1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "tests/btrfs-tests.h" 46 47 #include "qgroup.h" 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/btrfs.h> 50 51 static const struct super_operations btrfs_super_ops; 52 53 /* 54 * Types for mounting the default subvolume and a subvolume explicitly 55 * requested by subvol=/path. That way the callchain is straightforward and we 56 * don't have to play tricks with the mount options and recursive calls to 57 * btrfs_mount. 58 * 59 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 60 */ 61 static struct file_system_type btrfs_fs_type; 62 static struct file_system_type btrfs_root_fs_type; 63 64 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 65 66 const char *btrfs_decode_error(int errno) 67 { 68 char *errstr = "unknown"; 69 70 switch (errno) { 71 case -EIO: 72 errstr = "IO failure"; 73 break; 74 case -ENOMEM: 75 errstr = "Out of memory"; 76 break; 77 case -EROFS: 78 errstr = "Readonly filesystem"; 79 break; 80 case -EEXIST: 81 errstr = "Object already exists"; 82 break; 83 case -ENOSPC: 84 errstr = "No space left"; 85 break; 86 case -ENOENT: 87 errstr = "No such entry"; 88 break; 89 } 90 91 return errstr; 92 } 93 94 /* 95 * __btrfs_handle_fs_error decodes expected errors from the caller and 96 * invokes the approciate error response. 97 */ 98 __cold 99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 100 unsigned int line, int errno, const char *fmt, ...) 101 { 102 struct super_block *sb = fs_info->sb; 103 #ifdef CONFIG_PRINTK 104 const char *errstr; 105 #endif 106 107 /* 108 * Special case: if the error is EROFS, and we're already 109 * under SB_RDONLY, then it is safe here. 110 */ 111 if (errno == -EROFS && sb_rdonly(sb)) 112 return; 113 114 #ifdef CONFIG_PRINTK 115 errstr = btrfs_decode_error(errno); 116 if (fmt) { 117 struct va_format vaf; 118 va_list args; 119 120 va_start(args, fmt); 121 vaf.fmt = fmt; 122 vaf.va = &args; 123 124 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 125 sb->s_id, function, line, errno, errstr, &vaf); 126 va_end(args); 127 } else { 128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 129 sb->s_id, function, line, errno, errstr); 130 } 131 #endif 132 133 /* 134 * Today we only save the error info to memory. Long term we'll 135 * also send it down to the disk 136 */ 137 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 138 139 /* Don't go through full error handling during mount */ 140 if (!(sb->s_flags & SB_BORN)) 141 return; 142 143 if (sb_rdonly(sb)) 144 return; 145 146 /* btrfs handle error by forcing the filesystem readonly */ 147 sb->s_flags |= SB_RDONLY; 148 btrfs_info(fs_info, "forced readonly"); 149 /* 150 * Note that a running device replace operation is not canceled here 151 * although there is no way to update the progress. It would add the 152 * risk of a deadlock, therefore the canceling is omitted. The only 153 * penalty is that some I/O remains active until the procedure 154 * completes. The next time when the filesystem is mounted writeable 155 * again, the device replace operation continues. 156 */ 157 } 158 159 #ifdef CONFIG_PRINTK 160 static const char * const logtypes[] = { 161 "emergency", 162 "alert", 163 "critical", 164 "error", 165 "warning", 166 "notice", 167 "info", 168 "debug", 169 }; 170 171 172 /* 173 * Use one ratelimit state per log level so that a flood of less important 174 * messages doesn't cause more important ones to be dropped. 175 */ 176 static struct ratelimit_state printk_limits[] = { 177 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 178 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 179 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 180 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 181 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 182 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 183 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 184 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 185 }; 186 187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 188 { 189 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 190 struct va_format vaf; 191 va_list args; 192 int kern_level; 193 const char *type = logtypes[4]; 194 struct ratelimit_state *ratelimit = &printk_limits[4]; 195 196 va_start(args, fmt); 197 198 while ((kern_level = printk_get_level(fmt)) != 0) { 199 size_t size = printk_skip_level(fmt) - fmt; 200 201 if (kern_level >= '0' && kern_level <= '7') { 202 memcpy(lvl, fmt, size); 203 lvl[size] = '\0'; 204 type = logtypes[kern_level - '0']; 205 ratelimit = &printk_limits[kern_level - '0']; 206 } 207 fmt += size; 208 } 209 210 vaf.fmt = fmt; 211 vaf.va = &args; 212 213 if (__ratelimit(ratelimit)) 214 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 215 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 216 217 va_end(args); 218 } 219 #endif 220 221 /* 222 * We only mark the transaction aborted and then set the file system read-only. 223 * This will prevent new transactions from starting or trying to join this 224 * one. 225 * 226 * This means that error recovery at the call site is limited to freeing 227 * any local memory allocations and passing the error code up without 228 * further cleanup. The transaction should complete as it normally would 229 * in the call path but will return -EIO. 230 * 231 * We'll complete the cleanup in btrfs_end_transaction and 232 * btrfs_commit_transaction. 