datacow enabled");
495 				else
496 					btrfs_info(info, "setting datasum");
497 			}
498 			btrfs_clear_opt(info->mount_opt, NODATACOW);
499 			btrfs_clear_opt(info->mount_opt, NODATASUM);
500 			break;
501 		case Opt_nodatacow:
502 			if (!btrfs_test_opt(info, NODATACOW)) {
503 				if (!btrfs_test_opt(info, COMPRESS) ||
504 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
505 					btrfs_info(info,
506 						   "setting nodatacow, compression disabled");
507 				} else {
508 					btrfs_info(info, "setting nodatacow");
509 				}
510 			}
511 			btrfs_clear_opt(info->mount_opt, COMPRESS);
512 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
513 			btrfs_set_opt(info->mount_opt, NODATACOW);
514 			btrfs_set_opt(info->mount_opt, NODATASUM);
515 			break;
516 		case Opt_datacow:
517 			btrfs_clear_and_info(info, NODATACOW,
518 					     "setting datacow");
519 			break;
520 		case Opt_compress_force:
521 		case Opt_compress_force_type:
522 			compress_force = true;
523 			/* Fallthrough */
524 		case Opt_compress:
525 		case Opt_compress_type:
526 			saved_compress_type = btrfs_test_opt(info,
527 							     COMPRESS) ?
528 				info->compress_type : BTRFS_COMPRESS_NONE;
529 			saved_compress_force =
530 				btrfs_test_opt(info, FORCE_COMPRESS);
531 			if (token == Opt_compress ||
532 			    token == Opt_compress_force ||
533 			    strncmp(args[0].from, "zlib", 4) == 0) {
534 				compress_type = "zlib";
535 
536 				info->compress_type = BTRFS_COMPRESS_ZLIB;
537 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
538 				/*
539 				 * args[0] contains uninitialized data since
540 				 * for these tokens we don't expect any
541 				 * parameter.
542 				 */
543 				if (token != Opt_compress &&
544 				    token != Opt_compress_force)
545 					info->compress_level =
546 					  btrfs_compress_str2level(args[0].from);
547 				btrfs_set_opt(info->mount_opt, COMPRESS);
548 				btrfs_clear_opt(info->mount_opt, NODATACOW);
549 				btrfs_clear_opt(info->mount_opt, NODATASUM);
550 				no_compress = 0;
551 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
552 				compress_type = "lzo";
553 				info->compress_type = BTRFS_COMPRESS_LZO;
554 				btrfs_set_opt(info->mount_opt, COMPRESS);
555 				btrfs_clear_opt(info->mount_opt, NODATACOW);
556 				btrfs_clear_opt(info->mount_opt, NODATASUM);
557 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
558 				no_compress = 0;
559 			} else if (strcmp(args[0].from, "zstd") == 0) {
560 				compress_type = "zstd";
561 				info->compress_type = BTRFS_COMPRESS_ZSTD;
562 				btrfs_set_opt(info->mount_opt, COMPRESS);
563 				btrfs_clear_opt(info->mount_opt, NODATACOW);
564 				btrfs_clear_opt(info->mount_opt, NODATASUM);
565 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
566 				no_compress = 0;
567 			} else if (strncmp(args[0].from, "no", 2) == 0) {
568 				compress_type = "no";
569 				btrfs_clear_opt(info->mount_opt, COMPRESS);
570 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
571 				compress_force = false;
572 				no_compress++;
573 			} else {
574 				ret = -EINVAL;
575 				goto out;
576 			}
577 
578 			if (compress_force) {
579 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
580 			} else {
581 				/*
582 				 * If we remount from compress-force=xxx to
583 				 * compress=xxx, we need clear FORCE_COMPRESS
584 				 * flag, otherwise, there is no way for users
585 				 * to disable forcible compression separately.
586 				 */
587 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
588 			}
589 			if ((btrfs_test_opt(info, COMPRESS) &&
590 			     (info->compress_type != saved_compress_type ||
591 			      compress_force != saved_compress_force)) ||
592 			    (!btrfs_test_opt(info, COMPRESS) &&
593 			     no_compress == 1)) {
594 				btrfs_info(info, "%s %s compression, level %d",
595 					   (compress_force) ? "force" : "use",
596 					   compress_type, info->compress_level);
597 			}
598 			compress_force = false;
599 			break;
600 		case Opt_ssd:
601 			btrfs_set_and_info(info, SSD,
602 					   "enabling ssd optimizations");
603 			btrfs_clear_opt(info->mount_opt, NOSSD);
604 			break;
605 		case Opt_ssd_spread:
606 			btrfs_set_and_info(info, SSD,
607 					   "enabling ssd optimizations");
608 			btrfs_set_and_info(info, SSD_SPREAD,
609 					   "using spread ssd allocation scheme");
610 			btrfs_clear_opt(info->mount_opt, NOSSD);
611 			break;
612 		case Opt_nossd:
613 			btrfs_set_opt(info->mount_opt, NOSSD);
614 			btrfs_clear_and_info(info, SSD,
615 					     "not using ssd optimizations");
616 			/* Fallthrough */
617 		case Opt_nossd_spread:
618 			btrfs_clear_and_info(info, SSD_SPREAD,
619 					     "not using spread ssd allocation scheme");
620 			break;
621 		case Opt_barrier:
622 			btrfs_clear_and_info(info, NOBARRIER,
623 					     "turning on barriers");
624 			break;
625 		case Opt_nobarrier:
626 			btrfs_set_and_info(info, NOBARRIER,
627 					   "turning off barriers");
628 			break;
629 		case Opt_thread_pool:
630 			ret = match_int(&args[0], &intarg);
631 			if (ret) {
632 				goto out;
633 			} else if (intarg == 0) {
634 				ret = -EINVAL;
635 				goto out;
636 			}
637 			info->thread_pool_size = intarg;
638 			break;
639 		case Opt_max_inline:
640 			num = match_strdup(&args[0]);
641 			if (num) {
642 				info->max_inline = memparse(num, NULL);
643 				kfree(num);
644 
645 				if (info->max_inline) {
646 					info->max_inline = min_t(u64,
647 						info->max_inline,
648 						info->sectorsize);
649 				}
650 				btrfs_info(info, "max_inline at %llu",
651 					   info->max_inline);
652 			} else {
653 				ret = -ENOMEM;
654 				goto out;
655 			}
656 			break;
657 		case Opt_alloc_start:
658 			btrfs_info(info,
659 				"option alloc_start is obsolete, ignored");
660 			break;
661 		case Opt_acl:
662 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
663 			info->sb->s_flags |= SB_POSIXACL;
664 			break;
665 #else
666 			btrfs_err(info, "support for ACL not compiled in!");
667 			ret = -EINVAL;
668 			goto out;
669 #endif
670 		case Opt_noacl:
671 			info->sb->s_flags &= ~SB_POSIXACL;
672 			break;
673 		case Opt_notreelog:
674 			btrfs_set_and_info(info, NOTREELOG,
675 					   "disabling tree log");
676 			break;
677 		case Opt_treelog:
678 			btrfs_clear_and_info(info, NOTREELOG,
679 					     "enabling tree log");
680 			break;
681 		case Opt_norecovery:
682 		case Opt_nologreplay:
683 			btrfs_set_and_info(info, NOLOGREPLAY,
684 					   "disabling log replay at mount time");
685 			break;
686 		case Opt_flushoncommit:
687 			btrfs_set_and_info(info, FLUSHONCOMMIT,
688 					   "turning on flush-on-commit");
689 			break;
690 		case Opt_noflushoncommit:
691 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
692 					     "turning off flush-on-commit");
693 			break;
694 		case Opt_ratio:
695 			ret = match_int(&args[0], &intarg);
696 			if (ret)
697 				goto out;
698 			info->metadata_ratio = intarg;
699 			btrfs_info(info, "metadata ratio %u",
700 				   info->metadata_ratio);
701 			break;
702 		case Opt_discard:
703 			btrfs_set_and_info(info, DISCARD,
704 					   "turning on discard");
705 			break;
706 		case Opt_nodiscard:
707 			btrfs_clear_and_info(info, DISCARD,
708 					     "turning off discard");
709 			break;
710 		case Opt_space_cache:
711 		case Opt_space_cache_version:
712 			if (token == Opt_space_cache ||
713 			    strcmp(args[0].from, "v1") == 0) {
714 				btrfs_clear_opt(info->mount_opt,
715 						FREE_SPACE_TREE);
716 				btrfs_set_and_info(info, SPACE_CACHE,
717 					   "enabling disk space caching");
718 			} else if (strcmp(args[0].from, "v2") == 0) {
719 				btrfs_clear_opt(info->mount_opt,
720 						SPACE_CACHE);
721 				btrfs_set_and_info(info, FREE_SPACE_TREE,
722 						   "enabling free space tree");
723 			} else {
724 				ret = -EINVAL;
725 				goto out;
726 			}
727 			break;
728 		case Opt_rescan_uuid_tree:
729 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
730 			break;
731 		case Opt_no_space_cache:
732 			if (btrfs_test_opt(info, SPACE_CACHE)) {
733 				btrfs_clear_and_info(info, SPACE_CACHE,
734 					     "disabling disk space caching");
735 			}
736 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
737 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
738 					     "disabling free space tree");
739 			}
740 			break;
741 		case Opt_inode_cache:
742 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
743 					   "enabling inode map caching");
744 			break;
745 		case Opt_noinode_cache:
