1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 69 /* 70 * Types for mounting the default subvolume and a subvolume explicitly 71 * requested by subvol=/path. That way the callchain is straightforward and we 72 * don't have to play tricks with the mount options and recursive calls to 73 * btrfs_mount. 74 * 75 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 76 */ 77 static struct file_system_type btrfs_fs_type; 78 static struct file_system_type btrfs_root_fs_type; 79 80 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 81 82 const char *btrfs_decode_error(int errno) 83 { 84 char *errstr = "unknown"; 85 86 switch (errno) { 87 case -EIO: 88 errstr = "IO failure"; 89 break; 90 case -ENOMEM: 91 errstr = "Out of memory"; 92 break; 93 case -EROFS: 94 errstr = "Readonly filesystem"; 95 break; 96 case -EEXIST: 97 errstr = "Object already exists"; 98 break; 99 case -ENOSPC: 100 errstr = "No space left"; 101 break; 102 case -ENOENT: 103 errstr = "No such entry"; 104 break; 105 } 106 107 return errstr; 108 } 109 110 /* 111 * __btrfs_handle_fs_error decodes expected errors from the caller and 112 * invokes the approciate error response. 113 */ 114 __cold 115 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 116 unsigned int line, int errno, const char *fmt, ...) 117 { 118 struct super_block *sb = fs_info->sb; 119 #ifdef CONFIG_PRINTK 120 const char *errstr; 121 #endif 122 123 /* 124 * Special case: if the error is EROFS, and we're already 125 * under SB_RDONLY, then it is safe here. 126 */ 127 if (errno == -EROFS && sb_rdonly(sb)) 128 return; 129 130 #ifdef CONFIG_PRINTK 131 errstr = btrfs_decode_error(errno); 132 if (fmt) { 133 struct va_format vaf; 134 va_list args; 135 136 va_start(args, fmt); 137 vaf.fmt = fmt; 138 vaf.va = &args; 139 140 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 141 sb->s_id, function, line, errno, errstr, &vaf); 142 va_end(args); 143 } else { 144 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 145 sb->s_id, function, line, errno, errstr); 146 } 147 #endif 148 149 /* 150 * Today we only save the error info to memory. Long term we'll 151 * also send it down to the disk 152 */ 153 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 154 155 /* Don't go through full error handling during mount */ 156 if (!(sb->s_flags & SB_BORN)) 157 return; 158 159 if (sb_rdonly(sb)) 160 return; 161 162 /* btrfs handle error by forcing the filesystem readonly */ 163 sb->s_flags |= SB_RDONLY; 164 btrfs_info(fs_info, "forced readonly"); 165 /* 166 * Note that a running device replace operation is not canceled here 167 * although there is no way to update the progress. It would add the 168 * risk of a deadlock, therefore the canceling is omitted. The only 169 * penalty is that some I/O remains active until the procedure 170 * completes. The next time when the filesystem is mounted writeable 171 * again, the device replace operation continues. 172 */ 173 } 174 175 #ifdef CONFIG_PRINTK 176 static const char * const logtypes[] = { 177 "emergency", 178 "alert", 179 "critical", 180 "error", 181 "warning", 182 "notice", 183 "info", 184 "debug", 185 }; 186 187 188 /* 189 * Use one ratelimit state per log level so that a flood of less important 190 * messages doesn't cause more important ones to be dropped. 191 */ 192 static struct ratelimit_state printk_limits[] = { 193 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 200 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 201 }; 202 203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 204 { 205 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 206 struct va_format vaf; 207 va_list args; 208 int kern_level; 209 const char *type = logtypes[4]; 210 struct ratelimit_state *ratelimit = &printk_limits[4]; 211 212 va_start(args, fmt); 213 214 while ((kern_level = printk_get_level(fmt)) != 0) { 215 size_t size = printk_skip_level(fmt) - fmt; 216 217 if (kern_level >= '0' && kern_level <= '7') { 218 memcpy(lvl, fmt, size); 219 lvl[size] = '\0'; 220 type = logtypes[kern_level - '0']; 221 ratelimit = &printk_limits[kern_level - '0']; 222 } 223 fmt += size; 224 } 225 226 vaf.fmt = fmt; 227 vaf.va = &args; 228 229 if (__ratelimit(ratelimit)) 230 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 231 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 232 233 va_end(args); 234 } 235 #endif 236 237 /* 238 * We only mark the transaction aborted and then set the file system read-only. 239 * This will prevent new transactions from starting or trying to join this 240 * one. 241 * 242 * This means that error recovery at the call site is limited to freeing 243 * any local memory allocations and passing the error code up without 244 * further cleanup. The transaction should complete as it normally would 245 * in the call path but will return -EIO. 246 * 247 * We'll complete the cleanup in btrfs_end_transaction and 248 * btrfs_commit_transaction. 249 */ 250 __cold 251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 252 const char *function, 253 unsigned int line, int errno) 254 { 255 struct btrfs_fs_info *fs_info = trans->fs_info; 256 257 trans->aborted = errno; 258 /* Nothing used. The other threads that have joined this 259 * transaction may be able to continue. */ 260 if (!trans->dirty && list_empty(&trans->new_bgs)) { 261 const char *errstr; 262 263 errstr = btrfs_decode_error(errno); 264 btrfs_warn(fs_info, 265 "%s:%d: Aborting unused transaction(%s).", 266 function, line, errstr); 267 return; 268 } 269 WRITE_ONCE(trans->transaction->aborted, errno); 270 /* Wake up anybody who may be waiting on this transaction */ 271 wake_up(&fs_info->transaction_wait); 272 wake_up(&fs_info->transaction_blocked_wait); 273 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 274 } 275 /* 276 * __btrfs_panic decodes unexpected, fatal errors from the caller, 277 * issues an alert, and either panics or BUGs, depending on mount options. 278 */ 279 __cold 280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 281 unsigned int line, int errno, const char *fmt, ...) 282 { 283 char *s_id = "<unknown>"; 284 const char *errstr; 285 struct va_format vaf = { .fmt = fmt }; 286 va_list args; 287 288 if (fs_info) 289 s_id = fs_info->sb->s_id; 290 291 va_start(args, fmt); 292 vaf.va = &args; 293 294 errstr = btrfs_decode_error(errno); 295 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 296 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 297 s_id, function, line, &vaf, errno, errstr); 298 299 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 300 function, line, &vaf, errno, errstr); 301 va_end(args); 302 /* Caller calls BUG() */ 303 } 304 305 static void btrfs_put_super(struct super_block *sb) 306 { 307 close_ctree(btrfs_sb(sb)); 308 } 309 310 enum { 311 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 312 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 313 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 314 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 315 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 316 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, 317 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, 318 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, 319 Opt_skip_balance, Opt_check_integrity, 320 Opt_check_integrity_including_extent_data, 321 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 322 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 323 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 324 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, 325 Opt_nologreplay, Opt_norecovery, 326 #ifdef CONFIG_BTRFS_DEBUG 327 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 328 #endif 329 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 330 Opt_ref_verify, 331 #endif 332 Opt_err, 333 }; 334 335 static const match_table_t tokens = { 336 {Opt_degraded, "degraded"}, 337 {Opt_subvol, "subvol=%s"}, 338 {Opt_subvolid, "subvolid=%s"}, 339 {Opt_device, "device=%s"}, 340 {Opt_nodatasum, "nodatasum"}, 341 {Opt_datasum, "datasum"}, 342 {Opt_nodatacow, "nodatacow"}, 343 {Opt_datacow, "datacow"}, 344 {Opt_nobarrier, "nobarrier"}, 345 {Opt_barrier, "barrier"}, 346 {Opt_max_inline, "max_inline=%s"}, 347 {Opt_alloc_start, "alloc_start=%s"}, 348 {Opt_thread_pool, "thread_pool=%d"}, 349 {Opt_compress, "compress"}, 350 {Opt_compress_type, "compress=%s"}, 351 {Opt_compress_force, "compress-force"}, 352 {Opt_compress_force_type, "compress-force=%s"}, 353 {Opt_ssd, "ssd"}, 354 {Opt_ssd_spread, "ssd_spread"}, 355 {Opt_nossd, "nossd"}, 356 {Opt_acl, "acl"}, 357 {Opt_noacl, "noacl"}, 358 {Opt_notreelog, "notreelog"}, 359 {Opt_treelog, "treelog"}, 360 {Opt_nologreplay, "nologreplay"}, 361 {Opt_norecovery, "norecovery"}, 362 {Opt_flushoncommit, "flushoncommit"}, 363 {Opt_noflushoncommit, "noflushoncommit"}, 364 {Opt_ratio, "metadata_ratio=%d"}, 