1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 69 70 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 71 72 const char *btrfs_decode_error(int errno) 73 { 74 char *errstr = "unknown"; 75 76 switch (errno) { 77 case -EIO: 78 errstr = "IO failure"; 79 break; 80 case -ENOMEM: 81 errstr = "Out of memory"; 82 break; 83 case -EROFS: 84 errstr = "Readonly filesystem"; 85 break; 86 case -EEXIST: 87 errstr = "Object already exists"; 88 break; 89 case -ENOSPC: 90 errstr = "No space left"; 91 break; 92 case -ENOENT: 93 errstr = "No such entry"; 94 break; 95 } 96 97 return errstr; 98 } 99 100 static void save_error_info(struct btrfs_fs_info *fs_info) 101 { 102 /* 103 * today we only save the error info into ram. Long term we'll 104 * also send it down to the disk 105 */ 106 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 107 } 108 109 /* btrfs handle error by forcing the filesystem readonly */ 110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 111 { 112 struct super_block *sb = fs_info->sb; 113 114 if (sb->s_flags & MS_RDONLY) 115 return; 116 117 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 118 sb->s_flags |= MS_RDONLY; 119 btrfs_info(fs_info, "forced readonly"); 120 /* 121 * Note that a running device replace operation is not 122 * canceled here although there is no way to update 123 * the progress. It would add the risk of a deadlock, 124 * therefore the canceling is ommited. The only penalty 125 * is that some I/O remains active until the procedure 126 * completes. The next time when the filesystem is 127 * mounted writeable again, the device replace 128 * operation continues. 129 */ 130 } 131 } 132 133 /* 134 * __btrfs_std_error decodes expected errors from the caller and 135 * invokes the approciate error response. 136 */ 137 __cold 138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 139 unsigned int line, int errno, const char *fmt, ...) 140 { 141 struct super_block *sb = fs_info->sb; 142 #ifdef CONFIG_PRINTK 143 const char *errstr; 144 #endif 145 146 /* 147 * Special case: if the error is EROFS, and we're already 148 * under MS_RDONLY, then it is safe here. 149 */ 150 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 151 return; 152 153 #ifdef CONFIG_PRINTK 154 errstr = btrfs_decode_error(errno); 155 if (fmt) { 156 struct va_format vaf; 157 va_list args; 158 159 va_start(args, fmt); 160 vaf.fmt = fmt; 161 vaf.va = &args; 162 163 printk(KERN_CRIT 164 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 165 sb->s_id, function, line, errno, errstr, &vaf); 166 va_end(args); 167 } else { 168 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 169 sb->s_id, function, line, errno, errstr); 170 } 171 #endif 172 173 /* Don't go through full error handling during mount */ 174 save_error_info(fs_info); 175 if (sb->s_flags & MS_BORN) 176 btrfs_handle_error(fs_info); 177 } 178 179 #ifdef CONFIG_PRINTK 180 static const char * const logtypes[] = { 181 "emergency", 182 "alert", 183 "critical", 184 "error", 185 "warning", 186 "notice", 187 "info", 188 "debug", 189 }; 190 191 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 192 { 193 struct super_block *sb = fs_info->sb; 194 char lvl[4]; 195 struct va_format vaf; 196 va_list args; 197 const char *type = logtypes[4]; 198 int kern_level; 199 200 va_start(args, fmt); 201 202 kern_level = printk_get_level(fmt); 203 if (kern_level) { 204 size_t size = printk_skip_level(fmt) - fmt; 205 memcpy(lvl, fmt, size); 206 lvl[size] = '\0'; 207 fmt += size; 208 type = logtypes[kern_level - '0']; 209 } else 210 *lvl = '\0'; 211 212 vaf.fmt = fmt; 213 vaf.va = &args; 214 215 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 216 217 va_end(args); 218 } 219 #endif 220 221 /* 222 * We only mark the transaction aborted and then set the file system read-only. 223 * This will prevent new transactions from starting or trying to join this 224 * one. 225 * 226 * This means that error recovery at the call site is limited to freeing 227 * any local memory allocations and passing the error code up without 228 * further cleanup. The transaction should complete as it normally would 229 * in the call path but will return -EIO. 230 * 231 * We'll complete the cleanup in btrfs_end_transaction and 232 * btrfs_commit_transaction. 233 */ 234 __cold 235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 236 struct btrfs_root *root, const char *function, 237 unsigned int line, int errno) 238 { 239 trans->aborted = errno; 240 /* Nothing used. The other threads that have joined this 241 * transaction may be able to continue. */ 242 if (!trans->blocks_used && list_empty(&trans->new_bgs)) { 243 const char *errstr; 244 245 errstr = btrfs_decode_error(errno); 246 btrfs_warn(root->fs_info, 247 "%s:%d: Aborting unused transaction(%s).", 248 function, line, errstr); 249 return; 250 } 251 ACCESS_ONCE(trans->transaction->aborted) = errno; 252 /* Wake up anybody who may be waiting on this transaction */ 253 wake_up(&root->fs_info->transaction_wait); 254 wake_up(&root->fs_info->transaction_blocked_wait); 255 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 256 } 257 /* 258 * __btrfs_panic decodes unexpected, fatal errors from the caller, 259 * issues an alert, and either panics or BUGs, depending on mount options. 260 */ 261 __cold 262 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 263 unsigned int line, int errno, const char *fmt, ...) 264 { 265 char *s_id = "<unknown>"; 266 const char *errstr; 267 struct va_format vaf = { .fmt = fmt }; 268 va_list args; 269 270 if (fs_info) 271 s_id = fs_info->sb->s_id; 272 273 va_start(args, fmt); 274 vaf.va = &args; 275 276 errstr = btrfs_decode_error(errno); 277 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 278 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 279 s_id, function, line, &vaf, errno, errstr); 280 281 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 282 function, line, &vaf, errno, errstr); 283 va_end(args); 284 /* Caller calls BUG() */ 285 } 286 287 static void btrfs_put_super(struct super_block *sb) 288 { 289 close_ctree(btrfs_sb(sb)->tree_root); 290 } 291 292 enum { 293 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 294 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 295 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 296 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 297 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 298 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 299 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 300 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 301 Opt_check_integrity, Opt_check_integrity_including_extent_data, 302 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 303 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 304 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 305 Opt_datasum, Opt_treelog, Opt_noinode_cache, 306 #ifdef CONFIG_BTRFS_DEBUG 307 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 308 #endif 309 Opt_err, 310 }; 311 312 static match_table_t tokens = { 313 {Opt_degraded, "degraded"}, 314 {Opt_subvol, "subvol=%s"}, 315 {Opt_subvolid, "subvolid=%s"}, 316 {Opt_device, "device=%s"}, 317 {Opt_nodatasum, "nodatasum"}, 318 {Opt_datasum, "datasum"}, 319 {Opt_nodatacow, "nodatacow"}, 320 {Opt_datacow, "datacow"}, 321 {Opt_nobarrier, "nobarrier"}, 322 {Opt_barrier, "barrier"}, 323 {Opt_max_inline, "max_inline=%s"}, 324 {Opt_alloc_start, "alloc_start=%s"}, 325 {Opt_thread_pool, "thread_pool=%d"}, 326 {Opt_compress, "compress"}, 327 {Opt_compress_type, "compress=%s"}, 328 {Opt_compress_force, "compress-force"}, 329 {Opt_compress_force_type, "compress-force=%s"}, 330 {Opt_ssd, "ssd"}, 331 {Opt_ssd_spread, "ssd_spread"}, 332 {Opt_nossd, "nossd"}, 333 {Opt_acl, "acl"}, 334 {Opt_noacl, "noacl"}, 335 {Opt_notreelog, "notreelog"}, 336 {Opt_treelog, "treelog"}, 337 {Opt_flushoncommit, "flushoncommit"}, 338 {Opt_noflushoncommit, "noflushoncommit"}, 339 {Opt_ratio, "metadata_ratio=%d"}, 340 {Opt_discard, "discard"}, 341 {Opt_nodiscard, "nodiscard"}, 342 {Opt_space_cache, "space_cache"}, 343 {Opt_clear_cache, "clear_cache"}, 344 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 345 {Opt_enospc_debug, "enospc_debug"}, 346 {Opt_noenospc_debug, "noenospc_debug"}, 347 {Opt_subvolrootid, "subvolrootid=%d"}, 348 {Opt_defrag, "autodefrag"}, 349 {Opt_nodefrag, "noautodefrag"}, 350 {Opt_inode_cache, "inode_cache"}, 351 {Opt_noinode_cache, "noinode_cache"}, 352 {Opt_no_space_cache, "nospace_cache"}, 353 {Opt_recovery, "recovery"}, 354 {Opt_skip_balance, "skip_balance"}, 355 {Opt_check_integrity, "check_int"}, 356 {Opt_check_integrity_including_extent_data, "check_int_data"}, 357 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 358 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 359 {Opt_fatal_errors, "fatal_errors=%s"}, 360 {Opt_commit_interval, "commit=%d"}, 361 #ifdef CONFIG_BTRFS_DEBUG 362 {Opt_fragment_data, "fragment=data"}, 363 {Opt_fragment_metadata, "fragment=metadata"}, 364 {Opt_fragment_all, "fragment=all"}, 365 #endif 366 {Opt_err, NULL}, 367 }; 368 369 /* 370 * Regular mount options parser. Everything that is needed only when 371 * reading in a new superblock is parsed here. 372 * XXX JDM: This needs to be cleaned up for remount. 