1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "compat.h" 46 #include "delayed-inode.h" 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "xattr.h" 53 #include "volumes.h" 54 #include "version.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/btrfs.h> 62 63 static const struct super_operations btrfs_super_ops; 64 static struct file_system_type btrfs_fs_type; 65 66 static const char *btrfs_decode_error(int errno, char nbuf[16]) 67 { 68 char *errstr = NULL; 69 70 switch (errno) { 71 case -EIO: 72 errstr = "IO failure"; 73 break; 74 case -ENOMEM: 75 errstr = "Out of memory"; 76 break; 77 case -EROFS: 78 errstr = "Readonly filesystem"; 79 break; 80 case -EEXIST: 81 errstr = "Object already exists"; 82 break; 83 default: 84 if (nbuf) { 85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 86 errstr = nbuf; 87 } 88 break; 89 } 90 91 return errstr; 92 } 93 94 static void __save_error_info(struct btrfs_fs_info *fs_info) 95 { 96 /* 97 * today we only save the error info into ram. Long term we'll 98 * also send it down to the disk 99 */ 100 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 101 } 102 103 static void save_error_info(struct btrfs_fs_info *fs_info) 104 { 105 __save_error_info(fs_info); 106 } 107 108 /* btrfs handle error by forcing the filesystem readonly */ 109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 110 { 111 struct super_block *sb = fs_info->sb; 112 113 if (sb->s_flags & MS_RDONLY) 114 return; 115 116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 117 sb->s_flags |= MS_RDONLY; 118 printk(KERN_INFO "btrfs is forced readonly\n"); 119 /* 120 * Note that a running device replace operation is not 121 * canceled here although there is no way to update 122 * the progress. It would add the risk of a deadlock, 123 * therefore the canceling is ommited. The only penalty 124 * is that some I/O remains active until the procedure 125 * completes. The next time when the filesystem is 126 * mounted writeable again, the device replace 127 * operation continues. 128 */ 129 // WARN_ON(1); 130 } 131 } 132 133 #ifdef CONFIG_PRINTK 134 /* 135 * __btrfs_std_error decodes expected errors from the caller and 136 * invokes the approciate error response. 137 */ 138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 139 unsigned int line, int errno, const char *fmt, ...) 140 { 141 struct super_block *sb = fs_info->sb; 142 char nbuf[16]; 143 const char *errstr; 144 145 /* 146 * Special case: if the error is EROFS, and we're already 147 * under MS_RDONLY, then it is safe here. 148 */ 149 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 150 return; 151 152 errstr = btrfs_decode_error(errno, nbuf); 153 if (fmt) { 154 struct va_format vaf; 155 va_list args; 156 157 va_start(args, fmt); 158 vaf.fmt = fmt; 159 vaf.va = &args; 160 161 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n", 162 sb->s_id, function, line, errstr, &vaf); 163 va_end(args); 164 } else { 165 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n", 166 sb->s_id, function, line, errstr); 167 } 168 169 /* Don't go through full error handling during mount */ 170 if (sb->s_flags & MS_BORN) { 171 save_error_info(fs_info); 172 btrfs_handle_error(fs_info); 173 } 174 } 175 176 static const char * const logtypes[] = { 177 "emergency", 178 "alert", 179 "critical", 180 "error", 181 "warning", 182 "notice", 183 "info", 184 "debug", 185 }; 186 187 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...) 188 { 189 struct super_block *sb = fs_info->sb; 190 char lvl[4]; 191 struct va_format vaf; 192 va_list args; 193 const char *type = logtypes[4]; 194 int kern_level; 195 196 va_start(args, fmt); 197 198 kern_level = printk_get_level(fmt); 199 if (kern_level) { 200 size_t size = printk_skip_level(fmt) - fmt; 201 memcpy(lvl, fmt, size); 202 lvl[size] = '\0'; 203 fmt += size; 204 type = logtypes[kern_level - '0']; 205 } else 206 *lvl = '\0'; 207 208 vaf.fmt = fmt; 209 vaf.va = &args; 210 211 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf); 212 213 va_end(args); 214 } 215 216 #else 217 218 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 219 unsigned int line, int errno, const char *fmt, ...) 220 { 221 struct super_block *sb = fs_info->sb; 222 223 /* 224 * Special case: if the error is EROFS, and we're already 225 * under MS_RDONLY, then it is safe here. 226 */ 227 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 228 return; 229 230 /* Don't go through full error handling during mount */ 231 if (sb->s_flags & MS_BORN) { 232 save_error_info(fs_info); 233 btrfs_handle_error(fs_info); 234 } 235 } 236 #endif 237 238 /* 239 * We only mark the transaction aborted and then set the file system read-only. 240 * This will prevent new transactions from starting or trying to join this 241 * one. 242 * 243 * This means that error recovery at the call site is limited to freeing 244 * any local memory allocations and passing the error code up without 245 * further cleanup. The transaction should complete as it normally would 246 * in the call path but will return -EIO. 247 * 248 * We'll complete the cleanup in btrfs_end_transaction and 249 * btrfs_commit_transaction. 250 */ 251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 252 struct btrfs_root *root, const char *function, 253 unsigned int line, int errno) 254 { 255 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n"); 256 trans->aborted = errno; 257 /* Nothing used. The other threads that have joined this 258 * transaction may be able to continue. */ 259 if (!trans->blocks_used) { 260 char nbuf[16]; 261 const char *errstr; 262 263 errstr = btrfs_decode_error(errno, nbuf); 264 btrfs_printk(root->fs_info, 265 "%s:%d: Aborting unused transaction(%s).\n", 266 function, line, errstr); 267 return; 268 } 269 ACCESS_ONCE(trans->transaction->aborted) = errno; 270 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 271 } 272 /* 273 * __btrfs_panic decodes unexpected, fatal errors from the caller, 274 * issues an alert, and either panics or BUGs, depending on mount options. 275 */ 276 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 277 unsigned int line, int errno, const char *fmt, ...) 