1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/btrfs.h> 65 66 static const struct super_operations btrfs_super_ops; 67 static struct file_system_type btrfs_fs_type; 68 69 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 70 71 static const char *btrfs_decode_error(int errno) 72 { 73 char *errstr = "unknown"; 74 75 switch (errno) { 76 case -EIO: 77 errstr = "IO failure"; 78 break; 79 case -ENOMEM: 80 errstr = "Out of memory"; 81 break; 82 case -EROFS: 83 errstr = "Readonly filesystem"; 84 break; 85 case -EEXIST: 86 errstr = "Object already exists"; 87 break; 88 case -ENOSPC: 89 errstr = "No space left"; 90 break; 91 case -ENOENT: 92 errstr = "No such entry"; 93 break; 94 } 95 96 return errstr; 97 } 98 99 static void save_error_info(struct btrfs_fs_info *fs_info) 100 { 101 /* 102 * today we only save the error info into ram. Long term we'll 103 * also send it down to the disk 104 */ 105 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 106 } 107 108 /* btrfs handle error by forcing the filesystem readonly */ 109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 110 { 111 struct super_block *sb = fs_info->sb; 112 113 if (sb->s_flags & MS_RDONLY) 114 return; 115 116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 117 sb->s_flags |= MS_RDONLY; 118 btrfs_info(fs_info, "forced readonly"); 119 /* 120 * Note that a running device replace operation is not 121 * canceled here although there is no way to update 122 * the progress. It would add the risk of a deadlock, 123 * therefore the canceling is ommited. The only penalty 124 * is that some I/O remains active until the procedure 125 * completes. The next time when the filesystem is 126 * mounted writeable again, the device replace 127 * operation continues. 128 */ 129 } 130 } 131 132 #ifdef CONFIG_PRINTK 133 /* 134 * __btrfs_std_error decodes expected errors from the caller and 135 * invokes the approciate error response. 136 */ 137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 138 unsigned int line, int errno, const char *fmt, ...) 139 { 140 struct super_block *sb = fs_info->sb; 141 const char *errstr; 142 143 /* 144 * Special case: if the error is EROFS, and we're already 145 * under MS_RDONLY, then it is safe here. 146 */ 147 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 148 return; 149 150 errstr = btrfs_decode_error(errno); 151 if (fmt) { 152 struct va_format vaf; 153 va_list args; 154 155 va_start(args, fmt); 156 vaf.fmt = fmt; 157 vaf.va = &args; 158 159 printk(KERN_CRIT 160 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 161 sb->s_id, function, line, errno, errstr, &vaf); 162 va_end(args); 163 } else { 164 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 165 sb->s_id, function, line, errno, errstr); 166 } 167 168 /* Don't go through full error handling during mount */ 169 save_error_info(fs_info); 170 if (sb->s_flags & MS_BORN) 171 btrfs_handle_error(fs_info); 172 } 173 174 static const char * const logtypes[] = { 175 "emergency", 176 "alert", 177 "critical", 178 "error", 179 "warning", 180 "notice", 181 "info", 182 "debug", 183 }; 184 185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 186 { 187 struct super_block *sb = fs_info->sb; 188 char lvl[4]; 189 struct va_format vaf; 190 va_list args; 191 const char *type = logtypes[4]; 192 int kern_level; 193 194 va_start(args, fmt); 195 196 kern_level = printk_get_level(fmt); 197 if (kern_level) { 198 size_t size = printk_skip_level(fmt) - fmt; 199 memcpy(lvl, fmt, size); 200 lvl[size] = '\0'; 201 fmt += size; 202 type = logtypes[kern_level - '0']; 203 } else 204 *lvl = '\0'; 205 206 vaf.fmt = fmt; 207 vaf.va = &args; 208 209 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 210 211 va_end(args); 212 } 213 214 #else 215 216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 217 unsigned int line, int errno, const char *fmt, ...) 218 { 219 struct super_block *sb = fs_info->sb; 220 221 /* 222 * Special case: if the error is EROFS, and we're already 223 * under MS_RDONLY, then it is safe here. 224 */ 225 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 226 return; 227 228 /* Don't go through full error handling during mount */ 229 if (sb->s_flags & MS_BORN) { 230 save_error_info(fs_info); 231 btrfs_handle_error(fs_info); 232 } 233 } 234 #endif 235 236 /* 237 * We only mark the transaction aborted and then set the file system read-only. 238 * This will prevent new transactions from starting or trying to join this 239 * one. 240 * 241 * This means that error recovery at the call site is limited to freeing 242 * any local memory allocations and passing the error code up without 243 * further cleanup. The transaction should complete as it normally would 244 * in the call path but will return -EIO. 245 * 246 * We'll complete the cleanup in btrfs_end_transaction and 247 * btrfs_commit_transaction. 248 */ 249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 250 struct btrfs_root *root, const char *function, 251 unsigned int line, int errno) 252 { 253 /* 254 * Report first abort since mount 255 */ 256 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, 257 &root->fs_info->fs_state)) { 258 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n", 259 errno); 260 } 261 trans->aborted = errno; 262 /* Nothing used. The other threads that have joined this 263 * transaction may be able to continue. */ 264 if (!trans->blocks_used) { 265 const char *errstr; 266 267 errstr = btrfs_decode_error(errno); 268 btrfs_warn(root->fs_info, 269 "%s:%d: Aborting unused transaction(%s).", 270 function, line, errstr); 271 return; 272 } 273 ACCESS_ONCE(trans->transaction->aborted) = errno; 274 /* Wake up anybody who may be waiting on this transaction */ 275 wake_up(&root->fs_info->transaction_wait); 276 wake_up(&root->fs_info->transaction_blocked_wait); 277 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 278 } 279 /* 280 * __btrfs_panic decodes unexpected, fatal errors from the caller, 281 * issues an alert, and either panics or BUGs, depending on mount options. 282 */ 283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 284 unsigned int line, int errno, const char *fmt, ...) 