373 */ 374 int btrfs_parse_options(struct btrfs_root *root, char *options) 375 { 376 struct btrfs_fs_info *info = root->fs_info; 377 substring_t args[MAX_OPT_ARGS]; 378 char *p, *num, *orig = NULL; 379 u64 cache_gen; 380 int intarg; 381 int ret = 0; 382 char *compress_type; 383 bool compress_force = false; 384 385 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 386 if (cache_gen) 387 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 388 389 if (!options) 390 goto out; 391 392 /* 393 * strsep changes the string, duplicate it because parse_options 394 * gets called twice 395 */ 396 options = kstrdup(options, GFP_NOFS); 397 if (!options) 398 return -ENOMEM; 399 400 orig = options; 401 402 while ((p = strsep(&options, ",")) != NULL) { 403 int token; 404 if (!*p) 405 continue; 406 407 token = match_token(p, tokens, args); 408 switch (token) { 409 case Opt_degraded: 410 btrfs_info(root->fs_info, "allowing degraded mounts"); 411 btrfs_set_opt(info->mount_opt, DEGRADED); 412 break; 413 case Opt_subvol: 414 case Opt_subvolid: 415 case Opt_subvolrootid: 416 case Opt_device: 417 /* 418 * These are parsed by btrfs_parse_early_options 419 * and can be happily ignored here. 420 */ 421 break; 422 case Opt_nodatasum: 423 btrfs_set_and_info(root, NODATASUM, 424 "setting nodatasum"); 425 break; 426 case Opt_datasum: 427 if (btrfs_test_opt(root, NODATASUM)) { 428 if (btrfs_test_opt(root, NODATACOW)) 429 btrfs_info(root->fs_info, "setting datasum, datacow enabled"); 430 else 431 btrfs_info(root->fs_info, "setting datasum"); 432 } 433 btrfs_clear_opt(info->mount_opt, NODATACOW); 434 btrfs_clear_opt(info->mount_opt, NODATASUM); 435 break; 436 case Opt_nodatacow: 437 if (!btrfs_test_opt(root, NODATACOW)) { 438 if (!btrfs_test_opt(root, COMPRESS) || 439 !btrfs_test_opt(root, FORCE_COMPRESS)) { 440 btrfs_info(root->fs_info, 441 "setting nodatacow, compression disabled"); 442 } else { 443 btrfs_info(root->fs_info, "setting nodatacow"); 444 } 445 } 446 btrfs_clear_opt(info->mount_opt, COMPRESS); 447 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 448 btrfs_set_opt(info->mount_opt, NODATACOW); 449 btrfs_set_opt(info->mount_opt, NODATASUM); 450 break; 451 case Opt_datacow: 452 btrfs_clear_and_info(root, NODATACOW, 453 "setting datacow"); 454 break; 455 case Opt_compress_force: 456 case Opt_compress_force_type: 457 compress_force = true; 458 /* Fallthrough */ 459 case Opt_compress: 460 case Opt_compress_type: 461 if (token == Opt_compress || 462 token == Opt_compress_force || 463 strcmp(args[0].from, "zlib") == 0) { 464 compress_type = "zlib"; 465 info->compress_type = BTRFS_COMPRESS_ZLIB; 466 btrfs_set_opt(info->mount_opt, COMPRESS); 467 btrfs_clear_opt(info->mount_opt, NODATACOW); 468 btrfs_clear_opt(info->mount_opt, NODATASUM); 469 } else if (strcmp(args[0].from, "lzo") == 0) { 470 compress_type = "lzo"; 471 info->compress_type = BTRFS_COMPRESS_LZO; 472 btrfs_set_opt(info->mount_opt, COMPRESS); 473 btrfs_clear_opt(info->mount_opt, NODATACOW); 474 btrfs_clear_opt(info->mount_opt, NODATASUM); 475 btrfs_set_fs_incompat(info, COMPRESS_LZO); 476 } else if (strncmp(args[0].from, "no", 2) == 0) { 477 compress_type = "no"; 478 btrfs_clear_opt(info->mount_opt, COMPRESS); 479 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 480 compress_force = false; 481 } else { 482 ret = -EINVAL; 483 goto out; 484 } 485 486 if (compress_force) { 487 btrfs_set_and_info(root, FORCE_COMPRESS, 488 "force %s compression", 489 compress_type); 490 } else { 491 if (!btrfs_test_opt(root, COMPRESS)) 492 btrfs_info(root->fs_info, 493 "btrfs: use %s compression", 494 compress_type); 495 /* 496 * If we remount from compress-force=xxx to 497 * compress=xxx, we need clear FORCE_COMPRESS 498 * flag, otherwise, there is no way for users 499 * to disable forcible compression separately. 500 */ 501 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 502 } 503 break; 504 case Opt_ssd: 505 btrfs_set_and_info(root, SSD, 506 "use ssd allocation scheme"); 507 break; 508 case Opt_ssd_spread: 509 btrfs_set_and_info(root, SSD_SPREAD, 510 "use spread ssd allocation scheme"); 511 btrfs_set_opt(info->mount_opt, SSD); 512 break; 513 case Opt_nossd: 514 btrfs_set_and_info(root, NOSSD, 515 "not using ssd allocation scheme"); 516 btrfs_clear_opt(info->mount_opt, SSD); 517 break; 518 case Opt_barrier: 519 btrfs_clear_and_info(root, NOBARRIER, 520 "turning on barriers"); 521 break; 522 case Opt_nobarrier: 523 btrfs_set_and_info(root, NOBARRIER, 524 "turning off barriers"); 525 break; 526 case Opt_thread_pool: 527 ret = match_int(&args[0], &intarg); 528 if (ret) { 529 goto out; 530 } else if (intarg > 0) { 531 info->thread_pool_size = intarg; 532 } else { 533 ret = -EINVAL; 534 goto out; 535 } 536 break; 537 case Opt_max_inline: 538 num = match_strdup(&args[0]); 539 if (num) { 540 info->max_inline = memparse(num, NULL); 541 kfree(num); 542 543 if (info->max_inline) { 544 info->max_inline = min_t(u64, 545 info->max_inline, 546 root->sectorsize); 547 } 548 btrfs_info(root->fs_info, "max_inline at %llu", 549 info->max_inline); 550 } else { 551 ret = -ENOMEM; 552 goto out; 553 } 554 break; 555 case Opt_alloc_start: 556 num = match_strdup(&args[0]); 557 if (num) { 558 mutex_lock(&info->chunk_mutex); 559 info->alloc_start = memparse(num, NULL); 560 mutex_unlock(&info->chunk_mutex); 561 kfree(num); 562 btrfs_info(root->fs_info, "allocations start at %llu", 563 info->alloc_start); 564 } else { 565 ret = -ENOMEM; 566 goto out; 567 } 568 break; 569 case Opt_acl: 570 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 571 root->fs_info->sb->s_flags |= MS_POSIXACL; 572 break; 573 #else 574 btrfs_err(root->fs_info, 575 "support for ACL not compiled in!"); 576 ret = -EINVAL; 577 goto out; 578 #endif 579 case Opt_noacl: 580 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 581 break; 582 case Opt_notreelog: 583 btrfs_set_and_info(root, NOTREELOG, 584 "disabling tree log"); 585 break; 586 case Opt_treelog: 587 btrfs_clear_and_info(root, NOTREELOG, 588 "enabling tree log"); 589 break; 590 case Opt_flushoncommit: 591 btrfs_set_and_info(root, FLUSHONCOMMIT, 592 "turning on flush-on-commit"); 593 break; 594 case Opt_noflushoncommit: 595 btrfs_clear_and_info(root, FLUSHONCOMMIT, 596 "turning off flush-on-commit"); 597 break; 598 case Opt_ratio: 599 ret = match_int(&args[0], &intarg); 600 if (ret) { 601 goto out; 602 } else if (intarg >= 0) { 603 info->metadata_ratio = intarg; 604 btrfs_info(root->fs_info, "metadata ratio %d", 605 info->metadata_ratio); 606 } else { 607 ret = -EINVAL; 608 goto out; 609 } 610 break; 611 case Opt_discard: 612 btrfs_set_and_info(root, DISCARD, 613 "turning on discard"); 614 break; 615 case Opt_nodiscard: 616 btrfs_clear_and_info(root, DISCARD, 617 "turning off discard"); 618 break; 619 case Opt_space_cache: 620 btrfs_set_and_info(root, SPACE_CACHE, 621 "enabling disk space caching"); 622 break; 623 case Opt_rescan_uuid_tree: 624 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 625 break; 626 case