278 { 279 char nbuf[16]; 280 char *s_id = "<unknown>"; 281 const char *errstr; 282 struct va_format vaf = { .fmt = fmt }; 283 va_list args; 284 285 if (fs_info) 286 s_id = fs_info->sb->s_id; 287 288 va_start(args, fmt); 289 vaf.va = &args; 290 291 errstr = btrfs_decode_error(errno, nbuf); 292 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 293 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n", 294 s_id, function, line, &vaf, errstr); 295 296 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n", 297 s_id, function, line, &vaf, errstr); 298 va_end(args); 299 /* Caller calls BUG() */ 300 } 301 302 static void btrfs_put_super(struct super_block *sb) 303 { 304 (void)close_ctree(btrfs_sb(sb)->tree_root); 305 /* FIXME: need to fix VFS to return error? */ 306 /* AV: return it _where_? ->put_super() can be triggered by any number 307 * of async events, up to and including delivery of SIGKILL to the 308 * last process that kept it busy. Or segfault in the aforementioned 309 * process... Whom would you report that to? 310 */ 311 } 312 313 enum { 314 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 315 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 316 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 317 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 318 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 319 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 320 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 321 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 322 Opt_check_integrity, Opt_check_integrity_including_extent_data, 323 Opt_check_integrity_print_mask, Opt_fatal_errors, 324 Opt_err, 325 }; 326 327 static match_table_t tokens = { 328 {Opt_degraded, "degraded"}, 329 {Opt_subvol, "subvol=%s"}, 330 {Opt_subvolid, "subvolid=%d"}, 331 {Opt_device, "device=%s"}, 332 {Opt_nodatasum, "nodatasum"}, 333 {Opt_nodatacow, "nodatacow"}, 334 {Opt_nobarrier, "nobarrier"}, 335 {Opt_max_inline, "max_inline=%s"}, 336 {Opt_alloc_start, "alloc_start=%s"}, 337 {Opt_thread_pool, "thread_pool=%d"}, 338 {Opt_compress, "compress"}, 339 {Opt_compress_type, "compress=%s"}, 340 {Opt_compress_force, "compress-force"}, 341 {Opt_compress_force_type, "compress-force=%s"}, 342 {Opt_ssd, "ssd"}, 343 {Opt_ssd_spread, "ssd_spread"}, 344 {Opt_nossd, "nossd"}, 345 {Opt_noacl, "noacl"}, 346 {Opt_notreelog, "notreelog"}, 347 {Opt_flushoncommit, "flushoncommit"}, 348 {Opt_ratio, "metadata_ratio=%d"}, 349 {Opt_discard, "discard"}, 350 {Opt_space_cache, "space_cache"}, 351 {Opt_clear_cache, "clear_cache"}, 352 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 353 {Opt_enospc_debug, "enospc_debug"}, 354 {Opt_subvolrootid, "subvolrootid=%d"}, 355 {Opt_defrag, "autodefrag"}, 356 {Opt_inode_cache, "inode_cache"}, 357 {Opt_no_space_cache, "nospace_cache"}, 358 {Opt_recovery, "recovery"}, 359 {Opt_skip_balance, "skip_balance"}, 360 {Opt_check_integrity, "check_int"}, 361 {Opt_check_integrity_including_extent_data, "check_int_data"}, 362 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 363 {Opt_fatal_errors, "fatal_errors=%s"}, 364 {Opt_err, NULL}, 365 }; 366 367 /* 368 * Regular mount options parser. Everything that is needed only when 369 * reading in a new superblock is parsed here. 370 * XXX JDM: This needs to be cleaned up for remount. 371 */ 372 int btrfs_parse_options(struct btrfs_root *root, char *options) 373 { 374 struct btrfs_fs_info *info = root->fs_info; 375 substring_t args[MAX_OPT_ARGS]; 376 char *p, *num, *orig = NULL; 377 u64 cache_gen; 378 int intarg; 379 int ret = 0; 380 char *compress_type; 381 bool compress_force = false; 382 383 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 384 if (cache_gen) 385 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 386 387 if (!options) 388 goto out; 389 390 /* 391 * strsep changes the string, duplicate it because parse_options 392 * gets called twice 393 */ 394 options = kstrdup(options, GFP_NOFS); 395 if (!options) 396 return -ENOMEM; 397 398 orig = options; 399 400 while ((p = strsep(&options, ",")) != NULL) { 401 int token; 402 if (!*p) 403 continue; 404 405 token = match_token(p, tokens, args); 406 switch (token) { 407 case Opt_degraded: 408 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 409 btrfs_set_opt(info->mount_opt, DEGRADED); 410 break; 411 case Opt_subvol: 412 case Opt_subvolid: 413 case Opt_subvolrootid: 414 case Opt_device: 415 /* 416 * These are parsed by btrfs_parse_early_options 417 * and can be happily ignored here. 418 */ 419 break; 420 case Opt_nodatasum: 421 printk(KERN_INFO "btrfs: setting nodatasum\n"); 422 btrfs_set_opt(info->mount_opt, NODATASUM); 423 break; 424 case Opt_nodatacow: 425 if (!btrfs_test_opt(root, COMPRESS) || 426 !btrfs_test_opt(root, FORCE_COMPRESS)) { 427 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n"); 428 } else { 429 printk(KERN_INFO "btrfs: setting nodatacow\n"); 430 } 431 info->compress_type = BTRFS_COMPRESS_NONE; 432 btrfs_clear_opt(info->mount_opt, COMPRESS); 433 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 434 btrfs_set_opt(info->mount_opt, NODATACOW); 435 btrfs_set_opt(info->mount_opt, NODATASUM); 436 break; 437 case Opt_compress_force: 438 case Opt_compress_force_type: 439 compress_force = true; 440 /* Fallthrough */ 441 case Opt_compress: 442 case Opt_compress_type: 443 if (token == Opt_compress || 444 token == Opt_compress_force || 445 strcmp(args[0].from, "zlib") == 0) { 446 compress_type = "zlib"; 447 info->compress_type = BTRFS_COMPRESS_ZLIB; 448 btrfs_set_opt(info->mount_opt, COMPRESS); 449 btrfs_clear_opt(info->mount_opt, NODATACOW); 450 btrfs_clear_opt(info->mount_opt, NODATASUM); 451 } else if (strcmp(args[0].from, "lzo") == 0) { 452 compress_type = "lzo"; 453 info->compress_type = BTRFS_COMPRESS_LZO; 454 btrfs_set_opt(info->mount_opt, COMPRESS); 455 btrfs_clear_opt(info->mount_opt, NODATACOW); 456 btrfs_clear_opt(info->mount_opt, NODATASUM); 457 btrfs_set_fs_incompat(info, COMPRESS_LZO); 458 } else if (strncmp(args[0].from, "no", 2) == 0) { 459 compress_type = "no"; 460 info->compress_type = BTRFS_COMPRESS_NONE; 461 btrfs_clear_opt(info->mount_opt, COMPRESS); 462 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 463 compress_force = false; 464 } else { 465 ret = -EINVAL; 466 goto out; 467 } 468 469 if (compress_force) { 470 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 471 pr_info("btrfs: force %s compression\n", 472 compress_type); 