365 {Opt_discard, "discard"}, 366 {Opt_nodiscard, "nodiscard"}, 367 {Opt_space_cache, "space_cache"}, 368 {Opt_space_cache_version, "space_cache=%s"}, 369 {Opt_clear_cache, "clear_cache"}, 370 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 371 {Opt_enospc_debug, "enospc_debug"}, 372 {Opt_noenospc_debug, "noenospc_debug"}, 373 {Opt_subvolrootid, "subvolrootid=%d"}, 374 {Opt_defrag, "autodefrag"}, 375 {Opt_nodefrag, "noautodefrag"}, 376 {Opt_inode_cache, "inode_cache"}, 377 {Opt_noinode_cache, "noinode_cache"}, 378 {Opt_no_space_cache, "nospace_cache"}, 379 {Opt_recovery, "recovery"}, /* deprecated */ 380 {Opt_usebackuproot, "usebackuproot"}, 381 {Opt_skip_balance, "skip_balance"}, 382 {Opt_check_integrity, "check_int"}, 383 {Opt_check_integrity_including_extent_data, "check_int_data"}, 384 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 385 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 386 {Opt_fatal_errors, "fatal_errors=%s"}, 387 {Opt_commit_interval, "commit=%d"}, 388 #ifdef CONFIG_BTRFS_DEBUG 389 {Opt_fragment_data, "fragment=data"}, 390 {Opt_fragment_metadata, "fragment=metadata"}, 391 {Opt_fragment_all, "fragment=all"}, 392 #endif 393 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 394 {Opt_ref_verify, "ref_verify"}, 395 #endif 396 {Opt_err, NULL}, 397 }; 398 399 /* 400 * Regular mount options parser. Everything that is needed only when 401 * reading in a new superblock is parsed here. 402 * XXX JDM: This needs to be cleaned up for remount. 403 */ 404 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 405 unsigned long new_flags) 406 { 407 substring_t args[MAX_OPT_ARGS]; 408 char *p, *num; 409 u64 cache_gen; 410 int intarg; 411 int ret = 0; 412 char *compress_type; 413 bool compress_force = false; 414 enum btrfs_compression_type saved_compress_type; 415 bool saved_compress_force; 416 int no_compress = 0; 417 418 cache_gen = btrfs_super_cache_generation(info->super_copy); 419 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 420 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 421 else if (cache_gen) 422 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 423 424 /* 425 * Even the options are empty, we still need to do extra check 426 * against new flags 427 */ 428 if (!options) 429 goto check; 430 431 while ((p = strsep(&options, ",")) != NULL) { 432 int token; 433 if (!*p) 434 continue; 435 436 token = match_token(p, tokens, args); 437 switch (token) { 438 case Opt_degraded: 439 btrfs_info(info, "allowing degraded mounts"); 440 btrfs_set_opt(info->mount_opt, DEGRADED); 441 break; 442 case Opt_subvol: 443 case Opt_subvolid: 444 case Opt_subvolrootid: 445 case Opt_device: 446 /* 447 * These are parsed by btrfs_parse_subvol_options 448 * and btrfs_parse_early_options 449 * and can be happily ignored here. 450 */ 451 break; 452 case Opt_nodatasum: 453 btrfs_set_and_info(info, NODATASUM, 454 "setting nodatasum"); 455 break; 456 case Opt_datasum: 457 if (btrfs_test_opt(info, NODATASUM)) { 458 if (btrfs_test_opt(info, NODATACOW)) 459 btrfs_info(info, 460 "setting datasum, datacow enabled"); 461 else 462 btrfs_info(info, "setting datasum"); 463 } 464 btrfs_clear_opt(info->mount_opt, NODATACOW); 465 btrfs_clear_opt(info->mount_opt, NODATASUM); 466 break; 467 case Opt_nodatacow: 468 if (!btrfs_test_opt(info, NODATACOW)) { 469 if (!btrfs_test_opt(info, COMPRESS) || 470 !btrfs_test_opt(info, FORCE_COMPRESS)) { 471 btrfs_info(info, 472 "setting nodatacow, compression disabled"); 473 } else { 474 btrfs_info(info, "setting nodatacow"); 475 } 476 } 477 btrfs_clear_opt(info->mount_opt, COMPRESS); 478 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 479 btrfs_set_opt(info->mount_opt, NODATACOW); 480 btrfs_set_opt(info->mount_opt, NODATASUM); 481 break; 482 case Opt_datacow: 483 btrfs_clear_and_info(info, NODATACOW, 484 "setting datacow"); 485 break; 486 case Opt_compress_force: 487 case Opt_compress_force_type: 488 compress_force = true; 489 /* Fallthrough */ 490 case Opt_compress: 491 case Opt_compress_type: 492 saved_compress_type = btrfs_test_opt(info, 493 COMPRESS) ? 494 info->compress_type : BTRFS_COMPRESS_NONE; 495 saved_compress_force = 496 btrfs_test_opt(info, FORCE_COMPRESS); 497 if (token == Opt_compress || 498 token == Opt_compress_force || 499 strncmp(args[0].from, "zlib", 4) == 0) { 500 compress_type = "zlib"; 501 502 info->compress_type = BTRFS_COMPRESS_ZLIB; 503 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 504 /* 505 * args[0] contains uninitialized data since 506 * for these tokens we don't expect any 507 * parameter. 508 */ 509 if (token != Opt_compress && 510 token != Opt_compress_force) 511 info->compress_level = 512 btrfs_compress_str2level(args[0].from); 513 btrfs_set_opt(info->mount_opt, COMPRESS); 514 btrfs_clear_opt(info->mount_opt, NODATACOW); 515 btrfs_clear_opt(info->mount_opt, NODATASUM); 516 no_compress = 0; 517 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 518 compress_type = "lzo"; 519 info->compress_type = BTRFS_COMPRESS_LZO; 520 btrfs_set_opt(info->mount_opt, COMPRESS); 521 btrfs_clear_opt(info->mount_opt, NODATACOW); 522 btrfs_clear_opt(info->mount_opt, NODATASUM); 523 btrfs_set_fs_incompat(info, COMPRESS_LZO); 524 no_compress = 0; 525 } else if (strcmp(args[0].from, "zstd") == 0) { 526 compress_type = "zstd"; 527 info->compress_type = BTRFS_COMPRESS_ZSTD; 528 btrfs_set_opt(info->mount_opt, COMPRESS); 529 btrfs_clear_opt(info->mount_opt, NODATACOW); 530 btrfs_clear_opt(info->mount_opt, NODATASUM); 531 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 532 no_compress = 0; 533 } else if (strncmp(args[0].from, "no", 2) == 0) { 534 compress_type = "no"; 535 btrfs_clear_opt(info->mount_opt, COMPRESS); 536 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 537 compress_force = false; 538 no_compress++; 539 } else { 540 ret = -EINVAL; 541 goto out; 542 } 543 544 if (compress_force) { 545 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 546 } else { 547 /* 548 * If we remount from compress-force=xxx to 549 * compress=xxx, we need clear FORCE_COMPRESS 550 * flag, otherwise, there is no way for users 551 * to disable forcible compression separately. 552 */ 553 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 554 } 555 if ((btrfs_test_opt(info, COMPRESS) && 556 (info->compress_type != saved_compress_type || 557 compress_force != saved_compress_force)) || 558 (!btrfs_test_opt(info, COMPRESS) && 559 no_compress == 1)) { 560 btrfs_info(info, "%s %s compression, level %d", 561 (compress_force) ? "force" : "use", 562 compress_type, info->compress_level); 563 } 564 compress_force = false; 565 break; 566 case Opt_ssd: 567 btrfs_set_and_info(info, SSD, 568 "enabling ssd optimizations"); 569 btrfs_clear_opt(info->mount_opt, NOSSD); 570 break; 571 case Opt_ssd_spread: 572 btrfs_set_and_info(info, SSD, 573 "enabling ssd optimizations"); 574 btrfs_set_and_info(info, SSD_SPREAD, 575 "using spread ssd allocation scheme"); 576 btrfs_clear_opt(info->mount_opt, NOSSD); 577 break; 578 case Opt_nossd: 579 btrfs_set_opt(info->mount_opt, NOSSD); 580 btrfs_clear_and_info(info, SSD, 581 "not using ssd optimizations"); 582 btrfs_clear_and_info(info, SSD_SPREAD, 583 "not using spread ssd allocation scheme"); 584 break; 585 case Opt_barrier: 586 btrfs_clear_and_info(info, NOBARRIER, 587 "turning on barriers"); 588 break; 589 case Opt_nobarrier: 590 btrfs_set_and_info(info, NOBARRIER, 591 "turning off barriers"); 592 break; 593 case Opt_thread_pool: 594 ret = match_int(&args[0], &intarg); 595 if (ret) { 596 goto out; 597 } else if (intarg > 0) { 598 info->thread_pool_size = intarg; 599 } else { 600 ret = -EINVAL; 601 goto out; 602 } 603 break; 604 case Opt_max_inline: 605 num = match_strdup(&args[0]); 606 if (num) { 607 info->max_inline = memparse(num, NULL); 608 kfree(num); 609 610 if (info->max_inline) { 611 info->max_inline = min_t(u64, 612 info->max_inline, 613 info->sectorsize); 614 } 615 btrfs_info(info, "max_inline at %llu", 616 info->max_inline); 617 } else { 618 ret = -ENOMEM; 619 goto out; 620 } 621 break; 622 case Opt_alloc_start: 623 btrfs_info(info, 624 "option alloc_start is obsolete, ignored"); 625 break; 626 case Opt_acl: 627 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 628 info->sb->s_flags |= SB_POSIXACL; 629 break; 630 #else 631 btrfs_err(info, "support for ACL not compiled in!"); 632 ret = -EINVAL; 633 goto out; 634 #endif 635 case Opt_noacl: 636 info->sb->s_flags &= ~SB_POSIXACL; 637 break; 638 case Opt_notreelog: 639 btrfs_set_and_info(info, NOTREELOG, 640 "disabling tree log"); 641 break; 642 case Opt_treelog: 643 btrfs_clear_and_info(info, NOTREELOG, 644 "enabling tree log"); 645 break; 646 case Opt_norecovery: 647 case Opt_nologreplay: 648 btrfs_set_and_info(info, NOLOGREPLAY, 649 "disabling log replay at mount time"); 650 break; 651 case Opt_flushoncommit: 