746 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
747 					     "disabling inode map caching");
748 			break;
749 		case Opt_clear_cache:
750 			btrfs_set_and_info(info, CLEAR_CACHE,
751 					   "force clearing of disk cache");
752 			break;
753 		case Opt_user_subvol_rm_allowed:
754 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
755 			break;
756 		case Opt_enospc_debug:
757 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
758 			break;
759 		case Opt_noenospc_debug:
760 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
761 			break;
762 		case Opt_defrag:
763 			btrfs_set_and_info(info, AUTO_DEFRAG,
764 					   "enabling auto defrag");
765 			break;
766 		case Opt_nodefrag:
767 			btrfs_clear_and_info(info, AUTO_DEFRAG,
768 					     "disabling auto defrag");
769 			break;
770 		case Opt_recovery:
771 			btrfs_warn(info,
772 				   "'recovery' is deprecated, use 'usebackuproot' instead");
773 		case Opt_usebackuproot:
774 			btrfs_info(info,
775 				   "trying to use backup root at mount time");
776 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
777 			break;
778 		case Opt_skip_balance:
779 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
780 			break;
781 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
782 		case Opt_check_integrity_including_extent_data:
783 			btrfs_info(info,
784 				   "enabling check integrity including extent data");
785 			btrfs_set_opt(info->mount_opt,
786 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
787 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
788 			break;
789 		case Opt_check_integrity:
790 			btrfs_info(info, "enabling check integrity");
791 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
792 			break;
793 		case Opt_check_integrity_print_mask:
794 			ret = match_int(&args[0], &intarg);
795 			if (ret)
796 				goto out;
797 			info->check_integrity_print_mask = intarg;
798 			btrfs_info(info, "check_integrity_print_mask 0x%x",
799 				   info->check_integrity_print_mask);
800 			break;
801 #else
802 		case Opt_check_integrity_including_extent_data:
803 		case Opt_check_integrity:
804 		case Opt_check_integrity_print_mask:
805 			btrfs_err(info,
806 				  "support for check_integrity* not compiled in!");
807 			ret = -EINVAL;
808 			goto out;
809 #endif
810 		case Opt_fatal_errors:
811 			if (strcmp(args[0].from, "panic") == 0)
812 				btrfs_set_opt(info->mount_opt,
813 					      PANIC_ON_FATAL_ERROR);
814 			else if (strcmp(args[0].from, "bug") == 0)
815 				btrfs_clear_opt(info->mount_opt,
816 					      PANIC_ON_FATAL_ERROR);
817 			else {
818 				ret = -EINVAL;
819 				goto out;
820 			}
821 			break;
822 		case Opt_commit_interval:
823 			intarg = 0;
824 			ret = match_int(&args[0], &intarg);
825 			if (ret)
826 				goto out;
827 			if (intarg == 0) {
828 				btrfs_info(info,
829 					   "using default commit interval %us",
830 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
831 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
832 			} else if (intarg > 300) {
833 				btrfs_warn(info, "excessive commit interval %d",
834 					   intarg);
835 			}
836 			info->commit_interval = intarg;
837 			break;
838 #ifdef CONFIG_BTRFS_DEBUG
839 		case Opt_fragment_all:
840 			btrfs_info(info, "fragmenting all space");
841 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
842 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
843 			break;
844 		case Opt_fragment_metadata:
845 			btrfs_info(info, "fragmenting metadata");
846 			btrfs_set_opt(info->mount_opt,
847 				      FRAGMENT_METADATA);
848 			break;
849 		case Opt_fragment_data:
850 			btrfs_info(info, "fragmenting data");
851 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
852 			break;
853 #endif
854 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
855 		case Opt_ref_verify:
856 			btrfs_info(info, "doing ref verification");
857 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
858 			break;
859 #endif
860 		case Opt_err:
861 			btrfs_info(info, "unrecognized mount option '%s'", p);
862 			ret = -EINVAL;
863 			goto out;
864 		default:
865 			break;
866 		}
867 	}
868 check:
869 	/*
870 	 * Extra check for current option against current flag
871 	 */
872 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
873 		btrfs_err(info,
874 			  "nologreplay must be used with ro mount option");
875 		ret = -EINVAL;
876 	}
877 out:
878 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
879 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
880 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
881 		btrfs_err(info, "cannot disable free space tree");
882 		ret = -EINVAL;
883 
884 	}
885 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
886 		btrfs_info(info, "disk space caching is enabled");
887 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
888 		btrfs_info(info, "using free space tree");
889 	return ret;
890 }
891 
892 /*
893  * Parse mount options that are required early in the mount process.
894  *
895  * All other options will be parsed on much later in the mount process and
896  * only when we need to allocate a new super block.
897  */
898 static int btrfs_parse_early_options(const char *options, fmode_t flags,
899 		void *holder, struct btrfs_fs_devices **fs_devices)
900 {
901 	substring_t args[MAX_OPT_ARGS];
902 	char *device_name, *opts, *orig, *p;
903 	int error = 0;
904 
905 	if (!options)
906 		return 0;
907 
908 	/*
909 	 * strsep changes the string, duplicate it because btrfs_parse_options
910 	 * gets called later
911 	 */
912 	opts = kstrdup(options, GFP_KERNEL);
913 	if (!opts)
914 		return -ENOMEM;
915 	orig = opts;
916 
917 	while ((p = strsep(&opts, ",")) != NULL) {
918 		int token;
919 
920 		if (!*p)
921 			continue;
922 
923 		token = match_token(p, tokens, args);
924 		if (token == Opt_device) {
925 			device_name = match_strdup(&args[0]);
926 			if (!device_name) {
927 				error = -ENOMEM;
928 				goto out;
929 			}
930 			error = btrfs_scan_one_device(device_name,
931 					flags, holder, fs_devices);
932 			kfree(device_name);
933 			if (error)
934 				goto out;
935 		}
936 	}
937 
938 out:
939 	kfree(orig);
940 	return error;
941 }
942 
943 /*
944  * Parse mount options that are related to subvolume id
945  *
946  * The value is later passed to mount_subvol()
947  */
948 static int btrfs_parse_subvol_options(const char *options, fmode_t flags,
949 		char **subvol_name, u64 *subvol_objectid)
950 {
951 	substring_t args[MAX_OPT_ARGS];
952 	char *opts, *orig, *p;
953 	int error = 0;
954 	u64 subvolid;
955 
956 	if (!options)
957 		return 0;
958 
959 	/*
960 	 * strsep changes the string, duplicate it because
961 	 * btrfs_parse_early_options gets called later
962 	 */
963 	opts = kstrdup(options, GFP_KERNEL);
964 	if (!opts)
965 		return -ENOMEM;
966 	orig = opts;
967 
968 	while ((p = strsep(&opts, ",")) != NULL) {
969 		int token;
970 		if (!*p)
971 			continue;
972 
973 		token = match_token(p, tokens, args);
974 		switch (token) {
975 		case Opt_subvol:
976 			kfree(*subvol_name);
977 			*subvol_name = match_strdup(&args[0]);
978 			if (!*subvol_name) {
979 				error = -ENOMEM;
980 				goto out;
981 			}
982 			break;
983 		case Opt_subvolid:
984 			error = match_u64(&args[0], &subvolid);
985 			if (error)
986 				goto out;
987 
988 			/* we want the original fs_tree */
989 			if (subvolid == 0)
990 				subvolid = BTRFS_FS_TREE_OBJECTID;
991 
992 			*subvol_objectid = subvolid;
993 			break;
994 		case Opt_subvolrootid:
995 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
996 			break;
997 		default:
998 			break;
999 		}
1000 	}
1001 
1002 out:
1003 	kfree(orig);
1004 	return error;
1005 }
1006 
1007 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1008 					   u64 subvol_objectid)
1009 {
1010 	struct btrfs_root *root = fs_info->tree_root;
1011 	struct btrfs_root *fs_root;
1012 	struct btrfs_root_ref *root_ref;
1013 	struct btrfs_inode_ref *inode_ref;
1014 	struct btrfs_key key;
1015 	struct btrfs_path *path = NULL;
1016 	char *name = NULL, *ptr;
1017 	u64 dirid;
1018 	int len;
1019 	int ret;
1020 
1021 	path = btrfs_alloc_path();
1022 	if (!path) {
1023 		ret = -ENOMEM;
1024 		goto err;
1025 	}
1026 	path->leave_spinning = 1;
1027 
1028 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1029 	if (!name) {
1030 		ret = -ENOMEM;
1031 		goto err;
1032 	}
1033 	ptr = name + PATH_MAX - 1;
1034 	ptr[0] = '\0';
1035 
1036 	/*
1037 	 * Walk up the subvolume trees in the tree of tree roots by root
1038 	 * backrefs until we hit the top-level subvolume.