285 { 286 char *s_id = "<unknown>"; 287 const char *errstr; 288 struct va_format vaf = { .fmt = fmt }; 289 va_list args; 290 291 if (fs_info) 292 s_id = fs_info->sb->s_id; 293 294 va_start(args, fmt); 295 vaf.va = &args; 296 297 errstr = btrfs_decode_error(errno); 298 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 299 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 300 s_id, function, line, &vaf, errno, errstr); 301 302 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 303 function, line, &vaf, errno, errstr); 304 va_end(args); 305 /* Caller calls BUG() */ 306 } 307 308 static void btrfs_put_super(struct super_block *sb) 309 { 310 (void)close_ctree(btrfs_sb(sb)->tree_root); 311 /* FIXME: need to fix VFS to return error? */ 312 /* AV: return it _where_? ->put_super() can be triggered by any number 313 * of async events, up to and including delivery of SIGKILL to the 314 * last process that kept it busy. Or segfault in the aforementioned 315 * process... Whom would you report that to? 316 */ 317 } 318 319 enum { 320 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 321 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 322 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 323 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 324 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 325 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 326 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 327 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 328 Opt_check_integrity, Opt_check_integrity_including_extent_data, 329 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 330 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 331 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 332 Opt_datasum, Opt_treelog, Opt_noinode_cache, 333 Opt_err, 334 }; 335 336 static match_table_t tokens = { 337 {Opt_degraded, "degraded"}, 338 {Opt_subvol, "subvol=%s"}, 339 {Opt_subvolid, "subvolid=%s"}, 340 {Opt_device, "device=%s"}, 341 {Opt_nodatasum, "nodatasum"}, 342 {Opt_datasum, "datasum"}, 343 {Opt_nodatacow, "nodatacow"}, 344 {Opt_datacow, "datacow"}, 345 {Opt_nobarrier, "nobarrier"}, 346 {Opt_barrier, "barrier"}, 347 {Opt_max_inline, "max_inline=%s"}, 348 {Opt_alloc_start, "alloc_start=%s"}, 349 {Opt_thread_pool, "thread_pool=%d"}, 350 {Opt_compress, "compress"}, 351 {Opt_compress_type, "compress=%s"}, 352 {Opt_compress_force, "compress-force"}, 353 {Opt_compress_force_type, "compress-force=%s"}, 354 {Opt_ssd, "ssd"}, 355 {Opt_ssd_spread, "ssd_spread"}, 356 {Opt_nossd, "nossd"}, 357 {Opt_acl, "acl"}, 358 {Opt_noacl, "noacl"}, 359 {Opt_notreelog, "notreelog"}, 360 {Opt_treelog, "treelog"}, 361 {Opt_flushoncommit, "flushoncommit"}, 362 {Opt_noflushoncommit, "noflushoncommit"}, 363 {Opt_ratio, "metadata_ratio=%d"}, 364 {Opt_discard, "discard"}, 365 {Opt_nodiscard, "nodiscard"}, 366 {Opt_space_cache, "space_cache"}, 367 {Opt_clear_cache, "clear_cache"}, 368 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 369 {Opt_enospc_debug, "enospc_debug"}, 370 {Opt_noenospc_debug, "noenospc_debug"}, 371 {Opt_subvolrootid, "subvolrootid=%d"}, 372 {Opt_defrag, "autodefrag"}, 373 {Opt_nodefrag, "noautodefrag"}, 374 {Opt_inode_cache, "inode_cache"}, 375 {Opt_noinode_cache, "noinode_cache"}, 376 {Opt_no_space_cache, "nospace_cache"}, 377 {Opt_recovery, "recovery"}, 378 {Opt_skip_balance, "skip_balance"}, 379 {Opt_check_integrity, "check_int"}, 380 {Opt_check_integrity_including_extent_data, "check_int_data"}, 381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 383 {Opt_fatal_errors, "fatal_errors=%s"}, 384 {Opt_commit_interval, "commit=%d"}, 385 {Opt_err, NULL}, 386 }; 387 388 #define btrfs_set_and_info(root, opt, fmt, args...) \ 389 { \ 390 if (!btrfs_test_opt(root, opt)) \ 391 btrfs_info(root->fs_info, fmt, ##args); \ 392 btrfs_set_opt(root->fs_info->mount_opt, opt); \ 393 } 394 395 #define btrfs_clear_and_info(root, opt, fmt, args...) \ 396 { \ 397 if (btrfs_test_opt(root, opt)) \ 398 btrfs_info(root->fs_info, fmt, ##args); \ 399 btrfs_clear_opt(root->fs_info->mount_opt, opt); \ 400 } 401 402 /* 403 * Regular mount options parser. Everything that is needed only when 404 * reading in a new superblock is parsed here. 405 * XXX JDM: This needs to be cleaned up for remount. 406 */ 407 int btrfs_parse_options(struct btrfs_root *root, char *options) 408 { 409 struct btrfs_fs_info *info = root->fs_info; 410 substring_t args[MAX_OPT_ARGS]; 411 char *p, *num, *orig = NULL; 412 u64 cache_gen; 413 int intarg; 414 int ret = 0; 415 char *compress_type; 416 bool compress_force = false; 417 bool compress = false; 418 419 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 420 if (cache_gen) 421 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 422 423 if (!options) 424 goto out; 425 426 /* 427 * strsep changes the string, duplicate it because parse_options 428 * gets called twice 429 */ 430 options = kstrdup(options, GFP_NOFS); 431 if (!options) 432 return -ENOMEM; 433 434 orig = options; 435 436 while ((p = strsep(&options, ",")) != NULL) { 437 int token; 438 if (!*p) 439 continue; 440 441 token = match_token(p, tokens, args); 442 switch (token) { 443 case Opt_degraded: 444 btrfs_info(root->fs_info, "allowing degraded mounts"); 445 btrfs_set_opt(info->mount_opt, DEGRADED); 446 break; 447 case Opt_subvol: 448 case Opt_subvolid: 449 case Opt_subvolrootid: 450 case Opt_device: 451 /* 452 * These are parsed by btrfs_parse_early_options 453 * and can be happily ignored here. 454 */ 455 break; 456 case Opt_nodatasum: 457 btrfs_set_and_info(root, NODATASUM, 458 "setting nodatasum"); 459 break; 460 case Opt_datasum: 461 if (btrfs_test_opt(root, NODATASUM)) { 462 if (btrfs_test_opt(root, NODATACOW)) 463 btrfs_info(root->fs_info, "setting datasum, datacow enabled"); 464 else 465 btrfs_info(root->fs_info, "setting datasum"); 466 } 467 btrfs_clear_opt(info->mount_opt, NODATACOW); 468 btrfs_clear_opt(info->mount_opt, NODATASUM); 469 break; 470 case Opt_nodatacow: 471 if (!btrfs_test_opt(root, NODATACOW)) { 472 if (!btrfs_test_opt(root, COMPRESS) || 473 !btrfs_test_opt(root, FORCE_COMPRESS)) { 474 btrfs_info(root->fs_info, 475 "setting nodatacow, compression disabled"); 476 } else { 477 btrfs_info(root->fs_info, "setting nodatacow"); 478 } 479 } 480 btrfs_clear_opt(info->mount_opt, COMPRESS); 481 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 482 btrfs_set_opt(info->mount_opt, NODATACOW); 483 btrfs_set_opt(info->mount_opt, NODATASUM); 484 break; 485 case Opt_datacow: 486 btrfs_clear_and_info(root, NODATACOW, 487 "setting datacow"); 488 break; 489 case Opt_compress_force: 490 case Opt_compress_force_type: 491 compress_force = true; 492 /* Fallthrough */ 493 case Opt_compress: 494 case Opt_compress_type: 495 compress = true; 496 if (token == Opt_compress || 497 token == Opt_compress_force || 498 strcmp(args[0].from, "zlib") == 0) { 499 compress_type = "zlib"; 500 info->compress_type = BTRFS_COMPRESS_ZLIB; 501 btrfs_set_opt(info->mount_opt, COMPRESS); 502 btrfs_clear_opt(info->mount_opt, NODATACOW); 503 btrfs_clear_opt(info->mount_opt, NODATASUM); 504 } else if (strcmp(args[0].from, "lzo") == 0) { 505 compress_type = "lzo"; 506 info->compress_type = BTRFS_COMPRESS_LZO; 507 btrfs_set_opt(info->mount_opt, COMPRESS); 508 btrfs_clear_opt(info->mount_opt, NODATACOW); 509 btrfs_clear_opt(info->mount_opt, NODATASUM); 510 btrfs_set_fs_incompat(info, COMPRESS_LZO); 511 } else if (strncmp(args[0].from, "no", 2) == 0) { 512 compress_type = "no"; 513 btrfs_clear_opt(info->mount_opt, COMPRESS); 514 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 515 compress_force = false; 516 } else { 517 ret = -EINVAL; 518 goto out; 519 } 520 521 if (compress_force) { 522 btrfs_set_and_info(root, FORCE_COMPRESS, 523 "force %s compression", 524 compress_type); 525 } else if (compress) { 526 if (!btrfs_test_opt(root, COMPRESS)) 527 