652 btrfs_set_and_info(info, FLUSHONCOMMIT, 653 "turning on flush-on-commit"); 654 break; 655 case Opt_noflushoncommit: 656 btrfs_clear_and_info(info, FLUSHONCOMMIT, 657 "turning off flush-on-commit"); 658 break; 659 case Opt_ratio: 660 ret = match_int(&args[0], &intarg); 661 if (ret) { 662 goto out; 663 } else if (intarg >= 0) { 664 info->metadata_ratio = intarg; 665 btrfs_info(info, "metadata ratio %d", 666 info->metadata_ratio); 667 } else { 668 ret = -EINVAL; 669 goto out; 670 } 671 break; 672 case Opt_discard: 673 btrfs_set_and_info(info, DISCARD, 674 "turning on discard"); 675 break; 676 case Opt_nodiscard: 677 btrfs_clear_and_info(info, DISCARD, 678 "turning off discard"); 679 break; 680 case Opt_space_cache: 681 case Opt_space_cache_version: 682 if (token == Opt_space_cache || 683 strcmp(args[0].from, "v1") == 0) { 684 btrfs_clear_opt(info->mount_opt, 685 FREE_SPACE_TREE); 686 btrfs_set_and_info(info, SPACE_CACHE, 687 "enabling disk space caching"); 688 } else if (strcmp(args[0].from, "v2") == 0) { 689 btrfs_clear_opt(info->mount_opt, 690 SPACE_CACHE); 691 btrfs_set_and_info(info, FREE_SPACE_TREE, 692 "enabling free space tree"); 693 } else { 694 ret = -EINVAL; 695 goto out; 696 } 697 break; 698 case Opt_rescan_uuid_tree: 699 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 700 break; 701 case Opt_no_space_cache: 702 if (btrfs_test_opt(info, SPACE_CACHE)) { 703 btrfs_clear_and_info(info, SPACE_CACHE, 704 "disabling disk space caching"); 705 } 706 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 707 btrfs_clear_and_info(info, FREE_SPACE_TREE, 708 "disabling free space tree"); 709 } 710 break; 711 case Opt_inode_cache: 712 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 713 "enabling inode map caching"); 714 break; 715 case Opt_noinode_cache: 716 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 717 "disabling inode map caching"); 718 break; 719 case Opt_clear_cache: 720 btrfs_set_and_info(info, CLEAR_CACHE, 721 "force clearing of disk cache"); 722 break; 723 case Opt_user_subvol_rm_allowed: 724 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 725 break; 726 case Opt_enospc_debug: 727 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 728 break; 729 case Opt_noenospc_debug: 730 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 731 break; 732 case Opt_defrag: 733 btrfs_set_and_info(info, AUTO_DEFRAG, 734 "enabling auto defrag"); 735 break; 736 case Opt_nodefrag: 737 btrfs_clear_and_info(info, AUTO_DEFRAG, 738 "disabling auto defrag"); 739 break; 740 case Opt_recovery: 741 btrfs_warn(info, 742 "'recovery' is deprecated, use 'usebackuproot' instead"); 743 case Opt_usebackuproot: 744 btrfs_info(info, 745 "trying to use backup root at mount time"); 746 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 747 break; 748 case Opt_skip_balance: 749 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 750 break; 751 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 752 case Opt_check_integrity_including_extent_data: 753 btrfs_info(info, 754 "enabling check integrity including extent data"); 755 btrfs_set_opt(info->mount_opt, 756 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 757 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 758 break; 759 case Opt_check_integrity: 760 btrfs_info(info, "enabling check integrity"); 761 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 762 break; 763 case Opt_check_integrity_print_mask: 764 ret = match_int(&args[0], &intarg); 765 if (ret) { 766 goto out; 767 } else if (intarg >= 0) { 768 info->check_integrity_print_mask = intarg; 769 btrfs_info(info, 770 "check_integrity_print_mask 0x%x", 771 info->check_integrity_print_mask); 772 } else { 773 ret = -EINVAL; 774 goto out; 775 } 776 break; 777 #else 778 case Opt_check_integrity_including_extent_data: 779 case Opt_check_integrity: 780 case Opt_check_integrity_print_mask: 781 btrfs_err(info, 782 "support for check_integrity* not compiled in!"); 783 ret = -EINVAL; 784 goto out; 785 #endif 786 case Opt_fatal_errors: 787 if (strcmp(args[0].from, "panic") == 0) 788 btrfs_set_opt(info->mount_opt, 789 PANIC_ON_FATAL_ERROR); 790 else if (strcmp(args[0].from, "bug") == 0) 791 btrfs_clear_opt(info->mount_opt, 792 PANIC_ON_FATAL_ERROR); 793 else { 794 ret = -EINVAL; 795 goto out; 796 } 797 break; 798 case Opt_commit_interval: 799 intarg = 0; 800 ret = match_int(&args[0], &intarg); 801 if (ret < 0) { 802 btrfs_err(info, "invalid commit interval"); 803 ret = -EINVAL; 804 goto out; 805 } 806 if (intarg > 0) { 807 if (intarg > 300) { 808 btrfs_warn(info, 809 "excessive commit interval %d", 810 intarg); 811 } 812 info->commit_interval = intarg; 813 } else { 814 btrfs_info(info, 815 "using default commit interval %ds", 816 BTRFS_DEFAULT_COMMIT_INTERVAL); 817 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 818 } 819 break; 820 #ifdef CONFIG_BTRFS_DEBUG 821 case Opt_fragment_all: 822 btrfs_info(info, "fragmenting all space"); 823 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 824 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 825 break; 826 case Opt_fragment_metadata: 827 btrfs_info(info, "fragmenting metadata"); 828 btrfs_set_opt(info->mount_opt, 829 FRAGMENT_METADATA); 830 break; 831 case Opt_fragment_data: 832 btrfs_info(info, "fragmenting data"); 833 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 834 break; 835 #endif 836 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 837 case Opt_ref_verify: 838 btrfs_info(info, "doing ref verification"); 839 btrfs_set_opt(info->mount_opt, REF_VERIFY); 840 break; 841 #endif 842 case Opt_err: 843 btrfs_info(info, "unrecognized mount option '%s'", p); 844 ret = -EINVAL; 845 goto out; 846 default: 847 break; 848 } 849 } 850 check: 851 /* 852 * Extra check for current option against current flag 853 */ 854 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 855 btrfs_err(info, 856 "nologreplay must be used with ro mount option"); 857 ret = -EINVAL; 858 } 859 out: 860 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 861 !btrfs_test_opt(info, FREE_SPACE_TREE) && 862 !btrfs_test_opt(info, CLEAR_CACHE)) { 863 btrfs_err(info, "cannot disable free space tree"); 864 ret = -EINVAL; 865 866 } 867 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 868 btrfs_info(info, "disk space caching is enabled"); 869 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 870 btrfs_info(info, "using free space tree"); 871 return ret; 872 } 873 874 /* 875 * Parse mount options that are required early in the mount process. 876 * 877 * All other options will be parsed on much later in the mount process and 878 * only when we need to allocate a new super block. 879 */ 880 static int btrfs_parse_early_options(const char *options, fmode_t flags, 881 void *holder, struct btrfs_fs_devices **fs_devices) 882 { 883 substring_t args[MAX_OPT_ARGS]; 884 char *device_name, *opts, *orig, *p; 885 int error = 0; 886 887 if (!options) 888 return 0; 889 890 /* 891 * strsep changes the string, duplicate it because btrfs_parse_options 892 * gets called later 893 */ 894 opts = kstrdup(options, GFP_KERNEL); 895 if (!opts) 896 return -ENOMEM; 897 orig = opts; 898 899 while ((p = strsep(&opts, ",")) != NULL) { 900 int token; 901 902 if (!*p) 903 continue; 904 905 token = match_token(p, tokens, args); 906 if (token == Opt_device) { 907 device_name = match_strdup(&args[0]); 908 if (!device_name) { 909 error = -ENOMEM; 910 goto out; 911 } 912 error = btrfs_scan_one_device(device_name, 913 flags, holder, fs_devices); 914 kfree(device_name); 915 if (error) 916 goto out; 917 } 918 } 919 920 out: 921 kfree(orig); 922 return error; 923 } 924 925 /* 926 * Parse mount options that are related to subvolume id 927 * 928 * The value is later passed to mount_subvol() 929 */ 930 static int btrfs_parse_subvol_options(const char *options, fmode_t flags, 931 char **subvol_name, u64 *subvol_objectid) 932 { 933 substring_t args[MAX_OPT_ARGS]; 934 char *opts, *orig, *p; 935 char *num = NULL; 936 int error = 0; 937 938 if (!options) 939 return 0; 940 941 /* 942 * strsep changes the string, duplicate it because 943 * btrfs_parse_early_options gets called later 944 */ 945 opts = kstrdup(options, GFP_KERNEL); 946 if (!opts) 947 return -ENOMEM; 948 orig = opts; 949 950 while ((p = strsep(&opts, ",")) != NULL) { 951 int token; 952 if (!*p) 953 continue; 954 955 token = match_token(p, tokens, args); 956 switch (token) { 957 case Opt_subvol: 958 kfree(*subvol_name); 959 *subvol_name = match_strdup(&args[0]); 960 if (!*subvol_name) { 961 error = -ENOMEM; 962 goto out; 963 } 964 break; 965 case Opt_subvolid: 966 num = match_strdup(&args[0]); 967 if (num) { 968 *subvol_objectid = memparse(num, NULL); 969 kfree(num); 970 /* we want the original fs_tree */ 971 if (!