473 } else 474 pr_info("btrfs: use %s compression\n", 475 compress_type); 476 break; 477 case Opt_ssd: 478 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 479 btrfs_set_opt(info->mount_opt, SSD); 480 break; 481 case Opt_ssd_spread: 482 printk(KERN_INFO "btrfs: use spread ssd " 483 "allocation scheme\n"); 484 btrfs_set_opt(info->mount_opt, SSD); 485 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 486 break; 487 case Opt_nossd: 488 printk(KERN_INFO "btrfs: not using ssd allocation " 489 "scheme\n"); 490 btrfs_set_opt(info->mount_opt, NOSSD); 491 btrfs_clear_opt(info->mount_opt, SSD); 492 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 493 break; 494 case Opt_nobarrier: 495 printk(KERN_INFO "btrfs: turning off barriers\n"); 496 btrfs_set_opt(info->mount_opt, NOBARRIER); 497 break; 498 case Opt_thread_pool: 499 intarg = 0; 500 match_int(&args[0], &intarg); 501 if (intarg) 502 info->thread_pool_size = intarg; 503 break; 504 case Opt_max_inline: 505 num = match_strdup(&args[0]); 506 if (num) { 507 info->max_inline = memparse(num, NULL); 508 kfree(num); 509 510 if (info->max_inline) { 511 info->max_inline = max_t(u64, 512 info->max_inline, 513 root->sectorsize); 514 } 515 printk(KERN_INFO "btrfs: max_inline at %llu\n", 516 (unsigned long long)info->max_inline); 517 } 518 break; 519 case Opt_alloc_start: 520 num = match_strdup(&args[0]); 521 if (num) { 522 mutex_lock(&info->chunk_mutex); 523 info->alloc_start = memparse(num, NULL); 524 mutex_unlock(&info->chunk_mutex); 525 kfree(num); 526 printk(KERN_INFO 527 "btrfs: allocations start at %llu\n", 528 (unsigned long long)info->alloc_start); 529 } 530 break; 531 case Opt_noacl: 532 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 533 break; 534 case Opt_notreelog: 535 printk(KERN_INFO "btrfs: disabling tree log\n"); 536 btrfs_set_opt(info->mount_opt, NOTREELOG); 537 break; 538 case Opt_flushoncommit: 539 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 540 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 541 break; 542 case Opt_ratio: 543 intarg = 0; 544 match_int(&args[0], &intarg); 545 if (intarg) { 546 info->metadata_ratio = intarg; 547 printk(KERN_INFO "btrfs: metadata ratio %d\n", 548 info->metadata_ratio); 549 } 550 break; 551 case Opt_discard: 552 btrfs_set_opt(info->mount_opt, DISCARD); 553 break; 554 case Opt_space_cache: 555 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 556 break; 557 case Opt_no_space_cache: 558 printk(KERN_INFO "btrfs: disabling disk space caching\n"); 559 btrfs_clear_opt(info->mount_opt, SPACE_CACHE); 560 break; 561 case Opt_inode_cache: 562 printk(KERN_INFO "btrfs: enabling inode map caching\n"); 563 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); 564 break; 565 case Opt_clear_cache: 566 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 567 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 568 break; 569 case Opt_user_subvol_rm_allowed: 570 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 571 break; 572 case Opt_enospc_debug: 573 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 574 break; 575 case Opt_defrag: 576 printk(KERN_INFO "btrfs: enabling auto defrag\n"); 577 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); 578 break; 579 case Opt_recovery: 580 printk(KERN_INFO "btrfs: enabling auto recovery\n"); 581 btrfs_set_opt(info->mount_opt, RECOVERY); 582 break; 583 case Opt_skip_balance: 584 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 585 break; 586 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 587 case Opt_check_integrity_including_extent_data: 588 printk(KERN_INFO "btrfs: enabling check integrity" 589 " including extent data\n"); 590 btrfs_set_opt(info->mount_opt, 591 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 592 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 593 break; 594 case Opt_check_integrity: 595 printk(KERN_INFO "btrfs: enabling check integrity\n"); 596 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 597 break; 598 case Opt_check_integrity_print_mask: 599 intarg = 0; 600 match_int(&args[0], &intarg); 601 if (intarg) { 602 info->check_integrity_print_mask = intarg; 603 printk(KERN_INFO "btrfs:" 604 " check_integrity_print_mask 0x%x\n", 605 info->check_integrity_print_mask); 606 } 607 break; 608 #else 609 case Opt_check_integrity_including_extent_data: 610 case Opt_check_integrity: 611 case Opt_check_integrity_print_mask: 612 printk(KERN_ERR "btrfs: support for check_integrity*" 613 " not compiled in!\n"); 614 ret = -EINVAL; 615 goto out; 616 #endif 617 case Opt_fatal_errors: 618 if (strcmp(args[0].from, "panic") == 0) 619 btrfs_set_opt(info->mount_opt, 620 PANIC_ON_FATAL_ERROR); 621 else if (strcmp(args[0].from, "bug") == 0) 622 btrfs_clear_opt(info->mount_opt, 623 PANIC_ON_FATAL_ERROR); 624 else { 625 ret = -EINVAL; 626 goto out; 627 } 628 break; 629 case Opt_err: 630 printk(KERN_INFO "btrfs: unrecognized mount option " 631 "'%s'\n", p); 632 ret = -EINVAL; 633 goto out; 634 default: 635 break; 636 } 637 } 638 out: 639 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 640 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 641 kfree(orig); 642 return ret; 643 } 644 645 /* 646 * Parse mount options that are required early in the mount process. 647 * 648 * All other options will be parsed on much later in the mount process and 649 * only when we need to allocate a new super block. 650 */ 651 static int btrfs_parse_early_options(const char *options, fmode_t flags, 652 void *holder, char **subvol_name, u64 *subvol_objectid, 653 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices) 654 { 655 substring_t args[MAX_OPT_ARGS]; 656 char *device_name, *opts, *orig, *p; 657 int error = 0; 658 int intarg; 659 660 if (!options) 661 return 0; 662 663 /* 664 * strsep changes the string, duplicate it because parse_options 665 * gets called twice 666 */ 667 opts = kstrdup(options, GFP_KERNEL); 668 if (!opts) 669 return -ENOMEM; 670 orig = opts; 671 672 while ((p = strsep(&opts, ",")) != NULL) { 673 int token; 674 if (!