233 */ 234 __cold 235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 236 const char *function, 237 unsigned int line, int errno) 238 { 239 struct btrfs_fs_info *fs_info = trans->fs_info; 240 241 trans->aborted = errno; 242 /* Nothing used. The other threads that have joined this 243 * transaction may be able to continue. */ 244 if (!trans->dirty && list_empty(&trans->new_bgs)) { 245 const char *errstr; 246 247 errstr = btrfs_decode_error(errno); 248 btrfs_warn(fs_info, 249 "%s:%d: Aborting unused transaction(%s).", 250 function, line, errstr); 251 return; 252 } 253 WRITE_ONCE(trans->transaction->aborted, errno); 254 /* Wake up anybody who may be waiting on this transaction */ 255 wake_up(&fs_info->transaction_wait); 256 wake_up(&fs_info->transaction_blocked_wait); 257 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 258 } 259 /* 260 * __btrfs_panic decodes unexpected, fatal errors from the caller, 261 * issues an alert, and either panics or BUGs, depending on mount options. 262 */ 263 __cold 264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 265 unsigned int line, int errno, const char *fmt, ...) 266 { 267 char *s_id = "<unknown>"; 268 const char *errstr; 269 struct va_format vaf = { .fmt = fmt }; 270 va_list args; 271 272 if (fs_info) 273 s_id = fs_info->sb->s_id; 274 275 va_start(args, fmt); 276 vaf.va = &args; 277 278 errstr = btrfs_decode_error(errno); 279 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 280 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 281 s_id, function, line, &vaf, errno, errstr); 282 283 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 284 function, line, &vaf, errno, errstr); 285 va_end(args); 286 /* Caller calls BUG() */ 287 } 288 289 static void btrfs_put_super(struct super_block *sb) 290 { 291 close_ctree(btrfs_sb(sb)); 292 } 293 294 enum { 295 Opt_acl, Opt_noacl, 296 Opt_clear_cache, 297 Opt_commit_interval, 298 Opt_compress, 299 Opt_compress_force, 300 Opt_compress_force_type, 301 Opt_compress_type, 302 Opt_degraded, 303 Opt_device, 304 Opt_fatal_errors, 305 Opt_flushoncommit, Opt_noflushoncommit, 306 Opt_inode_cache, Opt_noinode_cache, 307 Opt_max_inline, 308 Opt_barrier, Opt_nobarrier, 309 Opt_datacow, Opt_nodatacow, 310 Opt_datasum, Opt_nodatasum, 311 Opt_defrag, Opt_nodefrag, 312 Opt_discard, Opt_nodiscard, 313 Opt_nologreplay, 314 Opt_norecovery, 315 Opt_ratio, 316 Opt_rescan_uuid_tree, 317 Opt_skip_balance, 318 Opt_space_cache, Opt_no_space_cache, 319 Opt_space_cache_version, 320 Opt_ssd, Opt_nossd, 321 Opt_ssd_spread, Opt_nossd_spread, 322 Opt_subvol, 323 Opt_subvol_empty, 324 Opt_subvolid, 325 Opt_thread_pool, 326 Opt_treelog, Opt_notreelog, 327 Opt_usebackuproot, 328 Opt_user_subvol_rm_allowed, 329 330 /* Deprecated options */ 331 Opt_alloc_start, 332 Opt_recovery, 333 Opt_subvolrootid, 334 335 /* Debugging options */ 336 Opt_check_integrity, 337 Opt_check_integrity_including_extent_data, 338 Opt_check_integrity_print_mask, 339 Opt_enospc_debug, Opt_noenospc_debug, 340 #ifdef CONFIG_BTRFS_DEBUG 341 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 342 #endif 343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 344 Opt_ref_verify, 345 #endif 346 Opt_err, 347 }; 348 349 static const match_table_t tokens = { 350 {Opt_acl, "acl"}, 351 {Opt_noacl, "noacl"}, 352 {Opt_clear_cache, "clear_cache"}, 353 {Opt_commit_interval, "commit=%u"}, 354 {Opt_compress, "compress"}, 355 {Opt_compress_type, "compress=%s"}, 356 {Opt_compress_force, "compress-force"}, 357 {Opt_compress_force_type, "compress-force=%s"}, 358 {Opt_degraded, "degraded"}, 359 {Opt_device, "device=%s"}, 360 {Opt_fatal_errors, "fatal_errors=%s"}, 361 {Opt_flushoncommit, "flushoncommit"}, 362 {Opt_noflushoncommit, "noflushoncommit"}, 363 {Opt_inode_cache, "inode_cache"}, 364 {Opt_noinode_cache, "noinode_cache"}, 365 {Opt_max_inline, "max_inline=%s"}, 366 {Opt_barrier, "barrier"}, 367 {Opt_nobarrier, "nobarrier"}, 368 {Opt_datacow, "datacow"}, 369 {Opt_nodatacow, "nodatacow"}, 370 {Opt_datasum, "datasum"}, 371 {Opt_nodatasum, "nodatasum"}, 372 {Opt_defrag, "autodefrag"}, 373 {Opt_nodefrag, "noautodefrag"}, 374 {Opt_discard, "discard"}, 375 {Opt_nodiscard, "nodiscard"}, 376 {Opt_nologreplay, "nologreplay"}, 377 {Opt_norecovery, "norecovery"}, 378 {Opt_ratio, "metadata_ratio=%u"}, 379 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 380 {Opt_skip_balance, "skip_balance"}, 381 {Opt_space_cache, "space_cache"}, 382 {Opt_no_space_cache, "nospace_cache"}, 383 {Opt_space_cache_version, "space_cache=%s"}, 384 {Opt_ssd, "ssd"}, 385 {Opt_nossd, "nossd"}, 386 {Opt_ssd_spread, "ssd_spread"}, 387 {Opt_nossd_spread, "nossd_spread"}, 388 {Opt_subvol, "subvol=%s"}, 389 {Opt_subvol_empty, "subvol="}, 390 {Opt_subvolid, "subvolid=%s"}, 391 {Opt_thread_pool, "thread_pool=%u"}, 392 {Opt_treelog, "treelog"}, 393 {Opt_notreelog, "notreelog"}, 394 {Opt_usebackuproot, "usebackuproot"}, 395 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 396 397 /* Deprecated options */ 398 {Opt_alloc_start, "alloc_start=%s"}, 399 {Opt_recovery, "recovery"}, 400 {Opt_subvolrootid, "subvolrootid=%d"}, 401 402 /* Debugging options */ 403 {Opt_check_integrity, "check_int"}, 404 {Opt_check_integrity_including_extent_data, "check_int_data"}, 405 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 406 {Opt_enospc_debug, "enospc_debug"}, 407 {Opt_noenospc_debug, "noenospc_debug"}, 408 #ifdef CONFIG_BTRFS_DEBUG 409 {Opt_fragment_data, "fragment=data"}, 410 {Opt_fragment_metadata, "fragment=metadata"}, 411 {Opt_fragment_all, "fragment=all"}, 412 #endif 413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 414 {Opt_ref_verify, "ref_verify"}, 415 #endif 416 {Opt_err, NULL}, 417 }; 418 419 /* 420 * Regular mount options parser. Everything that is needed only when 421 * reading in a new superblock is parsed here. 422 * XXX JDM: This needs to be cleaned up for remount. 423 */ 424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 425 unsigned long new_flags) 426 { 427 substring_t args[MAX_OPT_ARGS]; 428 char *p, *num; 429 u64 cache_gen; 430 int intarg; 431 int ret = 0; 432 char *compress_type; 433 bool compress_force = false; 434 enum btrfs_compression_type saved_compress_type; 435 bool saved_compress_force; 436 int no_compress = 0; 437 438 cache_gen = btrfs_super_cache_generation(info->super_copy); 439 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 440 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 441 else if (cache_gen) 442 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 443 444 /* 445 * Even the options are empty, we still need to do extra check 446 * against new flags 447 */ 448 if (!options) 449 goto check; 450 451 while ((p = strsep(&options, ",")) != NULL) { 452 int token; 453 if (!*p) 454 continue; 455 456 token = match_token(p, tokens, args); 457 switch (token) { 458 case Opt_degraded: 459 btrfs_info(info, "allowing degraded mounts"); 460 btrfs_set_opt(info->mount_opt, DEGRADED); 461 break; 462 case Opt_subvol: 463 case Opt_subvol_empty: 464 case Opt_subvolid: 465 case Opt_subvolrootid: 466 case Opt_device: 467 /* 468 * These are parsed by btrfs_parse_subvol_options or 469 * btrfs_parse_device_options and can be ignored here. 470 */ 471 break; 472 case Opt_nodatasum: 473 btrfs_set_and_info(info, NODATASUM, 474 "setting nodatasum"); 475 break; 476 case Opt_datasum: 477 if (btrfs_test_opt(info, NODATASUM)) { 478 if (btrfs_test_opt(info, NODATACOW)) 479 btrfs_info(info, 480 "setting datasum, datacow enabled"); 481 else 482 btrfs_info(info, "setting datasum"); 483 } 484 btrfs_clear_opt(info->mount_opt, NODATACOW); 485 btrfs_clear_opt(info->mount_opt, NODATASUM); 486 break; 487 case Opt_nodatacow: 488 if (!btrfs_test_opt(info, NODATACOW)) { 489 if (!btrfs_test_opt(info, COMPRESS) || 490 !btrfs_test_opt(info, FORCE_COMPRESS)) { 491 btrfs_info(info, 492 "setting nodatacow, compression disabled"); 493 } else { 494 btrfs_info(info, "setting nodatacow"); 495 } 496 } 497 btrfs_clear_opt(info->mount_opt, COMPRESS); 498 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 499 btrfs_set_opt(info->mount_opt, NODATACOW); 500 btrfs_set_opt(info->mount_opt, NODATASUM); 501 break; 502 case Opt_datacow: 503 btrfs_clear_and_info(info, NODATACOW, 504 "setting datacow"); 505 break; 506 case Opt_compress_force: 507 case Opt_compress_force_type: 508 compress_force = true; 509 /* Fallthrough */ 510 case Opt_compress: 511 case Opt_compress_type: 512 saved_compress_type = btrfs_test_opt(info, 513 COMPRESS) ? 514 info->compress_type : BTRFS_COMPRESS_NONE; 515 saved_compress_force = 516 btrfs_test_opt(info, FORCE_COMPRESS); 517 if (token == Opt_compress || 518 token == Opt_compress_force || 519 strncmp(args[0].from, "zlib", 4) == 0) { 520 compress_type = "zlib"; 521 522 info->compress_type = BTRFS_COMPRESS_ZLIB; 523 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 524 /* 525 * args[0] contains uninitialized data since 526 * for these tokens we don't expect any 527 * parameter. 