1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "tests/btrfs-tests.h" 48 #include "block-group.h" 49 #include "discard.h" 50 51 #include "qgroup.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 const char * __attribute_const__ btrfs_decode_error(int errno) 71 { 72 char *errstr = "unknown"; 73 74 switch (errno) { 75 case -EIO: 76 errstr = "IO failure"; 77 break; 78 case -ENOMEM: 79 errstr = "Out of memory"; 80 break; 81 case -EROFS: 82 errstr = "Readonly filesystem"; 83 break; 84 case -EEXIST: 85 errstr = "Object already exists"; 86 break; 87 case -ENOSPC: 88 errstr = "No space left"; 89 break; 90 case -ENOENT: 91 errstr = "No such entry"; 92 break; 93 } 94 95 return errstr; 96 } 97 98 /* 99 * __btrfs_handle_fs_error decodes expected errors from the caller and 100 * invokes the appropriate error response. 101 */ 102 __cold 103 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 104 unsigned int line, int errno, const char *fmt, ...) 105 { 106 struct super_block *sb = fs_info->sb; 107 #ifdef CONFIG_PRINTK 108 const char *errstr; 109 #endif 110 111 /* 112 * Special case: if the error is EROFS, and we're already 113 * under SB_RDONLY, then it is safe here. 114 */ 115 if (errno == -EROFS && sb_rdonly(sb)) 116 return; 117 118 #ifdef CONFIG_PRINTK 119 errstr = btrfs_decode_error(errno); 120 if (fmt) { 121 struct va_format vaf; 122 va_list args; 123 124 va_start(args, fmt); 125 vaf.fmt = fmt; 126 vaf.va = &args; 127 128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 129 sb->s_id, function, line, errno, errstr, &vaf); 130 va_end(args); 131 } else { 132 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 133 sb->s_id, function, line, errno, errstr); 134 } 135 #endif 136 137 /* 138 * Today we only save the error info to memory. Long term we'll 139 * also send it down to the disk 140 */ 141 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 142 143 /* Don't go through full error handling during mount */ 144 if (!(sb->s_flags & SB_BORN)) 145 return; 146 147 if (sb_rdonly(sb)) 148 return; 149 150 btrfs_discard_stop(fs_info); 151 152 /* btrfs handle error by forcing the filesystem readonly */ 153 sb->s_flags |= SB_RDONLY; 154 btrfs_info(fs_info, "forced readonly"); 155 /* 156 * Note that a running device replace operation is not canceled here 157 * although there is no way to update the progress. It would add the 158 * risk of a deadlock, therefore the canceling is omitted. The only 159 * penalty is that some I/O remains active until the procedure 160 * completes. The next time when the filesystem is mounted writable 161 * again, the device replace operation continues. 162 */ 163 } 164 165 #ifdef CONFIG_PRINTK 166 static const char * const logtypes[] = { 167 "emergency", 168 "alert", 169 "critical", 170 "error", 171 "warning", 172 "notice", 173 "info", 174 "debug", 175 }; 176 177 178 /* 179 * Use one ratelimit state per log level so that a flood of less important 180 * messages doesn't cause more important ones to be dropped. 181 */ 182 static struct ratelimit_state printk_limits[] = { 183 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 184 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 185 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 186 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 187 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 188 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 189 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 190 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 191 }; 192 193 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 194 { 195 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 196 struct va_format vaf; 197 va_list args; 198 int kern_level; 199 const char *type = logtypes[4]; 200 struct ratelimit_state *ratelimit = &printk_limits[4]; 201 202 va_start(args, fmt); 203 204 while ((kern_level = printk_get_level(fmt)) != 0) { 205 size_t size = printk_skip_level(fmt) - fmt; 206 207 if (kern_level >= '0' && kern_level <= '7') { 208 memcpy(lvl, fmt, size); 209 lvl[size] = '\0'; 210 type = logtypes[kern_level - '0']; 211 ratelimit = &printk_limits[kern_level - '0']; 212 } 213 fmt += size; 214 } 215 216 vaf.fmt = fmt; 217 vaf.va = &args; 218 219 if (__ratelimit(ratelimit)) 220 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 221 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 222 223 va_end(args); 224 } 225 #endif 226 227 /* 228 * We only mark the transaction aborted and then set the file system read-only. 229 * This will prevent new transactions from starting or trying to join this 230 * one. 231 * 232 * This means that error recovery at the call site is limited to freeing 233 * any local memory allocations and passing the error code up without 234 * further cleanup. The transaction should complete as it normally would 235 * in the call path but will return -EIO. 236 * 237 * We'll complete the cleanup in btrfs_end_transaction and 238 * btrfs_commit_transaction. 239 */ 240 __cold 241 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 242 const char *function, 243 unsigned int line, int errno) 244 { 245 struct btrfs_fs_info *fs_info = trans->fs_info; 246 247 trans->aborted = errno; 248 /* Nothing used. The other threads that have joined this 249 * transaction may be able to continue. */ 250 if (!trans->dirty && list_empty(&trans->new_bgs)) { 251 const char *errstr; 252 253 errstr = btrfs_decode_error(errno); 254 btrfs_warn(fs_info, 255 "%s:%d: Aborting unused transaction(%s).", 256 function, line, errstr); 257 return; 258 } 259 WRITE_ONCE(trans->transaction->aborted, errno); 260 /* Wake up anybody who may be waiting on this transaction */ 261 wake_up(&fs_info->transaction_wait); 262 wake_up(&fs_info->transaction_blocked_wait); 263 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 264 } 265 /* 266 * __btrfs_panic decodes unexpected, fatal errors from the caller, 267 * issues an alert, and either panics or BUGs, depending on mount options. 268 */ 269 __cold 270 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 271 unsigned int line, int errno, const char *fmt, ...) 272 { 273 char *s_id = "<unknown>"; 274 const char *errstr; 275 struct va_format vaf = { .fmt = fmt }; 276 va_list args; 277 278 if (fs_info) 279 s_id = fs_info->sb->s_id; 280 281 va_start(args, fmt); 282 vaf.va = &args; 283 284 errstr = btrfs_decode_error(errno); 285 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 286 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 287 s_id, function, line, &vaf, errno, errstr); 288 289 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 290 function, line, &vaf, errno, errstr); 291 va_end(args); 292 /* Caller calls BUG() */ 293 } 294 295 static void btrfs_put_super(struct super_block *sb) 296 { 297 close_ctree(btrfs_sb(sb)); 298 } 299 300 enum { 301 Opt_acl, Opt_noacl, 302 Opt_clear_cache, 303 Opt_commit_interval, 304 Opt_compress, 305 Opt_compress_force, 306 Opt_compress_force_type, 307 Opt_compress_type, 308 Opt_degraded, 309 Opt_device, 310 Opt_fatal_errors, 311 Opt_flushoncommit, Opt_noflushoncommit, 312 Opt_inode_cache, Opt_noinode_cache, 313 Opt_max_inline, 314 Opt_barrier, Opt_nobarrier, 315 Opt_datacow, Opt_nodatacow, 316 Opt_datasum, Opt_nodatasum, 317 Opt_defrag, Opt_nodefrag, 318 Opt_discard, Opt_nodiscard, 319 Opt_discard_mode, 320 Opt_nologreplay, 321 Opt_norecovery, 322 Opt_ratio, 323 Opt_rescan_uuid_tree, 324 Opt_skip_balance, 325 Opt_space_cache, Opt_no_space_cache, 326 Opt_space_cache_version, 327 Opt_ssd, Opt_nossd, 328 Opt_ssd_spread, Opt_nossd_spread, 329 Opt_subvol, 330 Opt_subvol_empty, 331 Opt_subvolid, 332 Opt_thread_pool, 333 Opt_treelog, Opt_notreelog, 334 Opt_usebackuproot, 335 Opt_user_subvol_rm_allowed, 336 337 /* Deprecated options */ 338 Opt_alloc_start, 339 Opt_recovery, 340 Opt_subvolrootid, 341 342 /* Debugging options */ 343 Opt_check_integrity, 344 Opt_check_integrity_including_extent_data, 345 Opt_check_integrity_print_mask, 346 Opt_enospc_debug, Opt_noenospc_debug, 347 #ifdef CONFIG_BTRFS_DEBUG 348 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 349 #endif 350 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 351 Opt_ref_verify, 352 #endif 353 Opt_err, 354 }; 355 356 static const match_table_t tokens = { 357 {Opt_acl, "acl"}, 358 {Opt_noacl, "noacl"}, 359 {Opt_clear_cache, "clear_cache"}, 360 {Opt_commit_interval, "commit=%u"}, 361 {Opt_compress, "compress"}, 362 {Opt_compress_type, "compress=%s"}, 363 {Opt_compress_force, "compress-force"}, 364 {Opt_compress_force_type, "compress-force=%s"}, 365 {Opt_degraded, "degraded"}, 366 {Opt_device, "device=%s"}, 367 {Opt_fatal_errors, "fatal_errors=%s"}, 368 {Opt_flushoncommit, "flushoncommit"}, 369 {Opt_noflushoncommit, "noflushoncommit"}, 370 {Opt_inode_cache, "inode_cache"}, 371 {Opt_noinode_cache, "noinode_cache"}, 372 {Opt_max_inline, "max_inline=%s"}, 373 {Opt_barrier, "barrier"}, 374 {Opt_nobarrier, "nobarrier"}, 375 {Opt_datacow, "datacow"}, 376 {Opt_nodatacow, "nodatacow"}, 