*p) 675 continue; 676 677 token = match_token(p, tokens, args); 678 switch (token) { 679 case Opt_subvol: 680 kfree(*subvol_name); 681 *subvol_name = match_strdup(&args[0]); 682 break; 683 case Opt_subvolid: 684 intarg = 0; 685 error = match_int(&args[0], &intarg); 686 if (!error) { 687 /* we want the original fs_tree */ 688 if (!intarg) 689 *subvol_objectid = 690 BTRFS_FS_TREE_OBJECTID; 691 else 692 *subvol_objectid = intarg; 693 } 694 break; 695 case Opt_subvolrootid: 696 intarg = 0; 697 error = match_int(&args[0], &intarg); 698 if (!error) { 699 /* we want the original fs_tree */ 700 if (!intarg) 701 *subvol_rootid = 702 BTRFS_FS_TREE_OBJECTID; 703 else 704 *subvol_rootid = intarg; 705 } 706 break; 707 case Opt_device: 708 device_name = match_strdup(&args[0]); 709 if (!device_name) { 710 error = -ENOMEM; 711 goto out; 712 } 713 error = btrfs_scan_one_device(device_name, 714 flags, holder, fs_devices); 715 kfree(device_name); 716 if (error) 717 goto out; 718 break; 719 default: 720 break; 721 } 722 } 723 724 out: 725 kfree(orig); 726 return error; 727 } 728 729 static struct dentry *get_default_root(struct super_block *sb, 730 u64 subvol_objectid) 731 { 732 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 733 struct btrfs_root *root = fs_info->tree_root; 734 struct btrfs_root *new_root; 735 struct btrfs_dir_item *di; 736 struct btrfs_path *path; 737 struct btrfs_key location; 738 struct inode *inode; 739 u64 dir_id; 740 int new = 0; 741 742 /* 743 * We have a specific subvol we want to mount, just setup location and 744 * go look up the root. 745 */ 746 if (subvol_objectid) { 747 location.objectid = subvol_objectid; 748 location.type = BTRFS_ROOT_ITEM_KEY; 749 location.offset = (u64)-1; 750 goto find_root; 751 } 752 753 path = btrfs_alloc_path(); 754 if (!path) 755 return ERR_PTR(-ENOMEM); 756 path->leave_spinning = 1; 757 758 /* 759 * Find the "default" dir item which points to the root item that we 760 * will mount by default if we haven't been given a specific subvolume 761 * to mount. 762 */ 763 dir_id = btrfs_super_root_dir(fs_info->super_copy); 764 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 765 if (IS_ERR(di)) { 766 btrfs_free_path(path); 767 return ERR_CAST(di); 768 } 769 if (!di) { 770 /* 771 * Ok the default dir item isn't there. This is weird since 772 * it's always been there, but don't freak out, just try and 773 * mount to root most subvolume. 774 */ 775 btrfs_free_path(path); 776 dir_id = BTRFS_FIRST_FREE_OBJECTID; 777 new_root = fs_info->fs_root; 778 goto setup_root; 779 } 780 781 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 782 btrfs_free_path(path); 783 784 find_root: 785 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 786 if (IS_ERR(new_root)) 787 return ERR_CAST(new_root); 788 789 if (btrfs_root_refs(&new_root->root_item) == 0) 790 return ERR_PTR(-ENOENT); 791 792 dir_id = btrfs_root_dirid(&new_root->root_item); 793 setup_root: 794 location.objectid = dir_id; 795 location.type = BTRFS_INODE_ITEM_KEY; 796 location.offset = 0; 797 798 inode = btrfs_iget(sb, &location, new_root, &new); 799 if (IS_ERR(inode)) 800 return ERR_CAST(inode); 801 802 /* 803 * If we're just mounting the root most subvol put the inode and return 804 * a reference to the dentry. We will have already gotten a reference 805 * to the inode in btrfs_fill_super so we're good to go. 806 */ 807 if (!new && sb->s_root->d_inode == inode) { 808 iput(inode); 809 return dget(sb->s_root); 810 } 811 812 return d_obtain_alias(inode); 813 } 814 815 static int btrfs_fill_super(struct super_block *sb, 816 struct btrfs_fs_devices *fs_devices, 817 void *data, int silent) 818 { 819 struct inode *inode; 820 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 821 struct btrfs_key key; 822 int err; 823 824 sb->s_maxbytes = MAX_LFS_FILESIZE; 825 sb->s_magic = BTRFS_SUPER_MAGIC; 826 sb->s_op = &btrfs_super_ops; 827 sb->s_d_op = &btrfs_dentry_operations; 828 sb->s_export_op = &btrfs_export_ops; 829 sb->s_xattr = btrfs_xattr_handlers; 830 sb->s_time_gran = 1; 831 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 832 sb->s_flags |= MS_POSIXACL; 833 #endif 834 sb->s_flags |= MS_I_VERSION; 835 err = open_ctree(sb, fs_devices, (char *)data); 836 if (err) { 837 printk("btrfs: open_ctree failed\n"); 838 return err; 839 } 840 841 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 842 key.type = BTRFS_INODE_ITEM_KEY; 843 key.offset = 0; 844 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 845 if (IS_ERR(inode)) { 846 err = PTR_ERR(inode); 847 goto fail_close; 848 } 849 850 sb->s_root = d_make_root(inode); 851 if (!sb->s_root) { 852 err = -ENOMEM; 853 goto fail_close; 854 } 855 856 save_mount_options(sb, data); 857 cleancache_init_fs(sb); 858 sb->s_flags |= MS_ACTIVE; 859 return 0; 860 861 fail_close: 862 close_ctree(fs_info->tree_root); 863 return err; 864 } 865 866 int btrfs_sync_fs(struct super_block *sb, int wait) 867 { 868 struct btrfs_trans_handle *trans; 869 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 870 struct btrfs_root *root = fs_info->tree_root; 871 872 trace_btrfs_sync_fs(wait); 873 874 if (!wait) { 875 filemap_flush(fs_info->btree_inode->i_mapping); 876 return 0; 877 } 878 879 btrfs_wait_ordered_extents(root, 0); 880 881 trans = btrfs_attach_transaction_barrier(root); 882 if (IS_ERR(trans)) { 883 /* no transaction, don't bother */ 884 if (PTR_ERR(trans) == -ENOENT) 885 return 0; 886 return PTR_ERR(trans); 887 } 888 return btrfs_commit_transaction(trans, root); 889 } 890 891 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 892 { 893 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 894 struct btrfs_root *root = info->tree_root; 895 char *compress_type; 896 897 if (btrfs_test_opt(root, DEGRADED)) 898 seq_puts(seq, ",degraded"); 899 if (btrfs_test_opt(root, NODATASUM)) 900 seq_puts(seq, ",nodatasum"); 901 if (btrfs_test_opt(root, NODATACOW)) 902 seq_puts(seq, ",nodatacow"); 903 if (btrfs_test_opt(root, NOBARRIER)) 904 seq_puts(seq, ",nobarrier"); 905 if (info->max_inline != 8192 * 1024) 906 seq_printf(seq, ",max_inline=%llu", 907 (unsigned long long)info->max_inline); 908 if (info->alloc_start != 0) 909 seq_printf(seq, ",alloc_start=%llu", 910 (unsigned long long)info->alloc_start); 911 if (info->thread_pool_size != min_t(unsigned long, 912 num_online_cpus() + 2, 8)) 913 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 914 if (btrfs_test_opt(root, COMPRESS)) { 915 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 916 compress_type = "zlib"; 917 else 918 compress_type = "lzo"; 919 