Opt_no_space_cache: 627 btrfs_clear_and_info(root, SPACE_CACHE, 628 "disabling disk space caching"); 629 break; 630 case Opt_inode_cache: 631 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 632 "enabling inode map caching"); 633 break; 634 case Opt_noinode_cache: 635 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 636 "disabling inode map caching"); 637 break; 638 case Opt_clear_cache: 639 btrfs_set_and_info(root, CLEAR_CACHE, 640 "force clearing of disk cache"); 641 break; 642 case Opt_user_subvol_rm_allowed: 643 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 644 break; 645 case Opt_enospc_debug: 646 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 647 break; 648 case Opt_noenospc_debug: 649 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 650 break; 651 case Opt_defrag: 652 btrfs_set_and_info(root, AUTO_DEFRAG, 653 "enabling auto defrag"); 654 break; 655 case Opt_nodefrag: 656 btrfs_clear_and_info(root, AUTO_DEFRAG, 657 "disabling auto defrag"); 658 break; 659 case Opt_recovery: 660 btrfs_info(root->fs_info, "enabling auto recovery"); 661 btrfs_set_opt(info->mount_opt, RECOVERY); 662 break; 663 case Opt_skip_balance: 664 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 665 break; 666 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 667 case Opt_check_integrity_including_extent_data: 668 btrfs_info(root->fs_info, 669 "enabling check integrity including extent data"); 670 btrfs_set_opt(info->mount_opt, 671 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 672 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 673 break; 674 case Opt_check_integrity: 675 btrfs_info(root->fs_info, "enabling check integrity"); 676 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 677 break; 678 case Opt_check_integrity_print_mask: 679 ret = match_int(&args[0], &intarg); 680 if (ret) { 681 goto out; 682 } else if (intarg >= 0) { 683 info->check_integrity_print_mask = intarg; 684 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x", 685 info->check_integrity_print_mask); 686 } else { 687 ret = -EINVAL; 688 goto out; 689 } 690 break; 691 #else 692 case Opt_check_integrity_including_extent_data: 693 case Opt_check_integrity: 694 case Opt_check_integrity_print_mask: 695 btrfs_err(root->fs_info, 696 "support for check_integrity* not compiled in!"); 697 ret = -EINVAL; 698 goto out; 699 #endif 700 case Opt_fatal_errors: 701 if (strcmp(args[0].from, "panic") == 0) 702 btrfs_set_opt(info->mount_opt, 703 PANIC_ON_FATAL_ERROR); 704 else if (strcmp(args[0].from, "bug") == 0) 705 btrfs_clear_opt(info->mount_opt, 706 PANIC_ON_FATAL_ERROR); 707 else { 708 ret = -EINVAL; 709 goto out; 710 } 711 break; 712 case Opt_commit_interval: 713 intarg = 0; 714 ret = match_int(&args[0], &intarg); 715 if (ret < 0) { 716 btrfs_err(root->fs_info, "invalid commit interval"); 717 ret = -EINVAL; 718 goto out; 719 } 720 if (intarg > 0) { 721 if (intarg > 300) { 722 btrfs_warn(root->fs_info, "excessive commit interval %d", 723 intarg); 724 } 725 info->commit_interval = intarg; 726 } else { 727 btrfs_info(root->fs_info, "using default commit interval %ds", 728 BTRFS_DEFAULT_COMMIT_INTERVAL); 729 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 730 } 731 break; 732 #ifdef CONFIG_BTRFS_DEBUG 733 case Opt_fragment_all: 734 btrfs_info(root->fs_info, "fragmenting all space"); 735 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 736 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 737 break; 738 case Opt_fragment_metadata: 739 btrfs_info(root->fs_info, "fragmenting metadata"); 740 btrfs_set_opt(info->mount_opt, 741 FRAGMENT_METADATA); 742 break; 743 case Opt_fragment_data: 744 btrfs_info(root->fs_info, "fragmenting data"); 745 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 746 break; 747 #endif 748 case Opt_err: 749 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p); 750 ret = -EINVAL; 751 goto out; 752 default: 753 break; 754 } 755 } 756 out: 757 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 758 btrfs_info(root->fs_info, "disk space caching is enabled"); 759 kfree(orig); 760 return ret; 761 } 762 763 /* 764 * Parse mount options that are required early in the mount process. 765 * 766 * All other options will be parsed on much later in the mount process and 767 * only when we need to allocate a new super block. 768 */ 769 static int btrfs_parse_early_options(const char *options, fmode_t flags, 770 void *holder, char **subvol_name, u64 *subvol_objectid, 771 struct btrfs_fs_devices **fs_devices) 772 { 773 substring_t args[MAX_OPT_ARGS]; 774 char *device_name, *opts, *orig, *p; 775 char *num = NULL; 776 int error = 0; 777 778 if (!options) 779 return 0; 780 781 /* 782 * strsep changes the string, duplicate it because parse_options 783 * gets called twice 784 */ 785 opts = kstrdup(options, GFP_KERNEL); 786 if (!opts) 787 return -ENOMEM; 788 orig = opts; 789 790 while ((p = strsep(&opts, ",")) != NULL) { 791 int token; 792 if (!*p) 793 continue; 794 795 token = match_token(p, tokens, args); 796 switch (token) { 797 case Opt_subvol: 798 kfree(*subvol_name); 799 *subvol_name = match_strdup(&args[0]); 800 if (!*subvol_name) { 801 error = -ENOMEM; 802 goto out; 803 } 804 break; 805 case Opt_subvolid: 806 num = match_strdup(&args[0]); 807 if (num) { 808 *subvol_objectid = memparse(num, NULL); 809 kfree(num); 810 /* we want the original fs_tree */ 811 if (!*subvol_objectid) 812 *subvol_objectid = 813 BTRFS_FS_TREE_OBJECTID; 814 } else { 815 error = -EINVAL; 816 goto out; 817 } 818 break; 819 case Opt_subvolrootid: 820 printk(KERN_WARNING 821 "BTRFS: 'subvolrootid' mount option is deprecated and has " 822 "no effect\n"); 823 break; 824 case Opt_device: 825 device_name = match_strdup(&args[0]); 826 if (!device_name) { 827 error = -ENOMEM; 828 goto out; 829 } 830 error = btrfs_scan_one_device(device_name, 831 flags, holder, fs_devices); 832 kfree(device_name); 833 if (error) 834 goto out; 835 break; 836 default: 837 break; 838 } 839 } 840 841 out: 842 kfree(orig); 843 return error; 844 } 845 846 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 847 u64 subvol_objectid) 848 { 849 struct btrfs_root *root = fs_info->tree_root; 850 struct btrfs_root *fs_root; 851 struct btrfs_root_ref *root_ref; 852 struct btrfs_inode_ref *inode_ref; 853 struct btrfs_key key; 854 struct btrfs_path *path = NULL; 855 char *name = NULL, *ptr; 856 u64 dirid; 857 int len; 858 int ret; 859 860 path = btrfs_alloc_path(); 861 if (!path) { 862 ret = -ENOMEM; 863 goto err; 864 } 865 path->leave_spinning = 1; 866 867 name = kmalloc(PATH_MAX, GFP_NOFS); 868 if (!name) { 869 ret = -ENOMEM; 870 goto err; 871 } 872 ptr = name + PATH_MAX - 1; 873 ptr[0] = '\0'; 874 875 /* 876 * Walk up the subvolume trees in the tree of tree roots by root 877 * backrefs until we hit the top-level subvolume. 878 */ 879 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 880 key.objectid = subvol_objectid; 881 key.type = BTRFS_ROOT_BACKREF_KEY; 882 key.offset = (u64)-1; 883 884 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 885 if (ret < 0) { 886 goto err; 887 } else if (ret > 0) { 888 ret = btrfs_previous_item(root, path, subvol_objectid, 889 BTRFS_ROOT_BACKREF_KEY); 890 if (ret < 0) { 891 goto err; 892 } else if (ret > 0) { 893 ret = -ENOENT; 894 goto err; 895 } 896 } 897 898 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 899 subvol_objectid = key.offset; 900 901 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 902 struct btrfs_root_ref); 903 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 904 ptr -= len + 1; 905 if (ptr < name) { 906 ret = -ENAMETOOLONG; 907 goto err; 908 } 909 read_extent_buffer(path->nodes[0], ptr + 1, 910 (unsigned long)(root_ref + 1), len); 911 ptr[0] = '/'; 912 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 913 btrfs_release_path(path); 914 915 key.objectid = subvol_objectid; 916 key.type = BTRFS_ROOT_ITEM_KEY; 917 key.offset = (u64)-1; 918 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 919 if (IS_ERR(fs_root)) { 920 ret = PTR_ERR(fs_root); 921 goto err; 922 } 923 924 /* 925 * Walk up the filesystem tree by inode refs until we hit the 926 * root directory. 