*subvol_objectid) 972 *subvol_objectid = 973 BTRFS_FS_TREE_OBJECTID; 974 } else { 975 error = -EINVAL; 976 goto out; 977 } 978 break; 979 case Opt_subvolrootid: 980 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 981 break; 982 default: 983 break; 984 } 985 } 986 987 out: 988 kfree(orig); 989 return error; 990 } 991 992 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 993 u64 subvol_objectid) 994 { 995 struct btrfs_root *root = fs_info->tree_root; 996 struct btrfs_root *fs_root; 997 struct btrfs_root_ref *root_ref; 998 struct btrfs_inode_ref *inode_ref; 999 struct btrfs_key key; 1000 struct btrfs_path *path = NULL; 1001 char *name = NULL, *ptr; 1002 u64 dirid; 1003 int len; 1004 int ret; 1005 1006 path = btrfs_alloc_path(); 1007 if (!path) { 1008 ret = -ENOMEM; 1009 goto err; 1010 } 1011 path->leave_spinning = 1; 1012 1013 name = kmalloc(PATH_MAX, GFP_KERNEL); 1014 if (!name) { 1015 ret = -ENOMEM; 1016 goto err; 1017 } 1018 ptr = name + PATH_MAX - 1; 1019 ptr[0] = '\0'; 1020 1021 /* 1022 * Walk up the subvolume trees in the tree of tree roots by root 1023 * backrefs until we hit the top-level subvolume. 1024 */ 1025 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1026 key.objectid = subvol_objectid; 1027 key.type = BTRFS_ROOT_BACKREF_KEY; 1028 key.offset = (u64)-1; 1029 1030 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1031 if (ret < 0) { 1032 goto err; 1033 } else if (ret > 0) { 1034 ret = btrfs_previous_item(root, path, subvol_objectid, 1035 BTRFS_ROOT_BACKREF_KEY); 1036 if (ret < 0) { 1037 goto err; 1038 } else if (ret > 0) { 1039 ret = -ENOENT; 1040 goto err; 1041 } 1042 } 1043 1044 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1045 subvol_objectid = key.offset; 1046 1047 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1048 struct btrfs_root_ref); 1049 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1050 ptr -= len + 1; 1051 if (ptr < name) { 1052 ret = -ENAMETOOLONG; 1053 goto err; 1054 } 1055 read_extent_buffer(path->nodes[0], ptr + 1, 1056 (unsigned long)(root_ref + 1), len); 1057 ptr[0] = '/'; 1058 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1059 btrfs_release_path(path); 1060 1061 key.objectid = subvol_objectid; 1062 key.type = BTRFS_ROOT_ITEM_KEY; 1063 key.offset = (u64)-1; 1064 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1065 if (IS_ERR(fs_root)) { 1066 ret = PTR_ERR(fs_root); 1067 goto err; 1068 } 1069 1070 /* 1071 * Walk up the filesystem tree by inode refs until we hit the 1072 * root directory. 1073 */ 1074 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1075 key.objectid = dirid; 1076 key.type = BTRFS_INODE_REF_KEY; 1077 key.offset = (u64)-1; 1078 1079 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1080 if (ret < 0) { 1081 goto err; 1082 } else if (ret > 0) { 1083 ret = btrfs_previous_item(fs_root, path, dirid, 1084 BTRFS_INODE_REF_KEY); 1085 if (ret < 0) { 1086 goto err; 1087 } else if (ret > 0) { 1088 ret = -ENOENT; 1089 goto err; 1090 } 1091 } 1092 1093 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1094 dirid = key.offset; 1095 1096 inode_ref = btrfs_item_ptr(path->nodes[0], 1097 path->slots[0], 1098 struct btrfs_inode_ref); 1099 len = btrfs_inode_ref_name_len(path->nodes[0], 1100 inode_ref); 1101 ptr -= len + 1; 1102 if (ptr < name) { 1103 ret = -ENAMETOOLONG; 1104 goto err; 1105 } 1106 read_extent_buffer(path->nodes[0], ptr + 1, 1107 (unsigned long)(inode_ref + 1), len); 1108 ptr[0] = '/'; 1109 btrfs_release_path(path); 1110 } 1111 } 1112 1113 btrfs_free_path(path); 1114 if (ptr == name + PATH_MAX - 1) { 1115 name[0] = '/'; 1116 name[1] = '\0'; 1117 } else { 1118 memmove(name, ptr, name + PATH_MAX - ptr); 1119 } 1120 return name; 1121 1122 err: 1123 btrfs_free_path(path); 1124 kfree(name); 1125 return ERR_PTR(ret); 1126 } 1127 1128 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1129 { 1130 struct btrfs_root *root = fs_info->tree_root; 1131 struct btrfs_dir_item *di; 1132 struct btrfs_path *path; 1133 struct btrfs_key location; 1134 u64 dir_id; 1135 1136 path = btrfs_alloc_path(); 1137 if (!path) 1138 return -ENOMEM; 1139 path->leave_spinning = 1; 1140 1141 /* 1142 * Find the "default" dir item which points to the root item that we 1143 * will mount by default if we haven't been given a specific subvolume 1144 * to mount. 1145 */ 1146 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1147 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1148 if (IS_ERR(di)) { 1149 btrfs_free_path(path); 1150 return PTR_ERR(di); 1151 } 1152 if (!di) { 1153 /* 1154 * Ok the default dir item isn't there. This is weird since 1155 * it's always been there, but don't freak out, just try and 1156 * mount the top-level subvolume. 1157 */ 1158 btrfs_free_path(path); 1159 *objectid = BTRFS_FS_TREE_OBJECTID; 1160 return 0; 1161 } 1162 1163 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1164 btrfs_free_path(path); 1165 *objectid = location.objectid; 1166 return 0; 1167 } 1168 1169 static int btrfs_fill_super(struct super_block *sb, 1170 struct btrfs_fs_devices *fs_devices, 1171 void *data) 1172 { 1173 struct inode *inode; 1174 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1175 struct btrfs_key key; 1176 int err; 1177 1178 sb->s_maxbytes = MAX_LFS_FILESIZE; 1179 sb->s_magic = BTRFS_SUPER_MAGIC; 1180 sb->s_op = &btrfs_super_ops; 1181 sb->s_d_op = &btrfs_dentry_operations; 1182 sb->s_export_op = &btrfs_export_ops; 1183 sb->s_xattr = btrfs_xattr_handlers; 1184 sb->s_time_gran = 1; 1185 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1186 sb->s_flags |= SB_POSIXACL; 1187 #endif 1188 sb->s_flags |= SB_I_VERSION; 1189 sb->s_iflags |= SB_I_CGROUPWB; 1190 1191 err = super_setup_bdi(sb); 1192 if (err) { 1193 btrfs_err(fs_info, "super_setup_bdi failed"); 1194 return err; 1195 } 1196 1197 err = open_ctree(sb, fs_devices, (char *)data); 1198 if (err) { 1199 btrfs_err(fs_info, "open_ctree failed"); 1200 return err; 1201 } 1202 1203 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1204 key.type = BTRFS_INODE_ITEM_KEY; 1205 key.offset = 0; 1206 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1207 if (IS_ERR(inode)) { 1208 err = PTR_ERR(inode); 1209 goto fail_close; 1210 } 1211 1212 sb->s_root = d_make_root(inode); 1213 if (!sb->s_root) { 1214 err = -ENOMEM; 1215 goto fail_close; 1216 } 1217 1218 cleancache_init_fs(sb); 1219 sb->s_flags |= SB_ACTIVE; 1220 return 0; 1221 1222 fail_close: 1223 close_ctree(fs_info); 1224 return err; 1225 } 1226 1227 int btrfs_sync_fs(struct super_block *sb, int wait) 1228 { 1229 struct btrfs_trans_handle *trans; 1230 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1231 struct btrfs_root *root = fs_info->tree_root; 1232 1233 trace_btrfs_sync_fs(fs_info, wait); 1234 1235 if (!wait) { 1236 filemap_flush(fs_info->btree_inode->i_mapping); 1237 return 0; 1238 } 1239 1240 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1241 1242 trans = btrfs_attach_transaction_barrier(root); 1243 if (IS_ERR(trans)) { 1244 /* no transaction, don't bother */ 1245 if (PTR_ERR(trans) == -ENOENT) { 1246 /* 1247 * Exit unless we have some pending changes 1248 * that need to go through commit 1249 */ 1250 if (fs_info->pending_changes == 0) 1251 return 0; 1252 /* 1253 * A non-blocking test if the fs is frozen. We must not 1254 * start a new transaction here otherwise a deadlock 1255 * happens. The pending operations are delayed to the 1256 * next commit after thawing. 1257 */ 1258 if (sb_start_write_trylock(sb)) 1259 sb_end_write(sb); 1260 else 1261 return 0; 1262 trans = btrfs_start_transaction(root, 0); 1263 } 1264 if (IS_ERR(trans)) 1265 return PTR_ERR(trans); 1266 } 1267 return btrfs_commit_transaction(trans); 1268 } 1269 1270 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1271 { 1272 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1273 const char *compress_type; 1274 1275 if (btrfs_test_opt(info, DEGRADED)) 1276 seq_puts(seq, ",degraded"); 1277 if (btrfs_test_opt(info, NODATASUM)) 1278 seq_puts(seq, ",nodatasum"); 1279 if (btrfs_test_opt(info, NODATACOW)) 1280 seq_puts(seq, ",nodatacow"); 1281 if (btrfs_test_opt(info, NOBARRIER)) 1282 seq_puts(seq, ",nobarrier"); 1283 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1284 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1285 if (info->thread_pool_size != min_t(unsigned long, 1286 num_online_cpus() + 2, 8)) 1287 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1288 if (btrfs_test_opt(info, COMPRESS)) { 1289 compress_type = btrfs_compress_type2str(info->compress_type); 1290 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1291 seq_printf(seq, ",compress-force=%s", compress_type); 1292 else 1293 seq_printf(seq, ",compress=%s", compress_type); 1294 if (info->compress_level) 1295 seq_printf(seq, ":%d", info->compress_level); 1296 } 1297 if (btrfs_test_opt(info, NOSSD)) 1298 seq_puts(seq, ",nossd"); 1299 if (btrfs_test_opt(info, SSD_SPREAD)) 1300 seq_puts(seq, ",ssd_spread"); 1301 else if (btrfs_test_opt(info, SSD)) 1302 seq_puts(seq, ",ssd"); 1303 if (btrfs_test_opt(info, NOTREELOG)) 1304 seq_puts(seq, ",notreelog"); 1305 if (btrfs_test_opt(info, NOLOGREPLAY)) 1306 seq_puts(seq, ",nologreplay"); 1307 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1308 seq_puts(seq, ",flushoncommit"); 1309 if (btrfs_test_opt(info, DISCARD)) 1310 seq_puts(seq, ",discard"); 1311 if (!