528 */ 529 if (token != Opt_compress && 530 token != Opt_compress_force) 531 info->compress_level = 532 btrfs_compress_str2level(args[0].from); 533 btrfs_set_opt(info->mount_opt, COMPRESS); 534 btrfs_clear_opt(info->mount_opt, NODATACOW); 535 btrfs_clear_opt(info->mount_opt, NODATASUM); 536 no_compress = 0; 537 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 538 compress_type = "lzo"; 539 info->compress_type = BTRFS_COMPRESS_LZO; 540 btrfs_set_opt(info->mount_opt, COMPRESS); 541 btrfs_clear_opt(info->mount_opt, NODATACOW); 542 btrfs_clear_opt(info->mount_opt, NODATASUM); 543 btrfs_set_fs_incompat(info, COMPRESS_LZO); 544 no_compress = 0; 545 } else if (strcmp(args[0].from, "zstd") == 0) { 546 compress_type = "zstd"; 547 info->compress_type = BTRFS_COMPRESS_ZSTD; 548 btrfs_set_opt(info->mount_opt, COMPRESS); 549 btrfs_clear_opt(info->mount_opt, NODATACOW); 550 btrfs_clear_opt(info->mount_opt, NODATASUM); 551 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 552 no_compress = 0; 553 } else if (strncmp(args[0].from, "no", 2) == 0) { 554 compress_type = "no"; 555 btrfs_clear_opt(info->mount_opt, COMPRESS); 556 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 557 compress_force = false; 558 no_compress++; 559 } else { 560 ret = -EINVAL; 561 goto out; 562 } 563 564 if (compress_force) { 565 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 566 } else { 567 /* 568 * If we remount from compress-force=xxx to 569 * compress=xxx, we need clear FORCE_COMPRESS 570 * flag, otherwise, there is no way for users 571 * to disable forcible compression separately. 572 */ 573 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 574 } 575 if ((btrfs_test_opt(info, COMPRESS) && 576 (info->compress_type != saved_compress_type || 577 compress_force != saved_compress_force)) || 578 (!btrfs_test_opt(info, COMPRESS) && 579 no_compress == 1)) { 580 btrfs_info(info, "%s %s compression, level %d", 581 (compress_force) ? "force" : "use", 582 compress_type, info->compress_level); 583 } 584 compress_force = false; 585 break; 586 case Opt_ssd: 587 btrfs_set_and_info(info, SSD, 588 "enabling ssd optimizations"); 589 btrfs_clear_opt(info->mount_opt, NOSSD); 590 break; 591 case Opt_ssd_spread: 592 btrfs_set_and_info(info, SSD, 593 "enabling ssd optimizations"); 594 btrfs_set_and_info(info, SSD_SPREAD, 595 "using spread ssd allocation scheme"); 596 btrfs_clear_opt(info->mount_opt, NOSSD); 597 break; 598 case Opt_nossd: 599 btrfs_set_opt(info->mount_opt, NOSSD); 600 btrfs_clear_and_info(info, SSD, 601 "not using ssd optimizations"); 602 /* Fallthrough */ 603 case Opt_nossd_spread: 604 btrfs_clear_and_info(info, SSD_SPREAD, 605 "not using spread ssd allocation scheme"); 606 break; 607 case Opt_barrier: 608 btrfs_clear_and_info(info, NOBARRIER, 609 "turning on barriers"); 610 break; 611 case Opt_nobarrier: 612 btrfs_set_and_info(info, NOBARRIER, 613 "turning off barriers"); 614 break; 615 case Opt_thread_pool: 616 ret = match_int(&args[0], &intarg); 617 if (ret) { 618 goto out; 619 } else if (intarg == 0) { 620 ret = -EINVAL; 621 goto out; 622 } 623 info->thread_pool_size = intarg; 624 break; 625 case Opt_max_inline: 626 num = match_strdup(&args[0]); 627 if (num) { 628 info->max_inline = memparse(num, NULL); 629 kfree(num); 630 631 if (info->max_inline) { 632 info->max_inline = min_t(u64, 633 info->max_inline, 634 info->sectorsize); 635 } 636 btrfs_info(info, "max_inline at %llu", 637 info->max_inline); 638 } else { 639 ret = -ENOMEM; 640 goto out; 641 } 642 break; 643 case Opt_alloc_start: 644 btrfs_info(info, 645 "option alloc_start is obsolete, ignored"); 646 break; 647 case Opt_acl: 648 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 649 info->sb->s_flags |= SB_POSIXACL; 650 break; 651 #else 652 btrfs_err(info, "support for ACL not compiled in!"); 653 ret = -EINVAL; 654 goto out; 655 #endif 656 case Opt_noacl: 657 info->sb->s_flags &= ~SB_POSIXACL; 658 break; 659 case Opt_notreelog: 660 btrfs_set_and_info(info, NOTREELOG, 661 "disabling tree log"); 662 break; 663 case Opt_treelog: 664 btrfs_clear_and_info(info, NOTREELOG, 665 "enabling tree log"); 666 break; 667 case Opt_norecovery: 668 case Opt_nologreplay: 669 btrfs_set_and_info(info, NOLOGREPLAY, 670 "disabling log replay at mount time"); 671 break; 672 case Opt_flushoncommit: 673 btrfs_set_and_info(info, FLUSHONCOMMIT, 674 "turning on flush-on-commit"); 675 break; 676 case Opt_noflushoncommit: 677 btrfs_clear_and_info(info, FLUSHONCOMMIT, 678 "turning off flush-on-commit"); 679 break; 680 case Opt_ratio: 681 ret = match_int(&args[0], &intarg); 682 if (ret) 683 goto out; 684 info->metadata_ratio = intarg; 685 btrfs_info(info, "metadata ratio %u", 686 info->metadata_ratio); 687 break; 688 case Opt_discard: 689 btrfs_set_and_info(info, DISCARD, 690 "turning on discard"); 691 break; 692 case Opt_nodiscard: 693 btrfs_clear_and_info(info, DISCARD, 694 "turning off discard"); 695 break; 696 case Opt_space_cache: 697 case Opt_space_cache_version: 698 if (token == Opt_space_cache || 699 strcmp(args[0].from, "v1") == 0) { 700 btrfs_clear_opt(info->mount_opt, 701 FREE_SPACE_TREE); 702 btrfs_set_and_info(info, SPACE_CACHE, 703 "enabling disk space caching"); 704 } else if (strcmp(args[0].from, "v2") == 0) { 705 btrfs_clear_opt(info->mount_opt, 706 SPACE_CACHE); 707 btrfs_set_and_info(info, FREE_SPACE_TREE, 708 "enabling free space tree"); 709 } else { 710 ret = -EINVAL; 711 goto