if (btrfs_test_opt(root, FORCE_COMPRESS)) 920 seq_printf(seq, ",compress-force=%s", compress_type); 921 else 922 seq_printf(seq, ",compress=%s", compress_type); 923 } 924 if (btrfs_test_opt(root, NOSSD)) 925 seq_puts(seq, ",nossd"); 926 if (btrfs_test_opt(root, SSD_SPREAD)) 927 seq_puts(seq, ",ssd_spread"); 928 else if (btrfs_test_opt(root, SSD)) 929 seq_puts(seq, ",ssd"); 930 if (btrfs_test_opt(root, NOTREELOG)) 931 seq_puts(seq, ",notreelog"); 932 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 933 seq_puts(seq, ",flushoncommit"); 934 if (btrfs_test_opt(root, DISCARD)) 935 seq_puts(seq, ",discard"); 936 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 937 seq_puts(seq, ",noacl"); 938 if (btrfs_test_opt(root, SPACE_CACHE)) 939 seq_puts(seq, ",space_cache"); 940 else 941 seq_puts(seq, ",nospace_cache"); 942 if (btrfs_test_opt(root, CLEAR_CACHE)) 943 seq_puts(seq, ",clear_cache"); 944 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 945 seq_puts(seq, ",user_subvol_rm_allowed"); 946 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 947 seq_puts(seq, ",enospc_debug"); 948 if (btrfs_test_opt(root, AUTO_DEFRAG)) 949 seq_puts(seq, ",autodefrag"); 950 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 951 seq_puts(seq, ",inode_cache"); 952 if (btrfs_test_opt(root, SKIP_BALANCE)) 953 seq_puts(seq, ",skip_balance"); 954 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 955 seq_puts(seq, ",fatal_errors=panic"); 956 return 0; 957 } 958 959 static int btrfs_test_super(struct super_block *s, void *data) 960 { 961 struct btrfs_fs_info *p = data; 962 struct btrfs_fs_info *fs_info = btrfs_sb(s); 963 964 return fs_info->fs_devices == p->fs_devices; 965 } 966 967 static int btrfs_set_super(struct super_block *s, void *data) 968 { 969 int err = set_anon_super(s, data); 970 if (!err) 971 s->s_fs_info = data; 972 return err; 973 } 974 975 /* 976 * subvolumes are identified by ino 256 977 */ 978 static inline int is_subvolume_inode(struct inode *inode) 979 { 980 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 981 return 1; 982 return 0; 983 } 984 985 /* 986 * This will strip out the subvol=%s argument for an argument string and add 987 * subvolid=0 to make sure we get the actual tree root for path walking to the 988 * subvol we want. 989 */ 990 static char *setup_root_args(char *args) 991 { 992 unsigned len = strlen(args) + 2 + 1; 993 char *src, *dst, *buf; 994 995 /* 996 * We need the same args as before, but with this substitution: 997 * s!subvol=[^,]+!subvolid=0! 998 * 999 * Since the replacement string is up to 2 bytes longer than the 1000 * original, allocate strlen(args) + 2 + 1 bytes. 1001 */ 1002 1003 src = strstr(args, "subvol="); 1004 /* This shouldn't happen, but just in case.. */ 1005 if (!src) 1006 return NULL; 1007 1008 buf = dst = kmalloc(len, GFP_NOFS); 1009 if (!buf) 1010 return NULL; 1011 1012 /* 1013 * If the subvol= arg is not at the start of the string, 1014 * copy whatever precedes it into buf. 1015 */ 1016 if (src != args) { 1017 *src++ = '\0'; 1018 strcpy(buf, args); 1019 dst += strlen(args); 1020 } 1021 1022 strcpy(dst, "subvolid=0"); 1023 dst += strlen("subvolid=0"); 1024 1025 /* 1026 * If there is a "," after the original subvol=... string, 1027 * copy that suffix into our buffer. Otherwise, we're done. 1028 */ 1029 src = strchr(src, ','); 1030 if (src) 1031 strcpy(dst, src); 1032 1033 return buf; 1034 } 1035 1036 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1037 const char *device_name, char *data) 1038 { 1039 struct dentry *root; 1040 struct vfsmount *mnt; 1041 char *newargs; 1042 1043 newargs = setup_root_args(data); 1044 if (!newargs) 1045 return ERR_PTR(-ENOMEM); 1046 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1047 newargs); 1048 kfree(newargs); 1049 if (IS_ERR(mnt)) 1050 return ERR_CAST(mnt); 1051 1052 root = mount_subtree(mnt, subvol_name); 1053 1054 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1055 struct super_block *s = root->d_sb; 1056 dput(root); 1057 root = ERR_PTR(-EINVAL); 1058 deactivate_locked_super(s); 1059 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", 1060 subvol_name); 1061 } 1062 1063 return root; 1064 } 1065 1066 /* 1067 * Find a superblock for the given device / mount point. 1068 * 1069 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1070 * for multiple device setup. Make sure to keep it in sync. 1071 */ 1072 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1073 const char *device_name, void *data) 1074 { 1075 struct block_device *bdev = NULL; 1076 struct super_block *s; 1077 struct dentry *root; 1078 struct btrfs_fs_devices *fs_devices = NULL; 1079 struct btrfs_fs_info *fs_info = NULL; 1080 fmode_t mode = FMODE_READ; 1081 char *subvol_name = NULL; 1082 u64 subvol_objectid = 0; 1083 u64 subvol_rootid = 0; 1084 int error = 0; 1085 1086 if (!(flags & MS_RDONLY)) 1087 mode |= FMODE_WRITE; 1088 1089 error = btrfs_parse_early_options(data, mode, fs_type, 1090 &subvol_name, &subvol_objectid, 1091 &subvol_rootid, &fs_devices); 1092 if (error) { 1093 kfree(subvol_name); 1094 return ERR_PTR(error); 1095 } 1096 1097 if (subvol_name) { 1098 root = mount_subvol(subvol_name, flags, device_name, data); 1099 kfree(subvol_name); 1100 return root; 1101 } 1102 1103 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1104 if (error) 1105 return ERR_PTR(error); 1106 1107 /* 1108 * Setup a dummy root and fs_info for test/set super. This is because 1109 * we don't actually fill this stuff out until open_ctree, but we need 1110 * it for searching for existing supers, so this lets us do that and 1111 * then open_ctree will properly initialize everything later. 1112 */ 1113 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1114 if (!fs_info) 1115 return ERR_PTR(-ENOMEM); 1116 1117 fs_info->fs_devices = fs_devices; 1118 1119 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1120 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1121 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1122 error = -ENOMEM; 1123 goto error_fs_info; 1124 } 1125 1126 error = btrfs_open_devices(fs_devices, mode, fs_type); 1127 if (error) 1128 goto error_fs_info; 1129 1130 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1131 error = -EACCES; 1132 goto error_close_devices; 1133 } 1134 1135 bdev = fs_devices->latest_bdev; 1136 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1137 fs_info); 1138 if (IS_ERR(s)) { 1139 error = PTR_ERR(s); 1140 goto error_close_devices; 1141 } 1142 1143 if (s->s_root) { 1144 btrfs_close_devices(fs_devices); 1145 free_fs_info(fs_info); 1146 if ((flags ^ s->s_flags) & MS_RDONLY) 1147 error = -EBUSY; 1148 } else { 1149 char b[BDEVNAME_SIZE]; 1150 1151 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1152 btrfs_sb(s)->bdev_holder = fs_type; 1153 error = btrfs_fill_super(s, fs_devices, data, 1154 flags & MS_SILENT ? 