btrfs_info(root->fs_info, 528 "btrfs: use %s compression\n", 529 compress_type); 530 } 531 break; 532 case Opt_ssd: 533 btrfs_set_and_info(root, SSD, 534 "use ssd allocation scheme"); 535 break; 536 case Opt_ssd_spread: 537 btrfs_set_and_info(root, SSD_SPREAD, 538 "use spread ssd allocation scheme"); 539 break; 540 case Opt_nossd: 541 btrfs_clear_and_info(root, NOSSD, 542 "not using ssd allocation scheme"); 543 btrfs_clear_opt(info->mount_opt, SSD); 544 break; 545 case Opt_barrier: 546 btrfs_clear_and_info(root, NOBARRIER, 547 "turning on barriers"); 548 break; 549 case Opt_nobarrier: 550 btrfs_set_and_info(root, NOBARRIER, 551 "turning off barriers"); 552 break; 553 case Opt_thread_pool: 554 ret = match_int(&args[0], &intarg); 555 if (ret) { 556 goto out; 557 } else if (intarg > 0) { 558 info->thread_pool_size = intarg; 559 } else { 560 ret = -EINVAL; 561 goto out; 562 } 563 break; 564 case Opt_max_inline: 565 num = match_strdup(&args[0]); 566 if (num) { 567 info->max_inline = memparse(num, NULL); 568 kfree(num); 569 570 if (info->max_inline) { 571 info->max_inline = min_t(u64, 572 info->max_inline, 573 root->sectorsize); 574 } 575 btrfs_info(root->fs_info, "max_inline at %llu", 576 info->max_inline); 577 } else { 578 ret = -ENOMEM; 579 goto out; 580 } 581 break; 582 case Opt_alloc_start: 583 num = match_strdup(&args[0]); 584 if (num) { 585 mutex_lock(&info->chunk_mutex); 586 info->alloc_start = memparse(num, NULL); 587 mutex_unlock(&info->chunk_mutex); 588 kfree(num); 589 btrfs_info(root->fs_info, "allocations start at %llu", 590 info->alloc_start); 591 } else { 592 ret = -ENOMEM; 593 goto out; 594 } 595 break; 596 case Opt_acl: 597 root->fs_info->sb->s_flags |= MS_POSIXACL; 598 break; 599 case Opt_noacl: 600 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 601 break; 602 case Opt_notreelog: 603 btrfs_set_and_info(root, NOTREELOG, 604 "disabling tree log"); 605 break; 606 case Opt_treelog: 607 btrfs_clear_and_info(root, NOTREELOG, 608 "enabling tree log"); 609 break; 610 case Opt_flushoncommit: 611 btrfs_set_and_info(root, FLUSHONCOMMIT, 612 "turning on flush-on-commit"); 613 break; 614 case Opt_noflushoncommit: 615 btrfs_clear_and_info(root, FLUSHONCOMMIT, 616 "turning off flush-on-commit"); 617 break; 618 case Opt_ratio: 619 ret = match_int(&args[0], &intarg); 620 if (ret) { 621 goto out; 622 } else if (intarg >= 0) { 623 info->metadata_ratio = intarg; 624 btrfs_info(root->fs_info, "metadata ratio %d", 625 info->metadata_ratio); 626 } else { 627 ret = -EINVAL; 628 goto out; 629 } 630 break; 631 case Opt_discard: 632 btrfs_set_and_info(root, DISCARD, 633 "turning on discard"); 634 break; 635 case Opt_nodiscard: 636 btrfs_clear_and_info(root, DISCARD, 637 "turning off discard"); 638 break; 639 case Opt_space_cache: 640 btrfs_set_and_info(root, SPACE_CACHE, 641 "enabling disk space caching"); 642 break; 643 case Opt_rescan_uuid_tree: 644 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 645 break; 646 case Opt_no_space_cache: 647 btrfs_clear_and_info(root, SPACE_CACHE, 648 "disabling disk space caching"); 649 break; 650 case Opt_inode_cache: 651 btrfs_set_and_info(root, CHANGE_INODE_CACHE, 652 "enabling inode map caching"); 653 break; 654 case Opt_noinode_cache: 655 btrfs_clear_and_info(root, CHANGE_INODE_CACHE, 656 "disabling inode map caching"); 657 break; 658 case Opt_clear_cache: 659 btrfs_set_and_info(root, CLEAR_CACHE, 660 "force clearing of disk cache"); 661 break; 662 case Opt_user_subvol_rm_allowed: 663 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 664 break; 665 case Opt_enospc_debug: 666 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 667 break; 668 case Opt_noenospc_debug: 669 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 670 break; 671 case Opt_defrag: 672 btrfs_set_and_info(root, AUTO_DEFRAG, 673 "enabling auto defrag"); 674 break; 675 case Opt_nodefrag: 676 btrfs_clear_and_info(root, AUTO_DEFRAG, 677 "disabling auto defrag"); 678 break; 679 case Opt_recovery: 680 btrfs_info(root->fs_info, "enabling auto recovery"); 681 btrfs_set_opt(info->mount_opt, RECOVERY); 682 break; 683 case Opt_skip_balance: 684 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 685 break; 686 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 687 case Opt_check_integrity_including_extent_data: 688 btrfs_info(root->fs_info, 689 "enabling check integrity including extent data"); 690 btrfs_set_opt(info->mount_opt, 691 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 692 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 693 break; 694 case Opt_check_integrity: 695 btrfs_info(root->fs_info, "enabling check integrity"); 696 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 697 break; 698 case Opt_check_integrity_print_mask: 699 ret = match_int(&args[0], &intarg); 700 if (ret) { 701 goto out; 702 } else if (intarg >= 0) { 703 info->check_integrity_print_mask = intarg; 704 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x", 705 info->check_integrity_print_mask); 706 } else { 707 ret = -EINVAL; 708 goto out; 709 } 710 break; 711 #else 712 case Opt_check_integrity_including_extent_data: 713 case Opt_check_integrity: 714 case Opt_check_integrity_print_mask: 715 btrfs_err(root->fs_info, 716 "support for check_integrity* not compiled in!"); 717 ret = -EINVAL; 718 goto out; 719 #endif 720 case Opt_fatal_errors: 721 if (strcmp(args[0].from, "panic") == 0) 722 btrfs_set_opt(info->mount_opt, 723 PANIC_ON_FATAL_ERROR); 724 else if (strcmp(args[0].from, "bug") == 0) 725 btrfs_clear_opt(info->mount_opt, 726 PANIC_ON_FATAL_ERROR); 727 else { 728 ret = -EINVAL; 729 goto out; 730 } 731 break; 732 case Opt_commit_interval: 733 intarg = 0; 734 ret = match_int(&args[0], &intarg); 735 if (ret < 0) { 736 btrfs_err(root->fs_info, "invalid commit interval"); 737 ret = -EINVAL; 738 goto out; 739 } 740 if (intarg > 0) { 741 if (intarg > 300) { 742 btrfs_warn(root->fs_info, "excessive commit interval %d", 743 intarg); 744 } 745 info->commit_interval = intarg; 746 } else { 747 btrfs_info(root->fs_info, "using default commit interval %ds", 748 BTRFS_DEFAULT_COMMIT_INTERVAL); 749 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 750 } 751 break; 752 case Opt_err: 753 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p); 754 ret = -EINVAL; 755 goto out; 756 default: 757 break; 758 } 759 } 760 out: 761 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 762 btrfs_info(root->fs_info, "disk space caching is enabled"); 763 kfree(orig); 764 return ret; 765 } 766 767 /* 768 * Parse mount options that are required early in the mount process. 769 * 770 * All other options will be parsed on much later in the mount process and 771 * only when we need to allocate a new super block. 