out; 712 } 713 break; 714 case Opt_rescan_uuid_tree: 715 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 716 break; 717 case Opt_no_space_cache: 718 if (btrfs_test_opt(info, SPACE_CACHE)) { 719 btrfs_clear_and_info(info, SPACE_CACHE, 720 "disabling disk space caching"); 721 } 722 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 723 btrfs_clear_and_info(info, FREE_SPACE_TREE, 724 "disabling free space tree"); 725 } 726 break; 727 case Opt_inode_cache: 728 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 729 "enabling inode map caching"); 730 break; 731 case Opt_noinode_cache: 732 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 733 "disabling inode map caching"); 734 break; 735 case Opt_clear_cache: 736 btrfs_set_and_info(info, CLEAR_CACHE, 737 "force clearing of disk cache"); 738 break; 739 case Opt_user_subvol_rm_allowed: 740 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 741 break; 742 case Opt_enospc_debug: 743 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 744 break; 745 case Opt_noenospc_debug: 746 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 747 break; 748 case Opt_defrag: 749 btrfs_set_and_info(info, AUTO_DEFRAG, 750 "enabling auto defrag"); 751 break; 752 case Opt_nodefrag: 753 btrfs_clear_and_info(info, AUTO_DEFRAG, 754 "disabling auto defrag"); 755 break; 756 case Opt_recovery: 757 btrfs_warn(info, 758 "'recovery' is deprecated, use 'usebackuproot' instead"); 759 /* fall through */ 760 case Opt_usebackuproot: 761 btrfs_info(info, 762 "trying to use backup root at mount time"); 763 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 764 break; 765 case Opt_skip_balance: 766 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 767 break; 768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 769 case Opt_check_integrity_including_extent_data: 770 btrfs_info(info, 771 "enabling check integrity including extent data"); 772 btrfs_set_opt(info->mount_opt, 773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 774 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 775 break; 776 case Opt_check_integrity: 777 btrfs_info(info, "enabling check integrity"); 778 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 779 break; 780 case Opt_check_integrity_print_mask: 781 ret = match_int(&args[0], &intarg); 782 if (ret) 783 goto out; 784 info->check_integrity_print_mask = intarg; 785 btrfs_info(info, "check_integrity_print_mask 0x%x", 786 info->check_integrity_print_mask); 787 break; 788 #else 789 case Opt_check_integrity_including_extent_data: 790 case Opt_check_integrity: 791 case Opt_check_integrity_print_mask: 792 btrfs_err(info, 793 "support for check_integrity* not compiled in!"); 794 ret = -EINVAL; 795 goto out; 796 #endif 797 case Opt_fatal_errors: 798 if (strcmp(args[0].from, "panic") == 0) 799 btrfs_set_opt(info->mount_opt, 800 PANIC_ON_FATAL_ERROR); 801 else if (strcmp(args[0].from, "bug") == 0) 802 btrfs_clear_opt(info->mount_opt, 803 PANIC_ON_FATAL_ERROR); 804 else { 805 ret = -EINVAL; 806 goto out; 807 } 808 break; 809 case Opt_commit_interval: 810 intarg = 0; 811 ret = match_int(&args[0], &intarg); 812 if (ret) 813 goto out; 814 if (intarg == 0) { 815 btrfs_info(info, 816 "using default commit interval %us", 817 BTRFS_DEFAULT_COMMIT_INTERVAL); 818 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 819 } else if (intarg > 300) { 820 btrfs_warn(info, "excessive commit interval %d", 821 intarg); 822 } 823 info->commit_interval = intarg; 824 break; 825 #ifdef CONFIG_BTRFS_DEBUG 826 case Opt_fragment_all: 827 btrfs_info(info, "fragmenting all space"); 828 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 829 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 830 break; 831 case Opt_fragment_metadata: 832 btrfs_info(info, "fragmenting metadata"); 833 btrfs_set_opt(info->mount_opt, 834 FRAGMENT_METADATA); 835 break; 836 case Opt_fragment_data: 837 btrfs_info(info, "fragmenting data"); 838 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 839 break; 840 #endif 841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 842 case Opt_ref_verify: 843 btrfs_info(info, "doing ref verification"); 844 btrfs_set_opt(info->mount_opt, REF_VERIFY); 845 break; 846 #endif 847 case Opt_err: 848 btrfs_info(info, "unrecognized mount option '%s'", p); 849 ret = -EINVAL; 850 goto out; 851 default: 852 break; 853 } 854 } 855 check: 856 /* 857 * Extra check for current option against current flag 858 */ 859 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 860 btrfs_err(info, 861 "nologreplay must be used with ro mount option"); 862 ret = -EINVAL; 863 } 864 out: 865 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 866 !btrfs_test_opt(info, FREE_SPACE_TREE) && 867 !btrfs_test_opt(info, CLEAR_CACHE)) { 868 btrfs_err(info, "cannot disable free space tree"); 869 ret = -EINVAL; 870 871 } 872 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 873 btrfs_info(info, "disk space caching is enabled"); 874 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 875 btrfs_info(info, "using free space tree"); 876 return ret; 877 } 878 879 /* 880 * Parse mount options that are required early in the mount process. 