377 {Opt_datasum, "datasum"}, 378 {Opt_nodatasum, "nodatasum"}, 379 {Opt_defrag, "autodefrag"}, 380 {Opt_nodefrag, "noautodefrag"}, 381 {Opt_discard, "discard"}, 382 {Opt_discard_mode, "discard=%s"}, 383 {Opt_nodiscard, "nodiscard"}, 384 {Opt_nologreplay, "nologreplay"}, 385 {Opt_norecovery, "norecovery"}, 386 {Opt_ratio, "metadata_ratio=%u"}, 387 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 388 {Opt_skip_balance, "skip_balance"}, 389 {Opt_space_cache, "space_cache"}, 390 {Opt_no_space_cache, "nospace_cache"}, 391 {Opt_space_cache_version, "space_cache=%s"}, 392 {Opt_ssd, "ssd"}, 393 {Opt_nossd, "nossd"}, 394 {Opt_ssd_spread, "ssd_spread"}, 395 {Opt_nossd_spread, "nossd_spread"}, 396 {Opt_subvol, "subvol=%s"}, 397 {Opt_subvol_empty, "subvol="}, 398 {Opt_subvolid, "subvolid=%s"}, 399 {Opt_thread_pool, "thread_pool=%u"}, 400 {Opt_treelog, "treelog"}, 401 {Opt_notreelog, "notreelog"}, 402 {Opt_usebackuproot, "usebackuproot"}, 403 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 404 405 /* Deprecated options */ 406 {Opt_alloc_start, "alloc_start=%s"}, 407 {Opt_recovery, "recovery"}, 408 {Opt_subvolrootid, "subvolrootid=%d"}, 409 410 /* Debugging options */ 411 {Opt_check_integrity, "check_int"}, 412 {Opt_check_integrity_including_extent_data, "check_int_data"}, 413 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 414 {Opt_enospc_debug, "enospc_debug"}, 415 {Opt_noenospc_debug, "noenospc_debug"}, 416 #ifdef CONFIG_BTRFS_DEBUG 417 {Opt_fragment_data, "fragment=data"}, 418 {Opt_fragment_metadata, "fragment=metadata"}, 419 {Opt_fragment_all, "fragment=all"}, 420 #endif 421 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 422 {Opt_ref_verify, "ref_verify"}, 423 #endif 424 {Opt_err, NULL}, 425 }; 426 427 /* 428 * Regular mount options parser. Everything that is needed only when 429 * reading in a new superblock is parsed here. 430 * XXX JDM: This needs to be cleaned up for remount. 431 */ 432 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 433 unsigned long new_flags) 434 { 435 substring_t args[MAX_OPT_ARGS]; 436 char *p, *num; 437 u64 cache_gen; 438 int intarg; 439 int ret = 0; 440 char *compress_type; 441 bool compress_force = false; 442 enum btrfs_compression_type saved_compress_type; 443 bool saved_compress_force; 444 int no_compress = 0; 445 446 cache_gen = btrfs_super_cache_generation(info->super_copy); 447 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 448 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 449 else if (cache_gen) 450 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 451 452 /* 453 * Even the options are empty, we still need to do extra check 454 * against new flags 455 */ 456 if (!options) 457 goto check; 458 459 while ((p = strsep(&options, ",")) != NULL) { 460 int token; 461 if (!*p) 462 continue; 463 464 token = match_token(p, tokens, args); 465 switch (token) { 466 case Opt_degraded: 467 btrfs_info(info, "allowing degraded mounts"); 468 btrfs_set_opt(info->mount_opt, DEGRADED); 469 break; 470 case Opt_subvol: 471 case Opt_subvol_empty: 472 case Opt_subvolid: 473 case Opt_subvolrootid: 474 case Opt_device: 475 /* 476 * These are parsed by btrfs_parse_subvol_options or 477 * btrfs_parse_device_options and can be ignored here. 478 */ 479 break; 480 case Opt_nodatasum: 481 btrfs_set_and_info(info, NODATASUM, 482 "setting nodatasum"); 483 break; 484 case Opt_datasum: 485 if (btrfs_test_opt(info, NODATASUM)) { 486 if (btrfs_test_opt(info, NODATACOW)) 487 btrfs_info(info, 488 "setting datasum, datacow enabled"); 489 else 490 btrfs_info(info, "setting datasum"); 491 } 492 btrfs_clear_opt(info->mount_opt, NODATACOW); 493 btrfs_clear_opt(info->mount_opt, NODATASUM); 494 break; 495 case Opt_nodatacow: 496 if (!btrfs_test_opt(info, NODATACOW)) { 497 if (!btrfs_test_opt(info, COMPRESS) || 498 !btrfs_test_opt(info, FORCE_COMPRESS)) { 499 btrfs_info(info, 500 "setting nodatacow, compression disabled"); 501 } else { 502 btrfs_info(info, "setting nodatacow"); 503 } 504 } 505 btrfs_clear_opt(info->mount_opt, COMPRESS); 506 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 507 btrfs_set_opt(info->mount_opt, NODATACOW); 508 btrfs_set_opt(info->mount_opt, NODATASUM); 509 break; 510 case Opt_datacow: 511 btrfs_clear_and_info(info, NODATACOW, 512 "setting datacow"); 513 break; 514 case Opt_compress_force: 515 case Opt_compress_force_type: 516 compress_force = true; 517 /* Fallthrough */ 518 case Opt_compress: 519 case Opt_compress_type: 520 saved_compress_type = btrfs_test_opt(info, 521 COMPRESS) ? 522 info->compress_type : BTRFS_COMPRESS_NONE; 523 saved_compress_force = 524 btrfs_test_opt(info, FORCE_COMPRESS); 525 if (token == Opt_compress || 526 token == Opt_compress_force || 527 strncmp(args[0].from, "zlib", 4) == 0) { 528 compress_type = "zlib"; 529 530 info->compress_type = BTRFS_COMPRESS_ZLIB; 531 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 532 /* 533 * args[0] contains uninitialized data since 534 * for these tokens we don't expect any 535 * parameter. 536 */ 537 if (token != Opt_compress && 538 token != Opt_compress_force) 539 info->compress_level = 540 btrfs_compress_str2level( 541 BTRFS_COMPRESS_ZLIB, 542 args[0].from + 4); 543 btrfs_set_opt(info->mount_opt, COMPRESS); 544 btrfs_clear_opt(info->mount_opt, NODATACOW); 545 btrfs_clear_opt(info->mount_opt, NODATASUM); 546 no_compress = 0; 547 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 548 compress_type = "lzo"; 549 info->compress_type = BTRFS_COMPRESS_LZO; 550 btrfs_set_opt(info->mount_opt, COMPRESS); 551 btrfs_clear_opt(info->mount_opt, NODATACOW); 552 btrfs_clear_opt(info->mount_opt, NODATASUM); 553 btrfs_set_fs_incompat(info, COMPRESS_LZO); 554 no_compress = 0; 555 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 556 compress_type = "zstd"; 557 info->compress_type = BTRFS_COMPRESS_ZSTD; 558 info->compress_level = 559 btrfs_compress_str2level( 560 BTRFS_COMPRESS_ZSTD, 561 args[0].from + 4); 562 btrfs_set_opt(info->mount_opt, COMPRESS); 563 btrfs_clear_opt(info->mount_opt, NODATACOW); 564 btrfs_clear_opt(info->mount_opt, NODATASUM); 565 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 566 no_compress = 0; 567 } else if (strncmp(args[0].from, "no", 2) == 0) { 568 compress_type = "no"; 569 btrfs_clear_opt(info->mount_opt, COMPRESS); 570 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 571 compress_force = false; 572 no_compress++; 573 } else { 574 ret = -EINVAL; 575 goto out; 576 } 577 578 if (compress_force) { 579 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 580 } else { 581 /* 582 * If we remount from compress-force=xxx to 583 * compress=xxx, we need clear FORCE_COMPRESS 584 * flag, otherwise, there is no way for users 585 * to disable forcible compression separately. 586 */ 587 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 588 } 589 if ((btrfs_test_opt(info, COMPRESS) && 590 (info->compress_type != saved_compress_type || 591 compress_force != saved_compress_force)) || 592 (!btrfs_test_opt(info, COMPRESS) && 593 no_compress == 1)) { 594 btrfs_info(info, "%s %s compression, level %d", 595 (compress_force) ? "force" : "use", 596 compress_type, info->compress_level); 597 } 598 compress_force = false; 599 break; 600 case Opt_ssd: 601 btrfs_set_and_info(info, SSD, 602 "enabling ssd optimizations"); 603 btrfs_clear_opt(info->mount_opt, NOSSD); 604 break; 605 case Opt_ssd_spread: 606 btrfs_set_and_info(info, SSD, 607 "enabling ssd optimizations"); 608 btrfs_set_and_info(info, SSD_SPREAD, 609 "using spread ssd allocation scheme"); 610 btrfs_clear_opt(info->mount_opt, NOSSD); 611 break; 612 case Opt_nossd: 613 btrfs_set_opt(info->mount_opt, NOSSD); 614 btrfs_clear_and_info(info, SSD, 615 "not using ssd optimizations"); 616 /* Fallthrough */ 617 case Opt_nossd_spread: 618 btrfs_clear_and_info(info, SSD_SPREAD, 619 "not using spread ssd allocation scheme"); 620 break; 621 case Opt_barrier: 622 btrfs_clear_and_info(info, NOBARRIER, 623 "turning on barriers"); 624 break; 625 case Opt_nobarrier: 626 btrfs_set_and_info(info, NOBARRIER, 627 "turning off barriers"); 628 break; 629 case Opt_thread_pool: 630 ret = match_int(&args[0], &intarg); 631 if (ret) { 632 goto out; 633 } else if (intarg == 0) { 634 ret = -EINVAL; 635 goto out; 636 } 637 info->thread_pool_size = intarg; 638 break; 639 case Opt_max_inline: 640 num = match_strdup(&args[0]); 641 if (num) { 642 info->max_inline = memparse(num, NULL); 643 kfree(num); 644 645 if (info->max_inline) { 646 info->max_inline = min_t(u64, 647 info->max_inline, 648 info->sectorsize); 649 } 650 btrfs_info(info, "max_inline at %llu", 651 info->max_inline); 652 } else { 653 ret = -ENOMEM; 654 goto out; 655 } 656 break; 657 case Opt_alloc_start: 658 btrfs_info(info, 659 "option alloc_start is obsolete, ignored"); 660 break; 661 case Opt_acl: 662 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 663 info->sb->s_flags |= SB_POSIXACL; 664 break; 665 #else 666 btrfs_err(info, "support for ACL not compiled in!"); 