772 */ 773 static int btrfs_parse_early_options(const char *options, fmode_t flags, 774 void *holder, char **subvol_name, u64 *subvol_objectid, 775 struct btrfs_fs_devices **fs_devices) 776 { 777 substring_t args[MAX_OPT_ARGS]; 778 char *device_name, *opts, *orig, *p; 779 char *num = NULL; 780 int error = 0; 781 782 if (!options) 783 return 0; 784 785 /* 786 * strsep changes the string, duplicate it because parse_options 787 * gets called twice 788 */ 789 opts = kstrdup(options, GFP_KERNEL); 790 if (!opts) 791 return -ENOMEM; 792 orig = opts; 793 794 while ((p = strsep(&opts, ",")) != NULL) { 795 int token; 796 if (!*p) 797 continue; 798 799 token = match_token(p, tokens, args); 800 switch (token) { 801 case Opt_subvol: 802 kfree(*subvol_name); 803 *subvol_name = match_strdup(&args[0]); 804 if (!*subvol_name) { 805 error = -ENOMEM; 806 goto out; 807 } 808 break; 809 case Opt_subvolid: 810 num = match_strdup(&args[0]); 811 if (num) { 812 *subvol_objectid = memparse(num, NULL); 813 kfree(num); 814 /* we want the original fs_tree */ 815 if (!*subvol_objectid) 816 *subvol_objectid = 817 BTRFS_FS_TREE_OBJECTID; 818 } else { 819 error = -EINVAL; 820 goto out; 821 } 822 break; 823 case Opt_subvolrootid: 824 printk(KERN_WARNING 825 "BTRFS: 'subvolrootid' mount option is deprecated and has " 826 "no effect\n"); 827 break; 828 case Opt_device: 829 device_name = match_strdup(&args[0]); 830 if (!device_name) { 831 error = -ENOMEM; 832 goto out; 833 } 834 error = btrfs_scan_one_device(device_name, 835 flags, holder, fs_devices); 836 kfree(device_name); 837 if (error) 838 goto out; 839 break; 840 default: 841 break; 842 } 843 } 844 845 out: 846 kfree(orig); 847 return error; 848 } 849 850 static struct dentry *get_default_root(struct super_block *sb, 851 u64 subvol_objectid) 852 { 853 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 854 struct btrfs_root *root = fs_info->tree_root; 855 struct btrfs_root *new_root; 856 struct btrfs_dir_item *di; 857 struct btrfs_path *path; 858 struct btrfs_key location; 859 struct inode *inode; 860 struct dentry *dentry; 861 u64 dir_id; 862 int new = 0; 863 864 /* 865 * We have a specific subvol we want to mount, just setup location and 866 * go look up the root. 867 */ 868 if (subvol_objectid) { 869 location.objectid = subvol_objectid; 870 location.type = BTRFS_ROOT_ITEM_KEY; 871 location.offset = (u64)-1; 872 goto find_root; 873 } 874 875 path = btrfs_alloc_path(); 876 if (!path) 877 return ERR_PTR(-ENOMEM); 878 path->leave_spinning = 1; 879 880 /* 881 * Find the "default" dir item which points to the root item that we 882 * will mount by default if we haven't been given a specific subvolume 883 * to mount. 884 */ 885 dir_id = btrfs_super_root_dir(fs_info->super_copy); 886 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 887 if (IS_ERR(di)) { 888 btrfs_free_path(path); 889 return ERR_CAST(di); 890 } 891 if (!di) { 892 /* 893 * Ok the default dir item isn't there. This is weird since 894 * it's always been there, but don't freak out, just try and 895 * mount to root most subvolume. 896 */ 897 btrfs_free_path(path); 898 dir_id = BTRFS_FIRST_FREE_OBJECTID; 899 new_root = fs_info->fs_root; 900 goto setup_root; 901 } 902 903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 904 btrfs_free_path(path); 905 906 find_root: 907 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 908 if (IS_ERR(new_root)) 909 return ERR_CAST(new_root); 910 911 dir_id = btrfs_root_dirid(&new_root->root_item); 912 setup_root: 913 location.objectid = dir_id; 914 location.type = BTRFS_INODE_ITEM_KEY; 915 location.offset = 0; 916 917 inode = btrfs_iget(sb, &location, new_root, &new); 918 if (IS_ERR(inode)) 919 return ERR_CAST(inode); 920 921 /* 922 * If we're just mounting the root most subvol put the inode and return 923 * a reference to the dentry. We will have already gotten a reference 924 * to the inode in btrfs_fill_super so we're good to go. 925 */ 926 if (!new && sb->s_root->d_inode == inode) { 927 iput(inode); 928 return dget(sb->s_root); 929 } 930 931 dentry = d_obtain_alias(inode); 932 if (!IS_ERR(dentry)) { 933 spin_lock(&dentry->d_lock); 934 dentry->d_flags &= ~DCACHE_DISCONNECTED; 935 spin_unlock(&dentry->d_lock); 936 } 937 return dentry; 938 } 939 940 static int btrfs_fill_super(struct super_block *sb, 941 struct btrfs_fs_devices *fs_devices, 942 void *data, int silent) 943 { 944 struct inode *inode; 945 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 946 struct btrfs_key key; 947 int err; 948 949 sb->s_maxbytes = MAX_LFS_FILESIZE; 950 sb->s_magic = BTRFS_SUPER_MAGIC; 951 sb->s_op = &btrfs_super_ops; 952 sb->s_d_op = &btrfs_dentry_operations; 953 sb->s_export_op = &btrfs_export_ops; 954 sb->s_xattr = btrfs_xattr_handlers; 955 sb->s_time_gran = 1; 956 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 957 sb->s_flags |= MS_POSIXACL; 958 #endif 959 sb->s_flags |= MS_I_VERSION; 960 err = open_ctree(sb, fs_devices, (char *)data); 961 if (err) { 962 printk(KERN_ERR "BTRFS: open_ctree failed\n"); 963 return err; 964 } 965 966 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 967 key.type = BTRFS_INODE_ITEM_KEY; 968 key.offset = 0; 969 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 970 if (IS_ERR(inode)) { 971 err = PTR_ERR(inode); 972 goto fail_close; 973 } 974 975 sb->s_root = d_make_root(inode); 976 if (!sb->s_root) { 977 err = -ENOMEM; 978 goto fail_close; 979 } 980 981 save_mount_options(sb, data); 982 cleancache_init_fs(sb); 983 sb->s_flags |= MS_ACTIVE; 984 return 0; 985 986 fail_close: 987 close_ctree(fs_info->tree_root); 988 return err; 989 } 990 991 int btrfs_sync_fs(struct super_block *sb, int wait) 992 { 993 struct btrfs_trans_handle *trans; 994 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 995 struct btrfs_root *root = fs_info->tree_root; 996 997 trace_btrfs_sync_fs(wait); 998 999 if (!wait) { 1000 filemap_flush(fs_info->btree_inode->i_mapping); 1001 return 0; 1002 } 1003 1004 btrfs_wait_ordered_roots(fs_info, -1); 1005 1006 trans = btrfs_attach_transaction_barrier(root); 1007 if (IS_ERR(trans)) { 1008 /* no transaction, don't bother */ 1009 if (PTR_ERR(trans) == -ENOENT) 1010 return 0; 1011 return PTR_ERR(trans); 1012 } 1013 return btrfs_commit_transaction(trans, root); 1014 } 1015 1016 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1017 { 1018 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1019 struct btrfs_root *root = info->tree_root; 1020 char *compress_type; 1021 1022 if (btrfs_test_opt(root, DEGRADED)) 1023 seq_puts(seq, ",degraded"); 1024 if (btrfs_test_opt(root, NODATASUM)) 1025 seq_puts(seq, ",nodatasum"); 1026 if (btrfs_test_opt(root, NODATACOW)) 1027 seq_puts(seq, ",nodatacow"); 1028 if (btrfs_test_opt(root, NOBARRIER)) 1029 seq_puts(seq, ",nobarrier"); 1030 if (info->max_inline != 8192 * 1024) 1031 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1032 if (info->alloc_start != 0) 1033 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1034 if (info->thread_pool_size != min_t(unsigned long, 1035 num_online_cpus() + 2, 8)) 1036 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1037 if (btrfs_test_opt(root, COMPRESS)) { 1038 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1039 compress_type = "zlib"; 1040 else 1041 compress_type = "lzo"; 1042 if (btrfs_test_opt(root, FORCE_COMPRESS)) 