881 * 882 * All other options will be parsed on much later in the mount process and 883 * only when we need to allocate a new super block. 884 */ 885 static int btrfs_parse_device_options(const char *options, fmode_t flags, 886 void *holder) 887 { 888 substring_t args[MAX_OPT_ARGS]; 889 char *device_name, *opts, *orig, *p; 890 struct btrfs_device *device = NULL; 891 int error = 0; 892 893 lockdep_assert_held(&uuid_mutex); 894 895 if (!options) 896 return 0; 897 898 /* 899 * strsep changes the string, duplicate it because btrfs_parse_options 900 * gets called later 901 */ 902 opts = kstrdup(options, GFP_KERNEL); 903 if (!opts) 904 return -ENOMEM; 905 orig = opts; 906 907 while ((p = strsep(&opts, ",")) != NULL) { 908 int token; 909 910 if (!*p) 911 continue; 912 913 token = match_token(p, tokens, args); 914 if (token == Opt_device) { 915 device_name = match_strdup(&args[0]); 916 if (!device_name) { 917 error = -ENOMEM; 918 goto out; 919 } 920 device = btrfs_scan_one_device(device_name, flags, 921 holder); 922 kfree(device_name); 923 if (IS_ERR(device)) { 924 error = PTR_ERR(device); 925 goto out; 926 } 927 } 928 } 929 930 out: 931 kfree(orig); 932 return error; 933 } 934 935 /* 936 * Parse mount options that are related to subvolume id 937 * 938 * The value is later passed to mount_subvol() 939 */ 940 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 941 u64 *subvol_objectid) 942 { 943 substring_t args[MAX_OPT_ARGS]; 944 char *opts, *orig, *p; 945 int error = 0; 946 u64 subvolid; 947 948 if (!options) 949 return 0; 950 951 /* 952 * strsep changes the string, duplicate it because 953 * btrfs_parse_device_options gets called later 954 */ 955 opts = kstrdup(options, GFP_KERNEL); 956 if (!opts) 957 return -ENOMEM; 958 orig = opts; 959 960 while ((p = strsep(&opts, ",")) != NULL) { 961 int token; 962 if (!*p) 963 continue; 964 965 token = match_token(p, tokens, args); 966 switch (token) { 967 case Opt_subvol: 968 kfree(*subvol_name); 969 *subvol_name = match_strdup(&args[0]); 970 if (!*subvol_name) { 971 error = -ENOMEM; 972 goto out; 973 } 974 break; 975 case Opt_subvolid: 976 error = match_u64(&args[0], &subvolid); 977 if (error) 978 goto out; 979 980 /* we want the original fs_tree */ 981 if (subvolid == 0) 982 subvolid = BTRFS_FS_TREE_OBJECTID; 983 984 *subvol_objectid = subvolid; 985 break; 986 case Opt_subvolrootid: 987 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 988 break; 989 default: 990 break; 991 } 992 } 993 994 out: 995 kfree(orig); 996 return error; 997 } 998 999 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1000 u64 subvol_objectid) 1001 { 1002 struct btrfs_root *root = fs_info->tree_root; 1003 struct btrfs_root *fs_root; 1004 struct btrfs_root_ref *root_ref; 1005 struct btrfs_inode_ref *inode_ref; 1006 struct btrfs_key key; 1007 struct btrfs_path *path = NULL; 1008 char *name = NULL, *ptr; 1009 u64 dirid; 1010 int len; 1011 int ret; 1012 1013 path = btrfs_alloc_path(); 1014 if (!path) { 1015 ret = -ENOMEM; 1016 goto err; 1017 } 1018 path->leave_spinning = 1; 1019 1020 name = kmalloc(PATH_MAX, GFP_KERNEL); 1021 if (!name) { 1022 ret = -ENOMEM; 1023 goto err; 1024 } 1025 ptr = name + PATH_MAX - 1; 1026 ptr[0] = '\0'; 1027 1028 /* 1029 * Walk up the subvolume trees in the tree of tree roots by root 1030 * backrefs until we hit the top-level subvolume. 1031 */ 1032 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1033 key.objectid = subvol_objectid; 1034 key.type = BTRFS_ROOT_BACKREF_KEY; 1035 key.offset = (u64)-1; 1036 1037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1038 if (ret < 0) { 1039 goto err; 1040 } else if (ret > 0) { 1041 ret = btrfs_previous_item(root, path, subvol_objectid, 1042 BTRFS_ROOT_BACKREF_KEY); 1043 if (ret < 0) { 1044 goto err; 1045 } else if (ret > 0) { 1046 ret = -ENOENT; 1047 goto err; 1048 } 1049 } 1050 1051 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1052 subvol_objectid = key.offset; 1053 1054 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1055 struct btrfs_root_ref); 1056 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1057 ptr -= len + 1; 1058 if (ptr < name) { 1059 ret = -ENAMETOOLONG; 1060 goto err; 1061 } 1062 read_extent_buffer(path->nodes[0], ptr + 1, 1063 (unsigned long)(root_ref + 1), len); 1064 ptr[0] = '/'; 1065 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1066 btrfs_release_path(path); 1067 1068 key.objectid = subvol_objectid; 1069 key.type = BTRFS_ROOT_ITEM_KEY; 1070 key.offset = (u64)-1; 1071 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1072 if (IS_ERR(fs_root)) { 1073 ret = PTR_ERR(fs_root); 1074 goto err; 1075 } 1076 1077 /* 1078 * Walk up the filesystem tree by inode refs until we hit the 1079 * root directory. 