1039 	 */
1040 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1041 		key.objectid = subvol_objectid;
1042 		key.type = BTRFS_ROOT_BACKREF_KEY;
1043 		key.offset = (u64)-1;
1044 
1045 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1046 		if (ret < 0) {
1047 			goto err;
1048 		} else if (ret > 0) {
1049 			ret = btrfs_previous_item(root, path, subvol_objectid,
1050 						  BTRFS_ROOT_BACKREF_KEY);
1051 			if (ret < 0) {
1052 				goto err;
1053 			} else if (ret > 0) {
1054 				ret = -ENOENT;
1055 				goto err;
1056 			}
1057 		}
1058 
1059 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1060 		subvol_objectid = key.offset;
1061 
1062 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1063 					  struct btrfs_root_ref);
1064 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1065 		ptr -= len + 1;
1066 		if (ptr < name) {
1067 			ret = -ENAMETOOLONG;
1068 			goto err;
1069 		}
1070 		read_extent_buffer(path->nodes[0], ptr + 1,
1071 				   (unsigned long)(root_ref + 1), len);
1072 		ptr[0] = '/';
1073 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1074 		btrfs_release_path(path);
1075 
1076 		key.objectid = subvol_objectid;
1077 		key.type = BTRFS_ROOT_ITEM_KEY;
1078 		key.offset = (u64)-1;
1079 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1080 		if (IS_ERR(fs_root)) {
1081 			ret = PTR_ERR(fs_root);
1082 			goto err;
1083 		}
1084 
1085 		/*
1086 		 * Walk up the filesystem tree by inode refs until we hit the
1087 		 * root directory.
1088 		 */
1089 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1090 			key.objectid = dirid;
1091 			key.type = BTRFS_INODE_REF_KEY;
1092 			key.offset = (u64)-1;
1093 
1094 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1095 			if (ret < 0) {
1096 				goto err;
1097 			} else if (ret > 0) {
1098 				ret = btrfs_previous_item(fs_root, path, dirid,
1099 							  BTRFS_INODE_REF_KEY);
1100 				if (ret < 0) {
1101 					goto err;
1102 				} else if (ret > 0) {
1103 					ret = -ENOENT;
1104 					goto err;
1105 				}
1106 			}
1107 
1108 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1109 			dirid = key.offset;
1110 
1111 			inode_ref = btrfs_item_ptr(path->nodes[0],
1112 						   path->slots[0],
1113 						   struct btrfs_inode_ref);
1114 			len = btrfs_inode_ref_name_len(path->nodes[0],
1115 						       inode_ref);
1116 			ptr -= len + 1;
1117 			if (ptr < name) {
1118 				ret = -ENAMETOOLONG;
1119 				goto err;
1120 			}
1121 			read_extent_buffer(path->nodes[0], ptr + 1,
1122 					   (unsigned long)(inode_ref + 1), len);
1123 			ptr[0] = '/';
1124 			btrfs_release_path(path);
1125 		}
1126 	}
1127 
1128 	btrfs_free_path(path);
1129 	if (ptr == name + PATH_MAX - 1) {
1130 		name[0] = '/';
1131 		name[1] = '\0';
1132 	} else {
1133 		memmove(name, ptr, name + PATH_MAX - ptr);
1134 	}
1135 	return name;
1136 
1137 err:
1138 	btrfs_free_path(path);
1139 	kfree(name);
1140 	return ERR_PTR(ret);
1141 }
1142 
1143 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1144 {
1145 	struct btrfs_root *root = fs_info->tree_root;
1146 	struct btrfs_dir_item *di;
1147 	struct btrfs_path *path;
1148 	struct btrfs_key location;
1149 	u64 dir_id;
1150 
1151 	path = btrfs_alloc_path();
1152 	if (!path)
1153 		return -ENOMEM;
1154 	path->leave_spinning = 1;
1155 
1156 	/*
1157 	 * Find the "default" dir item which points to the root item that we
1158 	 * will mount by default if we haven't been given a specific subvolume
1159 	 * to mount.
1160 	 */
1161 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1162 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1163 	if (IS_ERR(di)) {
1164 		btrfs_free_path(path);
1165 		return PTR_ERR(di);
1166 	}
1167 	if (!di) {
1168 		/*
1169 		 * Ok the default dir item isn't there.  This is weird since
1170 		 * it's always been there, but don't freak out, just try and
1171 		 * mount the top-level subvolume.
1172 		 */
1173 		btrfs_free_path(path);
1174 		*objectid = BTRFS_FS_TREE_OBJECTID;
1175 		return 0;
1176 	}
1177 
1178 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1179 	btrfs_free_path(path);
1180 	*objectid = location.objectid;
1181 	return 0;
1182 }
1183 
1184 static int btrfs_fill_super(struct super_block *sb,
1185 			    struct btrfs_fs_devices *fs_devices,
1186 			    void *data)
1187 {
1188 	struct inode *inode;
1189 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1190 	struct btrfs_key key;
1191 	int err;
1192 
1193 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1194 	sb->s_magic = BTRFS_SUPER_MAGIC;
1195 	sb->s_op = &btrfs_super_ops;
1196 	sb->s_d_op = &btrfs_dentry_operations;
1197 	sb->s_export_op = &btrfs_export_ops;
1198 	sb->s_xattr = btrfs_xattr_handlers;
1199 	sb->s_time_gran = 1;
1200 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1201 	sb->s_flags |= SB_POSIXACL;
1202 #endif
1203 	sb->s_flags |= SB_I_VERSION;
1204 	sb->s_iflags |= SB_I_CGROUPWB;
1205 
1206 	err = super_setup_bdi(sb);
1207 	if (err) {
1208 		btrfs_err(fs_info, "super_setup_bdi failed");
1209 		return err;
1210 	}
1211 
1212 	err = open_ctree(sb, fs_devices, (char *)data);
1213 	if (err) {
1214 		btrfs_err(fs_info, "open_ctree failed");
1215 		return err;
1216 	}
1217 
1218 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1219 	key.type = BTRFS_INODE_ITEM_KEY;
1220 	key.offset = 0;
1221 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1222 	if (IS_ERR(inode)) {
1223 		err = PTR_ERR(inode);
1224 		goto fail_close;
1225 	}
1226 
1227 	sb->s_root = d_make_root(inode);
1228 	if (!sb->s_root) {
1229 		err = -ENOMEM;
1230 		goto fail_close;
1231 	}
1232 
1233 	cleancache_init_fs(sb);
1234 	sb->s_flags |= SB_ACTIVE;
1235 	return 0;
1236 
1237 fail_close:
1238 	close_ctree(fs_info);
1239 	return err;
1240 }
1241 
1242 int btrfs_sync_fs(struct super_block *sb, int wait)
1243 {
1244 	struct btrfs_trans_handle *trans;
1245 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1246 	struct btrfs_root *root = fs_info->tree_root;
1247 
1248 	trace_btrfs_sync_fs(fs_info, wait);
1249 
1250 	if (!wait) {
1251 		filemap_flush(fs_info->btree_inode->i_mapping);
1252 		return 0;
1253 	}
1254 
1255 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1256 
1257 	trans = btrfs_attach_transaction_barrier(root);
1258 	if (IS_ERR(trans)) {
1259 		/* no transaction, don't bother */
1260 		if (PTR_ERR(trans) == -ENOENT) {
1261 			/*
1262 			 * Exit unless we have some pending changes
1263 			 * that need to go through commit
1264 			 */
1265 			if (fs_info->pending_changes == 0)
1266 				return 0;
1267 			/*
1268 			 * A non-blocking test if the fs is frozen. We must not
1269 			 * start a new transaction here otherwise a deadlock
1270 			 * happens. The pending operations are delayed to the
1271 			 * next commit after thawing.