1 : 0); 1155 } 1156 1157 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1158 if (IS_ERR(root)) 1159 deactivate_locked_super(s); 1160 1161 return root; 1162 1163 error_close_devices: 1164 btrfs_close_devices(fs_devices); 1165 error_fs_info: 1166 free_fs_info(fs_info); 1167 return ERR_PTR(error); 1168 } 1169 1170 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit) 1171 { 1172 spin_lock_irq(&workers->lock); 1173 workers->max_workers = new_limit; 1174 spin_unlock_irq(&workers->lock); 1175 } 1176 1177 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1178 int new_pool_size, int old_pool_size) 1179 { 1180 if (new_pool_size == old_pool_size) 1181 return; 1182 1183 fs_info->thread_pool_size = new_pool_size; 1184 1185 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n", 1186 old_pool_size, new_pool_size); 1187 1188 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size); 1189 btrfs_set_max_workers(&fs_info->workers, new_pool_size); 1190 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size); 1191 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size); 1192 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size); 1193 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size); 1194 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size); 1195 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size); 1196 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size); 1197 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size); 1198 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size); 1199 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size); 1200 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size); 1201 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers, 1202 new_pool_size); 1203 } 1204 1205 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info, 1206 unsigned long old_opts, int flags) 1207 { 1208 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1209 1210 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1211 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1212 (flags & MS_RDONLY))) { 1213 /* wait for any defraggers to finish */ 1214 wait_event(fs_info->transaction_wait, 1215 (atomic_read(&fs_info->defrag_running) == 0)); 1216 if (flags & MS_RDONLY) 1217 sync_filesystem(fs_info->sb); 1218 } 1219 } 1220 1221 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1222 unsigned long old_opts) 1223 { 1224 /* 1225 * We need cleanup all defragable inodes if the autodefragment is 1226 * close or the fs is R/O. 1227 */ 1228 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1229 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1230 (fs_info->sb->s_flags & MS_RDONLY))) { 1231 btrfs_cleanup_defrag_inodes(fs_info); 1232 } 1233 1234 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1235 } 1236 1237 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1238 { 1239 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1240 struct btrfs_root *root = fs_info->tree_root; 1241 unsigned old_flags = sb->s_flags; 1242 unsigned long old_opts = fs_info->mount_opt; 1243 unsigned long old_compress_type = fs_info->compress_type; 1244 u64 old_max_inline = fs_info->max_inline; 1245 u64 old_alloc_start = fs_info->alloc_start; 1246 int old_thread_pool_size = fs_info->thread_pool_size; 1247 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1248 int ret; 1249 1250 btrfs_remount_prepare(fs_info, old_opts, *flags); 1251 1252 ret = btrfs_parse_options(root, data); 1253 if (ret) { 1254 ret = -EINVAL; 1255 goto restore; 1256 } 1257 1258 btrfs_resize_thread_pool(fs_info, 1259 fs_info->thread_pool_size, old_thread_pool_size); 1260 1261 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1262 goto out; 1263 1264 if (*flags & MS_RDONLY) { 1265 /* 1266 * this also happens on 'umount -rf' or on shutdown, when 1267 * the filesystem is busy. 1268 */ 1269 sb->s_flags |= MS_RDONLY; 1270 1271 btrfs_dev_replace_suspend_for_unmount(fs_info); 1272 btrfs_scrub_cancel(fs_info); 1273 1274 ret = btrfs_commit_super(root); 1275 if (ret) 1276 goto restore; 1277 } else { 1278 if (fs_info->fs_devices->rw_devices == 0) { 1279 ret = -EACCES; 1280 goto restore; 1281 } 1282 1283 if (fs_info->fs_devices->missing_devices > 1284 fs_info->num_tolerated_disk_barrier_failures && 1285 !(*flags & MS_RDONLY)) { 1286 printk(KERN_WARNING 1287 "Btrfs: too many missing devices, writeable remount is not allowed\n"); 1288 ret = -EACCES; 1289 goto restore; 1290 } 1291 1292 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1293 ret = -EINVAL; 1294 goto restore; 1295 } 1296 1297 ret = btrfs_cleanup_fs_roots(fs_info); 1298 if (ret) 1299 goto restore; 1300 1301 /* recover relocation */ 1302 ret = btrfs_recover_relocation(root); 1303 if (ret) 1304 goto restore; 1305 1306 ret = btrfs_resume_balance_async(fs_info); 1307 if (ret) 1308 goto restore; 1309 1310 ret = btrfs_resume_dev_replace_async(fs_info); 1311 if (ret) { 1312 pr_warn("btrfs: failed to resume dev_replace\n"); 1313 goto restore; 1314 } 1315 sb->s_flags &= ~MS_RDONLY; 1316 } 1317 out: 1318 btrfs_remount_cleanup(fs_info, old_opts); 1319 return 0; 1320 1321 restore: 1322 /* We've hit an error - don't reset MS_RDONLY */ 1323 if (sb->s_flags & MS_RDONLY) 1324 old_flags |= MS_RDONLY; 1325 sb->s_flags = old_flags; 1326 fs_info->mount_opt = old_opts; 1327 fs_info->compress_type = old_compress_type; 1328 fs_info->max_inline = old_max_inline; 1329 mutex_lock(&fs_info->chunk_mutex); 1330 fs_info->alloc_start = old_alloc_start; 1331 mutex_unlock(&fs_info->chunk_mutex); 1332 btrfs_resize_thread_pool(fs_info, 1333 old_thread_pool_size, fs_info->thread_pool_size); 1334 fs_info->metadata_ratio = old_metadata_ratio; 1335 btrfs_remount_cleanup(fs_info, old_opts); 1336 return ret; 1337 } 1338 1339 /* Used to sort the devices by max_avail(descending sort) */ 1340 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1341 const void *dev_info2) 1342 { 1343 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1344 ((struct btrfs_device_info *)dev_info2)->max_avail) 1345 return -1; 1346 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1347 ((struct btrfs_device_info *)dev_info2)->max_avail) 1348 return 1; 1349 else 1350 return 0; 1351 } 1352 1353 /* 1354 * sort the devices by max_avail, in which max free extent size of each device 1355 * is stored.