1080 */ 1081 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1082 key.objectid = dirid; 1083 key.type = BTRFS_INODE_REF_KEY; 1084 key.offset = (u64)-1; 1085 1086 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1087 if (ret < 0) { 1088 goto err; 1089 } else if (ret > 0) { 1090 ret = btrfs_previous_item(fs_root, path, dirid, 1091 BTRFS_INODE_REF_KEY); 1092 if (ret < 0) { 1093 goto err; 1094 } else if (ret > 0) { 1095 ret = -ENOENT; 1096 goto err; 1097 } 1098 } 1099 1100 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1101 dirid = key.offset; 1102 1103 inode_ref = btrfs_item_ptr(path->nodes[0], 1104 path->slots[0], 1105 struct btrfs_inode_ref); 1106 len = btrfs_inode_ref_name_len(path->nodes[0], 1107 inode_ref); 1108 ptr -= len + 1; 1109 if (ptr < name) { 1110 ret = -ENAMETOOLONG; 1111 goto err; 1112 } 1113 read_extent_buffer(path->nodes[0], ptr + 1, 1114 (unsigned long)(inode_ref + 1), len); 1115 ptr[0] = '/'; 1116 btrfs_release_path(path); 1117 } 1118 } 1119 1120 btrfs_free_path(path); 1121 if (ptr == name + PATH_MAX - 1) { 1122 name[0] = '/'; 1123 name[1] = '\0'; 1124 } else { 1125 memmove(name, ptr, name + PATH_MAX - ptr); 1126 } 1127 return name; 1128 1129 err: 1130 btrfs_free_path(path); 1131 kfree(name); 1132 return ERR_PTR(ret); 1133 } 1134 1135 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1136 { 1137 struct btrfs_root *root = fs_info->tree_root; 1138 struct btrfs_dir_item *di; 1139 struct btrfs_path *path; 1140 struct btrfs_key location; 1141 u64 dir_id; 1142 1143 path = btrfs_alloc_path(); 1144 if (!path) 1145 return -ENOMEM; 1146 path->leave_spinning = 1; 1147 1148 /* 1149 * Find the "default" dir item which points to the root item that we 1150 * will mount by default if we haven't been given a specific subvolume 1151 * to mount. 1152 */ 1153 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1154 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1155 if (IS_ERR(di)) { 1156 btrfs_free_path(path); 1157 return PTR_ERR(di); 1158 } 1159 if (!di) { 1160 /* 1161 * Ok the default dir item isn't there. This is weird since 1162 * it's always been there, but don't freak out, just try and 1163 * mount the top-level subvolume. 1164 */ 1165 btrfs_free_path(path); 1166 *objectid = BTRFS_FS_TREE_OBJECTID; 1167 return 0; 1168 } 1169 1170 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1171 btrfs_free_path(path); 1172 *objectid = location.objectid; 1173 return 0; 1174 } 1175 1176 static int btrfs_fill_super(struct super_block *sb, 1177 struct btrfs_fs_devices *fs_devices, 1178 void *data) 1179 { 1180 struct inode *inode; 1181 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1182 struct btrfs_key key; 1183 int err; 1184 1185 sb->s_maxbytes = MAX_LFS_FILESIZE; 1186 sb->s_magic = BTRFS_SUPER_MAGIC; 1187 sb->s_op = &btrfs_super_ops; 1188 sb->s_d_op = &btrfs_dentry_operations; 1189 sb->s_export_op = &btrfs_export_ops; 1190 sb->s_xattr = btrfs_xattr_handlers; 1191 sb->s_time_gran = 1; 1192 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1193 sb->s_flags |= SB_POSIXACL; 1194 #endif 1195 sb->s_flags |= SB_I_VERSION; 1196 sb->s_iflags |= SB_I_CGROUPWB; 1197 1198 err = super_setup_bdi(sb); 1199 if (err) { 1200 btrfs_err(fs_info, "super_setup_bdi failed"); 1201 return err; 1202 } 1203 1204 err = open_ctree(sb, fs_devices, (char *)data); 1205 if (err) { 1206 btrfs_err(fs_info, "open_ctree failed"); 1207 return err; 1208 } 1209 1210 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1211 key.type = BTRFS_INODE_ITEM_KEY; 1212 key.offset = 0; 1213 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1214 if (IS_ERR(inode)) { 1215 err = PTR_ERR(inode); 1216 goto fail_close; 1217 } 1218 1219 sb->s_root = d_make_root(inode); 1220 if (!sb->s_root) { 1221 err = -ENOMEM; 1222 goto fail_close; 1223 } 1224 1225 cleancache_init_fs(sb); 1226 sb->s_flags |= SB_ACTIVE; 1227 return 0; 1228 1229 fail_close: 1230 close_ctree(fs_info); 1231 return err; 1232 } 1233 1234 int btrfs_sync_fs(struct super_block *sb, int wait) 1235 { 1236 struct btrfs_trans_handle *trans; 1237 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1238 struct btrfs_root *root = fs_info->tree_root; 1239 1240 trace_btrfs_sync_fs(fs_info, wait); 1241 1242 if (!wait) { 1243 filemap_flush(fs_info->btree_inode->i_mapping); 1244 return 0; 1245 } 1246 1247 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1248 1249 trans = btrfs_attach_transaction_barrier(root); 1250 if (IS_ERR(trans)) { 1251 /* no transaction, don't bother */ 1252 if (PTR_ERR(trans) == -ENOENT) { 1253 /* 1254 * Exit unless we have some pending changes 1255 * that need to go through commit 1256 */ 1257 if (fs_info->pending_changes == 0) 1258 return 0; 1259 /* 1260 * A non-blocking test if the fs is frozen. We must not 1261 * start a new transaction here otherwise a deadlock 1262 * happens. The pending operations are delayed to the 1263 * next commit after thawing. 