(info->sb->s_flags & SB_POSIXACL)) 1312 seq_puts(seq, ",noacl"); 1313 if (btrfs_test_opt(info, SPACE_CACHE)) 1314 seq_puts(seq, ",space_cache"); 1315 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1316 seq_puts(seq, ",space_cache=v2"); 1317 else 1318 seq_puts(seq, ",nospace_cache"); 1319 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1320 seq_puts(seq, ",rescan_uuid_tree"); 1321 if (btrfs_test_opt(info, CLEAR_CACHE)) 1322 seq_puts(seq, ",clear_cache"); 1323 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1324 seq_puts(seq, ",user_subvol_rm_allowed"); 1325 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1326 seq_puts(seq, ",enospc_debug"); 1327 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1328 seq_puts(seq, ",autodefrag"); 1329 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1330 seq_puts(seq, ",inode_cache"); 1331 if (btrfs_test_opt(info, SKIP_BALANCE)) 1332 seq_puts(seq, ",skip_balance"); 1333 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1334 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1335 seq_puts(seq, ",check_int_data"); 1336 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1337 seq_puts(seq, ",check_int"); 1338 if (info->check_integrity_print_mask) 1339 seq_printf(seq, ",check_int_print_mask=%d", 1340 info->check_integrity_print_mask); 1341 #endif 1342 if (info->metadata_ratio) 1343 seq_printf(seq, ",metadata_ratio=%d", 1344 info->metadata_ratio); 1345 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1346 seq_puts(seq, ",fatal_errors=panic"); 1347 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1348 seq_printf(seq, ",commit=%d", info->commit_interval); 1349 #ifdef CONFIG_BTRFS_DEBUG 1350 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1351 seq_puts(seq, ",fragment=data"); 1352 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1353 seq_puts(seq, ",fragment=metadata"); 1354 #endif 1355 if (btrfs_test_opt(info, REF_VERIFY)) 1356 seq_puts(seq, ",ref_verify"); 1357 seq_printf(seq, ",subvolid=%llu", 1358 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1359 seq_puts(seq, ",subvol="); 1360 seq_dentry(seq, dentry, " \t\n\\"); 1361 return 0; 1362 } 1363 1364 static int btrfs_test_super(struct super_block *s, void *data) 1365 { 1366 struct btrfs_fs_info *p = data; 1367 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1368 1369 return fs_info->fs_devices == p->fs_devices; 1370 } 1371 1372 static int btrfs_set_super(struct super_block *s, void *data) 1373 { 1374 int err = set_anon_super(s, data); 1375 if (!err) 1376 s->s_fs_info = data; 1377 return err; 1378 } 1379 1380 /* 1381 * subvolumes are identified by ino 256 1382 */ 1383 static inline int is_subvolume_inode(struct inode *inode) 1384 { 1385 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1386 return 1; 1387 return 0; 1388 } 1389 1390 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1391 const char *device_name, struct vfsmount *mnt) 1392 { 1393 struct dentry *root; 1394 int ret; 1395 1396 if (!subvol_name) { 1397 if (!subvol_objectid) { 1398 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1399 &subvol_objectid); 1400 if (ret) { 1401 root = ERR_PTR(ret); 1402 goto out; 1403 } 1404 } 1405 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1406 subvol_objectid); 1407 if (IS_ERR(subvol_name)) { 1408 root = ERR_CAST(subvol_name); 1409 subvol_name = NULL; 1410 goto out; 1411 } 1412 1413 } 1414 1415 root = mount_subtree(mnt, subvol_name); 1416 /* mount_subtree() drops our reference on the vfsmount. */ 1417 mnt = NULL; 1418 1419 if (!IS_ERR(root)) { 1420 struct super_block *s = root->d_sb; 1421 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1422 struct inode *root_inode = d_inode(root); 1423 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1424 1425 ret = 0; 1426 if (!is_subvolume_inode(root_inode)) { 1427 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1428 subvol_name); 1429 ret = -EINVAL; 1430 } 1431 if (subvol_objectid && root_objectid != subvol_objectid) { 1432 /* 1433 * This will also catch a race condition where a 1434 * subvolume which was passed by ID is renamed and 1435 * another subvolume is renamed over the old location. 1436 */ 1437 btrfs_err(fs_info, 1438 "subvol '%s' does not match subvolid %llu", 1439 subvol_name, subvol_objectid); 1440 ret = -EINVAL; 1441 } 1442 if (ret) { 1443 dput(root); 1444 root = ERR_PTR(ret); 1445 deactivate_locked_super(s); 1446 } 1447 } 1448 1449 out: 1450 mntput(mnt); 1451 kfree(subvol_name); 1452 return root; 1453 } 1454 1455 static int parse_security_options(char *orig_opts, 1456 struct security_mnt_opts *sec_opts) 1457 { 1458 char *secdata = NULL; 1459 int ret = 0; 1460 1461 secdata = alloc_secdata(); 1462 if (!secdata) 1463 return -ENOMEM; 1464 ret = security_sb_copy_data(orig_opts, secdata); 1465 if (ret) { 1466 free_secdata(secdata); 1467 return ret; 1468 } 1469 ret = security_sb_parse_opts_str(secdata, sec_opts); 1470 free_secdata(secdata); 1471 return ret; 1472 } 1473 1474 static int setup_security_options(struct btrfs_fs_info *fs_info, 1475 struct super_block *sb, 1476 struct security_mnt_opts *sec_opts) 1477 { 1478 int ret = 0; 1479 1480 /* 1481 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1482 * is valid. 1483 */ 1484 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1485 if (ret) 1486 return ret; 1487 1488 #ifdef CONFIG_SECURITY 1489 if (!fs_info->security_opts.num_mnt_opts) { 1490 /* first time security setup, copy sec_opts to fs_info */ 1491 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1492 } else { 1493 /* 1494 * Since SELinux (the only one supporting security_mnt_opts) 1495 * does NOT support changing context during remount/mount of 1496 * the same sb, this must be the same or part of the same 1497 * security options, just free it. 1498 */ 1499 security_free_mnt_opts(sec_opts); 1500 } 1501 #endif 1502 return ret; 1503 } 1504 1505 /* 1506 * Find a superblock for the given device / mount point. 1507 * 1508 * Note: This is based on mount_bdev from fs/super.c with a few additions 1509 * for multiple device setup. Make sure to keep it in sync. 1510 */ 1511 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1512 int flags, const char *device_name, void *data) 1513 { 1514 struct block_device *bdev = NULL; 1515 struct super_block *s; 1516 struct btrfs_fs_devices *fs_devices = NULL; 1517 struct btrfs_fs_info *fs_info = NULL; 1518 struct security_mnt_opts new_sec_opts; 1519 fmode_t mode = FMODE_READ; 1520 int error = 0; 1521 1522 if (!(flags & SB_RDONLY)) 1523 mode |= FMODE_WRITE; 1524 1525 error = btrfs_parse_early_options(data, mode, fs_type, 1526 &fs_devices); 1527 if (error) { 1528 return ERR_PTR(error); 1529 } 1530 1531 security_init_mnt_opts(&new_sec_opts); 1532 if (data) { 1533 error = parse_security_options(data, &new_sec_opts); 1534 if (error) 1535 return ERR_PTR(error); 1536 } 1537 1538 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1539 if (error) 1540 goto error_sec_opts; 1541 1542 /* 1543 * Setup a dummy root and fs_info for test/set super. This is because 1544 * we don't actually fill this stuff out until open_ctree, but we need 1545 * it for searching for existing supers, so this lets us do that and 1546 * then open_ctree will properly initialize everything later. 1547 */ 1548 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1549 if (!fs_info) { 1550 error = -ENOMEM; 1551 goto error_sec_opts; 1552 } 1553 1554 fs_info->fs_devices = fs_devices; 1555 1556 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1557 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1558 security_init_mnt_opts(&fs_info->security_opts); 1559 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1560 error = -ENOMEM; 1561 goto error_fs_info; 1562 } 1563 1564 error = btrfs_open_devices(fs_devices, mode, fs_type); 1565 if (error) 1566 goto error_fs_info; 1567 1568 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1569 error = -EACCES; 1570 goto error_close_devices; 1571 } 1572 1573 bdev = fs_devices->latest_bdev; 1574 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1575 fs_info); 1576 if (IS_ERR(s)) { 1577 error = PTR_ERR(s); 1578 goto error_close_devices; 1579 } 1580 1581 if (s->s_root) { 1582 btrfs_close_devices(fs_devices); 1583 free_fs_info(fs_info); 1584 if ((flags ^ s->s_flags) & SB_RDONLY) 1585 error = -EBUSY; 1586 } else { 1587 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1588 btrfs_sb(s)->bdev_holder = fs_type; 1589 error = btrfs_fill_super(s, fs_devices, data); 1590 } 1591 if (error) { 1592 deactivate_locked_super(s); 1593 goto error_sec_opts; 1594 } 1595 1596 fs_info = btrfs_sb(s); 1597 error = setup_security_options(fs_info, s, &new_sec_opts); 1598 if (error) { 1599 deactivate_locked_super(s); 1600 goto error_sec_opts; 1601 } 1602 1603 return dget(s->s_root); 1604 1605 error_close_devices: 1606 btrfs_close_devices(fs_devices); 1607 error_fs_info: 1608 free_fs_info(fs_info); 1609 error_sec_opts: 1610 security_free_mnt_opts(&new_sec_opts); 1611 return ERR_PTR(error); 1612 } 1613 1614 /* 1615 * Mount function which is called by VFS layer. 