(Descending Sort) 1356 */ 1357 static inline void btrfs_descending_sort_devices( 1358 struct btrfs_device_info *devices, 1359 size_t nr_devices) 1360 { 1361 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1362 btrfs_cmp_device_free_bytes, NULL); 1363 } 1364 1365 /* 1366 * The helper to calc the free space on the devices that can be used to store 1367 * file data. 1368 */ 1369 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1370 { 1371 struct btrfs_fs_info *fs_info = root->fs_info; 1372 struct btrfs_device_info *devices_info; 1373 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1374 struct btrfs_device *device; 1375 u64 skip_space; 1376 u64 type; 1377 u64 avail_space; 1378 u64 used_space; 1379 u64 min_stripe_size; 1380 int min_stripes = 1, num_stripes = 1; 1381 int i = 0, nr_devices; 1382 int ret; 1383 1384 nr_devices = fs_info->fs_devices->open_devices; 1385 BUG_ON(!nr_devices); 1386 1387 devices_info = kmalloc(sizeof(*devices_info) * nr_devices, 1388 GFP_NOFS); 1389 if (!devices_info) 1390 return -ENOMEM; 1391 1392 /* calc min stripe number for data space alloction */ 1393 type = btrfs_get_alloc_profile(root, 1); 1394 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1395 min_stripes = 2; 1396 num_stripes = nr_devices; 1397 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1398 min_stripes = 2; 1399 num_stripes = 2; 1400 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1401 min_stripes = 4; 1402 num_stripes = 4; 1403 } 1404 1405 if (type & BTRFS_BLOCK_GROUP_DUP) 1406 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1407 else 1408 min_stripe_size = BTRFS_STRIPE_LEN; 1409 1410 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1411 if (!device->in_fs_metadata || !device->bdev || 1412 device->is_tgtdev_for_dev_replace) 1413 continue; 1414 1415 avail_space = device->total_bytes - device->bytes_used; 1416 1417 /* align with stripe_len */ 1418 do_div(avail_space, BTRFS_STRIPE_LEN); 1419 avail_space *= BTRFS_STRIPE_LEN; 1420 1421 /* 1422 * In order to avoid overwritting the superblock on the drive, 1423 * btrfs starts at an offset of at least 1MB when doing chunk 1424 * allocation. 1425 */ 1426 skip_space = 1024 * 1024; 1427 1428 /* user can set the offset in fs_info->alloc_start. */ 1429 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1430 device->total_bytes) 1431 skip_space = max(fs_info->alloc_start, skip_space); 1432 1433 /* 1434 * btrfs can not use the free space in [0, skip_space - 1], 1435 * we must subtract it from the total. In order to implement 1436 * it, we account the used space in this range first. 1437 */ 1438 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1439 &used_space); 1440 if (ret) { 1441 kfree(devices_info); 1442 return ret; 1443 } 1444 1445 /* calc the free space in [0, skip_space - 1] */ 1446 skip_space -= used_space; 1447 1448 /* 1449 * we can use the free space in [0, skip_space - 1], subtract 1450 * it from the total. 1451 */ 1452 if (avail_space && avail_space >= skip_space) 1453 avail_space -= skip_space; 1454 else 1455 avail_space = 0; 1456 1457 if (avail_space < min_stripe_size) 1458 continue; 1459 1460 devices_info[i].dev = device; 1461 devices_info[i].max_avail = avail_space; 1462 1463 i++; 1464 } 1465 1466 nr_devices = i; 1467 1468 btrfs_descending_sort_devices(devices_info, nr_devices); 1469 1470 i = nr_devices - 1; 1471 avail_space = 0; 1472 while (nr_devices >= min_stripes) { 1473 if (num_stripes > nr_devices) 1474 num_stripes = nr_devices; 1475 1476 if (devices_info[i].max_avail >= min_stripe_size) { 1477 int j; 1478 u64 alloc_size; 1479 1480 avail_space += devices_info[i].max_avail * num_stripes; 1481 alloc_size = devices_info[i].max_avail; 1482 for (j = i + 1 - num_stripes; j <= i; j++) 1483 devices_info[j].max_avail -= alloc_size; 1484 } 1485 i--; 1486 nr_devices--; 1487 } 1488 1489 kfree(devices_info); 1490 *free_bytes = avail_space; 1491 return 0; 1492 } 1493 1494 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1495 { 1496 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1497 struct btrfs_super_block *disk_super = fs_info->super_copy; 1498 struct list_head *head = &fs_info->space_info; 1499 struct btrfs_space_info *found; 1500 u64 total_used = 0; 1501 u64 total_free_data = 0; 1502 int bits = dentry->d_sb->s_blocksize_bits; 1503 __be32 *fsid = (__be32 *)fs_info->fsid; 1504 int ret; 1505 1506 /* holding chunk_muext to avoid allocating new chunks */ 1507 mutex_lock(&fs_info->chunk_mutex); 1508 rcu_read_lock(); 1509 list_for_each_entry_rcu(found, head, list) { 1510 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1511 total_free_data += found->disk_total - found->disk_used; 1512 total_free_data -= 1513 btrfs_account_ro_block_groups_free_space(found); 1514 } 1515 1516 total_used += found->disk_used; 1517 } 1518 rcu_read_unlock(); 1519 1520 buf->f_namelen = BTRFS_NAME_LEN; 1521 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1522 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1523 buf->f_bsize = dentry->d_sb->s_blocksize; 1524 buf->f_type = BTRFS_SUPER_MAGIC; 1525 buf->f_bavail = total_free_data; 1526 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1527 if (ret) { 1528 mutex_unlock(&fs_info->chunk_mutex); 1529 return ret; 1530 } 1531 buf->f_bavail += total_free_data; 1532 buf->f_bavail = buf->f_bavail >> bits; 1533 mutex_unlock(&fs_info->chunk_mutex); 1534 1535 /* We treat it as constant endianness (it doesn't matter _which_) 1536 because we want the fsid to come out the same whether mounted 1537 on a big-endian or little-endian host */ 1538 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1539 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1540 /* Mask in the root object ID