927 */ 928 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 929 key.objectid = dirid; 930 key.type = BTRFS_INODE_REF_KEY; 931 key.offset = (u64)-1; 932 933 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 934 if (ret < 0) { 935 goto err; 936 } else if (ret > 0) { 937 ret = btrfs_previous_item(fs_root, path, dirid, 938 BTRFS_INODE_REF_KEY); 939 if (ret < 0) { 940 goto err; 941 } else if (ret > 0) { 942 ret = -ENOENT; 943 goto err; 944 } 945 } 946 947 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 948 dirid = key.offset; 949 950 inode_ref = btrfs_item_ptr(path->nodes[0], 951 path->slots[0], 952 struct btrfs_inode_ref); 953 len = btrfs_inode_ref_name_len(path->nodes[0], 954 inode_ref); 955 ptr -= len + 1; 956 if (ptr < name) { 957 ret = -ENAMETOOLONG; 958 goto err; 959 } 960 read_extent_buffer(path->nodes[0], ptr + 1, 961 (unsigned long)(inode_ref + 1), len); 962 ptr[0] = '/'; 963 btrfs_release_path(path); 964 } 965 } 966 967 btrfs_free_path(path); 968 if (ptr == name + PATH_MAX - 1) { 969 name[0] = '/'; 970 name[1] = '\0'; 971 } else { 972 memmove(name, ptr, name + PATH_MAX - ptr); 973 } 974 return name; 975 976 err: 977 btrfs_free_path(path); 978 kfree(name); 979 return ERR_PTR(ret); 980 } 981 982 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 983 { 984 struct btrfs_root *root = fs_info->tree_root; 985 struct btrfs_dir_item *di; 986 struct btrfs_path *path; 987 struct btrfs_key location; 988 u64 dir_id; 989 990 path = btrfs_alloc_path(); 991 if (!path) 992 return -ENOMEM; 993 path->leave_spinning = 1; 994 995 /* 996 * Find the "default" dir item which points to the root item that we 997 * will mount by default if we haven't been given a specific subvolume 998 * to mount. 999 */ 1000 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1001 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1002 if (IS_ERR(di)) { 1003 btrfs_free_path(path); 1004 return PTR_ERR(di); 1005 } 1006 if (!di) { 1007 /* 1008 * Ok the default dir item isn't there. This is weird since 1009 * it's always been there, but don't freak out, just try and 1010 * mount the top-level subvolume. 1011 */ 1012 btrfs_free_path(path); 1013 *objectid = BTRFS_FS_TREE_OBJECTID; 1014 return 0; 1015 } 1016 1017 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1018 btrfs_free_path(path); 1019 *objectid = location.objectid; 1020 return 0; 1021 } 1022 1023 static int btrfs_fill_super(struct super_block *sb, 1024 struct btrfs_fs_devices *fs_devices, 1025 void *data, int silent) 1026 { 1027 struct inode *inode; 1028 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1029 struct btrfs_key key; 1030 int err; 1031 1032 sb->s_maxbytes = MAX_LFS_FILESIZE; 1033 sb->s_magic = BTRFS_SUPER_MAGIC; 1034 sb->s_op = &btrfs_super_ops; 1035 sb->s_d_op = &btrfs_dentry_operations; 1036 sb->s_export_op = &btrfs_export_ops; 1037 sb->s_xattr = btrfs_xattr_handlers; 1038 sb->s_time_gran = 1; 1039 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1040 sb->s_flags |= MS_POSIXACL; 1041 #endif 1042 sb->s_flags |= MS_I_VERSION; 1043 sb->s_iflags |= SB_I_CGROUPWB; 1044 err = open_ctree(sb, fs_devices, (char *)data); 1045 if (err) { 1046 printk(KERN_ERR "BTRFS: open_ctree failed\n"); 1047 return err; 1048 } 1049 1050 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1051 key.type = BTRFS_INODE_ITEM_KEY; 1052 key.offset = 0; 1053 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1054 if (IS_ERR(inode)) { 1055 err = PTR_ERR(inode); 1056 goto fail_close; 1057 } 1058 1059 sb->s_root = d_make_root(inode); 1060 if (!sb->s_root) { 1061 err = -ENOMEM; 1062 goto fail_close; 1063 } 1064 1065 save_mount_options(sb, data); 1066 cleancache_init_fs(sb); 1067 sb->s_flags |= MS_ACTIVE; 1068 return 0; 1069 1070 fail_close: 1071 close_ctree(fs_info->tree_root); 1072 return err; 1073 } 1074 1075 int btrfs_sync_fs(struct super_block *sb, int wait) 1076 { 1077 struct btrfs_trans_handle *trans; 1078 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1079 struct btrfs_root *root = fs_info->tree_root; 1080 1081 trace_btrfs_sync_fs(wait); 1082 1083 if (!wait) { 1084 filemap_flush(fs_info->btree_inode->i_mapping); 1085 return 0; 1086 } 1087 1088 btrfs_wait_ordered_roots(fs_info, -1); 1089 1090 trans = btrfs_attach_transaction_barrier(root); 1091 if (IS_ERR(trans)) { 1092 /* no transaction, don't bother */ 1093 if (PTR_ERR(trans) == -ENOENT) { 1094 /* 1095 * Exit unless we have some pending changes 1096 * that need to go through commit 1097 */ 1098 if (fs_info->pending_changes == 0) 1099 return 0; 1100 /* 1101 * A non-blocking test if the fs is frozen. We must not 1102 * start a new transaction here otherwise a deadlock 1103 * happens. The pending operations are delayed to the 1104 * next commit after thawing. 1105 */ 1106 if (__sb_start_write(sb, SB_FREEZE_WRITE, false)) 1107 __sb_end_write(sb, SB_FREEZE_WRITE); 1108 else 1109 return 0; 1110 trans = btrfs_start_transaction(root, 0); 1111 } 1112 if (IS_ERR(trans)) 1113 return PTR_ERR(trans); 1114 } 1115 return btrfs_commit_transaction(trans, root); 1116 } 1117 1118 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1119 { 1120 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1121 struct btrfs_root *root = info->tree_root; 1122 char *compress_type; 1123 1124 if (btrfs_test_opt(root, DEGRADED)) 1125 seq_puts(seq, ",degraded"); 1126 if (btrfs_test_opt(root, NODATASUM)) 1127 seq_puts(seq, ",nodatasum"); 1128 if (btrfs_test_opt(root, NODATACOW)) 1129 seq_puts(seq, ",nodatacow"); 1130 if (btrfs_test_opt(root, NOBARRIER)) 1131 seq_puts(seq, ",nobarrier"); 1132 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1133 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1134 if (info->alloc_start != 0) 1135 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1136 if (info->thread_pool_size != min_t(unsigned long, 1137 num_online_cpus() + 2, 8)) 1138 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1139 if (btrfs_test_opt(root, COMPRESS)) { 1140 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1141 compress_type = "zlib"; 1142 else 1143 compress_type = "lzo"; 1144 if (btrfs_test_opt(root, FORCE_COMPRESS)) 1145 seq_printf(seq, ",compress-force=%s", compress_type); 1146 else 1147 seq_printf(seq, ",compress=%s", compress_type); 1148 } 1149 if (btrfs_test_opt(root, NOSSD)) 1150 seq_puts(seq, ",nossd"); 1151 if (btrfs_test_opt(root, SSD_SPREAD)) 1152 seq_puts(seq, ",ssd_spread"); 1153 else if (btrfs_test_opt(root, SSD)) 1154 seq_puts(seq, ",ssd"); 1155 if (btrfs_test_opt(root, NOTREELOG)) 1156 seq_puts(seq, ",notreelog"); 1157 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 1158 seq_puts(seq, ",flushoncommit"); 1159 if (btrfs_test_opt(root, DISCARD)) 1160 seq_puts(seq, ",discard"); 1161 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 1162 seq_puts(seq, ",noacl"); 1163 if (btrfs_test_opt(root, SPACE_CACHE)) 1164 seq_puts(seq, ",space_cache"); 1165 else 1166 seq_puts(seq, ",nospace_cache"); 1167 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 1168 seq_puts(seq, ",rescan_uuid_tree"); 1169 if (btrfs_test_opt(root, CLEAR_CACHE)) 1170 seq_puts(seq, ",clear_cache"); 1171 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1172 seq_puts(seq, ",user_subvol_rm_allowed"); 1173 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 1174 seq_puts(seq, ",enospc_debug"); 1175 if (btrfs_test_opt(root, AUTO_DEFRAG)) 1176 seq_puts(seq, ",autodefrag"); 1177 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 1178 seq_puts(seq, ",inode_cache"); 1179 if (btrfs_test_opt(root, SKIP_BALANCE)) 1180 seq_puts(seq, ",skip_balance"); 1181 if (btrfs_test_opt(root, RECOVERY)) 1182 seq_puts(seq, ",recovery"); 1183 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1184 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1185 seq_puts(seq, ",check_int_data"); 1186 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1187 seq_puts(seq, ",check_int"); 1188 if (info->check_integrity_print_mask) 1189 seq_printf(seq, ",check_int_print_mask=%d", 1190 info->check_integrity_print_mask); 1191 #endif 1192 if (info->metadata_ratio) 1193 seq_printf(seq, ",metadata_ratio=%d", 