1272 			 */
1273 			if (sb_start_write_trylock(sb))
1274 				sb_end_write(sb);
1275 			else
1276 				return 0;
1277 			trans = btrfs_start_transaction(root, 0);
1278 		}
1279 		if (IS_ERR(trans))
1280 			return PTR_ERR(trans);
1281 	}
1282 	return btrfs_commit_transaction(trans);
1283 }
1284 
1285 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1286 {
1287 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1288 	const char *compress_type;
1289 
1290 	if (btrfs_test_opt(info, DEGRADED))
1291 		seq_puts(seq, ",degraded");
1292 	if (btrfs_test_opt(info, NODATASUM))
1293 		seq_puts(seq, ",nodatasum");
1294 	if (btrfs_test_opt(info, NODATACOW))
1295 		seq_puts(seq, ",nodatacow");
1296 	if (btrfs_test_opt(info, NOBARRIER))
1297 		seq_puts(seq, ",nobarrier");
1298 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1299 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1300 	if (info->thread_pool_size !=  min_t(unsigned long,
1301 					     num_online_cpus() + 2, 8))
1302 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1303 	if (btrfs_test_opt(info, COMPRESS)) {
1304 		compress_type = btrfs_compress_type2str(info->compress_type);
1305 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1306 			seq_printf(seq, ",compress-force=%s", compress_type);
1307 		else
1308 			seq_printf(seq, ",compress=%s", compress_type);
1309 		if (info->compress_level)
1310 			seq_printf(seq, ":%d", info->compress_level);
1311 	}
1312 	if (btrfs_test_opt(info, NOSSD))
1313 		seq_puts(seq, ",nossd");
1314 	if (btrfs_test_opt(info, SSD_SPREAD))
1315 		seq_puts(seq, ",ssd_spread");
1316 	else if (btrfs_test_opt(info, SSD))
1317 		seq_puts(seq, ",ssd");
1318 	if (btrfs_test_opt(info, NOTREELOG))
1319 		seq_puts(seq, ",notreelog");
1320 	if (btrfs_test_opt(info, NOLOGREPLAY))
1321 		seq_puts(seq, ",nologreplay");
1322 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1323 		seq_puts(seq, ",flushoncommit");
1324 	if (btrfs_test_opt(info, DISCARD))
1325 		seq_puts(seq, ",discard");
1326 	if (!(info->sb->s_flags & SB_POSIXACL))
1327 		seq_puts(seq, ",noacl");
1328 	if (btrfs_test_opt(info, SPACE_CACHE))
1329 		seq_puts(seq, ",space_cache");
1330 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1331 		seq_puts(seq, ",space_cache=v2");
1332 	else
1333 		seq_puts(seq, ",nospace_cache");
1334 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1335 		seq_puts(seq, ",rescan_uuid_tree");
1336 	if (btrfs_test_opt(info, CLEAR_CACHE))
1337 		seq_puts(seq, ",clear_cache");
1338 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1339 		seq_puts(seq, ",user_subvol_rm_allowed");
1340 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1341 		seq_puts(seq, ",enospc_debug");
1342 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1343 		seq_puts(seq, ",autodefrag");
1344 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1345 		seq_puts(seq, ",inode_cache");
1346 	if (btrfs_test_opt(info, SKIP_BALANCE))
1347 		seq_puts(seq, ",skip_balance");
1348 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1349 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1350 		seq_puts(seq, ",check_int_data");
1351 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1352 		seq_puts(seq, ",check_int");
1353 	if (info->check_integrity_print_mask)
1354 		seq_printf(seq, ",check_int_print_mask=%d",
1355 				info->check_integrity_print_mask);
1356 #endif
1357 	if (info->metadata_ratio)
1358 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1359 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1360 		seq_puts(seq, ",fatal_errors=panic");
1361 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1362 		seq_printf(seq, ",commit=%u", info->commit_interval);
1363 #ifdef CONFIG_BTRFS_DEBUG
1364 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1365 		seq_puts(seq, ",fragment=data");
1366 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1367 		seq_puts(seq, ",fragment=metadata");
1368 #endif
1369 	if (btrfs_test_opt(info, REF_VERIFY))
1370 		seq_puts(seq, ",ref_verify");
1371 	seq_printf(seq, ",subvolid=%llu",
1372 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1373 	seq_puts(seq, ",subvol=");
1374 	seq_dentry(seq, dentry, " \t\n\\");
1375 	return 0;
1376 }
1377 
1378 static int btrfs_test_super(struct super_block *s, void *data)
1379 {
1380 	struct btrfs_fs_info *p = data;
1381 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1382 
1383 	return fs_info->fs_devices == p->fs_devices;
1384 }
1385 
1386 static int btrfs_set_super(struct super_block *s, void *data)
1387 {
1388 	int err = set_anon_super(s, data);
1389 	if (!err)
1390 		s->s_fs_info = data;
1391 	return err;
1392 }
1393 
1394 /*
1395  * subvolumes are identified by ino 256
1396  */
1397 static inline int is_subvolume_inode(struct inode *inode)
1398 {
1399 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1400 		return 1;
1401 	return 0;
1402 }
1403 
1404 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1405 				   const char *device_name, struct vfsmount *mnt)
1406 {
1407 	struct dentry *root;
1408 	int ret;
1409 
1410 	if (!subvol_name) {
1411 		if (!subvol_objectid) {
1412 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1413 							  &subvol_objectid);
1414 			if (ret) {
1415 				root = ERR_PTR(ret);
1416 				goto out;
1417 			}
1418 		}
1419 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1420 							    subvol_objectid);
1421 		if (IS_ERR(subvol_name)) {
1422 			root = ERR_CAST(subvol_name);
1423 			subvol_name = NULL;
1424 			goto out;
1425 		}
1426 
1427 	}
1428 
1429 	root = mount_subtree(mnt, subvol_name);
1430 	/* mount_subtree() drops our reference on the vfsmount. */
1431 	mnt = NULL;
1432 
1433 	if (!IS_ERR(root)) {
1434 		struct super_block *s = root->d_sb;
1435 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1436 		struct inode *root_inode = d_inode(root);
1437 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1438 
1439 		ret = 0;
1440 		if (!is_subvolume_inode(root_inode)) {
1441 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1442 			       subvol_name);
1443 			ret = -EINVAL;
1444 		}
1445 		if (subvol_objectid && root_objectid != subvol_objectid) {
1446 			/*
1447 			 * This will also catch a race condition where a
1448 			 * subvolume which was passed by ID is renamed and
1449 			 * another subvolume is renamed over the old location.
1450 			 */
1451 			btrfs_err(fs_info,
1452 				  "subvol '%s' does not match subvolid %llu",
1453 				  subvol_name, subvol_objectid);
1454 			ret = -EINVAL;
1455 		}
1456 		if (ret) {
1457 			dput(root);
1458 			root = ERR_PTR(ret);
1459 			deactivate_locked_super(s);
1460 		}
1461 	}
1462 
1463 out:
1464 	mntput(mnt);
1465 	kfree(subvol_name);
1466 	return root;
1467 }
1468 
1469 static int parse_security_options(char *orig_opts,
1470 				  struct security_mnt_opts *sec_opts)
1471 {
1472 	char *secdata = NULL;
1473 	int ret = 0;
1474 
1475 	secdata = alloc_secdata();
1476 	if (!secdata)
1477 		return -ENOMEM;
1478 	ret = security_sb_copy_data(orig_opts, secdata);
1479 	if (ret) {
1480 		free_secdata(secdata);
1481 		return ret;
1482 	}
1483 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1484 	free_secdata(secdata);
1485 	return ret;
1486 }
1487 
1488 static int setup_security_options(struct btrfs_fs_info *fs_info,
1489 				  struct super_block *sb,
1490 				  struct security_mnt_opts *sec_opts)
1491 {
1492 	int ret = 0;
1493 
1494 	/*
1495 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1496 	 * is valid.