1043 seq_printf(seq, ",compress-force=%s", compress_type); 1044 else 1045 seq_printf(seq, ",compress=%s", compress_type); 1046 } 1047 if (btrfs_test_opt(root, NOSSD)) 1048 seq_puts(seq, ",nossd"); 1049 if (btrfs_test_opt(root, SSD_SPREAD)) 1050 seq_puts(seq, ",ssd_spread"); 1051 else if (btrfs_test_opt(root, SSD)) 1052 seq_puts(seq, ",ssd"); 1053 if (btrfs_test_opt(root, NOTREELOG)) 1054 seq_puts(seq, ",notreelog"); 1055 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 1056 seq_puts(seq, ",flushoncommit"); 1057 if (btrfs_test_opt(root, DISCARD)) 1058 seq_puts(seq, ",discard"); 1059 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 1060 seq_puts(seq, ",noacl"); 1061 if (btrfs_test_opt(root, SPACE_CACHE)) 1062 seq_puts(seq, ",space_cache"); 1063 else 1064 seq_puts(seq, ",nospace_cache"); 1065 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 1066 seq_puts(seq, ",rescan_uuid_tree"); 1067 if (btrfs_test_opt(root, CLEAR_CACHE)) 1068 seq_puts(seq, ",clear_cache"); 1069 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1070 seq_puts(seq, ",user_subvol_rm_allowed"); 1071 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 1072 seq_puts(seq, ",enospc_debug"); 1073 if (btrfs_test_opt(root, AUTO_DEFRAG)) 1074 seq_puts(seq, ",autodefrag"); 1075 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 1076 seq_puts(seq, ",inode_cache"); 1077 if (btrfs_test_opt(root, SKIP_BALANCE)) 1078 seq_puts(seq, ",skip_balance"); 1079 if (btrfs_test_opt(root, RECOVERY)) 1080 seq_puts(seq, ",recovery"); 1081 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1082 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1083 seq_puts(seq, ",check_int_data"); 1084 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1085 seq_puts(seq, ",check_int"); 1086 if (info->check_integrity_print_mask) 1087 seq_printf(seq, ",check_int_print_mask=%d", 1088 info->check_integrity_print_mask); 1089 #endif 1090 if (info->metadata_ratio) 1091 seq_printf(seq, ",metadata_ratio=%d", 1092 info->metadata_ratio); 1093 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1094 seq_puts(seq, ",fatal_errors=panic"); 1095 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1096 seq_printf(seq, ",commit=%d", info->commit_interval); 1097 return 0; 1098 } 1099 1100 static int btrfs_test_super(struct super_block *s, void *data) 1101 { 1102 struct btrfs_fs_info *p = data; 1103 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1104 1105 return fs_info->fs_devices == p->fs_devices; 1106 } 1107 1108 static int btrfs_set_super(struct super_block *s, void *data) 1109 { 1110 int err = set_anon_super(s, data); 1111 if (!err) 1112 s->s_fs_info = data; 1113 return err; 1114 } 1115 1116 /* 1117 * subvolumes are identified by ino 256 1118 */ 1119 static inline int is_subvolume_inode(struct inode *inode) 1120 { 1121 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1122 return 1; 1123 return 0; 1124 } 1125 1126 /* 1127 * This will strip out the subvol=%s argument for an argument string and add 1128 * subvolid=0 to make sure we get the actual tree root for path walking to the 1129 * subvol we want. 1130 */ 1131 static char *setup_root_args(char *args) 1132 { 1133 unsigned len = strlen(args) + 2 + 1; 1134 char *src, *dst, *buf; 1135 1136 /* 1137 * We need the same args as before, but with this substitution: 1138 * s!subvol=[^,]+!subvolid=0! 1139 * 1140 * Since the replacement string is up to 2 bytes longer than the 1141 * original, allocate strlen(args) + 2 + 1 bytes. 1142 */ 1143 1144 src = strstr(args, "subvol="); 1145 /* This shouldn't happen, but just in case.. */ 1146 if (!src) 1147 return NULL; 1148 1149 buf = dst = kmalloc(len, GFP_NOFS); 1150 if (!buf) 1151 return NULL; 1152 1153 /* 1154 * If the subvol= arg is not at the start of the string, 1155 * copy whatever precedes it into buf. 1156 */ 1157 if (src != args) { 1158 *src++ = '\0'; 1159 strcpy(buf, args); 1160 dst += strlen(args); 1161 } 1162 1163 strcpy(dst, "subvolid=0"); 1164 dst += strlen("subvolid=0"); 1165 1166 /* 1167 * If there is a "," after the original subvol=... string, 1168 * copy that suffix into our buffer. Otherwise, we're done. 1169 */ 1170 src = strchr(src, ','); 1171 if (src) 1172 strcpy(dst, src); 1173 1174 return buf; 1175 } 1176 1177 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1178 const char *device_name, char *data) 1179 { 1180 struct dentry *root; 1181 struct vfsmount *mnt; 1182 char *newargs; 1183 1184 newargs = setup_root_args(data); 1185 if (!newargs) 1186 return ERR_PTR(-ENOMEM); 1187 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1188 newargs); 1189 kfree(newargs); 1190 1191 if (PTR_RET(mnt) == -EBUSY) { 1192 if (flags & MS_RDONLY) { 1193 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name, 1194 newargs); 1195 } else { 1196 int r; 1197 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name, 1198 newargs); 1199 if (IS_ERR(mnt)) 1200 return ERR_CAST(mnt); 1201 1202 r = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1203 if (r < 0) { 1204 /* FIXME: release vfsmount mnt ??*/ 1205 return ERR_PTR(r); 1206 } 1207 } 1208 } 1209 1210 if (IS_ERR(mnt)) 1211 return ERR_CAST(mnt); 1212 1213 root = mount_subtree(mnt, subvol_name); 1214 1215 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1216 struct super_block *s = root->d_sb; 1217 dput(root); 1218 root = ERR_PTR(-EINVAL); 1219 deactivate_locked_super(s); 1220 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n", 1221 subvol_name); 1222 } 1223 1224 return root; 1225 } 1226 1227 /* 1228 * Find a superblock for the given device / mount point. 1229 * 1230 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1231 * for multiple device setup. Make sure to keep it in sync. 1232 */ 1233 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1234 const char *device_name, void *data) 1235 { 1236 struct block_device *bdev = NULL; 1237 struct super_block *s; 1238 struct dentry *root; 1239 struct btrfs_fs_devices *fs_devices = NULL; 1240 struct btrfs_fs_info *fs_info = NULL; 1241 fmode_t mode = FMODE_READ; 1242 char *subvol_name = NULL; 1243 u64 subvol_objectid = 0; 1244 int error = 0; 1245 1246 if (!(flags & MS_RDONLY)) 1247 mode |= FMODE_WRITE; 1248 1249 error = btrfs_parse_early_options(data, mode, fs_type, 1250 &subvol_name, &subvol_objectid, 1251 &fs_devices); 1252 if (error) { 1253 kfree(subvol_name); 1254 return ERR_PTR(error); 1255 } 1256 1257 if (subvol_name) { 1258 root = mount_subvol(subvol_name, flags, device_name, data); 1259 kfree(subvol_name); 1260 return root; 1261 } 1262 1263 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1264 if (error) 1265 return ERR_PTR(error); 1266 1267 /* 1268 * Setup a dummy root and fs_info for test/set super. This is because 1269 * we don't actually fill this stuff out until open_ctree, but we need 1270 * it for searching for existing supers, so this lets us do that and 1271 * then open_ctree will properly initialize everything later. 