1616 * 1617 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1618 * which needs vfsmount* of device's root (/). This means device's root has to 1619 * be mounted internally in any case. 1620 * 1621 * Operation flow: 1622 * 1. Parse subvol id related options for later use in mount_subvol(). 1623 * 1624 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1625 * 1626 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1627 * first place. In order to avoid calling btrfs_mount() again, we use 1628 * different file_system_type which is not registered to VFS by 1629 * register_filesystem() (btrfs_root_fs_type). As a result, 1630 * btrfs_mount_root() is called. The return value will be used by 1631 * mount_subtree() in mount_subvol(). 1632 * 1633 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1634 * "btrfs subvolume set-default", mount_subvol() is called always. 1635 */ 1636 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1637 const char *device_name, void *data) 1638 { 1639 struct vfsmount *mnt_root; 1640 struct dentry *root; 1641 fmode_t mode = FMODE_READ; 1642 char *subvol_name = NULL; 1643 u64 subvol_objectid = 0; 1644 int error = 0; 1645 1646 if (!(flags & SB_RDONLY)) 1647 mode |= FMODE_WRITE; 1648 1649 error = btrfs_parse_subvol_options(data, mode, 1650 &subvol_name, &subvol_objectid); 1651 if (error) { 1652 kfree(subvol_name); 1653 return ERR_PTR(error); 1654 } 1655 1656 /* mount device's root (/) */ 1657 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1658 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1659 if (flags & SB_RDONLY) { 1660 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1661 flags & ~SB_RDONLY, device_name, data); 1662 } else { 1663 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1664 flags | SB_RDONLY, device_name, data); 1665 if (IS_ERR(mnt_root)) { 1666 root = ERR_CAST(mnt_root); 1667 goto out; 1668 } 1669 1670 down_write(&mnt_root->mnt_sb->s_umount); 1671 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1672 up_write(&mnt_root->mnt_sb->s_umount); 1673 if (error < 0) { 1674 root = ERR_PTR(error); 1675 mntput(mnt_root); 1676 goto out; 1677 } 1678 } 1679 } 1680 if (IS_ERR(mnt_root)) { 1681 root = ERR_CAST(mnt_root); 1682 goto out; 1683 } 1684 1685 /* mount_subvol() will free subvol_name and mnt_root */ 1686 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root); 1687 1688 out: 1689 return root; 1690 } 1691 1692 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1693 int new_pool_size, int old_pool_size) 1694 { 1695 if (new_pool_size == old_pool_size) 1696 return; 1697 1698 fs_info->thread_pool_size = new_pool_size; 1699 1700 btrfs_info(fs_info, "resize thread pool %d -> %d", 1701 old_pool_size, new_pool_size); 1702 1703 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1704 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1705 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1706 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1707 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1708 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1709 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1710 new_pool_size); 1711 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1712 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1713 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1714 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1715 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1716 new_pool_size); 1717 } 1718 1719 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1720 { 1721 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1722 } 1723 1724 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1725 unsigned long old_opts, int flags) 1726 { 1727 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1728 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1729 (flags & SB_RDONLY))) { 1730 /* wait for any defraggers to finish */ 1731 wait_event(fs_info->transaction_wait, 1732 (atomic_read(&fs_info->defrag_running) == 0)); 1733 if (flags & SB_RDONLY) 1734 sync_filesystem(fs_info->sb); 1735 } 1736 } 1737 1738 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1739 unsigned long old_opts) 1740 { 1741 /* 1742 * We need to cleanup all defragable inodes if the autodefragment is 1743 * close or the filesystem is read only. 1744 */ 1745 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1746 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1747 btrfs_cleanup_defrag_inodes(fs_info); 1748 } 1749 1750 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1751 } 1752 1753 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1754 { 1755 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1756 struct btrfs_root *root = fs_info->tree_root; 1757 unsigned old_flags = sb->s_flags; 1758 unsigned long old_opts = fs_info->mount_opt; 1759 unsigned long old_compress_type = fs_info->compress_type; 1760 u64 old_max_inline = fs_info->max_inline; 1761 int old_thread_pool_size = fs_info->thread_pool_size; 1762 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1763 int ret; 1764 1765 sync_filesystem(sb); 1766 btrfs_remount_prepare(fs_info); 1767 1768 if (data) { 1769 struct security_mnt_opts new_sec_opts; 1770 1771 security_init_mnt_opts(&new_sec_opts); 1772 ret = parse_security_options(data, &new_sec_opts); 1773 if (ret) 1774 goto restore; 1775 ret = setup_security_options(fs_info, sb, 1776 &new_sec_opts); 1777 if (ret) { 1778 security_free_mnt_opts(&new_sec_opts); 1779 goto restore; 1780 } 1781 } 1782 1783 ret = btrfs_parse_options(fs_info, data, *flags); 1784 if (ret) { 1785 ret = -EINVAL; 1786 goto restore; 1787 } 1788 1789 btrfs_remount_begin(fs_info, old_opts, *flags); 1790 btrfs_resize_thread_pool(fs_info, 1791 fs_info->thread_pool_size, old_thread_pool_size); 1792 1793 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1794 goto out; 1795 1796 if (*flags & SB_RDONLY) { 1797 /* 1798 * this also happens on 'umount -rf' or on shutdown, when 1799 * the filesystem is busy. 1800 */ 1801 cancel_work_sync(&fs_info->async_reclaim_work); 1802 1803 /* wait for the uuid_scan task to finish */ 1804 down(&fs_info->uuid_tree_rescan_sem); 1805 /* avoid complains from lockdep et al. */ 1806 up(&fs_info->uuid_tree_rescan_sem); 1807 1808 sb->s_flags |= SB_RDONLY; 1809 1810 /* 1811 * Setting SB_RDONLY will put the cleaner thread to 1812 * sleep at the next loop if it's already active. 1813 * If it's already asleep, we'll leave unused block 1814 * groups on disk until we're mounted read-write again 1815 * unless we clean them up here. 1816 */ 1817 btrfs_delete_unused_bgs(fs_info); 1818 1819 btrfs_dev_replace_suspend_for_unmount(fs_info); 1820 btrfs_scrub_cancel(fs_info); 1821 btrfs_pause_balance(fs_info); 1822 1823 ret = btrfs_commit_super(fs_info); 1824 if (ret) 1825 goto restore; 1826 } else { 1827 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1828 btrfs_err(fs_info, 1829 "Remounting read-write after error is not allowed"); 1830 ret = -EINVAL; 1831 goto restore; 1832 } 1833 if (fs_info->fs_devices->rw_devices == 0) { 1834 ret = -EACCES; 1835 goto restore; 1836 } 1837 1838 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1839 btrfs_warn(fs_info, 1840 "too many missing devices, writeable remount is not allowed"); 1841 ret = -EACCES; 1842 goto restore; 1843 } 1844 1845 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1846 ret = -EINVAL; 1847 goto restore; 1848 } 1849 1850 ret = btrfs_cleanup_fs_roots(fs_info); 1851 if (ret) 1852 goto restore; 1853 1854 /* recover relocation */ 1855 mutex_lock(&fs_info->cleaner_mutex); 1856 ret = btrfs_recover_relocation(root); 1857 mutex_unlock(&fs_info->cleaner_mutex); 1858 if (ret) 1859 goto restore; 1860 1861 ret = btrfs_resume_balance_async(fs_info); 1862 if (ret) 1863 goto restore; 1864 1865 ret = btrfs_resume_dev_replace_async(fs_info); 1866 if (ret) { 1867 btrfs_warn(fs_info, "failed to resume dev_replace"); 1868 goto restore; 1869 } 1870 1871 btrfs_qgroup_rescan_resume(fs_info); 1872 1873 if (!fs_info->uuid_root) { 1874 btrfs_info(fs_info, "creating UUID tree"); 1875 ret = btrfs_create_uuid_tree(fs_info); 1876 if (ret) { 1877 btrfs_warn(fs_info, 1878 "failed to create the UUID tree %d", 1879 ret); 1880 goto restore; 1881 } 1882 } 1883 sb->s_flags &= ~SB_RDONLY; 1884 1885 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1886 } 1887 out: 1888 wake_up_process(fs_info->transaction_kthread); 1889 btrfs_remount_cleanup(fs_info, old_opts); 1890 return 0; 1891 1892 restore: 1893 /* We've hit an error - don't reset SB_RDONLY */ 1894 if (sb_rdonly(sb)) 1895 old_flags |= SB_RDONLY; 1896 sb->s_flags = old_flags; 1897 fs_info->mount_opt = old_opts; 1898 fs_info->compress_type = old_compress_type; 1899 fs_info->max_inline = old_max_inline; 1900 btrfs_resize_thread_pool(fs_info, 1901 old_thread_pool_size, fs_info->thread_pool_size); 1902 fs_info->metadata_ratio = old_metadata_ratio; 1903 btrfs_remount_cleanup(fs_info, old_opts); 1904 return ret; 1905 } 1906 1907 /* Used to sort the devices by max_avail(descending sort) */ 1908 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1909 const void *dev_info2) 1910 { 1911 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1912 ((struct btrfs_device_info *)dev_info2)->max_avail) 1913 return -1; 1914 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1915 ((struct btrfs_device_info *)dev_info2)->max_avail) 1916 return 1; 1917 else 1918 return 0; 1919 } 1920 1921 /* 1922 * sort the devices by max_avail, in which max free extent size of each device 1923 * is stored.(Descending Sort) 1924 */ 1925 static inline void btrfs_descending_sort_devices( 1926 struct btrfs_device_info *devices, 1927 size_t nr_devices) 1928 { 1929 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1930 btrfs_cmp_device_free_bytes, NULL); 1931 } 1932 1933 /* 1934 * The helper to calc the free space on the devices that can be used to store 1935 * file data. 1936 */ 1937 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1938 u64 *free_bytes) 1939 { 1940 struct btrfs_device_info *devices_info; 1941 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1942 struct btrfs_device *device; 1943 u64 skip_space; 1944 u64 type; 1945 u64 avail_space; 1946 u64 min_stripe_size; 1947 int min_stripes = 1, num_stripes = 1; 1948 int i = 0, nr_devices; 1949 1950 /* 1951 * We aren't under the device list lock, so this is racy-ish, but good 1952 * enough for our purposes. 1953 */ 1954 nr_devices = fs_info->fs_devices->open_devices; 1955 if (!nr_devices) { 1956 smp_mb(); 1957 nr_devices = fs_info->fs_devices->open_devices; 1958 ASSERT(nr_devices); 1959 if (!nr_devices) { 1960 *free_bytes = 0; 1961 return 0; 1962 } 1963 } 1964 1965 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1966 GFP_KERNEL); 1967 if (!devices_info) 1968 return -ENOMEM; 1969 1970 /* calc min stripe number for data space allocation */ 1971 type = btrfs_data_alloc_profile(fs_info); 1972 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1973 min_stripes = 2; 1974 num_stripes = nr_devices; 1975 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1976 min_stripes = 2; 1977 num_stripes = 2; 1978 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1979 min_stripes = 4; 1980 num_stripes = 4; 1981 } 1982 1983 if (type & BTRFS_BLOCK_GROUP_DUP) 1984 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1985 else 1986 min_stripe_size = BTRFS_STRIPE_LEN; 1987 1988 rcu_read_lock(); 1989 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1990 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1991 &device->dev_state) || 1992 !device->bdev || 1993 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1994 continue; 1995 1996 if (i >= nr_devices) 1997 break; 1998 1999 avail_space = device->total_bytes - device->bytes_used; 2000 2001 /* align with stripe_len */ 2002 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 2003 avail_space *= BTRFS_STRIPE_LEN; 2004 2005 /* 2006 * In order to avoid overwriting the superblock on the drive, 2007 * btrfs starts at an offset of at least 1MB when doing chunk 2008 * allocation. 2009 */ 2010 skip_space = SZ_1M; 2011 2012 /* 2013 * we can use the free space in [0, skip_space - 1], subtract 2014 * it from the total. 2015 */ 2016 if (avail_space && avail_space >= skip_space) 2017 avail_space -= skip_space; 2018 else 2019 avail_space = 0; 2020 2021 if (avail_space < min_stripe_size) 2022 continue; 2023 2024 devices_info[i].dev = device; 2025 devices_info[i].max_avail = avail_space; 2026 2027 i++; 2028 } 2029 rcu_read_unlock(); 2030 2031 nr_devices = i; 2032 2033 btrfs_descending_sort_devices(devices_info, nr_devices); 2034 2035 i = nr_devices - 1; 2036 avail_space = 0; 2037 while (nr_devices >= min_stripes) { 2038 if (num_stripes > nr_devices) 2039 num_stripes = nr_devices; 2040 2041 if (devices_info[i].max_avail >= min_stripe_size) { 2042 int j; 2043 u64 alloc_size; 2044 2045 avail_space += devices_info[i].max_avail * num_stripes; 2046 alloc_size = devices_info[i].max_avail; 2047 for (j = i + 1 - num_stripes; j <= i; j++) 2048 devices_info[j].max_avail -= alloc_size; 2049 } 2050 i--; 2051 nr_devices--; 2052 } 2053 2054 kfree(devices_info); 2055 *free_bytes = avail_space; 2056 return 0; 2057 } 2058 2059 /* 2060 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2061 * 2062 * If there's a redundant raid level at DATA block groups, use the respective 2063 * multiplier to scale the sizes. 2064 * 2065 * Unused device space usage is based on simulating the chunk allocator 2066 * algorithm that respects the device sizes and order of allocations. This is 2067 * a close approximation of the actual use but there are other factors that may 2068 * change the result (like a new metadata chunk). 2069 * 2070 * If metadata is exhausted, f_bavail will be 0. 2071 */ 2072 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2073 { 2074 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2075 struct btrfs_super_block *disk_super = fs_info->super_copy; 2076 struct list_head *head = &fs_info->space_info; 2077 struct btrfs_space_info *found; 2078 u64 total_used = 0; 2079 u64 total_free_data = 0; 2080 u64 total_free_meta = 0; 2081 int bits = dentry->d_sb->s_blocksize_bits; 2082 __be32 *fsid = (__be32 *)fs_info->fsid; 2083 unsigned factor = 1; 2084 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2085 int ret; 2086 u64 thresh = 0; 2087 int mixed = 0; 2088 2089 rcu_read_lock(); 2090 list_for_each_entry_rcu(found, head, list) { 2091 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2092 int i; 2093 2094 total_free_data += found->disk_total - found->disk_used; 2095 total_free_data -= 2096 btrfs_account_ro_block_groups_free_space(found); 2097 2098 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2099 if (!list_empty(&found->block_groups[i])) { 2100 switch (i) { 2101 case BTRFS_RAID_DUP: 2102 case BTRFS_RAID_RAID1: 2103 case BTRFS_RAID_RAID10: 2104 factor = 2; 2105 } 2106 } 2107 } 2108 } 2109 2110 /* 2111 * Metadata in mixed block goup profiles are accounted in data 2112 */ 2113 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2114 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2115 mixed = 1; 2116 else 2117 total_free_meta += found->disk_total - 2118 found->disk_used; 2119 } 2120 2121 total_used += found->disk_used; 2122 } 2123 2124 rcu_read_unlock(); 2125 2126 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2127 buf->f_blocks >>= bits; 2128 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2129 2130 /* Account global block reserve as used, it's in logical size already */ 2131 spin_lock(&block_rsv->lock); 2132 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2133 if (buf->f_bfree >= block_rsv->size >> bits) 2134 buf->f_bfree -= block_rsv->size >> bits; 2135 else 2136 buf->f_bfree = 0; 2137 spin_unlock(&block_rsv->lock); 2138 2139 buf->f_bavail = div_u64(total_free_data, factor); 2140 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2141 if (ret) 2142 return ret; 2143 buf->f_bavail += div_u64(total_free_data, factor); 2144 buf->f_bavail = buf->f_bavail >> bits; 2145 2146 /* 2147 * We calculate the remaining metadata space minus global reserve. If 2148 * this is (supposedly) smaller than zero, there's no space. But this 2149 * does not hold in practice, the exhausted state happens where's still 2150 * some positive delta. So we apply some guesswork and compare the 2151 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2152 * 2153 * We probably cannot calculate the exact threshold value because this 2154 * depends on the internal reservations requested by various 2155 * operations, so some operations that consume a few metadata will 2156 * succeed even if the Avail is zero. But this is better than the other 2157 * way around. 