xref: /openbmc/linux/fs/btrfs/super.c (revision 97da55fc)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/btrfs.h>
62 
63 static const struct super_operations btrfs_super_ops;
64 static struct file_system_type btrfs_fs_type;
65 
66 static const char *btrfs_decode_error(int errno, char nbuf[16])
67 {
68 	char *errstr = NULL;
69 
70 	switch (errno) {
71 	case -EIO:
72 		errstr = "IO failure";
73 		break;
74 	case -ENOMEM:
75 		errstr = "Out of memory";
76 		break;
77 	case -EROFS:
78 		errstr = "Readonly filesystem";
79 		break;
80 	case -EEXIST:
81 		errstr = "Object already exists";
82 		break;
83 	default:
84 		if (nbuf) {
85 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 				errstr = nbuf;
87 		}
88 		break;
89 	}
90 
91 	return errstr;
92 }
93 
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 	/*
97 	 * today we only save the error info into ram.  Long term we'll
98 	 * also send it down to the disk
99 	 */
100 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
101 }
102 
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105 	__save_error_info(fs_info);
106 }
107 
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 	struct super_block *sb = fs_info->sb;
112 
113 	if (sb->s_flags & MS_RDONLY)
114 		return;
115 
116 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 		sb->s_flags |= MS_RDONLY;
118 		printk(KERN_INFO "btrfs is forced readonly\n");
119 		/*
120 		 * Note that a running device replace operation is not
121 		 * canceled here although there is no way to update
122 		 * the progress. It would add the risk of a deadlock,
123 		 * therefore the canceling is ommited. The only penalty
124 		 * is that some I/O remains active until the procedure
125 		 * completes. The next time when the filesystem is
126 		 * mounted writeable again, the device replace
127 		 * operation continues.
128 		 */
129 //		WARN_ON(1);
130 	}
131 }
132 
133 #ifdef CONFIG_PRINTK
134 /*
135  * __btrfs_std_error decodes expected errors from the caller and
136  * invokes the approciate error response.
137  */
138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139 		       unsigned int line, int errno, const char *fmt, ...)
140 {
141 	struct super_block *sb = fs_info->sb;
142 	char nbuf[16];
143 	const char *errstr;
144 
145 	/*
146 	 * Special case: if the error is EROFS, and we're already
147 	 * under MS_RDONLY, then it is safe here.
148 	 */
149 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
150   		return;
151 
152   	errstr = btrfs_decode_error(errno, nbuf);
153 	if (fmt) {
154 		struct va_format vaf;
155 		va_list args;
156 
157 		va_start(args, fmt);
158 		vaf.fmt = fmt;
159 		vaf.va = &args;
160 
161 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
162 			sb->s_id, function, line, errstr, &vaf);
163 		va_end(args);
164 	} else {
165 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
166 			sb->s_id, function, line, errstr);
167 	}
168 
169 	/* Don't go through full error handling during mount */
170 	if (sb->s_flags & MS_BORN) {
171 		save_error_info(fs_info);
172 		btrfs_handle_error(fs_info);
173 	}
174 }
175 
176 static const char * const logtypes[] = {
177 	"emergency",
178 	"alert",
179 	"critical",
180 	"error",
181 	"warning",
182 	"notice",
183 	"info",
184 	"debug",
185 };
186 
187 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189 	struct super_block *sb = fs_info->sb;
190 	char lvl[4];
191 	struct va_format vaf;
192 	va_list args;
193 	const char *type = logtypes[4];
194 	int kern_level;
195 
196 	va_start(args, fmt);
197 
198 	kern_level = printk_get_level(fmt);
199 	if (kern_level) {
200 		size_t size = printk_skip_level(fmt) - fmt;
201 		memcpy(lvl, fmt,  size);
202 		lvl[size] = '\0';
203 		fmt += size;
204 		type = logtypes[kern_level - '0'];
205 	} else
206 		*lvl = '\0';
207 
208 	vaf.fmt = fmt;
209 	vaf.va = &args;
210 
211 	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
212 
213 	va_end(args);
214 }
215 
216 #else
217 
218 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
219 		       unsigned int line, int errno, const char *fmt, ...)
220 {
221 	struct super_block *sb = fs_info->sb;
222 
223 	/*
224 	 * Special case: if the error is EROFS, and we're already
225 	 * under MS_RDONLY, then it is safe here.
226 	 */
227 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
228 		return;
229 
230 	/* Don't go through full error handling during mount */
231 	if (sb->s_flags & MS_BORN) {
232 		save_error_info(fs_info);
233 		btrfs_handle_error(fs_info);
234 	}
235 }
236 #endif
237 
238 /*
239  * We only mark the transaction aborted and then set the file system read-only.
240  * This will prevent new transactions from starting or trying to join this
241  * one.
242  *
243  * This means that error recovery at the call site is limited to freeing
244  * any local memory allocations and passing the error code up without
245  * further cleanup. The transaction should complete as it normally would
246  * in the call path but will return -EIO.
247  *
248  * We'll complete the cleanup in btrfs_end_transaction and
249  * btrfs_commit_transaction.
250  */
251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
252 			       struct btrfs_root *root, const char *function,
253 			       unsigned int line, int errno)
254 {
255 	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n");
256 	trans->aborted = errno;
257 	/* Nothing used. The other threads that have joined this
258 	 * transaction may be able to continue. */
259 	if (!trans->blocks_used) {
260 		char nbuf[16];
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno, nbuf);
264 		btrfs_printk(root->fs_info,
265 			     "%s:%d: Aborting unused transaction(%s).\n",
266 			     function, line, errstr);
267 		return;
268 	}
269 	ACCESS_ONCE(trans->transaction->aborted) = errno;
270 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
271 }
272 /*
273  * __btrfs_panic decodes unexpected, fatal errors from the caller,
274  * issues an alert, and either panics or BUGs, depending on mount options.
275  */
276 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
277 		   unsigned int line, int errno, const char *fmt, ...)
278 {
279 	char nbuf[16];
280 	char *s_id = "<unknown>";
281 	const char *errstr;
282 	struct va_format vaf = { .fmt = fmt };
283 	va_list args;
284 
285 	if (fs_info)
286 		s_id = fs_info->sb->s_id;
287 
288 	va_start(args, fmt);
289 	vaf.va = &args;
290 
291 	errstr = btrfs_decode_error(errno, nbuf);
292 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
293 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
294 			s_id, function, line, &vaf, errstr);
295 
296 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
297 	       s_id, function, line, &vaf, errstr);
298 	va_end(args);
299 	/* Caller calls BUG() */
300 }
301 
302 static void btrfs_put_super(struct super_block *sb)
303 {
304 	(void)close_ctree(btrfs_sb(sb)->tree_root);
305 	/* FIXME: need to fix VFS to return error? */
306 	/* AV: return it _where_?  ->put_super() can be triggered by any number
307 	 * of async events, up to and including delivery of SIGKILL to the
308 	 * last process that kept it busy.  Or segfault in the aforementioned
309 	 * process...  Whom would you report that to?