667 ret = -EINVAL; 668 goto out; 669 #endif 670 case Opt_noacl: 671 info->sb->s_flags &= ~SB_POSIXACL; 672 break; 673 case Opt_notreelog: 674 btrfs_set_and_info(info, NOTREELOG, 675 "disabling tree log"); 676 break; 677 case Opt_treelog: 678 btrfs_clear_and_info(info, NOTREELOG, 679 "enabling tree log"); 680 break; 681 case Opt_norecovery: 682 case Opt_nologreplay: 683 btrfs_set_and_info(info, NOLOGREPLAY, 684 "disabling log replay at mount time"); 685 break; 686 case Opt_flushoncommit: 687 btrfs_set_and_info(info, FLUSHONCOMMIT, 688 "turning on flush-on-commit"); 689 break; 690 case Opt_noflushoncommit: 691 btrfs_clear_and_info(info, FLUSHONCOMMIT, 692 "turning off flush-on-commit"); 693 break; 694 case Opt_ratio: 695 ret = match_int(&args[0], &intarg); 696 if (ret) 697 goto out; 698 info->metadata_ratio = intarg; 699 btrfs_info(info, "metadata ratio %u", 700 info->metadata_ratio); 701 break; 702 case Opt_discard: 703 case Opt_discard_mode: 704 if (token == Opt_discard || 705 strcmp(args[0].from, "sync") == 0) { 706 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 707 btrfs_set_and_info(info, DISCARD_SYNC, 708 "turning on sync discard"); 709 } else if (strcmp(args[0].from, "async") == 0) { 710 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 711 btrfs_set_and_info(info, DISCARD_ASYNC, 712 "turning on async discard"); 713 } else { 714 ret = -EINVAL; 715 goto out; 716 } 717 break; 718 case Opt_nodiscard: 719 btrfs_clear_and_info(info, DISCARD_SYNC, 720 "turning off discard"); 721 btrfs_clear_and_info(info, DISCARD_ASYNC, 722 "turning off async discard"); 723 break; 724 case Opt_space_cache: 725 case Opt_space_cache_version: 726 if (token == Opt_space_cache || 727 strcmp(args[0].from, "v1") == 0) { 728 btrfs_clear_opt(info->mount_opt, 729 FREE_SPACE_TREE); 730 btrfs_set_and_info(info, SPACE_CACHE, 731 "enabling disk space caching"); 732 } else if (strcmp(args[0].from, "v2") == 0) { 733 btrfs_clear_opt(info->mount_opt, 734 SPACE_CACHE); 735 btrfs_set_and_info(info, FREE_SPACE_TREE, 736 "enabling free space tree"); 737 } else { 738 ret = -EINVAL; 739 goto out; 740 } 741 break; 742 case Opt_rescan_uuid_tree: 743 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 744 break; 745 case Opt_no_space_cache: 746 if (btrfs_test_opt(info, SPACE_CACHE)) { 747 btrfs_clear_and_info(info, SPACE_CACHE, 748 "disabling disk space caching"); 749 } 750 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 751 btrfs_clear_and_info(info, FREE_SPACE_TREE, 752 "disabling free space tree"); 753 } 754 break; 755 case Opt_inode_cache: 756 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 757 "enabling inode map caching"); 758 break; 759 case Opt_noinode_cache: 760 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 761 "disabling inode map caching"); 762 break; 763 case Opt_clear_cache: 764 btrfs_set_and_info(info, CLEAR_CACHE, 765 "force clearing of disk cache"); 766 break; 767 case Opt_user_subvol_rm_allowed: 768 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 769 break; 770 case Opt_enospc_debug: 771 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 772 break; 773 case Opt_noenospc_debug: 774 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 775 break; 776 case Opt_defrag: 777 btrfs_set_and_info(info, AUTO_DEFRAG, 778 "enabling auto defrag"); 779 break; 780 case Opt_nodefrag: 781 btrfs_clear_and_info(info, AUTO_DEFRAG, 782 "disabling auto defrag"); 783 break; 784 case Opt_recovery: 785 btrfs_warn(info, 786 "'recovery' is deprecated, use 'usebackuproot' instead"); 787 /* fall through */ 788 case Opt_usebackuproot: 789 btrfs_info(info, 790 "trying to use backup root at mount time"); 791 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 792 break; 793 case Opt_skip_balance: 794 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 795 break; 796 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 797 case Opt_check_integrity_including_extent_data: 798 btrfs_info(info, 799 "enabling check integrity including extent data"); 800 btrfs_set_opt(info->mount_opt, 801 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 802 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 803 break; 804 case Opt_check_integrity: 805 btrfs_info(info, "enabling check integrity"); 806 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 807 break; 808 case Opt_check_integrity_print_mask: 809 ret = match_int(&args[0], &intarg); 810 if (ret) 811 goto out; 812 info->check_integrity_print_mask = intarg; 813 btrfs_info(info, "check_integrity_print_mask 0x%x", 814 info->check_integrity_print_mask); 815 break; 816 #else 817 case Opt_check_integrity_including_extent_data: 818 case Opt_check_integrity: 819 case Opt_check_integrity_print_mask: 820 btrfs_err(info, 821 "support for check_integrity* not compiled in!"); 822 ret = -EINVAL; 823 goto out; 824 #endif 825 case Opt_fatal_errors: 826 if (strcmp(args[0].from, "panic") == 0) 827 btrfs_set_opt(info->mount_opt, 828 PANIC_ON_FATAL_ERROR); 829 else if (strcmp(args[0].from, "bug") == 0) 830 btrfs_clear_opt(info->mount_opt, 831 PANIC_ON_FATAL_ERROR); 832 else { 833 ret = -EINVAL; 834 goto out; 835 } 836 break; 837 case Opt_commit_interval: 838 intarg = 0; 839 ret = match_int(&args[0], &intarg); 840 if (ret) 841 goto out; 842 if (intarg == 0) { 843 btrfs_info(info, 844 "using default commit interval %us", 845 BTRFS_DEFAULT_COMMIT_INTERVAL); 846 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 847 } else if (intarg > 300) { 848 btrfs_warn(info, "excessive commit interval %d", 849 intarg); 850 } 851 info->commit_interval = intarg; 852 break; 853 #ifdef CONFIG_BTRFS_DEBUG 854 case Opt_fragment_all: 855 btrfs_info(info, "fragmenting all space"); 856 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 857 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 858 break; 859 case Opt_fragment_metadata: 860 btrfs_info(info, "fragmenting metadata"); 861 btrfs_set_opt(info->mount_opt, 862 FRAGMENT_METADATA); 863 break; 864 case Opt_fragment_data: 865 btrfs_info(info, "fragmenting data"); 866 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 867 break; 868 #endif 869 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 870 case Opt_ref_verify: 871 btrfs_info(info, "doing ref verification"); 872 btrfs_set_opt(info->mount_opt, REF_VERIFY); 873 break; 874 #endif 875 case Opt_err: 876 btrfs_info(info, "unrecognized mount option '%s'", p); 877 ret = -EINVAL; 878 goto out; 879 default: 880 break; 881 } 882 } 883 check: 884 /* 885 * Extra check for current option against current flag 886 */ 887 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 888 btrfs_err(info, 889 "nologreplay must be used with ro mount option"); 890 ret = -EINVAL; 891 } 892 out: 893 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 894 !btrfs_test_opt(info, FREE_SPACE_TREE) && 895 !btrfs_test_opt(info, CLEAR_CACHE)) { 896 btrfs_err(info, "cannot disable free space tree"); 897 ret = -EINVAL; 898 899 } 900 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 901 btrfs_info(info, "disk space caching is enabled"); 902 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 903 btrfs_info(info, "using free space tree"); 904 return ret; 905 } 906 907 /* 908 * Parse mount options that are required early in the mount process. 909 * 910 * All other options will be parsed on much later in the mount process and 911 * only when we need to allocate a new super block. 912 */ 913 static int btrfs_parse_device_options(const char *options, fmode_t flags, 914 void *holder) 915 { 916 substring_t args[MAX_OPT_ARGS]; 917 char *device_name, *opts, *orig, *p; 918 struct btrfs_device *device = NULL; 919 int error = 0; 920 921 lockdep_assert_held(&uuid_mutex); 922 923 if (!options) 924 return 0; 925 926 /* 927 * strsep changes the string, duplicate it because btrfs_parse_options 928 * gets called later 929 */ 930 opts = kstrdup(options, GFP_KERNEL); 931 if (!opts) 932 return -ENOMEM; 933 orig = opts; 934 935 while ((p = strsep(&opts, ",")) != NULL) { 936 int token; 937 938 if (!*p) 939 continue; 940 941 token = match_token(p, tokens, args); 942 if (token == Opt_device) { 943 device_name = match_strdup(&args[0]); 944 if (!device_name) { 945 error = -ENOMEM; 946 goto out; 947 } 948 device = btrfs_scan_one_device(device_name, flags, 949 holder); 950 kfree(device_name); 951 if (IS_ERR(device)) { 952 error = PTR_ERR(device); 953 goto out; 954 } 955 } 956 } 957 958 out: 959 kfree(orig); 960 return error; 961 } 962 963 /* 964 * Parse mount options that are related to subvolume id 965 * 966 * The value is later passed to mount_subvol() 967 */ 968 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 969 u64 *subvol_objectid) 970 { 971 substring_t args[MAX_OPT_ARGS]; 972 char *opts, *orig, *p; 973 int error = 0; 974 u64 subvolid; 975 976 if (!options) 977 return 0; 978 979 /* 980 * strsep changes the string, duplicate it because 981 * btrfs_parse_device_options gets called later 982 */ 983 opts = kstrdup(options, GFP_KERNEL); 984 if (!opts) 985 return -ENOMEM; 986 orig = opts; 987 988 while ((p = strsep(&opts, ",")) != NULL) { 989 int token; 990 if (!