1272 */ 1273 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1274 if (!fs_info) 1275 return ERR_PTR(-ENOMEM); 1276 1277 fs_info->fs_devices = fs_devices; 1278 1279 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1280 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1281 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1282 error = -ENOMEM; 1283 goto error_fs_info; 1284 } 1285 1286 error = btrfs_open_devices(fs_devices, mode, fs_type); 1287 if (error) 1288 goto error_fs_info; 1289 1290 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1291 error = -EACCES; 1292 goto error_close_devices; 1293 } 1294 1295 bdev = fs_devices->latest_bdev; 1296 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1297 fs_info); 1298 if (IS_ERR(s)) { 1299 error = PTR_ERR(s); 1300 goto error_close_devices; 1301 } 1302 1303 if (s->s_root) { 1304 btrfs_close_devices(fs_devices); 1305 free_fs_info(fs_info); 1306 if ((flags ^ s->s_flags) & MS_RDONLY) 1307 error = -EBUSY; 1308 } else { 1309 char b[BDEVNAME_SIZE]; 1310 1311 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1312 btrfs_sb(s)->bdev_holder = fs_type; 1313 error = btrfs_fill_super(s, fs_devices, data, 1314 flags & MS_SILENT ? 1 : 0); 1315 } 1316 1317 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1318 if (IS_ERR(root)) 1319 deactivate_locked_super(s); 1320 1321 return root; 1322 1323 error_close_devices: 1324 btrfs_close_devices(fs_devices); 1325 error_fs_info: 1326 free_fs_info(fs_info); 1327 return ERR_PTR(error); 1328 } 1329 1330 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1331 int new_pool_size, int old_pool_size) 1332 { 1333 if (new_pool_size == old_pool_size) 1334 return; 1335 1336 fs_info->thread_pool_size = new_pool_size; 1337 1338 btrfs_info(fs_info, "resize thread pool %d -> %d", 1339 old_pool_size, new_pool_size); 1340 1341 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1342 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1343 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1344 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1345 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1346 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1347 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1348 new_pool_size); 1349 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1350 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1351 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1352 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1353 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1354 new_pool_size); 1355 } 1356 1357 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1358 { 1359 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1360 } 1361 1362 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1363 unsigned long old_opts, int flags) 1364 { 1365 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1366 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1367 (flags & MS_RDONLY))) { 1368 /* wait for any defraggers to finish */ 1369 wait_event(fs_info->transaction_wait, 1370 (atomic_read(&fs_info->defrag_running) == 0)); 1371 if (flags & MS_RDONLY) 1372 sync_filesystem(fs_info->sb); 1373 } 1374 } 1375 1376 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1377 unsigned long old_opts) 1378 { 1379 /* 1380 * We need cleanup all defragable inodes if the autodefragment is 1381 * close or the fs is R/O. 1382 */ 1383 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1384 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1385 (fs_info->sb->s_flags & MS_RDONLY))) { 1386 btrfs_cleanup_defrag_inodes(fs_info); 1387 } 1388 1389 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1390 } 1391 1392 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1393 { 1394 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1395 struct btrfs_root *root = fs_info->tree_root; 1396 unsigned old_flags = sb->s_flags; 1397 unsigned long old_opts = fs_info->mount_opt; 1398 unsigned long old_compress_type = fs_info->compress_type; 1399 u64 old_max_inline = fs_info->max_inline; 1400 u64 old_alloc_start = fs_info->alloc_start; 1401 int old_thread_pool_size = fs_info->thread_pool_size; 1402 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1403 int ret; 1404 1405 sync_filesystem(sb); 1406 btrfs_remount_prepare(fs_info); 1407 1408 ret = btrfs_parse_options(root, data); 1409 if (ret) { 1410 ret = -EINVAL; 1411 goto restore; 1412 } 1413 1414 btrfs_remount_begin(fs_info, old_opts, *flags); 1415 btrfs_resize_thread_pool(fs_info, 1416 fs_info->thread_pool_size, old_thread_pool_size); 1417 1418 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1419 goto out; 1420 1421 if (*flags & MS_RDONLY) { 1422 /* 1423 * this also happens on 'umount -rf' or on shutdown, when 1424 * the filesystem is busy. 1425 */ 1426 1427 /* wait for the uuid_scan task to finish */ 1428 down(&fs_info->uuid_tree_rescan_sem); 1429 /* avoid complains from lockdep et al. */ 1430 up(&fs_info->uuid_tree_rescan_sem); 1431 1432 sb->s_flags |= MS_RDONLY; 1433 1434 btrfs_dev_replace_suspend_for_unmount(fs_info); 1435 btrfs_scrub_cancel(fs_info); 1436 btrfs_pause_balance(fs_info); 1437 1438 ret = btrfs_commit_super(root); 1439 if (ret) 1440 goto restore; 1441 } else { 1442 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1443 btrfs_err(fs_info, 1444 "Remounting read-write after error is not allowed"); 1445 ret = -EINVAL; 1446 goto restore; 1447 } 1448 if (fs_info->fs_devices->rw_devices == 0) { 1449 ret = -EACCES; 1450 goto restore; 1451 } 1452 1453 if (fs_info->fs_devices->missing_devices > 1454 fs_info->num_tolerated_disk_barrier_failures && 1455 !(*flags & MS_RDONLY)) { 1456 btrfs_warn(fs_info, 1457 "too many missing devices, writeable remount is not allowed"); 1458 ret = -EACCES; 1459 goto restore; 1460 } 1461 1462 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1463 ret = -EINVAL; 1464 goto restore; 1465 } 1466 1467 ret = btrfs_cleanup_fs_roots(fs_info); 1468 if (ret) 1469 goto restore; 1470 1471 /* recover relocation */ 1472 ret = btrfs_recover_relocation(root); 1473 if (ret) 1474 goto restore; 1475 1476 ret = btrfs_resume_balance_async(fs_info); 1477 if (ret) 1478 goto restore; 1479 1480 ret = btrfs_resume_dev_replace_async(fs_info); 1481 if (ret) { 1482 btrfs_warn(fs_info, "failed to resume dev_replace"); 1483 goto restore; 1484 } 1485 1486 if (!fs_info->uuid_root) { 1487 btrfs_info(fs_info, "creating UUID tree"); 1488 ret = btrfs_create_uuid_tree(fs_info); 1489 if (ret) { 1490 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret); 1491 goto restore; 1492 } 1493 } 1494 sb->s_flags &= ~MS_RDONLY; 1495 } 1496 out: 1497 wake_up_process(fs_info->transaction_kthread); 1498 btrfs_remount_cleanup(fs_info, old_opts); 1499 return 0; 1500 1501 restore: 1502 /* We've hit an error - don't reset MS_RDONLY */ 1503 if (sb->s_flags & MS_RDONLY) 1504 old_flags |= MS_RDONLY; 1505 sb->s_flags = old_flags; 1506 fs_info->mount_opt = old_opts; 1507 fs_info->compress_type = old_compress_type; 1508 fs_info->max_inline = old_max_inline; 1509 mutex_lock(&fs_info->chunk_mutex); 1510 fs_info->alloc_start = old_alloc_start; 1511 mutex_unlock(&fs_info->chunk_mutex); 1512 btrfs_resize_thread_pool(fs_info, 1513 old_thread_pool_size, fs_info->thread_pool_size); 1514 fs_info->metadata_ratio = old_metadata_ratio; 1515 btrfs_remount_cleanup(fs_info, old_opts); 1516 return ret; 1517 } 1518 1519 /* Used to sort the devices by max_avail(descending sort) */ 1520 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1521 const void *dev_info2) 1522 { 1523 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1524 ((struct btrfs_device_info *)dev_info2)->max_avail) 1525 return -1; 1526 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1527 ((struct btrfs_device_info *)dev_info2)->max_avail) 1528 return 1; 1529 else 1530 return 0; 1531 } 1532 1533 /* 1534 * sort the devices by max_avail, in which max free extent size of each device 1535 * is stored.