310 	 */
311 }
312 
313 enum {
314 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
315 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
316 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
317 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
318 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
319 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
320 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
321 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
322 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
323 	Opt_check_integrity_print_mask, Opt_fatal_errors,
324 	Opt_err,
325 };
326 
327 static match_table_t tokens = {
328 	{Opt_degraded, "degraded"},
329 	{Opt_subvol, "subvol=%s"},
330 	{Opt_subvolid, "subvolid=%d"},
331 	{Opt_device, "device=%s"},
332 	{Opt_nodatasum, "nodatasum"},
333 	{Opt_nodatacow, "nodatacow"},
334 	{Opt_nobarrier, "nobarrier"},
335 	{Opt_max_inline, "max_inline=%s"},
336 	{Opt_alloc_start, "alloc_start=%s"},
337 	{Opt_thread_pool, "thread_pool=%d"},
338 	{Opt_compress, "compress"},
339 	{Opt_compress_type, "compress=%s"},
340 	{Opt_compress_force, "compress-force"},
341 	{Opt_compress_force_type, "compress-force=%s"},
342 	{Opt_ssd, "ssd"},
343 	{Opt_ssd_spread, "ssd_spread"},
344 	{Opt_nossd, "nossd"},
345 	{Opt_noacl, "noacl"},
346 	{Opt_notreelog, "notreelog"},
347 	{Opt_flushoncommit, "flushoncommit"},
348 	{Opt_ratio, "metadata_ratio=%d"},
349 	{Opt_discard, "discard"},
350 	{Opt_space_cache, "space_cache"},
351 	{Opt_clear_cache, "clear_cache"},
352 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
353 	{Opt_enospc_debug, "enospc_debug"},
354 	{Opt_subvolrootid, "subvolrootid=%d"},
355 	{Opt_defrag, "autodefrag"},
356 	{Opt_inode_cache, "inode_cache"},
357 	{Opt_no_space_cache, "nospace_cache"},
358 	{Opt_recovery, "recovery"},
359 	{Opt_skip_balance, "skip_balance"},
360 	{Opt_check_integrity, "check_int"},
361 	{Opt_check_integrity_including_extent_data, "check_int_data"},
362 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
363 	{Opt_fatal_errors, "fatal_errors=%s"},
364 	{Opt_err, NULL},
365 };
366 
367 /*
368  * Regular mount options parser.  Everything that is needed only when
369  * reading in a new superblock is parsed here.
370  * XXX JDM: This needs to be cleaned up for remount.
371  */
372 int btrfs_parse_options(struct btrfs_root *root, char *options)
373 {
374 	struct btrfs_fs_info *info = root->fs_info;
375 	substring_t args[MAX_OPT_ARGS];
376 	char *p, *num, *orig = NULL;
377 	u64 cache_gen;
378 	int intarg;
379 	int ret = 0;
380 	char *compress_type;
381 	bool compress_force = false;
382 
383 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
384 	if (cache_gen)
385 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
386 
387 	if (!options)
388 		goto out;
389 
390 	/*
391 	 * strsep changes the string, duplicate it because parse_options
392 	 * gets called twice
393 	 */
394 	options = kstrdup(options, GFP_NOFS);
395 	if (!options)
396 		return -ENOMEM;
397 
398 	orig = options;
399 
400 	while ((p = strsep(&options, ",")) != NULL) {
401 		int token;
402 		if (!*p)
403 			continue;
404 
405 		token = match_token(p, tokens, args);
406 		switch (token) {
407 		case Opt_degraded:
408 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
409 			btrfs_set_opt(info->mount_opt, DEGRADED);
410 			break;
411 		case Opt_subvol:
412 		case Opt_subvolid:
413 		case Opt_subvolrootid:
414 		case Opt_device:
415 			/*
416 			 * These are parsed by btrfs_parse_early_options
417 			 * and can be happily ignored here.
418 			 */
419 			break;
420 		case Opt_nodatasum:
421 			printk(KERN_INFO "btrfs: setting nodatasum\n");
422 			btrfs_set_opt(info->mount_opt, NODATASUM);
423 			break;
424 		case Opt_nodatacow:
425 			if (!btrfs_test_opt(root, COMPRESS) ||
426 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
427 					printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
428 			} else {
429 				printk(KERN_INFO "btrfs: setting nodatacow\n");
430 			}
431 			info->compress_type = BTRFS_COMPRESS_NONE;
432 			btrfs_clear_opt(info->mount_opt, COMPRESS);
433 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
434 			btrfs_set_opt(info->mount_opt, NODATACOW);
435 			btrfs_set_opt(info->mount_opt, NODATASUM);
436 			break;
437 		case Opt_compress_force:
438 		case Opt_compress_force_type:
439 			compress_force = true;
440 			/* Fallthrough */
441 		case Opt_compress:
442 		case Opt_compress_type:
443 			if (token == Opt_compress ||
444 			    token == Opt_compress_force ||
445 			    strcmp(args[0].from, "zlib") == 0) {
446 				compress_type = "zlib";
447 				info->compress_type = BTRFS_COMPRESS_ZLIB;
448 				btrfs_set_opt(info->mount_opt, COMPRESS);
449 				btrfs_clear_opt(info->mount_opt, NODATACOW);
450 				btrfs_clear_opt(info->mount_opt, NODATASUM);
451 			} else if (strcmp(args[0].from, "lzo") == 0) {
452 				compress_type = "lzo";
453 				info->compress_type = BTRFS_COMPRESS_LZO;
454 				btrfs_set_opt(info->mount_opt, COMPRESS);
455 				btrfs_clear_opt(info->mount_opt, NODATACOW);
456 				btrfs_clear_opt(info->mount_opt, NODATASUM);
457 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
458 			} else if (strncmp(args[0].from, "no", 2) == 0) {
459 				compress_type = "no";
460 				info->compress_type = BTRFS_COMPRESS_NONE;
461 				btrfs_clear_opt(info->mount_opt, COMPRESS);
462 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
463 				compress_force = false;
464 			} else {
465 				ret = -EINVAL;
466 				goto out;
467 			}
468 
469 			if (compress_force) {
470 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
471 				pr_info("btrfs: force %s compression\n",
472 					compress_type);
473 			} else
474 				pr_info("btrfs: use %s compression\n",
475 					compress_type);
476 			break;
477 		case Opt_ssd:
478 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
479 			btrfs_set_opt(info->mount_opt, SSD);
480 			break;
481 		case Opt_ssd_spread:
482 			printk(KERN_INFO "btrfs: use spread ssd "
483 			       "allocation scheme\n");
484 			btrfs_set_opt(info->mount_opt, SSD);
485 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
486 			break;
487 		case Opt_nossd:
488 			printk(KERN_INFO "btrfs: not using ssd allocation "
489 			       "scheme\n");
490 			btrfs_set_opt(info->mount_opt, NOSSD);
491 			btrfs_clear_opt(info->mount_opt, SSD);
492 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
493 			break;
494 		case Opt_nobarrier:
495 			printk(KERN_INFO "btrfs: turning off barriers\n");
496 			btrfs_set_opt(info->mount_opt, NOBARRIER);
497 			break;
498 		case Opt_thread_pool:
499 			intarg = 0;
500 			match_int(&args[0], &intarg);
501 			if (intarg)
502 				info->thread_pool_size = intarg;
503 			break;
504 		case Opt_max_inline:
505 			num = match_strdup(&args[0]);
506 			if (num) {
507 				info->max_inline = memparse(num, NULL);
508 				kfree(num);
509 
510 				if (info->max_inline) {
511 					info->max_inline = max_t(u64,
512 						info->max_inline,