1194 info->metadata_ratio); 1195 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1196 seq_puts(seq, ",fatal_errors=panic"); 1197 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1198 seq_printf(seq, ",commit=%d", info->commit_interval); 1199 #ifdef CONFIG_BTRFS_DEBUG 1200 if (btrfs_test_opt(root, FRAGMENT_DATA)) 1201 seq_puts(seq, ",fragment=data"); 1202 if (btrfs_test_opt(root, FRAGMENT_METADATA)) 1203 seq_puts(seq, ",fragment=metadata"); 1204 #endif 1205 seq_printf(seq, ",subvolid=%llu", 1206 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1207 seq_puts(seq, ",subvol="); 1208 seq_dentry(seq, dentry, " \t\n\\"); 1209 return 0; 1210 } 1211 1212 static int btrfs_test_super(struct super_block *s, void *data) 1213 { 1214 struct btrfs_fs_info *p = data; 1215 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1216 1217 return fs_info->fs_devices == p->fs_devices; 1218 } 1219 1220 static int btrfs_set_super(struct super_block *s, void *data) 1221 { 1222 int err = set_anon_super(s, data); 1223 if (!err) 1224 s->s_fs_info = data; 1225 return err; 1226 } 1227 1228 /* 1229 * subvolumes are identified by ino 256 1230 */ 1231 static inline int is_subvolume_inode(struct inode *inode) 1232 { 1233 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1234 return 1; 1235 return 0; 1236 } 1237 1238 /* 1239 * This will add subvolid=0 to the argument string while removing any subvol= 1240 * and subvolid= arguments to make sure we get the top-level root for path 1241 * walking to the subvol we want. 1242 */ 1243 static char *setup_root_args(char *args) 1244 { 1245 char *buf, *dst, *sep; 1246 1247 if (!args) 1248 return kstrdup("subvolid=0", GFP_NOFS); 1249 1250 /* The worst case is that we add ",subvolid=0" to the end. */ 1251 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS); 1252 if (!buf) 1253 return NULL; 1254 1255 while (1) { 1256 sep = strchrnul(args, ','); 1257 if (!strstarts(args, "subvol=") && 1258 !strstarts(args, "subvolid=")) { 1259 memcpy(dst, args, sep - args); 1260 dst += sep - args; 1261 *dst++ = ','; 1262 } 1263 if (*sep) 1264 args = sep + 1; 1265 else 1266 break; 1267 } 1268 strcpy(dst, "subvolid=0"); 1269 1270 return buf; 1271 } 1272 1273 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1274 int flags, const char *device_name, 1275 char *data) 1276 { 1277 struct dentry *root; 1278 struct vfsmount *mnt = NULL; 1279 char *newargs; 1280 int ret; 1281 1282 newargs = setup_root_args(data); 1283 if (!newargs) { 1284 root = ERR_PTR(-ENOMEM); 1285 goto out; 1286 } 1287 1288 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); 1289 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { 1290 if (flags & MS_RDONLY) { 1291 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, 1292 device_name, newargs); 1293 } else { 1294 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, 1295 device_name, newargs); 1296 if (IS_ERR(mnt)) { 1297 root = ERR_CAST(mnt); 1298 mnt = NULL; 1299 goto out; 1300 } 1301 1302 down_write(&mnt->mnt_sb->s_umount); 1303 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1304 up_write(&mnt->mnt_sb->s_umount); 1305 if (ret < 0) { 1306 root = ERR_PTR(ret); 1307 goto out; 1308 } 1309 } 1310 } 1311 if (IS_ERR(mnt)) { 1312 root = ERR_CAST(mnt); 1313 mnt = NULL; 1314 goto out; 1315 } 1316 1317 if (!subvol_name) { 1318 if (!subvol_objectid) { 1319 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1320 &subvol_objectid); 1321 if (ret) { 1322 root = ERR_PTR(ret); 1323 goto out; 1324 } 1325 } 1326 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1327 subvol_objectid); 1328 if (IS_ERR(subvol_name)) { 1329 root = ERR_CAST(subvol_name); 1330 subvol_name = NULL; 1331 goto out; 1332 } 1333 1334 } 1335 1336 root = mount_subtree(mnt, subvol_name); 1337 /* mount_subtree() drops our reference on the vfsmount. */ 1338 mnt = NULL; 1339 1340 if (!IS_ERR(root)) { 1341 struct super_block *s = root->d_sb; 1342 struct inode *root_inode = d_inode(root); 1343 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1344 1345 ret = 0; 1346 if (!is_subvolume_inode(root_inode)) { 1347 pr_err("BTRFS: '%s' is not a valid subvolume\n", 1348 subvol_name); 1349 ret = -EINVAL; 1350 } 1351 if (subvol_objectid && root_objectid != subvol_objectid) { 1352 /* 1353 * This will also catch a race condition where a 1354 * subvolume which was passed by ID is renamed and 1355 * another subvolume is renamed over the old location. 1356 */ 1357 pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n", 1358 subvol_name, subvol_objectid); 1359 ret = -EINVAL; 1360 } 1361 if (ret) { 1362 dput(root); 1363 root = ERR_PTR(ret); 1364 deactivate_locked_super(s); 1365 } 1366 } 1367 1368 out: 1369 mntput(mnt); 1370 kfree(newargs); 1371 kfree(subvol_name); 1372 return root; 1373 } 1374 1375 static int parse_security_options(char *orig_opts, 1376 struct security_mnt_opts *sec_opts) 1377 { 1378 char *secdata = NULL; 1379 int ret = 0; 1380 1381 secdata = alloc_secdata(); 1382 if (!secdata) 1383 return -ENOMEM; 1384 ret = security_sb_copy_data(orig_opts, secdata); 1385 if (ret) { 1386 free_secdata(secdata); 1387 return ret; 1388 } 1389 ret = security_sb_parse_opts_str(secdata, sec_opts); 1390 free_secdata(secdata); 1391 return ret; 1392 } 1393 1394 static int setup_security_options(struct btrfs_fs_info *fs_info, 1395 struct super_block *sb, 1396 struct security_mnt_opts *sec_opts) 1397 { 1398 int ret = 0; 1399 1400 /* 1401 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1402 * is valid. 1403 */ 1404 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1405 if (ret) 1406 return ret; 1407 1408 #ifdef CONFIG_SECURITY 1409 if (!fs_info->security_opts.num_mnt_opts) { 1410 /* first time security setup, copy sec_opts to fs_info */ 1411 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1412 } else { 1413 /* 1414 * Since SELinux(the only one supports security_mnt_opts) does 1415 * NOT support changing context during remount/mount same sb, 1416 * This must be the same or part of the same security options, 1417 * just free it. 1418 */ 1419 security_free_mnt_opts(sec_opts); 1420 } 1421 #endif 1422 return ret; 1423 } 1424 1425 /* 1426 * Find a superblock for the given device / mount point. 1427 * 1428 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1429 * for multiple device setup. Make sure to keep it in sync. 1430 */ 1431 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1432 const char *device_name, void *data) 1433 { 1434 struct block_device *bdev = NULL; 1435 struct super_block *s; 1436 struct btrfs_fs_devices *fs_devices = NULL; 1437 struct btrfs_fs_info *fs_info = NULL; 1438 struct security_mnt_opts new_sec_opts; 1439 fmode_t mode = FMODE_READ; 1440 char *subvol_name = NULL; 1441 u64 subvol_objectid = 0; 1442 int error = 0; 1443 1444 if (!(flags & MS_RDONLY)) 1445 mode |= FMODE_WRITE; 1446 1447 error = btrfs_parse_early_options(data, mode, fs_type, 1448 &subvol_name, &subvol_objectid, 1449 &fs_devices); 1450 if (error) { 1451 kfree(subvol_name); 1452 return ERR_PTR(error); 1453 } 1454 1455 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1456 /* mount_subvol() will free subvol_name. */ 1457 return mount_subvol(subvol_name, subvol_objectid, flags, 1458 device_name, data); 1459 } 1460 1461 security_init_mnt_opts(&new_sec_opts); 1462 if (data) { 1463 error = parse_security_options(data, &new_sec_opts); 1464 if (error) 1465 return ERR_PTR(error); 1466 } 1467 1468 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1469 if (error) 1470 goto error_sec_opts; 1471 1472 /* 1473 * Setup a dummy root and fs_info for test/set super. This is because 1474 * we don't actually fill this stuff out until open_ctree, but we need 1475 * it for searching for existing supers, so this lets us do that and 1476 * then open_ctree will properly initialize everything later. 