1497 	 */
1498 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1499 	if (ret)
1500 		return ret;
1501 
1502 #ifdef CONFIG_SECURITY
1503 	if (!fs_info->security_opts.num_mnt_opts) {
1504 		/* first time security setup, copy sec_opts to fs_info */
1505 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1506 	} else {
1507 		/*
1508 		 * Since SELinux (the only one supporting security_mnt_opts)
1509 		 * does NOT support changing context during remount/mount of
1510 		 * the same sb, this must be the same or part of the same
1511 		 * security options, just free it.
1512 		 */
1513 		security_free_mnt_opts(sec_opts);
1514 	}
1515 #endif
1516 	return ret;
1517 }
1518 
1519 /*
1520  * Find a superblock for the given device / mount point.
1521  *
1522  * Note: This is based on mount_bdev from fs/super.c with a few additions
1523  *       for multiple device setup.  Make sure to keep it in sync.
1524  */
1525 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1526 		int flags, const char *device_name, void *data)
1527 {
1528 	struct block_device *bdev = NULL;
1529 	struct super_block *s;
1530 	struct btrfs_fs_devices *fs_devices = NULL;
1531 	struct btrfs_fs_info *fs_info = NULL;
1532 	struct security_mnt_opts new_sec_opts;
1533 	fmode_t mode = FMODE_READ;
1534 	int error = 0;
1535 
1536 	if (!(flags & SB_RDONLY))
1537 		mode |= FMODE_WRITE;
1538 
1539 	error = btrfs_parse_early_options(data, mode, fs_type,
1540 					  &fs_devices);
1541 	if (error) {
1542 		return ERR_PTR(error);
1543 	}
1544 
1545 	security_init_mnt_opts(&new_sec_opts);
1546 	if (data) {
1547 		error = parse_security_options(data, &new_sec_opts);
1548 		if (error)
1549 			return ERR_PTR(error);
1550 	}
1551 
1552 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1553 	if (error)
1554 		goto error_sec_opts;
1555 
1556 	/*
1557 	 * Setup a dummy root and fs_info for test/set super.  This is because
1558 	 * we don't actually fill this stuff out until open_ctree, but we need
1559 	 * it for searching for existing supers, so this lets us do that and
1560 	 * then open_ctree will properly initialize everything later.
1561 	 */
1562 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1563 	if (!fs_info) {
1564 		error = -ENOMEM;
1565 		goto error_sec_opts;
1566 	}
1567 
1568 	fs_info->fs_devices = fs_devices;
1569 
1570 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1571 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1572 	security_init_mnt_opts(&fs_info->security_opts);
1573 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1574 		error = -ENOMEM;
1575 		goto error_fs_info;
1576 	}
1577 
1578 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1579 	if (error)
1580 		goto error_fs_info;
1581 
1582 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1583 		error = -EACCES;
1584 		goto error_close_devices;
1585 	}
1586 
1587 	bdev = fs_devices->latest_bdev;
1588 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1589 		 fs_info);
1590 	if (IS_ERR(s)) {
1591 		error = PTR_ERR(s);
1592 		goto error_close_devices;
1593 	}
1594 
1595 	if (s->s_root) {
1596 		btrfs_close_devices(fs_devices);
1597 		free_fs_info(fs_info);
1598 		if ((flags ^ s->s_flags) & SB_RDONLY)
1599 			error = -EBUSY;
1600 	} else {
1601 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1602 		btrfs_sb(s)->bdev_holder = fs_type;
1603 		error = btrfs_fill_super(s, fs_devices, data);
1604 	}
1605 	if (error) {
1606 		deactivate_locked_super(s);
1607 		goto error_sec_opts;
1608 	}
1609 
1610 	fs_info = btrfs_sb(s);
1611 	error = setup_security_options(fs_info, s, &new_sec_opts);
1612 	if (error) {
1613 		deactivate_locked_super(s);
1614 		goto error_sec_opts;
1615 	}
1616 
1617 	return dget(s->s_root);
1618 
1619 error_close_devices:
1620 	btrfs_close_devices(fs_devices);
1621 error_fs_info:
1622 	free_fs_info(fs_info);
1623 error_sec_opts:
1624 	security_free_mnt_opts(&new_sec_opts);
1625 	return ERR_PTR(error);
1626 }
1627 
1628 /*
1629  * Mount function which is called by VFS layer.
1630  *
1631  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1632  * which needs vfsmount* of device's root (/).  This means device's root has to
1633  * be mounted internally in any case.
1634  *
1635  * Operation flow:
1636  *   1. Parse subvol id related options for later use in mount_subvol().
1637  *
1638  *   2. Mount device's root (/) by calling vfs_kern_mount().
1639  *
1640  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1641  *      first place. In order to avoid calling btrfs_mount() again, we use
1642  *      different file_system_type which is not registered to VFS by
1643  *      register_filesystem() (btrfs_root_fs_type). As a result,
1644  *      btrfs_mount_root() is called. The return value will be used by
1645  *      mount_subtree() in mount_subvol().
1646  *
1647  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1648  *      "btrfs subvolume set-default", mount_subvol() is called always.
1649  */
1650 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1651 		const char *device_name, void *data)
1652 {
1653 	struct vfsmount *mnt_root;
1654 	struct dentry *root;
1655 	fmode_t mode = FMODE_READ;
1656 	char *subvol_name = NULL;
1657 	u64 subvol_objectid = 0;
1658 	int error = 0;
1659 
1660 	if (!(flags & SB_RDONLY))
1661 		mode |= FMODE_WRITE;
1662 
1663 	error = btrfs_parse_subvol_options(data, mode,
1664 					  &subvol_name, &subvol_objectid);
1665 	if (error) {
1666 		kfree(subvol_name);
1667 		return ERR_PTR(error);
1668 	}
1669 
1670 	/* mount device's root (/) */
1671 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1672 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1673 		if (flags & SB_RDONLY) {
1674 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1675 				flags & ~SB_RDONLY, device_name, data);
1676 		} else {
1677 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1678 				flags | SB_RDONLY, device_name, data);
1679 			if (IS_ERR(mnt_root)) {
1680 				root = ERR_CAST(mnt_root);
1681 				goto out;
1682 			}
1683 
1684 			down_write(&mnt_root->mnt_sb->s_umount);
1685 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1686 			up_write(&mnt_root->mnt_sb->s_umount);
1687 			if (error < 0) {
1688 				root = ERR_PTR(error);
1689 				mntput(mnt_root);
1690 				goto out;
1691 			}
1692 		}
1693 	}
1694 	if (IS_ERR(mnt_root)) {
1695 		root = ERR_CAST(mnt_root);
1696 		goto out;
1697 	}
1698 
1699 	/* mount_subvol() will free subvol_name and mnt_root */
1700 	root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1701 
1702 out:
1703 	return root;
1704 }
1705 
1706 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1707 				     u32 new_pool_size, u32 old_pool_size)
1708 {
1709 	if (new_pool_size == old_pool_size)
1710 		return;
1711 
1712 	fs_info->thread_pool_size = new_pool_size;
1713 
1714 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1715 	       old_pool_size, new_pool_size);
1716 
1717 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1718 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1719 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1720 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1721 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1722 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1723 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1724 				new_pool_size);
1725 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1726 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1727 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1728 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1729 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1730 				new_pool_size);
1731 }
1732 
1733 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1734 {
1735 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1736 }
1737 
1738 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1739 				       unsigned long old_opts, int flags)
1740 {
1741 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1742 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1743 	     (flags & SB_RDONLY))) {
1744 		/* wait for any defraggers to finish */
1745 		wait_event(fs_info->transaction_wait,
1746 			   (atomic_read(&fs_info->defrag_running) == 0));
1747 		if (flags & SB_RDONLY)
1748 			sync_filesystem(fs_info->sb);
1749 	}
1750 }
1751 
1752 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1753 					 unsigned long old_opts)
1754 {
1755 	/*
1756 	 * We need to cleanup all defragable inodes if the autodefragment is
1757 	 * close or the filesystem is read only.