513 						root->sectorsize);
514 				}
515 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
516 					(unsigned long long)info->max_inline);
517 			}
518 			break;
519 		case Opt_alloc_start:
520 			num = match_strdup(&args[0]);
521 			if (num) {
522 				mutex_lock(&info->chunk_mutex);
523 				info->alloc_start = memparse(num, NULL);
524 				mutex_unlock(&info->chunk_mutex);
525 				kfree(num);
526 				printk(KERN_INFO
527 					"btrfs: allocations start at %llu\n",
528 					(unsigned long long)info->alloc_start);
529 			}
530 			break;
531 		case Opt_noacl:
532 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
533 			break;
534 		case Opt_notreelog:
535 			printk(KERN_INFO "btrfs: disabling tree log\n");
536 			btrfs_set_opt(info->mount_opt, NOTREELOG);
537 			break;
538 		case Opt_flushoncommit:
539 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
540 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
541 			break;
542 		case Opt_ratio:
543 			intarg = 0;
544 			match_int(&args[0], &intarg);
545 			if (intarg) {
546 				info->metadata_ratio = intarg;
547 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
548 				       info->metadata_ratio);
549 			}
550 			break;
551 		case Opt_discard:
552 			btrfs_set_opt(info->mount_opt, DISCARD);
553 			break;
554 		case Opt_space_cache:
555 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
556 			break;
557 		case Opt_no_space_cache:
558 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
559 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
560 			break;
561 		case Opt_inode_cache:
562 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
563 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
564 			break;
565 		case Opt_clear_cache:
566 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
567 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
568 			break;
569 		case Opt_user_subvol_rm_allowed:
570 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
571 			break;
572 		case Opt_enospc_debug:
573 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
574 			break;
575 		case Opt_defrag:
576 			printk(KERN_INFO "btrfs: enabling auto defrag\n");
577 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
578 			break;
579 		case Opt_recovery:
580 			printk(KERN_INFO "btrfs: enabling auto recovery\n");
581 			btrfs_set_opt(info->mount_opt, RECOVERY);
582 			break;
583 		case Opt_skip_balance:
584 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
585 			break;
586 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
587 		case Opt_check_integrity_including_extent_data:
588 			printk(KERN_INFO "btrfs: enabling check integrity"
589 			       " including extent data\n");
590 			btrfs_set_opt(info->mount_opt,
591 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
592 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
593 			break;
594 		case Opt_check_integrity:
595 			printk(KERN_INFO "btrfs: enabling check integrity\n");
596 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
597 			break;
598 		case Opt_check_integrity_print_mask:
599 			intarg = 0;
600 			match_int(&args[0], &intarg);
601 			if (intarg) {
602 				info->check_integrity_print_mask = intarg;
603 				printk(KERN_INFO "btrfs:"
604 				       " check_integrity_print_mask 0x%x\n",
605 				       info->check_integrity_print_mask);
606 			}
607 			break;
608 #else
609 		case Opt_check_integrity_including_extent_data:
610 		case Opt_check_integrity:
611 		case Opt_check_integrity_print_mask:
612 			printk(KERN_ERR "btrfs: support for check_integrity*"
613 			       " not compiled in!\n");
614 			ret = -EINVAL;
615 			goto out;
616 #endif
617 		case Opt_fatal_errors:
618 			if (strcmp(args[0].from, "panic") == 0)
619 				btrfs_set_opt(info->mount_opt,
620 					      PANIC_ON_FATAL_ERROR);
621 			else if (strcmp(args[0].from, "bug") == 0)
622 				btrfs_clear_opt(info->mount_opt,
623 					      PANIC_ON_FATAL_ERROR);
624 			else {
625 				ret = -EINVAL;
626 				goto out;
627 			}
628 			break;
629 		case Opt_err:
630 			printk(KERN_INFO "btrfs: unrecognized mount option "
631 			       "'%s'\n", p);
632 			ret = -EINVAL;
633 			goto out;
634 		default:
635 			break;
636 		}
637 	}
638 out:
639 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
640 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
641 	kfree(orig);
642 	return ret;
643 }
644 
645 /*
646  * Parse mount options that are required early in the mount process.
647  *
648  * All other options will be parsed on much later in the mount process and
649  * only when we need to allocate a new super block.
650  */
651 static int btrfs_parse_early_options(const char *options, fmode_t flags,
652 		void *holder, char **subvol_name, u64 *subvol_objectid,
653 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
654 {
655 	substring_t args[MAX_OPT_ARGS];
656 	char *device_name, *opts, *orig, *p;
657 	int error = 0;
658 	int intarg;
659 
660 	if (!options)
661 		return 0;
662 
663 	/*
664 	 * strsep changes the string, duplicate it because parse_options
665 	 * gets called twice
666 	 */
667 	opts = kstrdup(options, GFP_KERNEL);
668 	if (!opts)
669 		return -ENOMEM;
670 	orig = opts;
671 
672 	while ((p = strsep(&opts, ",")) != NULL) {
673 		int token;
674 		if (!*p)
675 			continue;
676 
677 		token = match_token(p, tokens, args);
678 		switch (token) {
679 		case Opt_subvol:
680 			kfree(*subvol_name);
681 			*subvol_name = match_strdup(&args[0]);
682 			break;
683 		case Opt_subvolid:
684 			intarg = 0;
685 			error = match_int(&args[0], &intarg);
686 			if (!error) {
687 				/* we want the original fs_tree */
688 				if (!intarg)
689 					*subvol_objectid =
690 						BTRFS_FS_TREE_OBJECTID;
691 				else
692 					*subvol_objectid = intarg;
693 			}
694 			break;
695 		case Opt_subvolrootid:
696 			intarg = 0;
697 			error = match_int(&args[0], &intarg);
698 			if (!error) {
699 				/* we want the original fs_tree */
700 				if (!intarg)
701 					*subvol_rootid =
702 						BTRFS_FS_TREE_OBJECTID;
703 				else
704 					*subvol_rootid = intarg;
705 			}
706 			break;
707 		case Opt_device:
708 			device_name = match_strdup(&args[0]);
709 			if (!device_name) {
710 				error = -ENOMEM;
711 				goto out;
712 			}
713 			error = btrfs_scan_one_device(device_name,
714 					flags, holder, fs_devices);
715 			kfree(device_name);
716 			if (error)
717 				goto out;
718 			break;
719 		default:
720 			break;
721 		}
722 	}
723 
724 out:
725 	kfree(orig);
726 	return error;
727 }
728 
729 static struct dentry *get_default_root(struct super_block *sb,
730 				       u64 subvol_objectid)
731 {
732 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
733 	struct btrfs_root *root = fs_info->tree_root;
734 	struct btrfs_root *new_root;
735 	struct btrfs_dir_item *di;
736 	struct btrfs_path *path;
737 	struct btrfs_key location;
738 	struct inode *inode;
739 	u64 dir_id;
740 	int new = 0;
741 
742 	/*
743 	 * We have a specific subvol we want to mount, just setup location and
744 	 * go look up the root.