too, to disambiguate subvols */ 1541 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1542 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1543 1544 return 0; 1545 } 1546 1547 static void btrfs_kill_super(struct super_block *sb) 1548 { 1549 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1550 kill_anon_super(sb); 1551 free_fs_info(fs_info); 1552 } 1553 1554 static struct file_system_type btrfs_fs_type = { 1555 .owner = THIS_MODULE, 1556 .name = "btrfs", 1557 .mount = btrfs_mount, 1558 .kill_sb = btrfs_kill_super, 1559 .fs_flags = FS_REQUIRES_DEV, 1560 }; 1561 MODULE_ALIAS_FS("btrfs"); 1562 1563 /* 1564 * used by btrfsctl to scan devices when no FS is mounted 1565 */ 1566 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1567 unsigned long arg) 1568 { 1569 struct btrfs_ioctl_vol_args *vol; 1570 struct btrfs_fs_devices *fs_devices; 1571 int ret = -ENOTTY; 1572 1573 if (!capable(CAP_SYS_ADMIN)) 1574 return -EPERM; 1575 1576 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1577 if (IS_ERR(vol)) 1578 return PTR_ERR(vol); 1579 1580 switch (cmd) { 1581 case BTRFS_IOC_SCAN_DEV: 1582 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1583 &btrfs_fs_type, &fs_devices); 1584 break; 1585 case BTRFS_IOC_DEVICES_READY: 1586 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1587 &btrfs_fs_type, &fs_devices); 1588 if (ret) 1589 break; 1590 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1591 break; 1592 } 1593 1594 kfree(vol); 1595 return ret; 1596 } 1597 1598 static int btrfs_freeze(struct super_block *sb) 1599 { 1600 struct btrfs_trans_handle *trans; 1601 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1602 1603 trans = btrfs_attach_transaction_barrier(root); 1604 if (IS_ERR(trans)) { 1605 /* no transaction, don't bother */ 1606 if (PTR_ERR(trans) == -ENOENT) 1607 return 0; 1608 return PTR_ERR(trans); 1609 } 1610 return btrfs_commit_transaction(trans, root); 1611 } 1612 1613 static int btrfs_unfreeze(struct super_block *sb) 1614 { 1615 return 0; 1616 } 1617 1618 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1619 { 1620 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1621 struct btrfs_fs_devices *cur_devices; 1622 struct btrfs_device *dev, *first_dev = NULL; 1623 struct list_head *head; 1624 struct rcu_string *name; 1625 1626 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1627 cur_devices = fs_info->fs_devices; 1628 while (cur_devices) { 1629 head = &cur_devices->devices; 1630 list_for_each_entry(dev, head, dev_list) { 1631 if (dev->missing) 1632 continue; 1633 if (!first_dev || dev->devid < first_dev->devid) 1634 first_dev = dev; 1635 } 1636 cur_devices = cur_devices->seed; 1637 } 1638 1639 if (first_dev) { 1640 rcu_read_lock(); 1641 name = rcu_dereference(first_dev->name); 1642 seq_escape(m, name->str, " \t\n\\"); 1643 rcu_read_unlock(); 1644 } else { 1645 WARN_ON(1); 1646 } 1647 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1648 return 0; 1649 } 1650 1651 static const struct super_operations btrfs_super_ops = { 1652 .drop_inode = btrfs_drop_inode, 1653 .evict_inode = btrfs_evict_inode, 1654 .put_super = btrfs_put_super, 1655 .sync_fs = btrfs_sync_fs, 1656 .show_options = btrfs_show_options, 1657 .show_devname = btrfs_show_devname, 1658 .write_inode = btrfs_write_inode, 1659 .alloc_inode = btrfs_alloc_inode, 1660 .destroy_inode = btrfs_destroy_inode, 1661 .statfs = btrfs_statfs, 1662 .remount_fs = btrfs_remount, 1663 .freeze_fs = btrfs_freeze, 1664 .unfreeze_fs = btrfs_unfreeze, 1665 }; 1666 1667 static const struct file_operations btrfs_ctl_fops = { 1668 .unlocked_ioctl = btrfs_control_ioctl, 1669 .compat_ioctl = btrfs_control_ioctl, 1670 .owner = THIS_MODULE, 1671 .llseek = noop_llseek, 1672 }; 1673 1674 static struct miscdevice btrfs_misc = { 1675 .minor = BTRFS_MINOR, 1676 .name = "btrfs-control", 1677 .fops = &btrfs_ctl_fops 1678 }; 1679 1680 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1681 MODULE_ALIAS("devname:btrfs-control"); 1682 1683 static int btrfs_interface_init(void) 1684 { 1685 return misc_register(&btrfs_misc); 1686 } 1687 1688 static void btrfs_interface_exit(void) 1689 { 1690 if (misc_deregister(&btrfs_misc) < 0) 1691 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n"); 1692 } 1693 1694 static int __init init_btrfs_fs(void) 1695 { 1696 int err; 1697 1698 err = btrfs_init_sysfs(); 1699 if (err) 1700 return err; 1701 1702 btrfs_init_compress(); 1703 1704 err = btrfs_init_cachep(); 1705 if (err) 1706 goto free_compress; 1707 1708 err = extent_io_init(); 1709 if (err) 1710 goto free_cachep; 1711 1712 err = extent_map_init(); 1713 if (err) 1714 goto free_extent_io; 1715 1716 err = ordered_data_init(); 1717 if (err) 1718 goto free_extent_map; 1719 1720 err = btrfs_delayed_inode_init(); 1721 if (err) 1722 goto free_ordered_data; 1723 1724 err = btrfs_auto_defrag_init(); 1725 if (err) 1726 goto free_delayed_inode; 1727 1728 err = btrfs_delayed_ref_init(); 1729 if (err) 1730 goto free_auto_defrag; 1731 1732 err = btrfs_interface_init(); 1733 if (err) 1734 goto free_delayed_ref; 1735 1736 err = register_filesystem(&btrfs_fs_type); 1737 if (err) 1738 goto unregister_ioctl; 1739 1740 btrfs_init_lockdep(); 1741 1742 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); 1743 return 0; 1744 1745 unregister_ioctl: 1746 btrfs_interface_exit(); 1747 free_delayed_ref: 1748 btrfs_delayed_ref_exit(); 1749 free_auto_defrag: 1750 btrfs_auto_defrag_exit(); 1751 free_delayed_inode: 1752 btrfs_delayed_inode_exit(); 1753 free_ordered_data: 1754 ordered_data_exit(); 1755 free_extent_map: 1756 extent_map_exit(); 1757 free_extent_io: 1758 extent_io_exit(); 1759 free_cachep: 1760 btrfs_destroy_cachep(); 1761 free_compress: 1762 btrfs_exit_compress(); 1763 btrfs_exit_sysfs(); 1764 return err; 1765 } 1766 1767 static void __exit exit_btrfs_fs(void) 1768 { 1769 btrfs_destroy_cachep(); 1770 btrfs_delayed_ref_exit(); 1771 btrfs_auto_defrag_exit(); 1772 btrfs_delayed_inode_exit(); 1773 ordered_data_exit(); 1774 extent_map_exit(); 1775 extent_io_exit(); 1776 btrfs_interface_exit(); 1777 unregister_filesystem(&btrfs_fs_type); 1778 btrfs_exit_sysfs(); 1779 btrfs_cleanup_fs_uuids(); 1780 btrfs_exit_compress(); 1781 } 1782 1783 module_init(init_btrfs_fs) 1784 module_exit(exit_btrfs_fs) 1785 1786 MODULE_LICENSE("GPL"); 1787