*p) 991 continue; 992 993 token = match_token(p, tokens, args); 994 switch (token) { 995 case Opt_subvol: 996 kfree(*subvol_name); 997 *subvol_name = match_strdup(&args[0]); 998 if (!*subvol_name) { 999 error = -ENOMEM; 1000 goto out; 1001 } 1002 break; 1003 case Opt_subvolid: 1004 error = match_u64(&args[0], &subvolid); 1005 if (error) 1006 goto out; 1007 1008 /* we want the original fs_tree */ 1009 if (subvolid == 0) 1010 subvolid = BTRFS_FS_TREE_OBJECTID; 1011 1012 *subvol_objectid = subvolid; 1013 break; 1014 case Opt_subvolrootid: 1015 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 1016 break; 1017 default: 1018 break; 1019 } 1020 } 1021 1022 out: 1023 kfree(orig); 1024 return error; 1025 } 1026 1027 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1028 u64 subvol_objectid) 1029 { 1030 struct btrfs_root *root = fs_info->tree_root; 1031 struct btrfs_root *fs_root; 1032 struct btrfs_root_ref *root_ref; 1033 struct btrfs_inode_ref *inode_ref; 1034 struct btrfs_key key; 1035 struct btrfs_path *path = NULL; 1036 char *name = NULL, *ptr; 1037 u64 dirid; 1038 int len; 1039 int ret; 1040 1041 path = btrfs_alloc_path(); 1042 if (!path) { 1043 ret = -ENOMEM; 1044 goto err; 1045 } 1046 path->leave_spinning = 1; 1047 1048 name = kmalloc(PATH_MAX, GFP_KERNEL); 1049 if (!name) { 1050 ret = -ENOMEM; 1051 goto err; 1052 } 1053 ptr = name + PATH_MAX - 1; 1054 ptr[0] = '\0'; 1055 1056 /* 1057 * Walk up the subvolume trees in the tree of tree roots by root 1058 * backrefs until we hit the top-level subvolume. 1059 */ 1060 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1061 key.objectid = subvol_objectid; 1062 key.type = BTRFS_ROOT_BACKREF_KEY; 1063 key.offset = (u64)-1; 1064 1065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1066 if (ret < 0) { 1067 goto err; 1068 } else if (ret > 0) { 1069 ret = btrfs_previous_item(root, path, subvol_objectid, 1070 BTRFS_ROOT_BACKREF_KEY); 1071 if (ret < 0) { 1072 goto err; 1073 } else if (ret > 0) { 1074 ret = -ENOENT; 1075 goto err; 1076 } 1077 } 1078 1079 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1080 subvol_objectid = key.offset; 1081 1082 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1083 struct btrfs_root_ref); 1084 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1085 ptr -= len + 1; 1086 if (ptr < name) { 1087 ret = -ENAMETOOLONG; 1088 goto err; 1089 } 1090 read_extent_buffer(path->nodes[0], ptr + 1, 1091 (unsigned long)(root_ref + 1), len); 1092 ptr[0] = '/'; 1093 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1094 btrfs_release_path(path); 1095 1096 key.objectid = subvol_objectid; 1097 key.type = BTRFS_ROOT_ITEM_KEY; 1098 key.offset = (u64)-1; 1099 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1100 if (IS_ERR(fs_root)) { 1101 ret = PTR_ERR(fs_root); 1102 goto err; 1103 } 1104 1105 /* 1106 * Walk up the filesystem tree by inode refs until we hit the 1107 * root directory. 1108 */ 1109 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1110 key.objectid = dirid; 1111 key.type = BTRFS_INODE_REF_KEY; 1112 key.offset = (u64)-1; 1113 1114 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1115 if (ret < 0) { 1116 goto err; 1117 } else if (ret > 0) { 1118 ret = btrfs_previous_item(fs_root, path, dirid, 1119 BTRFS_INODE_REF_KEY); 1120 if (ret < 0) { 1121 goto err; 1122 } else if (ret > 0) { 1123 ret = -ENOENT; 1124 goto err; 1125 } 1126 } 1127 1128 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1129 dirid = key.offset; 1130 1131 inode_ref = btrfs_item_ptr(path->nodes[0], 1132 path->slots[0], 1133 struct btrfs_inode_ref); 1134 len = btrfs_inode_ref_name_len(path->nodes[0], 1135 inode_ref); 1136 ptr -= len + 1; 1137 if (ptr < name) { 1138 ret = -ENAMETOOLONG; 1139 goto err; 1140 } 1141 read_extent_buffer(path->nodes[0], ptr + 1, 1142 (unsigned long)(inode_ref + 1), len); 1143 ptr[0] = '/'; 1144 btrfs_release_path(path); 1145 } 1146 } 1147 1148 btrfs_free_path(path); 1149 if (ptr == name + PATH_MAX - 1) { 1150 name[0] = '/'; 1151 name[1] = '\0'; 1152 } else { 1153 memmove(name, ptr, name + PATH_MAX - ptr); 1154 } 1155 return name; 1156 1157 err: 1158 btrfs_free_path(path); 1159 kfree(name); 1160 return ERR_PTR(ret); 1161 } 1162 1163 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1164 { 1165 struct btrfs_root *root = fs_info->tree_root; 1166 struct btrfs_dir_item *di; 1167 struct btrfs_path *path; 1168 struct btrfs_key location; 1169 u64 dir_id; 1170 1171 path = btrfs_alloc_path(); 1172 if (!path) 1173 return -ENOMEM; 1174 path->leave_spinning = 1; 1175 1176 /* 1177 * Find the "default" dir item which points to the root item that we 1178 * will mount by default if we haven't been given a specific subvolume 1179 * to mount. 1180 */ 1181 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1182 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1183 if (IS_ERR(di)) { 1184 btrfs_free_path(path); 1185 return PTR_ERR(di); 1186 } 1187 if (!di) { 1188 /* 1189 * Ok the default dir item isn't there. This is weird since 1190 * it's always been there, but don't freak out, just try and 1191 * mount the top-level subvolume. 1192 */ 1193 btrfs_free_path(path); 1194 *objectid = BTRFS_FS_TREE_OBJECTID; 1195 return 0; 1196 } 1197 1198 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1199 btrfs_free_path(path); 1200 *objectid = location.objectid; 1201 return 0; 1202 } 1203 1204 static int btrfs_fill_super(struct super_block *sb, 1205 struct btrfs_fs_devices *fs_devices, 1206 void *data) 1207 { 1208 struct inode *inode; 1209 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1210 struct btrfs_key key; 1211 int err; 1212 1213 sb->s_maxbytes = MAX_LFS_FILESIZE; 1214 sb->s_magic = BTRFS_SUPER_MAGIC; 1215 sb->s_op = &btrfs_super_ops; 1216 sb->s_d_op = &btrfs_dentry_operations; 1217 sb->s_export_op = &btrfs_export_ops; 1218 sb->s_xattr = btrfs_xattr_handlers; 1219 sb->s_time_gran = 1; 1220 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1221 sb->s_flags |= SB_POSIXACL; 1222 #endif 1223 sb->s_flags |= SB_I_VERSION; 1224 sb->s_iflags |= SB_I_CGROUPWB; 1225 1226 err = super_setup_bdi(sb); 1227 if (err) { 1228 btrfs_err(fs_info, "super_setup_bdi failed"); 1229 return err; 1230 } 1231 1232 err = open_ctree(sb, fs_devices, (char *)data); 1233 if (err) { 1234 btrfs_err(fs_info, "open_ctree failed"); 1235 return err; 1236 } 1237 1238 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1239 key.type = BTRFS_INODE_ITEM_KEY; 1240 key.offset = 0; 1241 inode = btrfs_iget(sb, &key, fs_info->fs_root); 1242 if (IS_ERR(inode)) { 1243 err = PTR_ERR(inode); 1244 goto fail_close; 1245 } 1246 1247 sb->s_root = d_make_root(inode); 1248 if (!sb->s_root) { 1249 err = -ENOMEM; 1250 goto fail_close; 1251 } 1252 1253 cleancache_init_fs(sb); 1254 sb->s_flags |= SB_ACTIVE; 1255 return 0; 1256 1257 fail_close: 1258 close_ctree(fs_info); 1259 return err; 1260 } 1261 1262 int btrfs_sync_fs(struct super_block *sb, int wait) 1263 { 1264 struct btrfs_trans_handle *trans; 1265 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1266 struct btrfs_root *root = fs_info->tree_root; 1267 1268 trace_btrfs_sync_fs(fs_info, wait); 1269 1270 if (!wait) { 1271 filemap_flush(fs_info->btree_inode->i_mapping); 1272 return 0; 1273 } 1274 1275 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1276 1277 trans = btrfs_attach_transaction_barrier(root); 1278 if (IS_ERR(trans)) { 1279 /* no transaction, don't bother */ 1280 if (PTR_ERR(trans) == -ENOENT) { 1281 /* 1282 * Exit unless we have some pending changes 1283 * that need to go through commit 1284 */ 1285 if (fs_info->pending_changes == 0) 1286 return 0; 1287 /* 1288 * A non-blocking test if the fs is frozen. We must not 1289 * start a new transaction here otherwise a deadlock 1290 * happens. The pending operations are delayed to the 1291 * next commit after thawing. 1292 */ 1293 if (sb_start_write_trylock(sb)) 1294 sb_end_write(sb); 1295 else 1296 return 0; 1297 trans = btrfs_start_transaction(root, 0); 1298 } 1299 if (IS_ERR(trans)) 1300 return PTR_ERR(trans); 1301 } 1302 return btrfs_commit_transaction(trans); 1303 } 1304 1305 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1306 { 1307 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1308 const char *compress_type; 1309 1310 if (btrfs_test_opt(info, DEGRADED)) 1311 seq_puts(seq, ",degraded"); 1312 if (btrfs_test_opt(info, NODATASUM)) 1313 seq_puts(seq, ",nodatasum"); 1314 if (btrfs_test_opt(info, NODATACOW)) 1315 seq_puts(seq, ",nodatacow"); 1316 if (btrfs_test_opt(info, NOBARRIER)) 1317 seq_puts(seq, ",nobarrier"); 1318 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1319 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1320 if (info->thread_pool_size != min_t(unsigned long, 1321 num_online_cpus() + 2, 8)) 1322 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1323 if (btrfs_test_opt(info, COMPRESS)) { 1324 compress_type = btrfs_compress_type2str(info->compress_type); 1325 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1326 seq_printf(seq, ",compress-force=%s", compress_type); 1327 else 1328 seq_printf(seq, ",compress=%s", compress_type); 1329 if (info->compress_level) 1330 seq_printf(seq, ":%d", info->compress_level); 1331 } 1332 if (btrfs_test_opt(info, NOSSD)) 1333 seq_puts(seq, ",nossd"); 1334 if (btrfs_test_opt(info, SSD_SPREAD)) 1335 seq_puts(seq, ",ssd_spread"); 1336 else if (btrfs_test_opt(info, SSD)) 1337 seq_puts(seq, ",ssd"); 1338 if (btrfs_test_opt(info, NOTREELOG)) 1339 seq_puts(seq, ",notreelog"); 1340 if (btrfs_test_opt(info, NOLOGREPLAY)) 1341 seq_puts(seq, ",nologreplay"); 1342 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1343 seq_puts(seq, ",flushoncommit"); 1344 if (btrfs_test_opt(info, DISCARD_SYNC)) 1345 seq_puts(seq, ",discard"); 1346 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1347 seq_puts(seq, ",discard=async"); 1348 if (!