745 	 */
746 	if (subvol_objectid) {
747 		location.objectid = subvol_objectid;
748 		location.type = BTRFS_ROOT_ITEM_KEY;
749 		location.offset = (u64)-1;
750 		goto find_root;
751 	}
752 
753 	path = btrfs_alloc_path();
754 	if (!path)
755 		return ERR_PTR(-ENOMEM);
756 	path->leave_spinning = 1;
757 
758 	/*
759 	 * Find the "default" dir item which points to the root item that we
760 	 * will mount by default if we haven't been given a specific subvolume
761 	 * to mount.
762 	 */
763 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
764 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
765 	if (IS_ERR(di)) {
766 		btrfs_free_path(path);
767 		return ERR_CAST(di);
768 	}
769 	if (!di) {
770 		/*
771 		 * Ok the default dir item isn't there.  This is weird since
772 		 * it's always been there, but don't freak out, just try and
773 		 * mount to root most subvolume.
774 		 */
775 		btrfs_free_path(path);
776 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
777 		new_root = fs_info->fs_root;
778 		goto setup_root;
779 	}
780 
781 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
782 	btrfs_free_path(path);
783 
784 find_root:
785 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
786 	if (IS_ERR(new_root))
787 		return ERR_CAST(new_root);
788 
789 	if (btrfs_root_refs(&new_root->root_item) == 0)
790 		return ERR_PTR(-ENOENT);
791 
792 	dir_id = btrfs_root_dirid(&new_root->root_item);
793 setup_root:
794 	location.objectid = dir_id;
795 	location.type = BTRFS_INODE_ITEM_KEY;
796 	location.offset = 0;
797 
798 	inode = btrfs_iget(sb, &location, new_root, &new);
799 	if (IS_ERR(inode))
800 		return ERR_CAST(inode);
801 
802 	/*
803 	 * If we're just mounting the root most subvol put the inode and return
804 	 * a reference to the dentry.  We will have already gotten a reference
805 	 * to the inode in btrfs_fill_super so we're good to go.
806 	 */
807 	if (!new && sb->s_root->d_inode == inode) {
808 		iput(inode);
809 		return dget(sb->s_root);
810 	}
811 
812 	return d_obtain_alias(inode);
813 }
814 
815 static int btrfs_fill_super(struct super_block *sb,
816 			    struct btrfs_fs_devices *fs_devices,
817 			    void *data, int silent)
818 {
819 	struct inode *inode;
820 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
821 	struct btrfs_key key;
822 	int err;
823 
824 	sb->s_maxbytes = MAX_LFS_FILESIZE;
825 	sb->s_magic = BTRFS_SUPER_MAGIC;
826 	sb->s_op = &btrfs_super_ops;
827 	sb->s_d_op = &btrfs_dentry_operations;
828 	sb->s_export_op = &btrfs_export_ops;
829 	sb->s_xattr = btrfs_xattr_handlers;
830 	sb->s_time_gran = 1;
831 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
832 	sb->s_flags |= MS_POSIXACL;
833 #endif
834 	sb->s_flags |= MS_I_VERSION;
835 	err = open_ctree(sb, fs_devices, (char *)data);
836 	if (err) {
837 		printk("btrfs: open_ctree failed\n");
838 		return err;
839 	}
840 
841 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
842 	key.type = BTRFS_INODE_ITEM_KEY;
843 	key.offset = 0;
844 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
845 	if (IS_ERR(inode)) {
846 		err = PTR_ERR(inode);
847 		goto fail_close;
848 	}
849 
850 	sb->s_root = d_make_root(inode);
851 	if (!sb->s_root) {
852 		err = -ENOMEM;
853 		goto fail_close;
854 	}
855 
856 	save_mount_options(sb, data);
857 	cleancache_init_fs(sb);
858 	sb->s_flags |= MS_ACTIVE;
859 	return 0;
860 
861 fail_close:
862 	close_ctree(fs_info->tree_root);
863 	return err;
864 }
865 
866 int btrfs_sync_fs(struct super_block *sb, int wait)
867 {
868 	struct btrfs_trans_handle *trans;
869 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
870 	struct btrfs_root *root = fs_info->tree_root;
871 
872 	trace_btrfs_sync_fs(wait);
873 
874 	if (!wait) {
875 		filemap_flush(fs_info->btree_inode->i_mapping);
876 		return 0;
877 	}
878 
879 	btrfs_wait_ordered_extents(root, 0);
880 
881 	trans = btrfs_attach_transaction_barrier(root);
882 	if (IS_ERR(trans)) {
883 		/* no transaction, don't bother */
884 		if (PTR_ERR(trans) == -ENOENT)
885 			return 0;
886 		return PTR_ERR(trans);
887 	}
888 	return btrfs_commit_transaction(trans, root);
889 }
890 
891 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
892 {
893 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
894 	struct btrfs_root *root = info->tree_root;
895 	char *compress_type;
896 
897 	if (btrfs_test_opt(root, DEGRADED))
898 		seq_puts(seq, ",degraded");
899 	if (btrfs_test_opt(root, NODATASUM))
900 		seq_puts(seq, ",nodatasum");
901 	if (btrfs_test_opt(root, NODATACOW))
902 		seq_puts(seq, ",nodatacow");
903 	if (btrfs_test_opt(root, NOBARRIER))
904 		seq_puts(seq, ",nobarrier");
905 	if (info->max_inline != 8192 * 1024)
906 		seq_printf(seq, ",max_inline=%llu",
907 			   (unsigned long long)info->max_inline);
908 	if (info->alloc_start != 0)
909 		seq_printf(seq, ",alloc_start=%llu",
910 			   (unsigned long long)info->alloc_start);
911 	if (info->thread_pool_size !=  min_t(unsigned long,
912 					     num_online_cpus() + 2, 8))
913 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
914 	if (btrfs_test_opt(root, COMPRESS)) {
915 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
916 			compress_type = "zlib";
917 		else
918 			compress_type = "lzo";
919 		if (btrfs_test_opt(root, FORCE_COMPRESS))
920 			seq_printf(seq, ",compress-force=%s", compress_type);
921 		else
922 			seq_printf(seq, ",compress=%s", compress_type);
923 	}
924 	if (btrfs_test_opt(root, NOSSD))
925 		seq_puts(seq, ",nossd");
926 	if (btrfs_test_opt(root, SSD_SPREAD))
927 		seq_puts(seq, ",ssd_spread");