1477 */ 1478 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1479 if (!fs_info) { 1480 error = -ENOMEM; 1481 goto error_sec_opts; 1482 } 1483 1484 fs_info->fs_devices = fs_devices; 1485 1486 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1487 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1488 security_init_mnt_opts(&fs_info->security_opts); 1489 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1490 error = -ENOMEM; 1491 goto error_fs_info; 1492 } 1493 1494 error = btrfs_open_devices(fs_devices, mode, fs_type); 1495 if (error) 1496 goto error_fs_info; 1497 1498 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1499 error = -EACCES; 1500 goto error_close_devices; 1501 } 1502 1503 bdev = fs_devices->latest_bdev; 1504 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1505 fs_info); 1506 if (IS_ERR(s)) { 1507 error = PTR_ERR(s); 1508 goto error_close_devices; 1509 } 1510 1511 if (s->s_root) { 1512 btrfs_close_devices(fs_devices); 1513 free_fs_info(fs_info); 1514 if ((flags ^ s->s_flags) & MS_RDONLY) 1515 error = -EBUSY; 1516 } else { 1517 char b[BDEVNAME_SIZE]; 1518 1519 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1520 btrfs_sb(s)->bdev_holder = fs_type; 1521 error = btrfs_fill_super(s, fs_devices, data, 1522 flags & MS_SILENT ? 1 : 0); 1523 } 1524 if (error) { 1525 deactivate_locked_super(s); 1526 goto error_sec_opts; 1527 } 1528 1529 fs_info = btrfs_sb(s); 1530 error = setup_security_options(fs_info, s, &new_sec_opts); 1531 if (error) { 1532 deactivate_locked_super(s); 1533 goto error_sec_opts; 1534 } 1535 1536 return dget(s->s_root); 1537 1538 error_close_devices: 1539 btrfs_close_devices(fs_devices); 1540 error_fs_info: 1541 free_fs_info(fs_info); 1542 error_sec_opts: 1543 security_free_mnt_opts(&new_sec_opts); 1544 return ERR_PTR(error); 1545 } 1546 1547 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1548 int new_pool_size, int old_pool_size) 1549 { 1550 if (new_pool_size == old_pool_size) 1551 return; 1552 1553 fs_info->thread_pool_size = new_pool_size; 1554 1555 btrfs_info(fs_info, "resize thread pool %d -> %d", 1556 old_pool_size, new_pool_size); 1557 1558 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1559 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1560 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1561 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1562 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1563 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1564 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1565 new_pool_size); 1566 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1567 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1568 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1569 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1570 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1571 new_pool_size); 1572 } 1573 1574 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1575 { 1576 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1577 } 1578 1579 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1580 unsigned long old_opts, int flags) 1581 { 1582 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1583 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1584 (flags & MS_RDONLY))) { 1585 /* wait for any defraggers to finish */ 1586 wait_event(fs_info->transaction_wait, 1587 (atomic_read(&fs_info->defrag_running) == 0)); 1588 if (flags & MS_RDONLY) 1589 sync_filesystem(fs_info->sb); 1590 } 1591 } 1592 1593 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1594 unsigned long old_opts) 1595 { 1596 /* 1597 * We need cleanup all defragable inodes if the autodefragment is 1598 * close or the fs is R/O. 1599 */ 1600 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1601 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1602 (fs_info->sb->s_flags & MS_RDONLY))) { 1603 btrfs_cleanup_defrag_inodes(fs_info); 1604 } 1605 1606 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1607 } 1608 1609 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1610 { 1611 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1612 struct btrfs_root *root = fs_info->tree_root; 1613 unsigned old_flags = sb->s_flags; 1614 unsigned long old_opts = fs_info->mount_opt; 1615 unsigned long old_compress_type = fs_info->compress_type; 1616 u64 old_max_inline = fs_info->max_inline; 1617 u64 old_alloc_start = fs_info->alloc_start; 1618 int old_thread_pool_size = fs_info->thread_pool_size; 1619 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1620 int ret; 1621 1622 sync_filesystem(sb); 1623 btrfs_remount_prepare(fs_info); 1624 1625 if (data) { 1626 struct security_mnt_opts new_sec_opts; 1627 1628 security_init_mnt_opts(&new_sec_opts); 1629 ret = parse_security_options(data, &new_sec_opts); 1630 if (ret) 1631 goto restore; 1632 ret = setup_security_options(fs_info, sb, 1633 &new_sec_opts); 1634 if (ret) { 1635 security_free_mnt_opts(&new_sec_opts); 1636 goto restore; 1637 } 1638 } 1639 1640 ret = btrfs_parse_options(root, data); 1641 if (ret) { 1642 ret = -EINVAL; 1643 goto restore; 1644 } 1645 1646 btrfs_remount_begin(fs_info, old_opts, *flags); 1647 btrfs_resize_thread_pool(fs_info, 1648 fs_info->thread_pool_size, old_thread_pool_size); 1649 1650 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1651 goto out; 1652 1653 if (*flags & MS_RDONLY) { 1654 /* 1655 * this also happens on 'umount -rf' or on shutdown, when 1656 * the filesystem is busy. 1657 */ 1658 cancel_work_sync(&fs_info->async_reclaim_work); 1659 1660 /* wait for the uuid_scan task to finish */ 1661 down(&fs_info->uuid_tree_rescan_sem); 1662 /* avoid complains from lockdep et al. */ 1663 up(&fs_info->uuid_tree_rescan_sem); 1664 1665 sb->s_flags |= MS_RDONLY; 1666 1667 /* 1668 * Setting MS_RDONLY will put the cleaner thread to 1669 * sleep at the next loop if it's already active. 1670 * If it's already asleep, we'll leave unused block 1671 * groups on disk until we're mounted read-write again 1672 * unless we clean them up here. 1673 */ 1674 btrfs_delete_unused_bgs(fs_info); 1675 1676 btrfs_dev_replace_suspend_for_unmount(fs_info); 1677 btrfs_scrub_cancel(fs_info); 1678 btrfs_pause_balance(fs_info); 1679 1680 ret = btrfs_commit_super(root); 1681 if (ret) 1682 goto restore; 1683 } else { 1684 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1685 btrfs_err(fs_info, 1686 "Remounting read-write after error is not allowed"); 1687 ret = -EINVAL; 1688 goto restore; 1689 } 1690 if (fs_info->fs_devices->rw_devices == 0) { 1691 ret = -EACCES; 1692 goto restore; 1693 } 1694 1695 if (fs_info->fs_devices->missing_devices > 1696 fs_info->num_tolerated_disk_barrier_failures && 1697 !(*flags & MS_RDONLY)) { 1698 btrfs_warn(fs_info, 1699 "too many missing devices, writeable remount is not allowed"); 1700 ret = -EACCES; 1701 goto restore; 1702 } 1703 1704 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1705 ret = -EINVAL; 1706 goto restore; 1707 } 1708 1709 ret = btrfs_cleanup_fs_roots(fs_info); 1710 if (ret) 1711 goto restore; 1712 1713 /* recover relocation */ 1714 mutex_lock(&fs_info->cleaner_mutex); 1715 ret = btrfs_recover_relocation(root); 1716 mutex_unlock(&fs_info->cleaner_mutex); 1717 if (ret) 1718 goto restore; 1719 1720 ret = btrfs_resume_balance_async(fs_info); 1721 if (ret) 1722 goto restore; 1723 1724 ret = btrfs_resume_dev_replace_async(fs_info); 1725 if (ret) { 1726 btrfs_warn(fs_info, "failed to resume dev_replace"); 1727 goto restore; 1728 } 1729 1730 if (!fs_info->uuid_root) { 1731 btrfs_info(fs_info, "creating UUID tree"); 1732 ret = btrfs_create_uuid_tree(fs_info); 1733 if (ret) { 1734 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret); 1735 goto restore; 1736 } 1737 } 1738 sb->s_flags &= ~MS_RDONLY; 1739 } 1740 out: 1741 wake_up_process(fs_info->transaction_kthread); 1742 btrfs_remount_cleanup(fs_info, old_opts); 1743 return 0; 1744 1745 restore: 1746 /* We've hit an error - don't reset MS_RDONLY */ 1747 if (sb->s_flags & MS_RDONLY) 1748 old_flags |= MS_RDONLY; 1749 sb->s_flags = old_flags; 1750 fs_info->mount_opt = old_opts; 1751 fs_info->compress_type = old_compress_type; 1752 fs_info->max_inline = old_max_inline; 1753 mutex_lock(&fs_info->chunk_mutex); 1754 fs_info->alloc_start = old_alloc_start; 1755 mutex_unlock(&fs_info->chunk_mutex); 1756 btrfs_resize_thread_pool(fs_info, 1757 old_thread_pool_size, fs_info->thread_pool_size); 1758 fs_info->metadata_ratio = old_metadata_ratio; 1759 btrfs_remount_cleanup(fs_info, old_opts); 1760 return ret; 1761 } 1762 1763 /* Used to sort the devices by max_avail(descending sort) */ 1764 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1765 const void *dev_info2) 1766 { 1767 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1768 ((struct btrfs_device_info *)dev_info2)->max_avail) 1769 return -1; 1770 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1771 ((struct btrfs_device_info *)dev_info2)->max_avail) 1772 return 1; 1773 else 1774 return 0; 1775 } 1776 1777 /* 1778 * sort the devices by max_avail, in which max free extent size of each device 1779 * is stored.