(info->sb->s_flags & SB_POSIXACL)) 1349 seq_puts(seq, ",noacl"); 1350 if (btrfs_test_opt(info, SPACE_CACHE)) 1351 seq_puts(seq, ",space_cache"); 1352 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1353 seq_puts(seq, ",space_cache=v2"); 1354 else 1355 seq_puts(seq, ",nospace_cache"); 1356 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1357 seq_puts(seq, ",rescan_uuid_tree"); 1358 if (btrfs_test_opt(info, CLEAR_CACHE)) 1359 seq_puts(seq, ",clear_cache"); 1360 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1361 seq_puts(seq, ",user_subvol_rm_allowed"); 1362 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1363 seq_puts(seq, ",enospc_debug"); 1364 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1365 seq_puts(seq, ",autodefrag"); 1366 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1367 seq_puts(seq, ",inode_cache"); 1368 if (btrfs_test_opt(info, SKIP_BALANCE)) 1369 seq_puts(seq, ",skip_balance"); 1370 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1371 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1372 seq_puts(seq, ",check_int_data"); 1373 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1374 seq_puts(seq, ",check_int"); 1375 if (info->check_integrity_print_mask) 1376 seq_printf(seq, ",check_int_print_mask=%d", 1377 info->check_integrity_print_mask); 1378 #endif 1379 if (info->metadata_ratio) 1380 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1381 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1382 seq_puts(seq, ",fatal_errors=panic"); 1383 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1384 seq_printf(seq, ",commit=%u", info->commit_interval); 1385 #ifdef CONFIG_BTRFS_DEBUG 1386 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1387 seq_puts(seq, ",fragment=data"); 1388 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1389 seq_puts(seq, ",fragment=metadata"); 1390 #endif 1391 if (btrfs_test_opt(info, REF_VERIFY)) 1392 seq_puts(seq, ",ref_verify"); 1393 seq_printf(seq, ",subvolid=%llu", 1394 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1395 seq_puts(seq, ",subvol="); 1396 seq_dentry(seq, dentry, " \t\n\\"); 1397 return 0; 1398 } 1399 1400 static int btrfs_test_super(struct super_block *s, void *data) 1401 { 1402 struct btrfs_fs_info *p = data; 1403 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1404 1405 return fs_info->fs_devices == p->fs_devices; 1406 } 1407 1408 static int btrfs_set_super(struct super_block *s, void *data) 1409 { 1410 int err = set_anon_super(s, data); 1411 if (!err) 1412 s->s_fs_info = data; 1413 return err; 1414 } 1415 1416 /* 1417 * subvolumes are identified by ino 256 1418 */ 1419 static inline int is_subvolume_inode(struct inode *inode) 1420 { 1421 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1422 return 1; 1423 return 0; 1424 } 1425 1426 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1427 struct vfsmount *mnt) 1428 { 1429 struct dentry *root; 1430 int ret; 1431 1432 if (!subvol_name) { 1433 if (!subvol_objectid) { 1434 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1435 &subvol_objectid); 1436 if (ret) { 1437 root = ERR_PTR(ret); 1438 goto out; 1439 } 1440 } 1441 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1442 subvol_objectid); 1443 if (IS_ERR(subvol_name)) { 1444 root = ERR_CAST(subvol_name); 1445 subvol_name = NULL; 1446 goto out; 1447 } 1448 1449 } 1450 1451 root = mount_subtree(mnt, subvol_name); 1452 /* mount_subtree() drops our reference on the vfsmount. */ 1453 mnt = NULL; 1454 1455 if (!IS_ERR(root)) { 1456 struct super_block *s = root->d_sb; 1457 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1458 struct inode *root_inode = d_inode(root); 1459 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1460 1461 ret = 0; 1462 if (!is_subvolume_inode(root_inode)) { 1463 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1464 subvol_name); 1465 ret = -EINVAL; 1466 } 1467 if (subvol_objectid && root_objectid != subvol_objectid) { 1468 /* 1469 * This will also catch a race condition where a 1470 * subvolume which was passed by ID is renamed and 1471 * another subvolume is renamed over the old location. 1472 */ 1473 btrfs_err(fs_info, 1474 "subvol '%s' does not match subvolid %llu", 1475 subvol_name, subvol_objectid); 1476 ret = -EINVAL; 1477 } 1478 if (ret) { 1479 dput(root); 1480 root = ERR_PTR(ret); 1481 deactivate_locked_super(s); 1482 } 1483 } 1484 1485 out: 1486 mntput(mnt); 1487 kfree(subvol_name); 1488 return root; 1489 } 1490 1491 /* 1492 * Find a superblock for the given device / mount point. 1493 * 1494 * Note: This is based on mount_bdev from fs/super.c with a few additions 1495 * for multiple device setup. Make sure to keep it in sync. 1496 */ 1497 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1498 int flags, const char *device_name, void *data) 1499 { 1500 struct block_device *bdev = NULL; 1501 struct super_block *s; 1502 struct btrfs_device *device = NULL; 1503 struct btrfs_fs_devices *fs_devices = NULL; 1504 struct btrfs_fs_info *fs_info = NULL; 1505 void *new_sec_opts = NULL; 1506 fmode_t mode = FMODE_READ; 1507 int error = 0; 1508 1509 if (!(flags & SB_RDONLY)) 1510 mode |= FMODE_WRITE; 1511 1512 if (data) { 1513 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1514 if (error) 1515 return ERR_PTR(error); 1516 } 1517 1518 /* 1519 * Setup a dummy root and fs_info for test/set super. This is because 1520 * we don't actually fill this stuff out until open_ctree, but we need 1521 * it for searching for existing supers, so this lets us do that and 1522 * then open_ctree will properly initialize everything later. 1523 */ 1524 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1525 if (!fs_info) { 1526 error = -ENOMEM; 1527 goto error_sec_opts; 1528 } 1529 1530 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1531 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1532 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1533 error = -ENOMEM; 1534 goto error_fs_info; 1535 } 1536 1537 mutex_lock(&uuid_mutex); 1538 error = btrfs_parse_device_options(data, mode, fs_type); 1539 if (error) { 1540 mutex_unlock(&uuid_mutex); 1541 goto error_fs_info; 1542 } 1543 1544 device = btrfs_scan_one_device(device_name, mode, fs_type); 1545 if (IS_ERR(device)) { 1546 mutex_unlock(&uuid_mutex); 1547 error = PTR_ERR(device); 1548 goto error_fs_info; 1549 } 1550 1551 fs_devices = device->fs_devices; 1552 fs_info->fs_devices = fs_devices; 1553 1554 error = btrfs_open_devices(fs_devices, mode, fs_type); 1555 mutex_unlock(&uuid_mutex); 1556 if (error) 1557 goto error_fs_info; 1558 1559 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1560 error = -EACCES; 1561 goto error_close_devices; 1562 } 1563 1564 bdev = fs_devices->latest_bdev; 1565 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1566 fs_info); 1567 if (IS_ERR(s)) { 1568 error = PTR_ERR(s); 1569 goto error_close_devices; 1570 } 1571 1572 if (s->s_root) { 1573 btrfs_close_devices(fs_devices); 1574 free_fs_info(fs_info); 1575 if ((flags ^ s->s_flags) & SB_RDONLY) 1576 error = -EBUSY; 1577 } else { 1578 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1579 btrfs_sb(s)->bdev_holder = fs_type; 1580 if (!strstr(crc32c_impl(), "generic")) 1581 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1582 error = btrfs_fill_super(s, fs_devices, data); 1583 } 1584 if (!error) 1585 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1586 security_free_mnt_opts(&new_sec_opts); 1587 if (error) { 1588 deactivate_locked_super(s); 1589 return ERR_PTR(error); 1590 } 1591 1592 return dget(s->s_root); 1593 1594 error_close_devices: 1595 btrfs_close_devices(fs_devices); 1596 error_fs_info: 1597 free_fs_info(fs_info); 1598 error_sec_opts: 1599 security_free_mnt_opts(&new_sec_opts); 1600 return ERR_PTR(error); 1601 } 1602 1603 /* 1604 * Mount function which is called by VFS layer. 1605 * 1606 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1607 * which needs vfsmount* of device's root (/). This means device's root has to 1608 * be mounted internally in any case. 1609 * 1610 * Operation flow: 1611 * 1. Parse subvol id related options for later use in mount_subvol(). 