928 	else if (btrfs_test_opt(root, SSD))
929 		seq_puts(seq, ",ssd");
930 	if (btrfs_test_opt(root, NOTREELOG))
931 		seq_puts(seq, ",notreelog");
932 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
933 		seq_puts(seq, ",flushoncommit");
934 	if (btrfs_test_opt(root, DISCARD))
935 		seq_puts(seq, ",discard");
936 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
937 		seq_puts(seq, ",noacl");
938 	if (btrfs_test_opt(root, SPACE_CACHE))
939 		seq_puts(seq, ",space_cache");
940 	else
941 		seq_puts(seq, ",nospace_cache");
942 	if (btrfs_test_opt(root, CLEAR_CACHE))
943 		seq_puts(seq, ",clear_cache");
944 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
945 		seq_puts(seq, ",user_subvol_rm_allowed");
946 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
947 		seq_puts(seq, ",enospc_debug");
948 	if (btrfs_test_opt(root, AUTO_DEFRAG))
949 		seq_puts(seq, ",autodefrag");
950 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
951 		seq_puts(seq, ",inode_cache");
952 	if (btrfs_test_opt(root, SKIP_BALANCE))
953 		seq_puts(seq, ",skip_balance");
954 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
955 		seq_puts(seq, ",fatal_errors=panic");
956 	return 0;
957 }
958 
959 static int btrfs_test_super(struct super_block *s, void *data)
960 {
961 	struct btrfs_fs_info *p = data;
962 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
963 
964 	return fs_info->fs_devices == p->fs_devices;
965 }
966 
967 static int btrfs_set_super(struct super_block *s, void *data)
968 {
969 	int err = set_anon_super(s, data);
970 	if (!err)
971 		s->s_fs_info = data;
972 	return err;
973 }
974 
975 /*
976  * subvolumes are identified by ino 256
977  */
978 static inline int is_subvolume_inode(struct inode *inode)
979 {
980 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
981 		return 1;
982 	return 0;
983 }
984 
985 /*
986  * This will strip out the subvol=%s argument for an argument string and add
987  * subvolid=0 to make sure we get the actual tree root for path walking to the
988  * subvol we want.
989  */
990 static char *setup_root_args(char *args)
991 {
992 	unsigned len = strlen(args) + 2 + 1;
993 	char *src, *dst, *buf;
994 
995 	/*
996 	 * We need the same args as before, but with this substitution:
997 	 * s!subvol=[^,]+!subvolid=0!
998 	 *
999 	 * Since the replacement string is up to 2 bytes longer than the
1000 	 * original, allocate strlen(args) + 2 + 1 bytes.
1001 	 */
1002 
1003 	src = strstr(args, "subvol=");
1004 	/* This shouldn't happen, but just in case.. */
1005 	if (!src)
1006 		return NULL;
1007 
1008 	buf = dst = kmalloc(len, GFP_NOFS);
1009 	if (!buf)
1010 		return NULL;
1011 
1012 	/*
1013 	 * If the subvol= arg is not at the start of the string,
1014 	 * copy whatever precedes it into buf.
1015 	 */
1016 	if (src != args) {
1017 		*src++ = '\0';
1018 		strcpy(buf, args);
1019 		dst += strlen(args);
1020 	}
1021 
1022 	strcpy(dst, "subvolid=0");
1023 	dst += strlen("subvolid=0");
1024 
1025 	/*
1026 	 * If there is a "," after the original subvol=... string,
1027 	 * copy that suffix into our buffer.  Otherwise, we're done.
1028 	 */
1029 	src = strchr(src, ',');
1030 	if (src)
1031 		strcpy(dst, src);
1032 
1033 	return buf;
1034 }
1035 
1036 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1037 				   const char *device_name, char *data)
1038 {
1039 	struct dentry *root;
1040 	struct vfsmount *mnt;
1041 	char *newargs;
1042 
1043 	newargs = setup_root_args(data);
1044 	if (!newargs)
1045 		return ERR_PTR(-ENOMEM);
1046 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1047 			     newargs);
1048 	kfree(newargs);
1049 	if (IS_ERR(mnt))
1050 		return ERR_CAST(mnt);
1051 
1052 	root = mount_subtree(mnt, subvol_name);
1053 
1054 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1055 		struct super_block *s = root->d_sb;
1056 		dput(root);
1057 		root = ERR_PTR(-EINVAL);
1058 		deactivate_locked_super(s);
1059 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1060 				subvol_name);
1061 	}
1062 
1063 	return root;
1064 }
1065 
1066 /*
1067  * Find a superblock for the given device / mount point.
1068  *
1069  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1070  *	  for multiple device setup.  Make sure to keep it in sync.
1071  */
1072 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1073 		const char *device_name, void *data)
1074 {
1075 	struct block_device *bdev = NULL;
1076 	struct super_block *s;
1077 	struct dentry *root;
1078 	struct btrfs_fs_devices *fs_devices = NULL;
1079 	struct btrfs_fs_info *fs_info = NULL;
1080 	fmode_t mode = FMODE_READ;
1081 	char *subvol_name = NULL;
1082 	u64 subvol_objectid = 0;
1083 	u64 subvol_rootid = 0;
1084 	int error = 0;
1085 
1086 	if (!(flags & MS_RDONLY))
1087 		mode |= FMODE_WRITE;
1088 
1089 	error = btrfs_parse_early_options(data, mode, fs_type,
1090 					  &subvol_name, &subvol_objectid,
1091 					  &subvol_rootid, &fs_devices);
1092 	if (error) {
1093 		kfree(subvol_name);
1094 		return ERR_PTR(error);
1095 	}
1096 
1097 	if (subvol_name) {
1098 		root = mount_subvol(subvol_name, flags, device_name, data);
1099 		kfree(subvol_name);
1100 		return root;
1101 	}
1102 
1103 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1104 	if (error)
1105 		return ERR_PTR(error);
1106 
1107 	/*
1108 	 * Setup a dummy root and fs_info for test/set super.  This is because
1109 	 * we don't actually fill this stuff out until open_ctree, but we need
1110 	 * it for searching for existing supers, so this lets us do that and
1111 	 * then open_ctree will properly initialize everything later.