(Descending Sort) 1780 */ 1781 static inline void btrfs_descending_sort_devices( 1782 struct btrfs_device_info *devices, 1783 size_t nr_devices) 1784 { 1785 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1786 btrfs_cmp_device_free_bytes, NULL); 1787 } 1788 1789 /* 1790 * The helper to calc the free space on the devices that can be used to store 1791 * file data. 1792 */ 1793 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1794 { 1795 struct btrfs_fs_info *fs_info = root->fs_info; 1796 struct btrfs_device_info *devices_info; 1797 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1798 struct btrfs_device *device; 1799 u64 skip_space; 1800 u64 type; 1801 u64 avail_space; 1802 u64 used_space; 1803 u64 min_stripe_size; 1804 int min_stripes = 1, num_stripes = 1; 1805 int i = 0, nr_devices; 1806 int ret; 1807 1808 /* 1809 * We aren't under the device list lock, so this is racey-ish, but good 1810 * enough for our purposes. 1811 */ 1812 nr_devices = fs_info->fs_devices->open_devices; 1813 if (!nr_devices) { 1814 smp_mb(); 1815 nr_devices = fs_info->fs_devices->open_devices; 1816 ASSERT(nr_devices); 1817 if (!nr_devices) { 1818 *free_bytes = 0; 1819 return 0; 1820 } 1821 } 1822 1823 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1824 GFP_NOFS); 1825 if (!devices_info) 1826 return -ENOMEM; 1827 1828 /* calc min stripe number for data space alloction */ 1829 type = btrfs_get_alloc_profile(root, 1); 1830 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1831 min_stripes = 2; 1832 num_stripes = nr_devices; 1833 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1834 min_stripes = 2; 1835 num_stripes = 2; 1836 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1837 min_stripes = 4; 1838 num_stripes = 4; 1839 } 1840 1841 if (type & BTRFS_BLOCK_GROUP_DUP) 1842 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1843 else 1844 min_stripe_size = BTRFS_STRIPE_LEN; 1845 1846 if (fs_info->alloc_start) 1847 mutex_lock(&fs_devices->device_list_mutex); 1848 rcu_read_lock(); 1849 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1850 if (!device->in_fs_metadata || !device->bdev || 1851 device->is_tgtdev_for_dev_replace) 1852 continue; 1853 1854 if (i >= nr_devices) 1855 break; 1856 1857 avail_space = device->total_bytes - device->bytes_used; 1858 1859 /* align with stripe_len */ 1860 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1861 avail_space *= BTRFS_STRIPE_LEN; 1862 1863 /* 1864 * In order to avoid overwritting the superblock on the drive, 1865 * btrfs starts at an offset of at least 1MB when doing chunk 1866 * allocation. 1867 */ 1868 skip_space = 1024 * 1024; 1869 1870 /* user can set the offset in fs_info->alloc_start. */ 1871 if (fs_info->alloc_start && 1872 fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1873 device->total_bytes) { 1874 rcu_read_unlock(); 1875 skip_space = max(fs_info->alloc_start, skip_space); 1876 1877 /* 1878 * btrfs can not use the free space in 1879 * [0, skip_space - 1], we must subtract it from the 1880 * total. In order to implement it, we account the used 1881 * space in this range first. 1882 */ 1883 ret = btrfs_account_dev_extents_size(device, 0, 1884 skip_space - 1, 1885 &used_space); 1886 if (ret) { 1887 kfree(devices_info); 1888 mutex_unlock(&fs_devices->device_list_mutex); 1889 return ret; 1890 } 1891 1892 rcu_read_lock(); 1893 1894 /* calc the free space in [0, skip_space - 1] */ 1895 skip_space -= used_space; 1896 } 1897 1898 /* 1899 * we can use the free space in [0, skip_space - 1], subtract 1900 * it from the total. 1901 */ 1902 if (avail_space && avail_space >= skip_space) 1903 avail_space -= skip_space; 1904 else 1905 avail_space = 0; 1906 1907 if (avail_space < min_stripe_size) 1908 continue; 1909 1910 devices_info[i].dev = device; 1911 devices_info[i].max_avail = avail_space; 1912 1913 i++; 1914 } 1915 rcu_read_unlock(); 1916 if (fs_info->alloc_start) 1917 mutex_unlock(&fs_devices->device_list_mutex); 1918 1919 nr_devices = i; 1920 1921 btrfs_descending_sort_devices(devices_info, nr_devices); 1922 1923 i = nr_devices - 1; 1924 avail_space = 0; 1925 while (nr_devices >= min_stripes) { 1926 if (num_stripes > nr_devices) 1927 num_stripes = nr_devices; 1928 1929 if (devices_info[i].max_avail >= min_stripe_size) { 1930 int j; 1931 u64 alloc_size; 1932 1933 avail_space += devices_info[i].max_avail * num_stripes; 1934 alloc_size = devices_info[i].max_avail; 1935 for (j = i + 1 - num_stripes; j <= i; j++) 1936 devices_info[j].max_avail -= alloc_size; 1937 } 1938 i--; 1939 nr_devices--; 1940 } 1941 1942 kfree(devices_info); 1943 *free_bytes = avail_space; 1944 return 0; 1945 } 1946 1947 /* 1948 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1949 * 1950 * If there's a redundant raid level at DATA block groups, use the respective 1951 * multiplier to scale the sizes. 1952 * 1953 * Unused device space usage is based on simulating the chunk allocator 1954 * algorithm that respects the device sizes, order of allocations and the 1955 * 'alloc_start' value, this is a close approximation of the actual use but 1956 * there are other factors that may change the result (like a new metadata 1957 * chunk). 1958 * 1959 * FIXME: not accurate for mixed block groups, total and free/used are ok, 1960 * available appears slightly larger. 1961 */ 1962 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1963 { 1964 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1965 struct btrfs_super_block *disk_super = fs_info->super_copy; 1966 struct list_head *head = &fs_info->space_info; 1967 struct btrfs_space_info *found; 1968 u64 total_used = 0; 1969 u64 total_free_data = 0; 1970 int bits = dentry->d_sb->s_blocksize_bits; 1971 __be32 *fsid = (__be32 *)fs_info->fsid; 1972 unsigned factor = 1; 1973 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1974 int ret; 1975 1976 /* 1977 * holding chunk_muext to avoid allocating new chunks, holding 1978 * device_list_mutex to avoid the device being removed 1979 */ 1980 rcu_read_lock(); 1981 list_for_each_entry_rcu(found, head, list) { 1982 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1983 int i; 1984 1985 total_free_data += found->disk_total - found->disk_used; 1986 total_free_data -= 1987 btrfs_account_ro_block_groups_free_space(found); 1988 1989 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1990 if (!list_empty(&found->block_groups[i])) { 1991 switch (i) { 1992 case BTRFS_RAID_DUP: 1993 case BTRFS_RAID_RAID1: 1994 case BTRFS_RAID_RAID10: 1995 factor = 2; 1996 } 1997 } 1998 } 1999 } 2000 2001 total_used += found->disk_used; 2002 } 2003 2004 rcu_read_unlock(); 2005 2006 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2007 buf->f_blocks >>= bits; 2008 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2009 2010 /* Account global block reserve as used, it's in logical size already */ 2011 spin_lock(&block_rsv->lock); 2012 buf->f_bfree -= block_rsv->size >> bits; 2013 spin_unlock(&block_rsv->lock); 2014 2015 buf->f_bavail = div_u64(total_free_data, factor); 2016 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 2017 if (ret) 2018 return ret; 2019 buf->f_bavail += div_u64(total_free_data, factor); 2020 buf->f_bavail = buf->f_bavail >> bits; 2021 2022 buf->f_type = BTRFS_SUPER_MAGIC; 2023 buf->f_bsize = dentry->d_sb->s_blocksize; 2024 buf->f_namelen = BTRFS_NAME_LEN; 2025 2026 /* We treat it as constant endianness (it doesn't matter _which_) 2027 because we want the fsid to come out the same whether mounted 2028 on a big-endian or little-endian host */ 2029 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2030 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2031 /* Mask in the root object ID too, to disambiguate subvols */ 2032 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2033 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2034 2035 return 0; 2036 } 2037 2038 static void btrfs_kill_super(struct super_block *sb) 2039 { 2040 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2041 kill_anon_super(sb); 2042 free_fs_info(fs_info); 2043 } 2044 2045 static struct file_system_type btrfs_fs_type = { 2046 .owner = THIS_MODULE, 2047 .name = "btrfs", 2048 .mount = btrfs_mount, 2049 .kill_sb = btrfs_kill_super, 2050 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2051 }; 2052 MODULE_ALIAS_FS("btrfs"); 2053 2054 static int btrfs_control_open(struct inode *inode, struct file *file) 2055 { 2056 /* 2057 * The control file's private_data is used to hold the 2058 * transaction when it is started and is used to keep 2059 * track of whether a transaction is already in progress. 