1758 	 */
1759 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1760 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1761 		btrfs_cleanup_defrag_inodes(fs_info);
1762 	}
1763 
1764 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1765 }
1766 
1767 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1768 {
1769 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1770 	struct btrfs_root *root = fs_info->tree_root;
1771 	unsigned old_flags = sb->s_flags;
1772 	unsigned long old_opts = fs_info->mount_opt;
1773 	unsigned long old_compress_type = fs_info->compress_type;
1774 	u64 old_max_inline = fs_info->max_inline;
1775 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1776 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1777 	int ret;
1778 
1779 	sync_filesystem(sb);
1780 	btrfs_remount_prepare(fs_info);
1781 
1782 	if (data) {
1783 		struct security_mnt_opts new_sec_opts;
1784 
1785 		security_init_mnt_opts(&new_sec_opts);
1786 		ret = parse_security_options(data, &new_sec_opts);
1787 		if (ret)
1788 			goto restore;
1789 		ret = setup_security_options(fs_info, sb,
1790 					     &new_sec_opts);
1791 		if (ret) {
1792 			security_free_mnt_opts(&new_sec_opts);
1793 			goto restore;
1794 		}
1795 	}
1796 
1797 	ret = btrfs_parse_options(fs_info, data, *flags);
1798 	if (ret) {
1799 		ret = -EINVAL;
1800 		goto restore;
1801 	}
1802 
1803 	btrfs_remount_begin(fs_info, old_opts, *flags);
1804 	btrfs_resize_thread_pool(fs_info,
1805 		fs_info->thread_pool_size, old_thread_pool_size);
1806 
1807 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1808 		goto out;
1809 
1810 	if (*flags & SB_RDONLY) {
1811 		/*
1812 		 * this also happens on 'umount -rf' or on shutdown, when
1813 		 * the filesystem is busy.
1814 		 */
1815 		cancel_work_sync(&fs_info->async_reclaim_work);
1816 
1817 		/* wait for the uuid_scan task to finish */
1818 		down(&fs_info->uuid_tree_rescan_sem);
1819 		/* avoid complains from lockdep et al. */
1820 		up(&fs_info->uuid_tree_rescan_sem);
1821 
1822 		sb->s_flags |= SB_RDONLY;
1823 
1824 		/*
1825 		 * Setting SB_RDONLY will put the cleaner thread to
1826 		 * sleep at the next loop if it's already active.
1827 		 * If it's already asleep, we'll leave unused block
1828 		 * groups on disk until we're mounted read-write again
1829 		 * unless we clean them up here.
1830 		 */
1831 		btrfs_delete_unused_bgs(fs_info);
1832 
1833 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1834 		btrfs_scrub_cancel(fs_info);
1835 		btrfs_pause_balance(fs_info);
1836 
1837 		ret = btrfs_commit_super(fs_info);
1838 		if (ret)
1839 			goto restore;
1840 	} else {
1841 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1842 			btrfs_err(fs_info,
1843 				"Remounting read-write after error is not allowed");
1844 			ret = -EINVAL;
1845 			goto restore;
1846 		}
1847 		if (fs_info->fs_devices->rw_devices == 0) {
1848 			ret = -EACCES;
1849 			goto restore;
1850 		}
1851 
1852 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1853 			btrfs_warn(fs_info,
1854 				"too many missing devices, writeable remount is not allowed");
1855 			ret = -EACCES;
1856 			goto restore;
1857 		}
1858 
1859 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1860 			ret = -EINVAL;
1861 			goto restore;
1862 		}
1863 
1864 		ret = btrfs_cleanup_fs_roots(fs_info);
1865 		if (ret)
1866 			goto restore;
1867 
1868 		/* recover relocation */
1869 		mutex_lock(&fs_info->cleaner_mutex);
1870 		ret = btrfs_recover_relocation(root);
1871 		mutex_unlock(&fs_info->cleaner_mutex);
1872 		if (ret)
1873 			goto restore;
1874 
1875 		ret = btrfs_resume_balance_async(fs_info);
1876 		if (ret)
1877 			goto restore;
1878 
1879 		ret = btrfs_resume_dev_replace_async(fs_info);
1880 		if (ret) {
1881 			btrfs_warn(fs_info, "failed to resume dev_replace");
1882 			goto restore;
1883 		}
1884 
1885 		btrfs_qgroup_rescan_resume(fs_info);
1886 
1887 		if (!fs_info->uuid_root) {
1888 			btrfs_info(fs_info, "creating UUID tree");
1889 			ret = btrfs_create_uuid_tree(fs_info);
1890 			if (ret) {
1891 				btrfs_warn(fs_info,
1892 					   "failed to create the UUID tree %d",
1893 					   ret);
1894 				goto restore;
1895 			}
1896 		}
1897 		sb->s_flags &= ~SB_RDONLY;
1898 
1899 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1900 	}
1901 out:
1902 	wake_up_process(fs_info->transaction_kthread);
1903 	btrfs_remount_cleanup(fs_info, old_opts);
1904 	return 0;
1905 
1906 restore:
1907 	/* We've hit an error - don't reset SB_RDONLY */
1908 	if (sb_rdonly(sb))
1909 		old_flags |= SB_RDONLY;
1910 	sb->s_flags = old_flags;
1911 	fs_info->mount_opt = old_opts;
1912 	fs_info->compress_type = old_compress_type;
1913 	fs_info->max_inline = old_max_inline;
1914 	btrfs_resize_thread_pool(fs_info,
1915 		old_thread_pool_size, fs_info->thread_pool_size);
1916 	fs_info->metadata_ratio = old_metadata_ratio;
1917 	btrfs_remount_cleanup(fs_info, old_opts);
1918 	return ret;
1919 }
1920 
1921 /* Used to sort the devices by max_avail(descending sort) */
1922 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1923 				       const void *dev_info2)
1924 {
1925 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1926 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1927 		return -1;
1928 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1929 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1930 		return 1;
1931 	else
1932 	return 0;
1933 }
1934 
1935 /*
1936  * sort the devices by max_avail, in which max free extent size of each device
1937  * is stored.(Descending Sort)
1938  */
1939 static inline void btrfs_descending_sort_devices(
1940 					struct btrfs_device_info *devices,
1941 					size_t nr_devices)
1942 {
1943 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1944 	     btrfs_cmp_device_free_bytes, NULL);
1945 }
1946 
1947 /*
1948  * The helper to calc the free space on the devices that can be used to store
1949  * file data.
1950  */
1951 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1952 				       u64 *free_bytes)
1953 {
1954 	struct btrfs_device_info *devices_info;
1955 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1956 	struct btrfs_device *device;
1957 	u64 skip_space;
1958 	u64 type;
1959 	u64 avail_space;
1960 	u64 min_stripe_size;
1961 	int min_stripes = 1, num_stripes = 1;
1962 	int i = 0, nr_devices;
1963 
1964 	/*
1965 	 * We aren't under the device list lock, so this is racy-ish, but good
1966 	 * enough for our purposes.
1967 	 */
1968 	nr_devices = fs_info->fs_devices->open_devices;
1969 	if (!nr_devices) {
1970 		smp_mb();
1971 		nr_devices = fs_info->fs_devices->open_devices;
1972 		ASSERT(nr_devices);
1973 		if (!nr_devices) {
1974 			*free_bytes = 0;
1975 			return 0;
1976 		}
1977 	}
1978 
1979 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1980 			       GFP_KERNEL);
1981 	if (!devices_info)
1982 		return -ENOMEM;
1983 
1984 	/* calc min stripe number for data space allocation */
1985 	type = btrfs_data_alloc_profile(fs_info);
1986 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1987 		min_stripes = 2;
1988 		num_stripes = nr_devices;
1989 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1990 		min_stripes = 2;
1991 		num_stripes = 2;
1992 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1993 		min_stripes = 4;
1994 		num_stripes = 4;
1995 	}
1996 
1997 	if (type & BTRFS_BLOCK_GROUP_DUP)
1998 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1999 	else
2000 		min_stripe_size = BTRFS_STRIPE_LEN;
2001 
2002 	rcu_read_lock();
2003 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2004 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2005 						&device->dev_state) ||
2006 		    !device->bdev ||
2007 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2008 			continue;
2009 
2010 		if (i >= nr_devices)
2011 			break;
2012 
2013 		avail_space = device->total_bytes - device->bytes_used;
2014 
2015 		/* align with stripe_len */
2016 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2017 		avail_space *= BTRFS_STRIPE_LEN;
2018 
2019 		/*
2020 		 * In order to avoid overwriting the superblock on the drive,
2021 		 * btrfs starts at an offset of at least 1MB when doing chunk
2022 		 * allocation.