1112 	 */
1113 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1114 	if (!fs_info)
1115 		return ERR_PTR(-ENOMEM);
1116 
1117 	fs_info->fs_devices = fs_devices;
1118 
1119 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1120 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1121 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1122 		error = -ENOMEM;
1123 		goto error_fs_info;
1124 	}
1125 
1126 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1127 	if (error)
1128 		goto error_fs_info;
1129 
1130 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1131 		error = -EACCES;
1132 		goto error_close_devices;
1133 	}
1134 
1135 	bdev = fs_devices->latest_bdev;
1136 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1137 		 fs_info);
1138 	if (IS_ERR(s)) {
1139 		error = PTR_ERR(s);
1140 		goto error_close_devices;
1141 	}
1142 
1143 	if (s->s_root) {
1144 		btrfs_close_devices(fs_devices);
1145 		free_fs_info(fs_info);
1146 		if ((flags ^ s->s_flags) & MS_RDONLY)
1147 			error = -EBUSY;
1148 	} else {
1149 		char b[BDEVNAME_SIZE];
1150 
1151 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1152 		btrfs_sb(s)->bdev_holder = fs_type;
1153 		error = btrfs_fill_super(s, fs_devices, data,
1154 					 flags & MS_SILENT ? 1 : 0);
1155 	}
1156 
1157 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1158 	if (IS_ERR(root))
1159 		deactivate_locked_super(s);
1160 
1161 	return root;
1162 
1163 error_close_devices:
1164 	btrfs_close_devices(fs_devices);
1165 error_fs_info:
1166 	free_fs_info(fs_info);
1167 	return ERR_PTR(error);
1168 }
1169 
1170 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1171 {
1172 	spin_lock_irq(&workers->lock);
1173 	workers->max_workers = new_limit;
1174 	spin_unlock_irq(&workers->lock);
1175 }
1176 
1177 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1178 				     int new_pool_size, int old_pool_size)
1179 {
1180 	if (new_pool_size == old_pool_size)
1181 		return;
1182 
1183 	fs_info->thread_pool_size = new_pool_size;
1184 
1185 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1186 	       old_pool_size, new_pool_size);
1187 
1188 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1189 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1190 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1191 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1192 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1193 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1194 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1195 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1196 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1197 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1198 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1199 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1200 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1201 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1202 			      new_pool_size);
1203 }
1204 
1205 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info,
1206 					 unsigned long old_opts, int flags)
1207 {
1208 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1209 
1210 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1211 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1212 	     (flags & MS_RDONLY))) {
1213 		/* wait for any defraggers to finish */
1214 		wait_event(fs_info->transaction_wait,
1215 			   (atomic_read(&fs_info->defrag_running) == 0));
1216 		if (flags & MS_RDONLY)
1217 			sync_filesystem(fs_info->sb);
1218 	}
1219 }
1220 
1221 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1222 					 unsigned long old_opts)
1223 {
1224 	/*
1225 	 * We need cleanup all defragable inodes if the autodefragment is
1226 	 * close or the fs is R/O.
1227 	 */
1228 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1229 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1230 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1231 		btrfs_cleanup_defrag_inodes(fs_info);
1232 	}
1233 
1234 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1235 }
1236 
1237 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1238 {
1239 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1240 	struct btrfs_root *root = fs_info->tree_root;
1241 	unsigned old_flags = sb->s_flags;
1242 	unsigned long old_opts = fs_info->mount_opt;
1243 	unsigned long old_compress_type = fs_info->compress_type;
1244 	u64 old_max_inline = fs_info->max_inline;
1245 	u64 old_alloc_start = fs_info->alloc_start;
1246 	int old_thread_pool_size = fs_info->thread_pool_size;
1247 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1248 	int ret;
1249 
1250 	btrfs_remount_prepare(fs_info, old_opts, *flags);
1251 
1252 	ret = btrfs_parse_options(root, data);
1253 	if (ret) {
1254 		ret = -EINVAL;
1255 		goto restore;
1256 	}
1257 
1258 	btrfs_resize_thread_pool(fs_info,
1259 		fs_info->thread_pool_size, old_thread_pool_size);
1260 
1261 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1262 		goto out;
1263 
1264 	if (*flags & MS_RDONLY) {
1265 		/*
1266 		 * this also happens on 'umount -rf' or on shutdown, when
1267 		 * the filesystem is busy.
1268 		 */
1269 		sb->s_flags |= MS_RDONLY;
1270 
1271 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1272 		btrfs_scrub_cancel(fs_info);
1273 
1274 		ret = btrfs_commit_super(root);
1275 		if (ret)
1276 			goto restore;
1277 	} else {
1278 		if (fs_info->fs_devices->rw_devices == 0) {
1279 			ret = -EACCES;
1280 			goto restore;
1281 		}
1282 
1283 		if (fs_info->fs_devices->missing_devices >
1284 		     fs_info->num_tolerated_disk_barrier_failures &&
1285 		    !(*flags & MS_RDONLY)) {
1286 			printk(KERN_WARNING
1287 			       "Btrfs: too many missing devices, writeable remount is not allowed\n");
1288 			ret = -EACCES;
1289 			goto restore;
1290 		}
1291 
1292 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1293 			ret = -EINVAL;
1294 			goto restore;
1295 		}
1296 
1297 		ret = btrfs_cleanup_fs_roots(fs_info);
1298 		if (ret)
1299 			goto restore;
1300 
1301 		/* recover relocation */
1302 		ret = btrfs_recover_relocation(root);
1303 		if (ret)
1304 			goto restore;
1305 
1306 		ret = btrfs_resume_balance_async(fs_info);
1307 		if (ret)
1308 			goto restore;
1309 
1310 		ret = btrfs_resume_dev_replace_async(fs_info);
1311 		if (ret) {
1312 			pr_warn("btrfs: failed to resume dev_replace\n");
1313 			goto restore;
1314 		}
1315 		sb->s_flags &= ~MS_RDONLY;
1316 	}
1317 out:
1318 	btrfs_remount_cleanup(fs_info, old_opts);
1319 	return 0;
1320 
1321 restore:
1322 	/* We've hit an error - don't reset MS_RDONLY */
1323 	if (sb->s_flags & MS_RDONLY)
1324 		old_flags |= MS_RDONLY;
1325 	sb->s_flags = old_flags;
1326 	fs_info->mount_opt = old_opts;
1327 	fs_info->compress_type = old_compress_type;
1328 	fs_info->max_inline = old_max_inline;
1329 	mutex_lock(&fs_info->chunk_mutex);
1330 	fs_info->alloc_start = old_alloc_start;
1331 	mutex_unlock(&fs_info->chunk_mutex);
1332 	btrfs_resize_thread_pool(fs_info,
1333 		old_thread_pool_size, fs_info->thread_pool_size);
1334 	fs_info->metadata_ratio = old_metadata_ratio;
1335 	btrfs_remount_cleanup(fs_info, old_opts);
1336 	return ret;
1337 }
1338 
1339 /* Used to sort the devices by max_avail(descending sort) */
1340 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1341 				       const void *dev_info2)
1342 {
1343 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1344 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1345 		return -1;
1346 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1347 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1348 		return 1;
1349 	else
1350 	return 0;
1351 }
1352 
1353 /*
1354  * sort the devices by max_avail, in which max free extent size of each device
1355  * is stored.(Descending Sort)
1356  */
1357 static inline void btrfs_descending_sort_devices(
1358 					struct btrfs_device_info *devices,
1359 					size_t nr_devices)
1360 {
1361 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1362 	     btrfs_cmp_device_free_bytes, NULL);
1363 }
1364 
1365 /*
1366  * The helper to calc the free space on the devices that can be used to store
1367  * file data.