1612 * 1613 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1614 * 1615 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1616 * first place. In order to avoid calling btrfs_mount() again, we use 1617 * different file_system_type which is not registered to VFS by 1618 * register_filesystem() (btrfs_root_fs_type). As a result, 1619 * btrfs_mount_root() is called. The return value will be used by 1620 * mount_subtree() in mount_subvol(). 1621 * 1622 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1623 * "btrfs subvolume set-default", mount_subvol() is called always. 1624 */ 1625 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1626 const char *device_name, void *data) 1627 { 1628 struct vfsmount *mnt_root; 1629 struct dentry *root; 1630 char *subvol_name = NULL; 1631 u64 subvol_objectid = 0; 1632 int error = 0; 1633 1634 error = btrfs_parse_subvol_options(data, &subvol_name, 1635 &subvol_objectid); 1636 if (error) { 1637 kfree(subvol_name); 1638 return ERR_PTR(error); 1639 } 1640 1641 /* mount device's root (/) */ 1642 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1643 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1644 if (flags & SB_RDONLY) { 1645 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1646 flags & ~SB_RDONLY, device_name, data); 1647 } else { 1648 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1649 flags | SB_RDONLY, device_name, data); 1650 if (IS_ERR(mnt_root)) { 1651 root = ERR_CAST(mnt_root); 1652 kfree(subvol_name); 1653 goto out; 1654 } 1655 1656 down_write(&mnt_root->mnt_sb->s_umount); 1657 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1658 up_write(&mnt_root->mnt_sb->s_umount); 1659 if (error < 0) { 1660 root = ERR_PTR(error); 1661 mntput(mnt_root); 1662 kfree(subvol_name); 1663 goto out; 1664 } 1665 } 1666 } 1667 if (IS_ERR(mnt_root)) { 1668 root = ERR_CAST(mnt_root); 1669 kfree(subvol_name); 1670 goto out; 1671 } 1672 1673 /* mount_subvol() will free subvol_name and mnt_root */ 1674 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1675 1676 out: 1677 return root; 1678 } 1679 1680 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1681 u32 new_pool_size, u32 old_pool_size) 1682 { 1683 if (new_pool_size == old_pool_size) 1684 return; 1685 1686 fs_info->thread_pool_size = new_pool_size; 1687 1688 btrfs_info(fs_info, "resize thread pool %d -> %d", 1689 old_pool_size, new_pool_size); 1690 1691 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1692 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1693 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1694 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1695 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1696 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1697 new_pool_size); 1698 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1699 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1700 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1701 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1702 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1703 new_pool_size); 1704 } 1705 1706 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1707 { 1708 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1709 } 1710 1711 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1712 unsigned long old_opts, int flags) 1713 { 1714 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1715 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1716 (flags & SB_RDONLY))) { 1717 /* wait for any defraggers to finish */ 1718 wait_event(fs_info->transaction_wait, 1719 (atomic_read(&fs_info->defrag_running) == 0)); 1720 if (flags & SB_RDONLY) 1721 sync_filesystem(fs_info->sb); 1722 } 1723 } 1724 1725 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1726 unsigned long old_opts) 1727 { 1728 /* 1729 * We need to cleanup all defragable inodes if the autodefragment is 1730 * close or the filesystem is read only. 1731 */ 1732 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1733 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1734 btrfs_cleanup_defrag_inodes(fs_info); 1735 } 1736 1737 /* If we toggled discard async */ 1738 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1739 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1740 btrfs_discard_resume(fs_info); 1741 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1742 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1743 btrfs_discard_cleanup(fs_info); 1744 1745 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1746 } 1747 1748 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1749 { 1750 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1751 struct btrfs_root *root = fs_info->tree_root; 1752 unsigned old_flags = sb->s_flags; 1753 unsigned long old_opts = fs_info->mount_opt; 1754 unsigned long old_compress_type = fs_info->compress_type; 1755 u64 old_max_inline = fs_info->max_inline; 1756 u32 old_thread_pool_size = fs_info->thread_pool_size; 1757 u32 old_metadata_ratio = fs_info->metadata_ratio; 1758 int ret; 1759 1760 sync_filesystem(sb); 1761 btrfs_remount_prepare(fs_info); 1762 1763 if (data) { 1764 void *new_sec_opts = NULL; 1765 1766 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1767 if (!ret) 1768 ret = security_sb_remount(sb, new_sec_opts); 1769 security_free_mnt_opts(&new_sec_opts); 1770 if (ret) 1771 goto restore; 1772 } 1773 1774 ret = btrfs_parse_options(fs_info, data, *flags); 1775 if (ret) 1776 goto restore; 1777 1778 btrfs_remount_begin(fs_info, old_opts, *flags); 1779 btrfs_resize_thread_pool(fs_info, 1780 fs_info->thread_pool_size, old_thread_pool_size); 1781 1782 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1783 goto out; 1784 1785 if (*flags & SB_RDONLY) { 1786 /* 1787 * this also happens on 'umount -rf' or on shutdown, when 1788 * the filesystem is busy. 1789 */ 1790 cancel_work_sync(&fs_info->async_reclaim_work); 1791 1792 btrfs_discard_cleanup(fs_info); 1793 1794 /* wait for the uuid_scan task to finish */ 1795 down(&fs_info->uuid_tree_rescan_sem); 1796 /* avoid complains from lockdep et al. */ 1797 up(&fs_info->uuid_tree_rescan_sem); 1798 1799 sb->s_flags |= SB_RDONLY; 1800 1801 /* 1802 * Setting SB_RDONLY will put the cleaner thread to 1803 * sleep at the next loop if it's already active. 1804 * If it's already asleep, we'll leave unused block 1805 * groups on disk until we're mounted read-write again 1806 * unless we clean them up here. 1807 */ 1808 btrfs_delete_unused_bgs(fs_info); 1809 1810 btrfs_dev_replace_suspend_for_unmount(fs_info); 1811 btrfs_scrub_cancel(fs_info); 1812 btrfs_pause_balance(fs_info); 1813 1814 ret = btrfs_commit_super(fs_info); 1815 if (ret) 1816 goto restore; 1817 } else { 1818 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1819 btrfs_err(fs_info, 1820 "Remounting read-write after error is not allowed"); 1821 ret = -EINVAL; 1822 goto restore; 1823 } 1824 if (fs_info->fs_devices->rw_devices == 0) { 1825 ret = -EACCES; 1826 goto restore; 1827 } 1828 1829 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1830 btrfs_warn(fs_info, 1831 "too many missing devices, writable remount is not allowed"); 1832 ret = -EACCES; 1833 goto restore; 1834 } 1835 1836 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1837 ret = -EINVAL; 1838 goto restore; 1839 } 1840 1841 ret = btrfs_cleanup_fs_roots(fs_info); 1842 if (ret) 1843 goto restore; 1844 1845 /* recover relocation */ 1846 mutex_lock(&fs_info->cleaner_mutex); 1847 ret = btrfs_recover_relocation(root); 1848 mutex_unlock(&fs_info->cleaner_mutex); 1849 if (ret) 1850 goto restore; 1851 1852 ret = btrfs_resume_balance_async(fs_info); 1853 if (ret) 1854 goto restore; 1855 1856 ret = btrfs_resume_dev_replace_async(fs_info); 1857 if (ret) { 1858 btrfs_warn(fs_info, "failed to resume dev_replace"); 1859 goto restore; 1860 } 1861 1862 btrfs_qgroup_rescan_resume(fs_info); 1863 1864 if (!fs_info->uuid_root) { 1865 btrfs_info(fs_info, "creating UUID tree"); 1866 ret = btrfs_create_uuid_tree(fs_info); 1867 if (ret) { 1868 btrfs_warn(fs_info, 1869 "failed to create the UUID tree %d", 1870 ret); 1871 goto restore; 1872 } 1873 } 1874 sb->s_flags &= ~SB_RDONLY; 1875 1876 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1877 } 1878 out: 1879 wake_up_process(fs_info->transaction_kthread); 1880 btrfs_remount_cleanup(fs_info, old_opts); 1881 return 0; 1882 1883 restore: 1884 /* We've hit an error - don't reset SB_RDONLY */ 1885 if (sb_rdonly(sb)) 1886 old_flags |= SB_RDONLY; 1887 sb->s_flags = old_flags; 1888 fs_info->mount_opt = old_opts; 1889 fs_info->compress_type = old_compress_type; 1890 fs_info->max_inline = old_max_inline; 1891 btrfs_resize_thread_pool(fs_info, 1892 old_thread_pool_size, fs_info->thread_pool_size); 1893 fs_info->metadata_ratio = old_metadata_ratio; 1894 btrfs_remount_cleanup(fs_info, old_opts); 1895 return ret; 1896 } 1897 1898 /* Used to sort the devices by max_avail(descending sort) */ 1899 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 1900 const void *dev_info2) 1901 { 1902 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1903 ((struct btrfs_device_info *)dev_info2)->max_avail) 1904 return -1; 1905 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1906 ((struct btrfs_device_info *)dev_info2)->max_avail) 1907 return 1; 1908 else 1909 return 0; 1910 } 1911 1912 /* 1913 * sort the devices by max_avail, in which max free extent size of each device 1914 * is stored.