2023 		 */
2024 		skip_space = SZ_1M;
2025 
2026 		/*
2027 		 * we can use the free space in [0, skip_space - 1], subtract
2028 		 * it from the total.
2029 		 */
2030 		if (avail_space && avail_space >= skip_space)
2031 			avail_space -= skip_space;
2032 		else
2033 			avail_space = 0;
2034 
2035 		if (avail_space < min_stripe_size)
2036 			continue;
2037 
2038 		devices_info[i].dev = device;
2039 		devices_info[i].max_avail = avail_space;
2040 
2041 		i++;
2042 	}
2043 	rcu_read_unlock();
2044 
2045 	nr_devices = i;
2046 
2047 	btrfs_descending_sort_devices(devices_info, nr_devices);
2048 
2049 	i = nr_devices - 1;
2050 	avail_space = 0;
2051 	while (nr_devices >= min_stripes) {
2052 		if (num_stripes > nr_devices)
2053 			num_stripes = nr_devices;
2054 
2055 		if (devices_info[i].max_avail >= min_stripe_size) {
2056 			int j;
2057 			u64 alloc_size;
2058 
2059 			avail_space += devices_info[i].max_avail * num_stripes;
2060 			alloc_size = devices_info[i].max_avail;
2061 			for (j = i + 1 - num_stripes; j <= i; j++)
2062 				devices_info[j].max_avail -= alloc_size;
2063 		}
2064 		i--;
2065 		nr_devices--;
2066 	}
2067 
2068 	kfree(devices_info);
2069 	*free_bytes = avail_space;
2070 	return 0;
2071 }
2072 
2073 /*
2074  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2075  *
2076  * If there's a redundant raid level at DATA block groups, use the respective
2077  * multiplier to scale the sizes.
2078  *
2079  * Unused device space usage is based on simulating the chunk allocator
2080  * algorithm that respects the device sizes and order of allocations.  This is
2081  * a close approximation of the actual use but there are other factors that may
2082  * change the result (like a new metadata chunk).
2083  *
2084  * If metadata is exhausted, f_bavail will be 0.
2085  */
2086 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2087 {
2088 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2089 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2090 	struct list_head *head = &fs_info->space_info;
2091 	struct btrfs_space_info *found;
2092 	u64 total_used = 0;
2093 	u64 total_free_data = 0;
2094 	u64 total_free_meta = 0;
2095 	int bits = dentry->d_sb->s_blocksize_bits;
2096 	__be32 *fsid = (__be32 *)fs_info->fsid;
2097 	unsigned factor = 1;
2098 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2099 	int ret;
2100 	u64 thresh = 0;
2101 	int mixed = 0;
2102 
2103 	rcu_read_lock();
2104 	list_for_each_entry_rcu(found, head, list) {
2105 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2106 			int i;
2107 
2108 			total_free_data += found->disk_total - found->disk_used;
2109 			total_free_data -=
2110 				btrfs_account_ro_block_groups_free_space(found);
2111 
2112 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2113 				if (!list_empty(&found->block_groups[i])) {
2114 					switch (i) {
2115 					case BTRFS_RAID_DUP:
2116 					case BTRFS_RAID_RAID1:
2117 					case BTRFS_RAID_RAID10:
2118 						factor = 2;
2119 					}
2120 				}
2121 			}
2122 		}
2123 
2124 		/*
2125 		 * Metadata in mixed block goup profiles are accounted in data
2126 		 */
2127 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2128 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2129 				mixed = 1;
2130 			else
2131 				total_free_meta += found->disk_total -
2132 					found->disk_used;
2133 		}
2134 
2135 		total_used += found->disk_used;
2136 	}
2137 
2138 	rcu_read_unlock();
2139 
2140 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2141 	buf->f_blocks >>= bits;
2142 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2143 
2144 	/* Account global block reserve as used, it's in logical size already */
2145 	spin_lock(&block_rsv->lock);
2146 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2147 	if (buf->f_bfree >= block_rsv->size >> bits)
2148 		buf->f_bfree -= block_rsv->size >> bits;
2149 	else
2150 		buf->f_bfree = 0;
2151 	spin_unlock(&block_rsv->lock);
2152 
2153 	buf->f_bavail = div_u64(total_free_data, factor);
2154 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2155 	if (ret)
2156 		return ret;
2157 	buf->f_bavail += div_u64(total_free_data, factor);
2158 	buf->f_bavail = buf->f_bavail >> bits;
2159 
2160 	/*
2161 	 * We calculate the remaining metadata space minus global reserve. If
2162 	 * this is (supposedly) smaller than zero, there's no space. But this
2163 	 * does not hold in practice, the exhausted state happens where's still
2164 	 * some positive delta. So we apply some guesswork and compare the
2165 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2166 	 *
2167 	 * We probably cannot calculate the exact threshold value because this
2168 	 * depends on the internal reservations requested by various
2169 	 * operations, so some operations that consume a few metadata will
2170 	 * succeed even if the Avail is zero. But this is better than the other
2171 	 * way around.
2172 	 */
2173 	thresh = SZ_4M;
2174 
2175 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2176 		buf->f_bavail = 0;
2177 
2178 	buf->f_type = BTRFS_SUPER_MAGIC;
2179 	buf->f_bsize = dentry->d_sb->s_blocksize;
2180 	buf->f_namelen = BTRFS_NAME_LEN;
2181 
2182 	/* We treat it as constant endianness (it doesn't matter _which_)
2183 	   because we want the fsid to come out the same whether mounted
2184 	   on a big-endian or little-endian host */
2185 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2186 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2187 	/* Mask in the root object ID too, to disambiguate subvols */
2188 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2189 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2190 
2191 	return 0;
2192 }
2193 
2194 static void btrfs_kill_super(struct super_block *sb)
2195 {
2196 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2197 	kill_anon_super(sb);
2198 	free_fs_info(fs_info);
2199 }
2200 
2201 static struct file_system_type btrfs_fs_type = {
2202 	.owner		= THIS_MODULE,
2203 	.name		= "btrfs",
2204 	.mount		= btrfs_mount,
2205 	.kill_sb	= btrfs_kill_super,
2206 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2207 };
2208 
2209 static struct file_system_type btrfs_root_fs_type = {
2210 	.owner		= THIS_MODULE,
2211 	.name		= "btrfs",
2212 	.mount		= btrfs_mount_root,
2213 	.kill_sb	= btrfs_kill_super,
2214 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2215 };
2216 
2217 MODULE_ALIAS_FS("btrfs");
2218 
2219 static int btrfs_control_open(struct inode *inode, struct file *file)
2220 {
2221 	/*
2222 	 * The control file's private_data is used to hold the
2223 	 * transaction when it is started and is used to keep
2224 	 * track of whether a transaction is already in progress.
2225 	 */
2226 	file->private_data = NULL;
2227 	return 0;
2228 }
2229 
2230 /*
2231  * used by btrfsctl to scan devices when no FS is mounted
2232  */
2233 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2234 				unsigned long arg)
2235 {
2236 	struct btrfs_ioctl_vol_args *vol;
2237 	struct btrfs_fs_devices *fs_devices;
2238 	int ret = -ENOTTY;
2239 
2240 	if (!capable(CAP_SYS_ADMIN))
2241 		return -EPERM;
2242 
2243 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2244 	if (IS_ERR(vol))
2245 		return PTR_ERR(vol);
2246 
2247 	switch (cmd) {
2248 	case BTRFS_IOC_SCAN_DEV:
2249 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2250 					    &btrfs_root_fs_type, &fs_devices);
2251 		break;
2252 	case BTRFS_IOC_DEVICES_READY:
2253 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2254 					    &btrfs_root_fs_type, &fs_devices);
2255 		if (ret)
2256 			break;
2257 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2258 		break;
2259 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2260 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2261 		break;
2262 	}
2263 
2264 	kfree(vol);
2265 	return ret;
2266 }
2267 
2268 static int btrfs_freeze(struct super_block *sb)
2269 {
2270 	struct btrfs_trans_handle *trans;
2271 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2272 	struct btrfs_root *root = fs_info->tree_root;
2273 
2274 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2275 	/*
2276 	 * We don't need a barrier here, we'll wait for any transaction that
2277 	 * could be in progress on other threads (and do delayed iputs that
2278 	 * we want to avoid on a frozen filesystem), or do the commit
2279 	 * ourselves.