1368  */
1369 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1370 {
1371 	struct btrfs_fs_info *fs_info = root->fs_info;
1372 	struct btrfs_device_info *devices_info;
1373 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1374 	struct btrfs_device *device;
1375 	u64 skip_space;
1376 	u64 type;
1377 	u64 avail_space;
1378 	u64 used_space;
1379 	u64 min_stripe_size;
1380 	int min_stripes = 1, num_stripes = 1;
1381 	int i = 0, nr_devices;
1382 	int ret;
1383 
1384 	nr_devices = fs_info->fs_devices->open_devices;
1385 	BUG_ON(!nr_devices);
1386 
1387 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1388 			       GFP_NOFS);
1389 	if (!devices_info)
1390 		return -ENOMEM;
1391 
1392 	/* calc min stripe number for data space alloction */
1393 	type = btrfs_get_alloc_profile(root, 1);
1394 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1395 		min_stripes = 2;
1396 		num_stripes = nr_devices;
1397 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1398 		min_stripes = 2;
1399 		num_stripes = 2;
1400 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1401 		min_stripes = 4;
1402 		num_stripes = 4;
1403 	}
1404 
1405 	if (type & BTRFS_BLOCK_GROUP_DUP)
1406 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1407 	else
1408 		min_stripe_size = BTRFS_STRIPE_LEN;
1409 
1410 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1411 		if (!device->in_fs_metadata || !device->bdev ||
1412 		    device->is_tgtdev_for_dev_replace)
1413 			continue;
1414 
1415 		avail_space = device->total_bytes - device->bytes_used;
1416 
1417 		/* align with stripe_len */
1418 		do_div(avail_space, BTRFS_STRIPE_LEN);
1419 		avail_space *= BTRFS_STRIPE_LEN;
1420 
1421 		/*
1422 		 * In order to avoid overwritting the superblock on the drive,
1423 		 * btrfs starts at an offset of at least 1MB when doing chunk
1424 		 * allocation.
1425 		 */
1426 		skip_space = 1024 * 1024;
1427 
1428 		/* user can set the offset in fs_info->alloc_start. */
1429 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1430 		    device->total_bytes)
1431 			skip_space = max(fs_info->alloc_start, skip_space);
1432 
1433 		/*
1434 		 * btrfs can not use the free space in [0, skip_space - 1],
1435 		 * we must subtract it from the total. In order to implement
1436 		 * it, we account the used space in this range first.
1437 		 */
1438 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1439 						     &used_space);
1440 		if (ret) {
1441 			kfree(devices_info);
1442 			return ret;
1443 		}
1444 
1445 		/* calc the free space in [0, skip_space - 1] */
1446 		skip_space -= used_space;
1447 
1448 		/*
1449 		 * we can use the free space in [0, skip_space - 1], subtract
1450 		 * it from the total.
1451 		 */
1452 		if (avail_space && avail_space >= skip_space)
1453 			avail_space -= skip_space;
1454 		else
1455 			avail_space = 0;
1456 
1457 		if (avail_space < min_stripe_size)
1458 			continue;
1459 
1460 		devices_info[i].dev = device;
1461 		devices_info[i].max_avail = avail_space;
1462 
1463 		i++;
1464 	}
1465 
1466 	nr_devices = i;
1467 
1468 	btrfs_descending_sort_devices(devices_info, nr_devices);
1469 
1470 	i = nr_devices - 1;
1471 	avail_space = 0;
1472 	while (nr_devices >= min_stripes) {
1473 		if (num_stripes > nr_devices)
1474 			num_stripes = nr_devices;
1475 
1476 		if (devices_info[i].max_avail >= min_stripe_size) {
1477 			int j;
1478 			u64 alloc_size;
1479 
1480 			avail_space += devices_info[i].max_avail * num_stripes;
1481 			alloc_size = devices_info[i].max_avail;
1482 			for (j = i + 1 - num_stripes; j <= i; j++)
1483 				devices_info[j].max_avail -= alloc_size;
1484 		}
1485 		i--;
1486 		nr_devices--;
1487 	}
1488 
1489 	kfree(devices_info);
1490 	*free_bytes = avail_space;
1491 	return 0;
1492 }
1493 
1494 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1495 {
1496 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1497 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1498 	struct list_head *head = &fs_info->space_info;
1499 	struct btrfs_space_info *found;
1500 	u64 total_used = 0;
1501 	u64 total_free_data = 0;
1502 	int bits = dentry->d_sb->s_blocksize_bits;
1503 	__be32 *fsid = (__be32 *)fs_info->fsid;
1504 	int ret;
1505 
1506 	/* holding chunk_muext to avoid allocating new chunks */
1507 	mutex_lock(&fs_info->chunk_mutex);
1508 	rcu_read_lock();
1509 	list_for_each_entry_rcu(found, head, list) {
1510 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1511 			total_free_data += found->disk_total - found->disk_used;
1512 			total_free_data -=
1513 				btrfs_account_ro_block_groups_free_space(found);
1514 		}
1515 
1516 		total_used += found->disk_used;
1517 	}
1518 	rcu_read_unlock();
1519 
1520 	buf->f_namelen = BTRFS_NAME_LEN;
1521 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1522 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1523 	buf->f_bsize = dentry->d_sb->s_blocksize;
1524 	buf->f_type = BTRFS_SUPER_MAGIC;
1525 	buf->f_bavail = total_free_data;
1526 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1527 	if (ret) {
1528 		mutex_unlock(&fs_info->chunk_mutex);
1529 		return ret;
1530 	}
1531 	buf->f_bavail += total_free_data;
1532 	buf->f_bavail = buf->f_bavail >> bits;
1533 	mutex_unlock(&fs_info->chunk_mutex);
1534 
1535 	/* We treat it as constant endianness (it doesn't matter _which_)
1536 	   because we want the fsid to come out the same whether mounted
1537 	   on a big-endian or little-endian host */
1538 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1539 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1540 	/* Mask in the root object ID too, to disambiguate subvols */
1541 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1542 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1543 
1544 	return 0;
1545 }
1546 
1547 static void btrfs_kill_super(struct super_block *sb)
1548 {
1549 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1550 	kill_anon_super(sb);
1551 	free_fs_info(fs_info);
1552 }
1553 
1554 static struct file_system_type btrfs_fs_type = {
1555 	.owner		= THIS_MODULE,