2060 */ 2061 file->private_data = NULL; 2062 return 0; 2063 } 2064 2065 /* 2066 * used by btrfsctl to scan devices when no FS is mounted 2067 */ 2068 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2069 unsigned long arg) 2070 { 2071 struct btrfs_ioctl_vol_args *vol; 2072 struct btrfs_fs_devices *fs_devices; 2073 int ret = -ENOTTY; 2074 2075 if (!capable(CAP_SYS_ADMIN)) 2076 return -EPERM; 2077 2078 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2079 if (IS_ERR(vol)) 2080 return PTR_ERR(vol); 2081 2082 switch (cmd) { 2083 case BTRFS_IOC_SCAN_DEV: 2084 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2085 &btrfs_fs_type, &fs_devices); 2086 break; 2087 case BTRFS_IOC_DEVICES_READY: 2088 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2089 &btrfs_fs_type, &fs_devices); 2090 if (ret) 2091 break; 2092 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2093 break; 2094 } 2095 2096 kfree(vol); 2097 return ret; 2098 } 2099 2100 static int btrfs_freeze(struct super_block *sb) 2101 { 2102 struct btrfs_trans_handle *trans; 2103 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 2104 2105 trans = btrfs_attach_transaction_barrier(root); 2106 if (IS_ERR(trans)) { 2107 /* no transaction, don't bother */ 2108 if (PTR_ERR(trans) == -ENOENT) 2109 return 0; 2110 return PTR_ERR(trans); 2111 } 2112 return btrfs_commit_transaction(trans, root); 2113 } 2114 2115 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2116 { 2117 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2118 struct btrfs_fs_devices *cur_devices; 2119 struct btrfs_device *dev, *first_dev = NULL; 2120 struct list_head *head; 2121 struct rcu_string *name; 2122 2123 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2124 cur_devices = fs_info->fs_devices; 2125 while (cur_devices) { 2126 head = &cur_devices->devices; 2127 list_for_each_entry(dev, head, dev_list) { 2128 if (dev->missing) 2129 continue; 2130 if (!dev->name) 2131 continue; 2132 if (!first_dev || dev->devid < first_dev->devid) 2133 first_dev = dev; 2134 } 2135 cur_devices = cur_devices->seed; 2136 } 2137 2138 if (first_dev) { 2139 rcu_read_lock(); 2140 name = rcu_dereference(first_dev->name); 2141 seq_escape(m, name->str, " \t\n\\"); 2142 rcu_read_unlock(); 2143 } else { 2144 WARN_ON(1); 2145 } 2146 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2147 return 0; 2148 } 2149 2150 static const struct super_operations btrfs_super_ops = { 2151 .drop_inode = btrfs_drop_inode, 2152 .evict_inode = btrfs_evict_inode, 2153 .put_super = btrfs_put_super, 2154 .sync_fs = btrfs_sync_fs, 2155 .show_options = btrfs_show_options, 2156 .show_devname = btrfs_show_devname, 2157 .write_inode = btrfs_write_inode, 2158 .alloc_inode = btrfs_alloc_inode, 2159 .destroy_inode = btrfs_destroy_inode, 2160 .statfs = btrfs_statfs, 2161 .remount_fs = btrfs_remount, 2162 .freeze_fs = btrfs_freeze, 2163 }; 2164 2165 static const struct file_operations btrfs_ctl_fops = { 2166 .open = btrfs_control_open, 2167 .unlocked_ioctl = btrfs_control_ioctl, 2168 .compat_ioctl = btrfs_control_ioctl, 2169 .owner = THIS_MODULE, 2170 .llseek = noop_llseek, 2171 }; 2172 2173 static struct miscdevice btrfs_misc = { 2174 .minor = BTRFS_MINOR, 2175 .name = "btrfs-control", 2176 .fops = &btrfs_ctl_fops 2177 }; 2178 2179 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2180 MODULE_ALIAS("devname:btrfs-control"); 2181 2182 static int btrfs_interface_init(void) 2183 { 2184 return misc_register(&btrfs_misc); 2185 } 2186 2187 static void btrfs_interface_exit(void) 2188 { 2189 misc_deregister(&btrfs_misc); 2190 } 2191 2192 static void btrfs_print_info(void) 2193 { 2194 printk(KERN_INFO "Btrfs loaded" 2195 #ifdef CONFIG_BTRFS_DEBUG 2196 ", debug=on" 2197 #endif 2198 #ifdef CONFIG_BTRFS_ASSERT 2199 ", assert=on" 2200 #endif 2201 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2202 ", integrity-checker=on" 2203 #endif 2204 "\n"); 2205 } 2206 2207 static int btrfs_run_sanity_tests(void) 2208 { 2209 int ret; 2210 2211 ret = btrfs_init_test_fs(); 2212 if (ret) 2213 return ret; 2214 2215 ret = btrfs_test_free_space_cache(); 2216 if (ret) 2217 goto out; 2218 ret = btrfs_test_extent_buffer_operations(); 2219 if (ret) 2220 goto out; 2221 ret = btrfs_test_extent_io(); 2222 if (ret) 2223 goto out; 2224 ret = btrfs_test_inodes(); 2225 if (ret) 2226 goto out; 2227 ret = btrfs_test_qgroups(); 2228 out: 2229 btrfs_destroy_test_fs(); 2230 return ret; 2231 } 2232 2233 static int __init init_btrfs_fs(void) 2234 { 2235 int err; 2236 2237 err = btrfs_hash_init(); 2238 if (err) 2239 return err; 2240 2241 btrfs_props_init(); 2242 2243 err = btrfs_init_sysfs(); 2244 if (err) 2245 goto free_hash; 2246 2247 btrfs_init_compress(); 2248 2249 err = btrfs_init_cachep(); 2250 if (err) 2251 goto free_compress; 2252 2253 err = extent_io_init(); 2254 if (err) 2255 goto free_cachep; 2256 2257 err = extent_map_init(); 2258 if (err) 2259 goto free_extent_io; 2260 2261 err = ordered_data_init(); 2262 if (err) 2263 goto free_extent_map; 2264 2265 err = btrfs_delayed_inode_init(); 2266 if (err) 2267 goto free_ordered_data; 2268 2269 err = btrfs_auto_defrag_init(); 2270 if (err) 2271 goto free_delayed_inode; 2272 2273 err = btrfs_delayed_ref_init(); 2274 if (err) 2275 goto free_auto_defrag; 2276 2277 err = btrfs_prelim_ref_init(); 2278 if (err) 2279 goto free_delayed_ref; 2280 2281 err = btrfs_end_io_wq_init(); 2282 if (err) 2283 goto free_prelim_ref; 2284 2285 err = btrfs_interface_init(); 2286 if (err) 2287 goto free_end_io_wq; 2288 2289 btrfs_init_lockdep(); 2290 2291 btrfs_print_info(); 2292 2293 err = btrfs_run_sanity_tests(); 2294 if (err) 2295 goto unregister_ioctl; 2296 2297 err = register_filesystem(&btrfs_fs_type); 2298 if (err) 2299 goto unregister_ioctl; 2300 2301 return 0; 2302 2303 unregister_ioctl: 2304 btrfs_interface_exit(); 2305 free_end_io_wq: 2306 btrfs_end_io_wq_exit(); 2307 free_prelim_ref: 2308 btrfs_prelim_ref_exit(); 2309 free_delayed_ref: 2310 btrfs_delayed_ref_exit(); 2311 free_auto_defrag: 2312 btrfs_auto_defrag_exit(); 2313 free_delayed_inode: 2314 btrfs_delayed_inode_exit(); 2315 free_ordered_data: 2316 ordered_data_exit(); 2317 free_extent_map: 2318 extent_map_exit(); 2319 free_extent_io: 2320 extent_io_exit(); 2321 free_cachep: 2322 btrfs_destroy_cachep(); 2323 free_compress: 2324 btrfs_exit_compress(); 2325 btrfs_exit_sysfs(); 2326 free_hash: 2327 btrfs_hash_exit(); 2328 return err; 2329 } 2330 2331 static void __exit exit_btrfs_fs(void) 2332 { 2333 btrfs_destroy_cachep(); 2334 btrfs_delayed_ref_exit(); 2335 btrfs_auto_defrag_exit(); 2336 btrfs_delayed_inode_exit(); 2337 btrfs_prelim_ref_exit(); 2338 ordered_data_exit(); 2339 extent_map_exit(); 2340 extent_io_exit(); 2341 btrfs_interface_exit(); 2342 btrfs_end_io_wq_exit(); 2343 unregister_filesystem(&btrfs_fs_type); 2344 btrfs_exit_sysfs(); 2345 btrfs_cleanup_fs_uuids(); 2346 btrfs_exit_compress(); 2347 btrfs_hash_exit(); 2348 } 2349 2350 late_initcall(init_btrfs_fs); 2351 module_exit(exit_btrfs_fs) 2352 2353 MODULE_LICENSE("GPL"); 2354