(Descending Sort) 1536 */ 1537 static inline void btrfs_descending_sort_devices( 1538 struct btrfs_device_info *devices, 1539 size_t nr_devices) 1540 { 1541 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1542 btrfs_cmp_device_free_bytes, NULL); 1543 } 1544 1545 /* 1546 * The helper to calc the free space on the devices that can be used to store 1547 * file data. 1548 */ 1549 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1550 { 1551 struct btrfs_fs_info *fs_info = root->fs_info; 1552 struct btrfs_device_info *devices_info; 1553 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1554 struct btrfs_device *device; 1555 u64 skip_space; 1556 u64 type; 1557 u64 avail_space; 1558 u64 used_space; 1559 u64 min_stripe_size; 1560 int min_stripes = 1, num_stripes = 1; 1561 int i = 0, nr_devices; 1562 int ret; 1563 1564 nr_devices = fs_info->fs_devices->open_devices; 1565 BUG_ON(!nr_devices); 1566 1567 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1568 GFP_NOFS); 1569 if (!devices_info) 1570 return -ENOMEM; 1571 1572 /* calc min stripe number for data space alloction */ 1573 type = btrfs_get_alloc_profile(root, 1); 1574 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1575 min_stripes = 2; 1576 num_stripes = nr_devices; 1577 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1578 min_stripes = 2; 1579 num_stripes = 2; 1580 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1581 min_stripes = 4; 1582 num_stripes = 4; 1583 } 1584 1585 if (type & BTRFS_BLOCK_GROUP_DUP) 1586 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1587 else 1588 min_stripe_size = BTRFS_STRIPE_LEN; 1589 1590 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1591 if (!device->in_fs_metadata || !device->bdev || 1592 device->is_tgtdev_for_dev_replace) 1593 continue; 1594 1595 avail_space = device->total_bytes - device->bytes_used; 1596 1597 /* align with stripe_len */ 1598 do_div(avail_space, BTRFS_STRIPE_LEN); 1599 avail_space *= BTRFS_STRIPE_LEN; 1600 1601 /* 1602 * In order to avoid overwritting the superblock on the drive, 1603 * btrfs starts at an offset of at least 1MB when doing chunk 1604 * allocation. 1605 */ 1606 skip_space = 1024 * 1024; 1607 1608 /* user can set the offset in fs_info->alloc_start. */ 1609 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1610 device->total_bytes) 1611 skip_space = max(fs_info->alloc_start, skip_space); 1612 1613 /* 1614 * btrfs can not use the free space in [0, skip_space - 1], 1615 * we must subtract it from the total. In order to implement 1616 * it, we account the used space in this range first. 1617 */ 1618 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1619 &used_space); 1620 if (ret) { 1621 kfree(devices_info); 1622 return ret; 1623 } 1624 1625 /* calc the free space in [0, skip_space - 1] */ 1626 skip_space -= used_space; 1627 1628 /* 1629 * we can use the free space in [0, skip_space - 1], subtract 1630 * it from the total. 1631 */ 1632 if (avail_space && avail_space >= skip_space) 1633 avail_space -= skip_space; 1634 else 1635 avail_space = 0; 1636 1637 if (avail_space < min_stripe_size) 1638 continue; 1639 1640 devices_info[i].dev = device; 1641 devices_info[i].max_avail = avail_space; 1642 1643 i++; 1644 } 1645 1646 nr_devices = i; 1647 1648 btrfs_descending_sort_devices(devices_info, nr_devices); 1649 1650 i = nr_devices - 1; 1651 avail_space = 0; 1652 while (nr_devices >= min_stripes) { 1653 if (num_stripes > nr_devices) 1654 num_stripes = nr_devices; 1655 1656 if (devices_info[i].max_avail >= min_stripe_size) { 1657 int j; 1658 u64 alloc_size; 1659 1660 avail_space += devices_info[i].max_avail * num_stripes; 1661 alloc_size = devices_info[i].max_avail; 1662 for (j = i + 1 - num_stripes; j <= i; j++) 1663 devices_info[j].max_avail -= alloc_size; 1664 } 1665 i--; 1666 nr_devices--; 1667 } 1668 1669 kfree(devices_info); 1670 *free_bytes = avail_space; 1671 return 0; 1672 } 1673 1674 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1675 { 1676 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1677 struct btrfs_super_block *disk_super = fs_info->super_copy; 1678 struct list_head *head = &fs_info->space_info; 1679 struct btrfs_space_info *found; 1680 u64 total_used = 0; 1681 u64 total_free_data = 0; 1682 int bits = dentry->d_sb->s_blocksize_bits; 1683 __be32 *fsid = (__be32 *)fs_info->fsid; 1684 int ret; 1685 1686 /* holding chunk_muext to avoid allocating new chunks */ 1687 mutex_lock(&fs_info->chunk_mutex); 1688 rcu_read_lock(); 1689 list_for_each_entry_rcu(found, head, list) { 1690 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1691 total_free_data += found->disk_total - found->disk_used; 1692 total_free_data -= 1693 btrfs_account_ro_block_groups_free_space(found); 1694 } 1695 1696 total_used += found->disk_used; 1697 } 1698 rcu_read_unlock(); 1699 1700 buf->f_namelen = BTRFS_NAME_LEN; 1701 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1702 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1703 buf->f_bsize = dentry->d_sb->s_blocksize; 1704 buf->f_type = BTRFS_SUPER_MAGIC; 1705 buf->f_bavail = total_free_data; 1706 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1707 if (ret) { 1708 mutex_unlock(&fs_info->chunk_mutex); 1709 return ret; 1710 } 1711 buf->f_bavail += total_free_data; 1712 buf->f_bavail = buf->f_bavail >> bits; 1713 mutex_unlock(&fs_info->chunk_mutex); 1714 1715 /* We treat it as constant endianness (it doesn't matter _which_) 1716 because we want the fsid to come out the same whether mounted 1717 on a big-endian or little-endian host */ 1718 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1719 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1720 /* Mask in the root object ID too, to disambiguate subvols */ 1721 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1722 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1723 1724 return 0; 1725 } 1726 1727 static void btrfs_kill_super(struct super_block *sb) 1728 { 1729 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1730 kill_anon_super(sb); 1731 free_fs_info(fs_info); 1732 } 1733 1734 static struct file_system_type btrfs_fs_type = { 1735 .owner = THIS_MODULE, 