1556 	.name		= "btrfs",
1557 	.mount		= btrfs_mount,
1558 	.kill_sb	= btrfs_kill_super,
1559 	.fs_flags	= FS_REQUIRES_DEV,
1560 };
1561 MODULE_ALIAS_FS("btrfs");
1562 
1563 /*
1564  * used by btrfsctl to scan devices when no FS is mounted
1565  */
1566 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1567 				unsigned long arg)
1568 {
1569 	struct btrfs_ioctl_vol_args *vol;
1570 	struct btrfs_fs_devices *fs_devices;
1571 	int ret = -ENOTTY;
1572 
1573 	if (!capable(CAP_SYS_ADMIN))
1574 		return -EPERM;
1575 
1576 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1577 	if (IS_ERR(vol))
1578 		return PTR_ERR(vol);
1579 
1580 	switch (cmd) {
1581 	case BTRFS_IOC_SCAN_DEV:
1582 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1583 					    &btrfs_fs_type, &fs_devices);
1584 		break;
1585 	case BTRFS_IOC_DEVICES_READY:
1586 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1587 					    &btrfs_fs_type, &fs_devices);
1588 		if (ret)
1589 			break;
1590 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1591 		break;
1592 	}
1593 
1594 	kfree(vol);
1595 	return ret;
1596 }
1597 
1598 static int btrfs_freeze(struct super_block *sb)
1599 {
1600 	struct btrfs_trans_handle *trans;
1601 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1602 
1603 	trans = btrfs_attach_transaction_barrier(root);
1604 	if (IS_ERR(trans)) {
1605 		/* no transaction, don't bother */
1606 		if (PTR_ERR(trans) == -ENOENT)
1607 			return 0;
1608 		return PTR_ERR(trans);
1609 	}
1610 	return btrfs_commit_transaction(trans, root);
1611 }
1612 
1613 static int btrfs_unfreeze(struct super_block *sb)
1614 {
1615 	return 0;
1616 }
1617 
1618 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1619 {
1620 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1621 	struct btrfs_fs_devices *cur_devices;
1622 	struct btrfs_device *dev, *first_dev = NULL;
1623 	struct list_head *head;
1624 	struct rcu_string *name;
1625 
1626 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1627 	cur_devices = fs_info->fs_devices;
1628 	while (cur_devices) {
1629 		head = &cur_devices->devices;
1630 		list_for_each_entry(dev, head, dev_list) {
1631 			if (dev->missing)
1632 				continue;
1633 			if (!first_dev || dev->devid < first_dev->devid)
1634 				first_dev = dev;
1635 		}
1636 		cur_devices = cur_devices->seed;
1637 	}
1638 
1639 	if (first_dev) {
1640 		rcu_read_lock();
1641 		name = rcu_dereference(first_dev->name);
1642 		seq_escape(m, name->str, " \t\n\\");
1643 		rcu_read_unlock();
1644 	} else {
1645 		WARN_ON(1);
1646 	}
1647 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1648 	return 0;
1649 }
1650 
1651 static const struct super_operations btrfs_super_ops = {
1652 	.drop_inode	= btrfs_drop_inode,
1653 	.evict_inode	= btrfs_evict_inode,
1654 	.put_super	= btrfs_put_super,
1655 	.sync_fs	= btrfs_sync_fs,
1656 	.show_options	= btrfs_show_options,
1657 	.show_devname	= btrfs_show_devname,
1658 	.write_inode	= btrfs_write_inode,
1659 	.alloc_inode	= btrfs_alloc_inode,
1660 	.destroy_inode	= btrfs_destroy_inode,
1661 	.statfs		= btrfs_statfs,
1662 	.remount_fs	= btrfs_remount,
1663 	.freeze_fs	= btrfs_freeze,
1664 	.unfreeze_fs	= btrfs_unfreeze,
1665 };
1666 
1667 static const struct file_operations btrfs_ctl_fops = {
1668 	.unlocked_ioctl	 = btrfs_control_ioctl,
1669 	.compat_ioctl = btrfs_control_ioctl,
1670 	.owner	 = THIS_MODULE,
1671 	.llseek = noop_llseek,
1672 };
1673 
1674 static struct miscdevice btrfs_misc = {
1675 	.minor		= BTRFS_MINOR,
1676 	.name		= "btrfs-control",
1677 	.fops		= &btrfs_ctl_fops
1678 };
1679 
1680 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1681 MODULE_ALIAS("devname:btrfs-control");
1682 
1683 static int btrfs_interface_init(void)
1684 {
1685 	return misc_register(&btrfs_misc);
1686 }
1687 
1688 static void btrfs_interface_exit(void)
1689 {
1690 	if (misc_deregister(&btrfs_misc) < 0)
1691 		printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1692 }
1693 
1694 static int __init init_btrfs_fs(void)
1695 {
1696 	int err;
1697 
1698 	err = btrfs_init_sysfs();
1699 	if (err)
1700 		return err;
1701 
1702 	btrfs_init_compress();
1703 
1704 	err = btrfs_init_cachep();
1705 	if (err)
1706 		goto free_compress;
1707 
1708 	err = extent_io_init();
1709 	if (err)
1710 		goto free_cachep;
1711 
1712 	err = extent_map_init();
1713 	if (err)
1714 		goto free_extent_io;
1715 
1716 	err = ordered_data_init();
1717 	if (err)
1718 		goto free_extent_map;
1719 
1720 	err = btrfs_delayed_inode_init();
1721 	if (err)
1722 		goto free_ordered_data;
1723 
1724 	err = btrfs_auto_defrag_init();
1725 	if (err)
1726 		goto free_delayed_inode;
1727 
1728 	err = btrfs_delayed_ref_init();
1729 	if (err)
1730 		goto free_auto_defrag;
1731 
1732 	err = btrfs_interface_init();
1733 	if (err)
1734 		goto free_delayed_ref;
1735 
1736 	err = register_filesystem(&btrfs_fs_type);
1737 	if (err)
1738 		goto unregister_ioctl;
1739 
1740 	btrfs_init_lockdep();
1741 
1742 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1743 	return 0;
1744 
1745 unregister_ioctl:
1746 	btrfs_interface_exit();
1747 free_delayed_ref:
1748 	btrfs_delayed_ref_exit();
1749 free_auto_defrag:
1750 	btrfs_auto_defrag_exit();
1751 free_delayed_inode:
1752 	btrfs_delayed_inode_exit();
1753 free_ordered_data:
1754 	ordered_data_exit();
1755 free_extent_map:
1756 	extent_map_exit();
1757 free_extent_io:
1758 	extent_io_exit();
1759 free_cachep:
1760 	btrfs_destroy_cachep();
1761 free_compress:
1762 	btrfs_exit_compress();
1763 	btrfs_exit_sysfs();
1764 	return err;
1765 }
1766 
1767 static void __exit exit_btrfs_fs(void)
1768 {
1769 	btrfs_destroy_cachep();
1770 	btrfs_delayed_ref_exit();
1771 	btrfs_auto_defrag_exit();
1772 	btrfs_delayed_inode_exit();
1773 	ordered_data_exit();
1774 	extent_map_exit();
1775 	extent_io_exit();
1776 	btrfs_interface_exit();
1777 	unregister_filesystem(&btrfs_fs_type);
1778 	btrfs_exit_sysfs();
1779 	btrfs_cleanup_fs_uuids();
1780 	btrfs_exit_compress();
1781 }
1782 
1783 module_init(init_btrfs_fs)
1784 module_exit(exit_btrfs_fs)
1785 
1786 MODULE_LICENSE("GPL");
1787