2158 */ 2159 thresh = SZ_4M; 2160 2161 if (!mixed && total_free_meta - thresh < block_rsv->size) 2162 buf->f_bavail = 0; 2163 2164 buf->f_type = BTRFS_SUPER_MAGIC; 2165 buf->f_bsize = dentry->d_sb->s_blocksize; 2166 buf->f_namelen = BTRFS_NAME_LEN; 2167 2168 /* We treat it as constant endianness (it doesn't matter _which_) 2169 because we want the fsid to come out the same whether mounted 2170 on a big-endian or little-endian host */ 2171 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2172 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2173 /* Mask in the root object ID too, to disambiguate subvols */ 2174 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2175 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2176 2177 return 0; 2178 } 2179 2180 static void btrfs_kill_super(struct super_block *sb) 2181 { 2182 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2183 kill_anon_super(sb); 2184 free_fs_info(fs_info); 2185 } 2186 2187 static struct file_system_type btrfs_fs_type = { 2188 .owner = THIS_MODULE, 2189 .name = "btrfs", 2190 .mount = btrfs_mount, 2191 .kill_sb = btrfs_kill_super, 2192 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2193 }; 2194 2195 static struct file_system_type btrfs_root_fs_type = { 2196 .owner = THIS_MODULE, 2197 .name = "btrfs", 2198 .mount = btrfs_mount_root, 2199 .kill_sb = btrfs_kill_super, 2200 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2201 }; 2202 2203 MODULE_ALIAS_FS("btrfs"); 2204 2205 static int btrfs_control_open(struct inode *inode, struct file *file) 2206 { 2207 /* 2208 * The control file's private_data is used to hold the 2209 * transaction when it is started and is used to keep 2210 * track of whether a transaction is already in progress. 2211 */ 2212 file->private_data = NULL; 2213 return 0; 2214 } 2215 2216 /* 2217 * used by btrfsctl to scan devices when no FS is mounted 2218 */ 2219 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2220 unsigned long arg) 2221 { 2222 struct btrfs_ioctl_vol_args *vol; 2223 struct btrfs_fs_devices *fs_devices; 2224 int ret = -ENOTTY; 2225 2226 if (!capable(CAP_SYS_ADMIN)) 2227 return -EPERM; 2228 2229 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2230 if (IS_ERR(vol)) 2231 return PTR_ERR(vol); 2232 2233 switch (cmd) { 2234 case BTRFS_IOC_SCAN_DEV: 2235 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2236 &btrfs_root_fs_type, &fs_devices); 2237 break; 2238 case BTRFS_IOC_DEVICES_READY: 2239 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2240 &btrfs_root_fs_type, &fs_devices); 2241 if (ret) 2242 break; 2243 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2244 break; 2245 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2246 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2247 break; 2248 } 2249 2250 kfree(vol); 2251 return ret; 2252 } 2253 2254 static int btrfs_freeze(struct super_block *sb) 2255 { 2256 struct btrfs_trans_handle *trans; 2257 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2258 struct btrfs_root *root = fs_info->tree_root; 2259 2260 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2261 /* 2262 * We don't need a barrier here, we'll wait for any transaction that 2263 * could be in progress on other threads (and do delayed iputs that 2264 * we want to avoid on a frozen filesystem), or do the commit 2265 * ourselves. 2266 */ 2267 trans = btrfs_attach_transaction_barrier(root); 2268 if (IS_ERR(trans)) { 2269 /* no transaction, don't bother */ 2270 if (PTR_ERR(trans) == -ENOENT) 2271 return 0; 2272 return PTR_ERR(trans); 2273 } 2274 return btrfs_commit_transaction(trans); 2275 } 2276 2277 static int btrfs_unfreeze(struct super_block *sb) 2278 { 2279 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2280 2281 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2282 return 0; 2283 } 2284 2285 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2286 { 2287 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2288 struct btrfs_fs_devices *cur_devices; 2289 struct btrfs_device *dev, *first_dev = NULL; 2290 struct list_head *head; 2291 struct rcu_string *name; 2292 2293 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2294 cur_devices = fs_info->fs_devices; 2295 while (cur_devices) { 2296 head = &cur_devices->devices; 2297 list_for_each_entry(dev, head, dev_list) { 2298 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2299 continue; 2300 if (!dev->name) 2301 continue; 2302 if (!first_dev || dev->devid < first_dev->devid) 2303 first_dev = dev; 2304 } 2305 cur_devices = cur_devices->seed; 2306 } 2307 2308 if (first_dev) { 2309 rcu_read_lock(); 2310 name = rcu_dereference(first_dev->name); 2311 seq_escape(m, name->str, " \t\n\\"); 2312 rcu_read_unlock(); 2313 } else { 2314 WARN_ON(1); 2315 } 2316 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2317 return 0; 2318 } 2319 2320 static const struct super_operations btrfs_super_ops = { 2321 .drop_inode = btrfs_drop_inode, 2322 .evict_inode = btrfs_evict_inode, 2323 .put_super = btrfs_put_super, 2324 .sync_fs = btrfs_sync_fs, 2325 .show_options = btrfs_show_options, 2326 .show_devname = btrfs_show_devname, 2327 .write_inode = btrfs_write_inode, 2328 .alloc_inode = btrfs_alloc_inode, 2329 .destroy_inode = btrfs_destroy_inode, 2330 .statfs = btrfs_statfs, 2331 .remount_fs = btrfs_remount, 2332 .freeze_fs = btrfs_freeze, 2333 .unfreeze_fs = btrfs_unfreeze, 2334 }; 2335 2336 static const struct file_operations btrfs_ctl_fops = { 2337 .open = btrfs_control_open, 2338 .unlocked_ioctl = btrfs_control_ioctl, 2339 .compat_ioctl = btrfs_control_ioctl, 2340 .owner = THIS_MODULE, 2341 .llseek = noop_llseek, 2342 }; 2343 2344 static struct miscdevice btrfs_misc = { 2345 .minor = BTRFS_MINOR, 2346 .name = "btrfs-control", 2347 .fops = &btrfs_ctl_fops 2348 }; 2349 2350 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2351 MODULE_ALIAS("devname:btrfs-control"); 2352 2353 static int __init btrfs_interface_init(void) 2354 { 2355 return misc_register(&btrfs_misc); 2356 } 2357 2358 static void btrfs_interface_exit(void) 2359 { 2360 misc_deregister(&btrfs_misc); 2361 } 2362 2363 static void __init btrfs_print_mod_info(void) 2364 { 2365 pr_info("Btrfs loaded, crc32c=%s" 2366 #ifdef CONFIG_BTRFS_DEBUG 2367 ", debug=on" 2368 #endif 2369 #ifdef CONFIG_BTRFS_ASSERT 2370 ", assert=on" 2371 #endif 2372 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2373 ", integrity-checker=on" 2374 #endif 2375 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2376 ", ref-verify=on" 2377 #endif 2378 "\n", 2379 btrfs_crc32c_impl()); 2380 } 2381 2382 static int __init init_btrfs_fs(void) 2383 { 2384 int err; 2385 2386 err = btrfs_hash_init(); 2387 if (err) 2388 return err; 2389 2390 btrfs_props_init(); 2391 2392 err = btrfs_init_sysfs(); 2393 if (err) 2394 goto free_hash; 2395 2396 btrfs_init_compress(); 2397 2398 err = btrfs_init_cachep(); 2399 if (err) 2400 goto free_compress; 2401 2402 err = extent_io_init(); 2403 if (err) 2404 goto free_cachep; 2405 2406 err = extent_map_init(); 2407 if (err) 2408 goto free_extent_io; 2409 2410 err = ordered_data_init(); 2411 if (err) 2412 goto free_extent_map; 2413 2414 err = btrfs_delayed_inode_init(); 2415 if (err) 2416 goto free_ordered_data; 2417 2418 err = btrfs_auto_defrag_init(); 2419 if (err) 2420 goto free_delayed_inode; 2421 2422 err = btrfs_delayed_ref_init(); 2423 if (err) 2424 goto free_auto_defrag; 2425 2426 err = btrfs_prelim_ref_init(); 2427 if (err) 2428 goto free_delayed_ref; 2429 2430 err = btrfs_end_io_wq_init(); 2431 if (err) 2432 goto free_prelim_ref; 2433 2434 err = btrfs_interface_init(); 2435 if (err) 2436 goto free_end_io_wq; 2437 2438 btrfs_init_lockdep(); 2439 2440 btrfs_print_mod_info(); 2441 2442 err = btrfs_run_sanity_tests(); 2443 if (err) 2444 goto unregister_ioctl; 2445 2446 err = register_filesystem(&btrfs_fs_type); 2447 if (err) 2448 goto unregister_ioctl; 2449 2450 return 0; 2451 2452 unregister_ioctl: 2453 btrfs_interface_exit(); 2454 free_end_io_wq: 2455 btrfs_end_io_wq_exit(); 2456 free_prelim_ref: 2457 btrfs_prelim_ref_exit(); 2458 free_delayed_ref: 2459 btrfs_delayed_ref_exit(); 2460 free_auto_defrag: 2461 btrfs_auto_defrag_exit(); 2462 free_delayed_inode: 2463 btrfs_delayed_inode_exit(); 2464 free_ordered_data: 2465 ordered_data_exit(); 2466 free_extent_map: 2467 extent_map_exit(); 2468 free_extent_io: 2469 extent_io_exit(); 2470 free_cachep: 2471 btrfs_destroy_cachep(); 2472 free_compress: 2473 btrfs_exit_compress(); 2474 btrfs_exit_sysfs(); 2475 free_hash: 2476 btrfs_hash_exit(); 2477 return err; 2478 } 2479 2480 static void __exit exit_btrfs_fs(void) 2481 { 2482 btrfs_destroy_cachep(); 2483 btrfs_delayed_ref_exit(); 2484 btrfs_auto_defrag_exit(); 2485 btrfs_delayed_inode_exit(); 2486 btrfs_prelim_ref_exit(); 2487 ordered_data_exit(); 2488 extent_map_exit(); 2489 extent_io_exit(); 2490 btrfs_interface_exit(); 2491 btrfs_end_io_wq_exit(); 2492 unregister_filesystem(&btrfs_fs_type); 2493 btrfs_exit_sysfs(); 2494 btrfs_cleanup_fs_uuids(); 2495 btrfs_exit_compress(); 2496 btrfs_hash_exit(); 2497 } 2498 2499 late_initcall(init_btrfs_fs); 2500 module_exit(exit_btrfs_fs) 2501 2502 MODULE_LICENSE("GPL"); 2503