1736 .name = "btrfs", 1737 .mount = btrfs_mount, 1738 .kill_sb = btrfs_kill_super, 1739 .fs_flags = FS_REQUIRES_DEV, 1740 }; 1741 MODULE_ALIAS_FS("btrfs"); 1742 1743 /* 1744 * used by btrfsctl to scan devices when no FS is mounted 1745 */ 1746 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1747 unsigned long arg) 1748 { 1749 struct btrfs_ioctl_vol_args *vol; 1750 struct btrfs_fs_devices *fs_devices; 1751 int ret = -ENOTTY; 1752 1753 if (!capable(CAP_SYS_ADMIN)) 1754 return -EPERM; 1755 1756 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1757 if (IS_ERR(vol)) 1758 return PTR_ERR(vol); 1759 1760 switch (cmd) { 1761 case BTRFS_IOC_SCAN_DEV: 1762 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1763 &btrfs_fs_type, &fs_devices); 1764 break; 1765 case BTRFS_IOC_DEVICES_READY: 1766 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1767 &btrfs_fs_type, &fs_devices); 1768 if (ret) 1769 break; 1770 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1771 break; 1772 } 1773 1774 kfree(vol); 1775 return ret; 1776 } 1777 1778 static int btrfs_freeze(struct super_block *sb) 1779 { 1780 struct btrfs_trans_handle *trans; 1781 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1782 1783 trans = btrfs_attach_transaction_barrier(root); 1784 if (IS_ERR(trans)) { 1785 /* no transaction, don't bother */ 1786 if (PTR_ERR(trans) == -ENOENT) 1787 return 0; 1788 return PTR_ERR(trans); 1789 } 1790 return btrfs_commit_transaction(trans, root); 1791 } 1792 1793 static int btrfs_unfreeze(struct super_block *sb) 1794 { 1795 return 0; 1796 } 1797 1798 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1799 { 1800 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1801 struct btrfs_fs_devices *cur_devices; 1802 struct btrfs_device *dev, *first_dev = NULL; 1803 struct list_head *head; 1804 struct rcu_string *name; 1805 1806 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1807 cur_devices = fs_info->fs_devices; 1808 while (cur_devices) { 1809 head = &cur_devices->devices; 1810 list_for_each_entry(dev, head, dev_list) { 1811 if (dev->missing) 1812 continue; 1813 if (!first_dev || dev->devid < first_dev->devid) 1814 first_dev = dev; 1815 } 1816 cur_devices = cur_devices->seed; 1817 } 1818 1819 if (first_dev) { 1820 rcu_read_lock(); 1821 name = rcu_dereference(first_dev->name); 1822 seq_escape(m, name->str, " \t\n\\"); 1823 rcu_read_unlock(); 1824 } else { 1825 WARN_ON(1); 1826 } 1827 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1828 return 0; 1829 } 1830 1831 static const struct super_operations btrfs_super_ops = { 1832 .drop_inode = btrfs_drop_inode, 1833 .evict_inode = btrfs_evict_inode, 1834 .put_super = btrfs_put_super, 1835 .sync_fs = btrfs_sync_fs, 1836 .show_options = btrfs_show_options, 1837 .show_devname = btrfs_show_devname, 1838 .write_inode = btrfs_write_inode, 1839 .alloc_inode = btrfs_alloc_inode, 1840 .destroy_inode = btrfs_destroy_inode, 1841 .statfs = btrfs_statfs, 1842 .remount_fs = btrfs_remount, 1843 .freeze_fs = btrfs_freeze, 1844 .unfreeze_fs = btrfs_unfreeze, 1845 }; 1846 1847 static const struct file_operations btrfs_ctl_fops = { 1848 .unlocked_ioctl = btrfs_control_ioctl, 1849 .compat_ioctl = btrfs_control_ioctl, 1850 .owner = THIS_MODULE, 1851 .llseek = noop_llseek, 1852 }; 1853 1854 static struct miscdevice btrfs_misc = { 1855 .minor = BTRFS_MINOR, 1856 .name = "btrfs-control", 1857 .fops = &btrfs_ctl_fops 1858 }; 1859 1860 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1861 MODULE_ALIAS("devname:btrfs-control"); 1862 1863 static int btrfs_interface_init(void) 1864 { 1865 return misc_register(&btrfs_misc); 1866 } 1867 1868 static void btrfs_interface_exit(void) 1869 { 1870 if (misc_deregister(&btrfs_misc) < 0) 1871 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n"); 1872 } 1873 1874 static void btrfs_print_info(void) 1875 { 1876 printk(KERN_INFO "Btrfs loaded" 1877 #ifdef CONFIG_BTRFS_DEBUG 1878 ", debug=on" 1879 #endif 1880 #ifdef CONFIG_BTRFS_ASSERT 1881 ", assert=on" 1882 #endif 1883 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1884 ", integrity-checker=on" 1885 #endif 1886 "\n"); 1887 } 1888 1889 static int btrfs_run_sanity_tests(void) 1890 { 1891 int ret; 1892 1893 ret = btrfs_init_test_fs(); 1894 if (ret) 1895 return ret; 1896 1897 ret = btrfs_test_free_space_cache(); 1898 if (ret) 1899 goto out; 1900 ret = btrfs_test_extent_buffer_operations(); 1901 if (ret) 1902 goto out; 1903 ret = btrfs_test_extent_io(); 1904 if (ret) 1905 goto out; 1906 ret = btrfs_test_inodes(); 1907 out: 1908 btrfs_destroy_test_fs(); 1909 return ret; 1910 } 1911 1912 static int __init init_btrfs_fs(void) 1913 { 1914 int err; 1915 1916 err = btrfs_hash_init(); 1917 if (err) 1918 return err; 1919 1920 btrfs_props_init(); 1921 1922 err = btrfs_init_sysfs(); 1923 if (err) 1924 goto free_hash; 1925 1926 btrfs_init_compress(); 1927 1928 err = btrfs_init_cachep(); 1929 if (err) 1930 goto free_compress; 1931 1932 err = extent_io_init(); 1933 if (err) 1934 goto free_cachep; 1935 1936 err = extent_map_init(); 1937 if (err) 1938 goto free_extent_io; 1939 1940 err = ordered_data_init(); 1941 if (err) 1942 goto free_extent_map; 1943 1944 err = btrfs_delayed_inode_init(); 1945 if (err) 1946 goto free_ordered_data; 1947 1948 err = btrfs_auto_defrag_init(); 1949 if (err) 1950 goto free_delayed_inode; 1951 1952 err = btrfs_delayed_ref_init(); 1953 if (err) 1954 goto free_auto_defrag; 1955 1956 err = btrfs_prelim_ref_init(); 1957 if (err) 1958 goto free_prelim_ref; 1959 1960 err = btrfs_interface_init(); 1961 if (err) 1962 goto free_delayed_ref; 1963 1964 btrfs_init_lockdep(); 1965 1966 btrfs_print_info(); 1967 1968 err = btrfs_run_sanity_tests(); 1969 if (err) 1970 goto unregister_ioctl; 1971 1972 err = register_filesystem(&btrfs_fs_type); 1973 if (err) 1974 goto unregister_ioctl; 1975 1976 return 0; 1977 1978 unregister_ioctl: 1979 btrfs_interface_exit(); 1980 free_prelim_ref: 1981 btrfs_prelim_ref_exit(); 1982 free_delayed_ref: 1983 btrfs_delayed_ref_exit(); 1984 free_auto_defrag: 1985 btrfs_auto_defrag_exit(); 1986 free_delayed_inode: 1987 btrfs_delayed_inode_exit(); 1988 free_ordered_data: 1989 ordered_data_exit(); 1990 free_extent_map: 1991 extent_map_exit(); 1992 free_extent_io: 1993 extent_io_exit(); 1994 free_cachep: 1995 btrfs_destroy_cachep(); 1996 free_compress: 1997 btrfs_exit_compress(); 1998 btrfs_exit_sysfs(); 1999 free_hash: 2000 btrfs_hash_exit(); 2001 return err; 2002 } 2003 2004 static void __exit exit_btrfs_fs(void) 2005 { 2006 btrfs_destroy_cachep(); 2007 btrfs_delayed_ref_exit(); 2008 btrfs_auto_defrag_exit(); 2009 btrfs_delayed_inode_exit(); 2010 btrfs_prelim_ref_exit(); 2011 ordered_data_exit(); 2012 extent_map_exit(); 2013 extent_io_exit(); 2014 btrfs_interface_exit(); 2015 unregister_filesystem(&btrfs_fs_type); 2016 btrfs_exit_sysfs(); 2017 btrfs_cleanup_fs_uuids(); 2018 btrfs_exit_compress(); 2019 btrfs_hash_exit(); 2020 } 2021 2022 late_initcall(init_btrfs_fs); 2023 module_exit(exit_btrfs_fs) 2024 2025 MODULE_LICENSE("GPL"); 2026