(Descending Sort) 1915 */ 1916 static inline void btrfs_descending_sort_devices( 1917 struct btrfs_device_info *devices, 1918 size_t nr_devices) 1919 { 1920 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1921 btrfs_cmp_device_free_bytes, NULL); 1922 } 1923 1924 /* 1925 * The helper to calc the free space on the devices that can be used to store 1926 * file data. 1927 */ 1928 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1929 u64 *free_bytes) 1930 { 1931 struct btrfs_device_info *devices_info; 1932 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1933 struct btrfs_device *device; 1934 u64 type; 1935 u64 avail_space; 1936 u64 min_stripe_size; 1937 int num_stripes = 1; 1938 int i = 0, nr_devices; 1939 const struct btrfs_raid_attr *rattr; 1940 1941 /* 1942 * We aren't under the device list lock, so this is racy-ish, but good 1943 * enough for our purposes. 1944 */ 1945 nr_devices = fs_info->fs_devices->open_devices; 1946 if (!nr_devices) { 1947 smp_mb(); 1948 nr_devices = fs_info->fs_devices->open_devices; 1949 ASSERT(nr_devices); 1950 if (!nr_devices) { 1951 *free_bytes = 0; 1952 return 0; 1953 } 1954 } 1955 1956 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1957 GFP_KERNEL); 1958 if (!devices_info) 1959 return -ENOMEM; 1960 1961 /* calc min stripe number for data space allocation */ 1962 type = btrfs_data_alloc_profile(fs_info); 1963 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1964 1965 if (type & BTRFS_BLOCK_GROUP_RAID0) 1966 num_stripes = nr_devices; 1967 else if (type & BTRFS_BLOCK_GROUP_RAID1) 1968 num_stripes = 2; 1969 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 1970 num_stripes = 3; 1971 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 1972 num_stripes = 4; 1973 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1974 num_stripes = 4; 1975 1976 /* Adjust for more than 1 stripe per device */ 1977 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1978 1979 rcu_read_lock(); 1980 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1981 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1982 &device->dev_state) || 1983 !device->bdev || 1984 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1985 continue; 1986 1987 if (i >= nr_devices) 1988 break; 1989 1990 avail_space = device->total_bytes - device->bytes_used; 1991 1992 /* align with stripe_len */ 1993 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1994 1995 /* 1996 * In order to avoid overwriting the superblock on the drive, 1997 * btrfs starts at an offset of at least 1MB when doing chunk 1998 * allocation. 1999 * 2000 * This ensures we have at least min_stripe_size free space 2001 * after excluding 1MB. 2002 */ 2003 if (avail_space <= SZ_1M + min_stripe_size) 2004 continue; 2005 2006 avail_space -= SZ_1M; 2007 2008 devices_info[i].dev = device; 2009 devices_info[i].max_avail = avail_space; 2010 2011 i++; 2012 } 2013 rcu_read_unlock(); 2014 2015 nr_devices = i; 2016 2017 btrfs_descending_sort_devices(devices_info, nr_devices); 2018 2019 i = nr_devices - 1; 2020 avail_space = 0; 2021 while (nr_devices >= rattr->devs_min) { 2022 num_stripes = min(num_stripes, nr_devices); 2023 2024 if (devices_info[i].max_avail >= min_stripe_size) { 2025 int j; 2026 u64 alloc_size; 2027 2028 avail_space += devices_info[i].max_avail * num_stripes; 2029 alloc_size = devices_info[i].max_avail; 2030 for (j = i + 1 - num_stripes; j <= i; j++) 2031 devices_info[j].max_avail -= alloc_size; 2032 } 2033 i--; 2034 nr_devices--; 2035 } 2036 2037 kfree(devices_info); 2038 *free_bytes = avail_space; 2039 return 0; 2040 } 2041 2042 /* 2043 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2044 * 2045 * If there's a redundant raid level at DATA block groups, use the respective 2046 * multiplier to scale the sizes. 2047 * 2048 * Unused device space usage is based on simulating the chunk allocator 2049 * algorithm that respects the device sizes and order of allocations. This is 2050 * a close approximation of the actual use but there are other factors that may 2051 * change the result (like a new metadata chunk). 2052 * 2053 * If metadata is exhausted, f_bavail will be 0. 2054 */ 2055 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2056 { 2057 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2058 struct btrfs_super_block *disk_super = fs_info->super_copy; 2059 struct btrfs_space_info *found; 2060 u64 total_used = 0; 2061 u64 total_free_data = 0; 2062 u64 total_free_meta = 0; 2063 int bits = dentry->d_sb->s_blocksize_bits; 2064 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2065 unsigned factor = 1; 2066 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2067 int ret; 2068 u64 thresh = 0; 2069 int mixed = 0; 2070 2071 rcu_read_lock(); 2072 list_for_each_entry_rcu(found, &fs_info->space_info, list) { 2073 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2074 int i; 2075 2076 total_free_data += found->disk_total - found->disk_used; 2077 total_free_data -= 2078 btrfs_account_ro_block_groups_free_space(found); 2079 2080 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2081 if (!list_empty(&found->block_groups[i])) 2082 factor = btrfs_bg_type_to_factor( 2083 btrfs_raid_array[i].bg_flag); 2084 } 2085 } 2086 2087 /* 2088 * Metadata in mixed block goup profiles are accounted in data 2089 */ 2090 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2091 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2092 mixed = 1; 2093 else 2094 total_free_meta += found->disk_total - 2095 found->disk_used; 2096 } 2097 2098 total_used += found->disk_used; 2099 } 2100 2101 rcu_read_unlock(); 2102 2103 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2104 buf->f_blocks >>= bits; 2105 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2106 2107 /* Account global block reserve as used, it's in logical size already */ 2108 spin_lock(&block_rsv->lock); 2109 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2110 if (buf->f_bfree >= block_rsv->size >> bits) 2111 buf->f_bfree -= block_rsv->size >> bits; 2112 else 2113 buf->f_bfree = 0; 2114 spin_unlock(&block_rsv->lock); 2115 2116 buf->f_bavail = div_u64(total_free_data, factor); 2117 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2118 if (ret) 2119 return ret; 2120 buf->f_bavail += div_u64(total_free_data, factor); 2121 buf->f_bavail = buf->f_bavail >> bits; 2122 2123 /* 2124 * We calculate the remaining metadata space minus global reserve. If 2125 * this is (supposedly) smaller than zero, there's no space. But this 2126 * does not hold in practice, the exhausted state happens where's still 2127 * some positive delta. So we apply some guesswork and compare the 2128 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2129 * 2130 * We probably cannot calculate the exact threshold value because this 2131 * depends on the internal reservations requested by various 2132 * operations, so some operations that consume a few metadata will 2133 * succeed even if the Avail is zero. But this is better than the other 2134 * way around. 2135 */ 2136 thresh = SZ_4M; 2137 2138 /* 2139 * We only want to claim there's no available space if we can no longer 2140 * allocate chunks for our metadata profile and our global reserve will 2141 * not fit in the free metadata space. If we aren't ->full then we 2142 * still can allocate chunks and thus are fine using the currently 2143 * calculated f_bavail. 2144 */ 2145 if (!mixed && block_rsv->space_info->full && 2146 total_free_meta - thresh < block_rsv->size) 2147 buf->f_bavail = 0; 2148 2149 buf->f_type = BTRFS_SUPER_MAGIC; 2150 buf->f_bsize = dentry->d_sb->s_blocksize; 2151 buf->f_namelen = BTRFS_NAME_LEN; 2152 2153 /* We treat it as constant endianness (it doesn't matter _which_) 2154 because we want the fsid to come out the same whether mounted 2155 on a big-endian or little-endian host */ 2156 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2157 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2158 /* Mask in the root object ID too, to disambiguate subvols */ 2159 buf->f_fsid.val[0] ^= 2160 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2161 buf->f_fsid.val[1] ^= 2162 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2163 2164 return 0; 2165 } 2166 2167 static void btrfs_kill_super(struct super_block *sb) 2168 { 2169 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2170 kill_anon_super(sb); 2171 free_fs_info(fs_info); 2172 } 2173 2174 static struct file_system_type btrfs_fs_type = { 2175 .owner = THIS_MODULE, 2176 .name = "btrfs", 2177 .mount = btrfs_mount, 2178 .kill_sb = btrfs_kill_super, 2179 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2180 }; 2181 2182 static struct file_system_type btrfs_root_fs_type = { 2183 .owner = THIS_MODULE, 2184 .name = "btrfs", 2185 .mount = btrfs_mount_root, 2186 .kill_sb = btrfs_kill_super, 2187 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2188 }; 2189 2190 MODULE_ALIAS_FS("btrfs"); 2191 2192 static int btrfs_control_open(struct inode *inode, struct file *file) 2193 { 2194 /* 2195 * The control file's private_data is used to hold the 2196 * transaction when it is started and is used to keep 2197 * track of whether a transaction is already in progress. 