2280 	 */
2281 	trans = btrfs_attach_transaction_barrier(root);
2282 	if (IS_ERR(trans)) {
2283 		/* no transaction, don't bother */
2284 		if (PTR_ERR(trans) == -ENOENT)
2285 			return 0;
2286 		return PTR_ERR(trans);
2287 	}
2288 	return btrfs_commit_transaction(trans);
2289 }
2290 
2291 static int btrfs_unfreeze(struct super_block *sb)
2292 {
2293 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2294 
2295 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2296 	return 0;
2297 }
2298 
2299 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2300 {
2301 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2302 	struct btrfs_fs_devices *cur_devices;
2303 	struct btrfs_device *dev, *first_dev = NULL;
2304 	struct list_head *head;
2305 	struct rcu_string *name;
2306 
2307 	/*
2308 	 * Lightweight locking of the devices. We should not need
2309 	 * device_list_mutex here as we only read the device data and the list
2310 	 * is protected by RCU.  Even if a device is deleted during the list
2311 	 * traversals, we'll get valid data, the freeing callback will wait at
2312 	 * least until until the rcu_read_unlock.
2313 	 */
2314 	rcu_read_lock();
2315 	cur_devices = fs_info->fs_devices;
2316 	while (cur_devices) {
2317 		head = &cur_devices->devices;
2318 		list_for_each_entry_rcu(dev, head, dev_list) {
2319 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2320 				continue;
2321 			if (!dev->name)
2322 				continue;
2323 			if (!first_dev || dev->devid < first_dev->devid)
2324 				first_dev = dev;
2325 		}
2326 		cur_devices = cur_devices->seed;
2327 	}
2328 
2329 	if (first_dev) {
2330 		name = rcu_dereference(first_dev->name);
2331 		seq_escape(m, name->str, " \t\n\\");
2332 	} else {
2333 		WARN_ON(1);
2334 	}
2335 	rcu_read_unlock();
2336 	return 0;
2337 }
2338 
2339 static const struct super_operations btrfs_super_ops = {
2340 	.drop_inode	= btrfs_drop_inode,
2341 	.evict_inode	= btrfs_evict_inode,
2342 	.put_super	= btrfs_put_super,
2343 	.sync_fs	= btrfs_sync_fs,
2344 	.show_options	= btrfs_show_options,
2345 	.show_devname	= btrfs_show_devname,
2346 	.write_inode	= btrfs_write_inode,
2347 	.alloc_inode	= btrfs_alloc_inode,
2348 	.destroy_inode	= btrfs_destroy_inode,
2349 	.statfs		= btrfs_statfs,
2350 	.remount_fs	= btrfs_remount,
2351 	.freeze_fs	= btrfs_freeze,
2352 	.unfreeze_fs	= btrfs_unfreeze,
2353 };
2354 
2355 static const struct file_operations btrfs_ctl_fops = {
2356 	.open = btrfs_control_open,
2357 	.unlocked_ioctl	 = btrfs_control_ioctl,
2358 	.compat_ioctl = btrfs_control_ioctl,
2359 	.owner	 = THIS_MODULE,
2360 	.llseek = noop_llseek,
2361 };
2362 
2363 static struct miscdevice btrfs_misc = {
2364 	.minor		= BTRFS_MINOR,
2365 	.name		= "btrfs-control",
2366 	.fops		= &btrfs_ctl_fops
2367 };
2368 
2369 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2370 MODULE_ALIAS("devname:btrfs-control");
2371 
2372 static int __init btrfs_interface_init(void)
2373 {
2374 	return misc_register(&btrfs_misc);
2375 }
2376 
2377 static __cold void btrfs_interface_exit(void)
2378 {
2379 	misc_deregister(&btrfs_misc);
2380 }
2381 
2382 static void __init btrfs_print_mod_info(void)
2383 {
2384 	pr_info("Btrfs loaded, crc32c=%s"
2385 #ifdef CONFIG_BTRFS_DEBUG
2386 			", debug=on"
2387 #endif
2388 #ifdef CONFIG_BTRFS_ASSERT
2389 			", assert=on"
2390 #endif
2391 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2392 			", integrity-checker=on"
2393 #endif
2394 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2395 			", ref-verify=on"
2396 #endif
2397 			"\n",
2398 			crc32c_impl());
2399 }
2400 
2401 static int __init init_btrfs_fs(void)
2402 {
2403 	int err;
2404 
2405 	btrfs_props_init();
2406 
2407 	err = btrfs_init_sysfs();
2408 	if (err)
2409 		return err;
2410 
2411 	btrfs_init_compress();
2412 
2413 	err = btrfs_init_cachep();
2414 	if (err)
2415 		goto free_compress;
2416 
2417 	err = extent_io_init();
2418 	if (err)
2419 		goto free_cachep;
2420 
2421 	err = extent_map_init();
2422 	if (err)
2423 		goto free_extent_io;
2424 
2425 	err = ordered_data_init();
2426 	if (err)
2427 		goto free_extent_map;
2428 
2429 	err = btrfs_delayed_inode_init();
2430 	if (err)
2431 		goto free_ordered_data;
2432 
2433 	err = btrfs_auto_defrag_init();
2434 	if (err)
2435 		goto free_delayed_inode;
2436 
2437 	err = btrfs_delayed_ref_init();
2438 	if (err)
2439 		goto free_auto_defrag;
2440 
2441 	err = btrfs_prelim_ref_init();
2442 	if (err)
2443 		goto free_delayed_ref;
2444 
2445 	err = btrfs_end_io_wq_init();
2446 	if (err)
2447 		goto free_prelim_ref;
2448 
2449 	err = btrfs_interface_init();
2450 	if (err)
2451 		goto free_end_io_wq;
2452 
2453 	btrfs_init_lockdep();
2454 
2455 	btrfs_print_mod_info();
2456 
2457 	err = btrfs_run_sanity_tests();
2458 	if (err)
2459 		goto unregister_ioctl;
2460 
2461 	err = register_filesystem(&btrfs_fs_type);
2462 	if (err)
2463 		goto unregister_ioctl;
2464 
2465 	return 0;
2466 
2467 unregister_ioctl:
2468 	btrfs_interface_exit();
2469 free_end_io_wq:
2470 	btrfs_end_io_wq_exit();
2471 free_prelim_ref:
2472 	btrfs_prelim_ref_exit();
2473 free_delayed_ref:
2474 	btrfs_delayed_ref_exit();
2475 free_auto_defrag:
2476 	btrfs_auto_defrag_exit();
2477 free_delayed_inode:
2478 	btrfs_delayed_inode_exit();
2479 free_ordered_data:
2480 	ordered_data_exit();
2481 free_extent_map:
2482 	extent_map_exit();
2483 free_extent_io:
2484 	extent_io_exit();
2485 free_cachep:
2486 	btrfs_destroy_cachep();
2487 free_compress:
2488 	btrfs_exit_compress();
2489 	btrfs_exit_sysfs();
2490 
2491 	return err;
2492 }
2493 
2494 static void __exit exit_btrfs_fs(void)
2495 {
2496 	btrfs_destroy_cachep();
2497 	btrfs_delayed_ref_exit();
2498 	btrfs_auto_defrag_exit();
2499 	btrfs_delayed_inode_exit();
2500 	btrfs_prelim_ref_exit();
2501 	ordered_data_exit();
2502 	extent_map_exit();
2503 	extent_io_exit();
2504 	btrfs_interface_exit();
2505 	btrfs_end_io_wq_exit();
2506 	unregister_filesystem(&btrfs_fs_type);
2507 	btrfs_exit_sysfs();
2508 	btrfs_cleanup_fs_uuids();
2509 	btrfs_exit_compress();
2510 }
2511 
2512 late_initcall(init_btrfs_fs);
2513 module_exit(exit_btrfs_fs)
2514 
2515 MODULE_LICENSE("GPL");
2516