2198 */ 2199 file->private_data = NULL; 2200 return 0; 2201 } 2202 2203 /* 2204 * used by btrfsctl to scan devices when no FS is mounted 2205 */ 2206 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2207 unsigned long arg) 2208 { 2209 struct btrfs_ioctl_vol_args *vol; 2210 struct btrfs_device *device = NULL; 2211 int ret = -ENOTTY; 2212 2213 if (!capable(CAP_SYS_ADMIN)) 2214 return -EPERM; 2215 2216 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2217 if (IS_ERR(vol)) 2218 return PTR_ERR(vol); 2219 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2220 2221 switch (cmd) { 2222 case BTRFS_IOC_SCAN_DEV: 2223 mutex_lock(&uuid_mutex); 2224 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2225 &btrfs_root_fs_type); 2226 ret = PTR_ERR_OR_ZERO(device); 2227 mutex_unlock(&uuid_mutex); 2228 break; 2229 case BTRFS_IOC_FORGET_DEV: 2230 ret = btrfs_forget_devices(vol->name); 2231 break; 2232 case BTRFS_IOC_DEVICES_READY: 2233 mutex_lock(&uuid_mutex); 2234 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2235 &btrfs_root_fs_type); 2236 if (IS_ERR(device)) { 2237 mutex_unlock(&uuid_mutex); 2238 ret = PTR_ERR(device); 2239 break; 2240 } 2241 ret = !(device->fs_devices->num_devices == 2242 device->fs_devices->total_devices); 2243 mutex_unlock(&uuid_mutex); 2244 break; 2245 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2246 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2247 break; 2248 } 2249 2250 kfree(vol); 2251 return ret; 2252 } 2253 2254 static int btrfs_freeze(struct super_block *sb) 2255 { 2256 struct btrfs_trans_handle *trans; 2257 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2258 struct btrfs_root *root = fs_info->tree_root; 2259 2260 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2261 /* 2262 * We don't need a barrier here, we'll wait for any transaction that 2263 * could be in progress on other threads (and do delayed iputs that 2264 * we want to avoid on a frozen filesystem), or do the commit 2265 * ourselves. 2266 */ 2267 trans = btrfs_attach_transaction_barrier(root); 2268 if (IS_ERR(trans)) { 2269 /* no transaction, don't bother */ 2270 if (PTR_ERR(trans) == -ENOENT) 2271 return 0; 2272 return PTR_ERR(trans); 2273 } 2274 return btrfs_commit_transaction(trans); 2275 } 2276 2277 static int btrfs_unfreeze(struct super_block *sb) 2278 { 2279 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2280 2281 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2282 return 0; 2283 } 2284 2285 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2286 { 2287 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2288 struct btrfs_fs_devices *cur_devices; 2289 struct btrfs_device *dev, *first_dev = NULL; 2290 struct list_head *head; 2291 2292 /* 2293 * Lightweight locking of the devices. We should not need 2294 * device_list_mutex here as we only read the device data and the list 2295 * is protected by RCU. Even if a device is deleted during the list 2296 * traversals, we'll get valid data, the freeing callback will wait at 2297 * least until the rcu_read_unlock. 2298 */ 2299 rcu_read_lock(); 2300 cur_devices = fs_info->fs_devices; 2301 while (cur_devices) { 2302 head = &cur_devices->devices; 2303 list_for_each_entry_rcu(dev, head, dev_list) { 2304 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2305 continue; 2306 if (!dev->name) 2307 continue; 2308 if (!first_dev || dev->devid < first_dev->devid) 2309 first_dev = dev; 2310 } 2311 cur_devices = cur_devices->seed; 2312 } 2313 2314 if (first_dev) 2315 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2316 else 2317 WARN_ON(1); 2318 rcu_read_unlock(); 2319 return 0; 2320 } 2321 2322 static const struct super_operations btrfs_super_ops = { 2323 .drop_inode = btrfs_drop_inode, 2324 .evict_inode = btrfs_evict_inode, 2325 .put_super = btrfs_put_super, 2326 .sync_fs = btrfs_sync_fs, 2327 .show_options = btrfs_show_options, 2328 .show_devname = btrfs_show_devname, 2329 .alloc_inode = btrfs_alloc_inode, 2330 .destroy_inode = btrfs_destroy_inode, 2331 .free_inode = btrfs_free_inode, 2332 .statfs = btrfs_statfs, 2333 .remount_fs = btrfs_remount, 2334 .freeze_fs = btrfs_freeze, 2335 .unfreeze_fs = btrfs_unfreeze, 2336 }; 2337 2338 static const struct file_operations btrfs_ctl_fops = { 2339 .open = btrfs_control_open, 2340 .unlocked_ioctl = btrfs_control_ioctl, 2341 .compat_ioctl = compat_ptr_ioctl, 2342 .owner = THIS_MODULE, 2343 .llseek = noop_llseek, 2344 }; 2345 2346 static struct miscdevice btrfs_misc = { 2347 .minor = BTRFS_MINOR, 2348 .name = "btrfs-control", 2349 .fops = &btrfs_ctl_fops 2350 }; 2351 2352 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2353 MODULE_ALIAS("devname:btrfs-control"); 2354 2355 static int __init btrfs_interface_init(void) 2356 { 2357 return misc_register(&btrfs_misc); 2358 } 2359 2360 static __cold void btrfs_interface_exit(void) 2361 { 2362 misc_deregister(&btrfs_misc); 2363 } 2364 2365 static void __init btrfs_print_mod_info(void) 2366 { 2367 static const char options[] = "" 2368 #ifdef CONFIG_BTRFS_DEBUG 2369 ", debug=on" 2370 #endif 2371 #ifdef CONFIG_BTRFS_ASSERT 2372 ", assert=on" 2373 #endif 2374 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2375 ", integrity-checker=on" 2376 #endif 2377 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2378 ", ref-verify=on" 2379 #endif 2380 ; 2381 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2382 } 2383 2384 static int __init init_btrfs_fs(void) 2385 { 2386 int err; 2387 2388 btrfs_props_init(); 2389 2390 err = btrfs_init_sysfs(); 2391 if (err) 2392 return err; 2393 2394 btrfs_init_compress(); 2395 2396 err = btrfs_init_cachep(); 2397 if (err) 2398 goto free_compress; 2399 2400 err = extent_io_init(); 2401 if (err) 2402 goto free_cachep; 2403 2404 err = extent_state_cache_init(); 2405 if (err) 2406 goto free_extent_io; 2407 2408 err = extent_map_init(); 2409 if (err) 2410 goto free_extent_state_cache; 2411 2412 err = ordered_data_init(); 2413 if (err) 2414 goto free_extent_map; 2415 2416 err = btrfs_delayed_inode_init(); 2417 if (err) 2418 goto free_ordered_data; 2419 2420 err = btrfs_auto_defrag_init(); 2421 if (err) 2422 goto free_delayed_inode; 2423 2424 err = btrfs_delayed_ref_init(); 2425 if (err) 2426 goto free_auto_defrag; 2427 2428 err = btrfs_prelim_ref_init(); 2429 if (err) 2430 goto free_delayed_ref; 2431 2432 err = btrfs_end_io_wq_init(); 2433 if (err) 2434 goto free_prelim_ref; 2435 2436 err = btrfs_interface_init(); 2437 if (err) 2438 goto free_end_io_wq; 2439 2440 btrfs_init_lockdep(); 2441 2442 btrfs_print_mod_info(); 2443 2444 err = btrfs_run_sanity_tests(); 2445 if (err) 2446 goto unregister_ioctl; 2447 2448 err = register_filesystem(&btrfs_fs_type); 2449 if (err) 2450 goto unregister_ioctl; 2451 2452 return 0; 2453 2454 unregister_ioctl: 2455 btrfs_interface_exit(); 2456 free_end_io_wq: 2457 btrfs_end_io_wq_exit(); 2458 free_prelim_ref: 2459 btrfs_prelim_ref_exit(); 2460 free_delayed_ref: 2461 btrfs_delayed_ref_exit(); 2462 free_auto_defrag: 2463 btrfs_auto_defrag_exit(); 2464 free_delayed_inode: 2465 btrfs_delayed_inode_exit(); 2466 free_ordered_data: 2467 ordered_data_exit(); 2468 free_extent_map: 2469 extent_map_exit(); 2470 free_extent_state_cache: 2471 extent_state_cache_exit(); 2472 free_extent_io: 2473 extent_io_exit(); 2474 free_cachep: 2475 btrfs_destroy_cachep(); 2476 free_compress: 2477 btrfs_exit_compress(); 2478 btrfs_exit_sysfs(); 2479 2480 return err; 2481 } 2482 2483 static void __exit exit_btrfs_fs(void) 2484 { 2485 btrfs_destroy_cachep(); 2486 btrfs_delayed_ref_exit(); 2487 btrfs_auto_defrag_exit(); 2488 btrfs_delayed_inode_exit(); 2489 btrfs_prelim_ref_exit(); 2490 ordered_data_exit(); 2491 extent_map_exit(); 2492 extent_state_cache_exit(); 2493 extent_io_exit(); 2494 btrfs_interface_exit(); 2495 btrfs_end_io_wq_exit(); 2496 unregister_filesystem(&btrfs_fs_type); 2497 btrfs_exit_sysfs(); 2498 btrfs_cleanup_fs_uuids(); 2499 btrfs_exit_compress(); 2500 } 2501 2502 late_initcall(init_btrfs_fs); 2503 module_exit(exit_btrfs_fs) 2504 2505 MODULE_LICENSE("GPL"); 2506 MODULE_SOFTDEP("pre: crc32c"); 2507 MODULE_SOFTDEP("pre: xxhash64"); 2508 MODULE_SOFTDEP("pre: sha256"); 2509 MODULE_SOFTDEP("pre: blake2b-256"); 2510