1264 */ 1265 if (sb_start_write_trylock(sb)) 1266 sb_end_write(sb); 1267 else 1268 return 0; 1269 trans = btrfs_start_transaction(root, 0); 1270 } 1271 if (IS_ERR(trans)) 1272 return PTR_ERR(trans); 1273 } 1274 return btrfs_commit_transaction(trans); 1275 } 1276 1277 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1278 { 1279 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1280 const char *compress_type; 1281 1282 if (btrfs_test_opt(info, DEGRADED)) 1283 seq_puts(seq, ",degraded"); 1284 if (btrfs_test_opt(info, NODATASUM)) 1285 seq_puts(seq, ",nodatasum"); 1286 if (btrfs_test_opt(info, NODATACOW)) 1287 seq_puts(seq, ",nodatacow"); 1288 if (btrfs_test_opt(info, NOBARRIER)) 1289 seq_puts(seq, ",nobarrier"); 1290 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1291 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1292 if (info->thread_pool_size != min_t(unsigned long, 1293 num_online_cpus() + 2, 8)) 1294 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1295 if (btrfs_test_opt(info, COMPRESS)) { 1296 compress_type = btrfs_compress_type2str(info->compress_type); 1297 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1298 seq_printf(seq, ",compress-force=%s", compress_type); 1299 else 1300 seq_printf(seq, ",compress=%s", compress_type); 1301 if (info->compress_level) 1302 seq_printf(seq, ":%d", info->compress_level); 1303 } 1304 if (btrfs_test_opt(info, NOSSD)) 1305 seq_puts(seq, ",nossd"); 1306 if (btrfs_test_opt(info, SSD_SPREAD)) 1307 seq_puts(seq, ",ssd_spread"); 1308 else if (btrfs_test_opt(info, SSD)) 1309 seq_puts(seq, ",ssd"); 1310 if (btrfs_test_opt(info, NOTREELOG)) 1311 seq_puts(seq, ",notreelog"); 1312 if (btrfs_test_opt(info, NOLOGREPLAY)) 1313 seq_puts(seq, ",nologreplay"); 1314 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1315 seq_puts(seq, ",flushoncommit"); 1316 if (btrfs_test_opt(info, DISCARD)) 1317 seq_puts(seq, ",discard"); 1318 if (!(info->sb->s_flags & SB_POSIXACL)) 1319 seq_puts(seq, ",noacl"); 1320 if (btrfs_test_opt(info, SPACE_CACHE)) 1321 seq_puts(seq, ",space_cache"); 1322 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1323 seq_puts(seq, ",space_cache=v2"); 1324 else 1325 seq_puts(seq, ",nospace_cache"); 1326 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1327 seq_puts(seq, ",rescan_uuid_tree"); 1328 if (btrfs_test_opt(info, CLEAR_CACHE)) 1329 seq_puts(seq, ",clear_cache"); 1330 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1331 seq_puts(seq, ",user_subvol_rm_allowed"); 1332 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1333 seq_puts(seq, ",enospc_debug"); 1334 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1335 seq_puts(seq, ",autodefrag"); 1336 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1337 seq_puts(seq, ",inode_cache"); 1338 if (btrfs_test_opt(info, SKIP_BALANCE)) 1339 seq_puts(seq, ",skip_balance"); 1340 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1341 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1342 seq_puts(seq, ",check_int_data"); 1343 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1344 seq_puts(seq, ",check_int"); 1345 if (info->check_integrity_print_mask) 1346 seq_printf(seq, ",check_int_print_mask=%d", 1347 info->check_integrity_print_mask); 1348 #endif 1349 if (info->metadata_ratio) 1350 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1351 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1352 seq_puts(seq, ",fatal_errors=panic"); 1353 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1354 seq_printf(seq, ",commit=%u", info->commit_interval); 1355 #ifdef CONFIG_BTRFS_DEBUG 1356 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1357 seq_puts(seq, ",fragment=data"); 1358 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1359 seq_puts(seq, ",fragment=metadata"); 1360 #endif 1361 if (btrfs_test_opt(info, REF_VERIFY)) 1362 seq_puts(seq, ",ref_verify"); 1363 seq_printf(seq, ",subvolid=%llu", 1364 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1365 seq_puts(seq, ",subvol="); 1366 seq_dentry(seq, dentry, " \t\n\\"); 1367 return 0; 1368 } 1369 1370 static int btrfs_test_super(struct super_block *s, void *data) 1371 { 1372 struct btrfs_fs_info *p = data; 1373 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1374 1375 return fs_info->fs_devices == p->fs_devices; 1376 } 1377 1378 static int btrfs_set_super(struct super_block *s, void *data) 1379 { 1380 int err = set_anon_super(s, data); 1381 if (!err) 1382 s->s_fs_info = data; 1383 return err; 1384 } 1385 1386 /* 1387 * subvolumes are identified by ino 256 1388 */ 1389 static inline int is_subvolume_inode(struct inode *inode) 1390 { 1391 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1392 return 1; 1393 return 0; 1394 } 1395 1396 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1397 const char *device_name, struct vfsmount *mnt) 1398 { 1399 struct dentry *root; 1400 int ret; 1401 1402 if (!subvol_name) { 1403 if (!subvol_objectid) { 1404 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1405 &subvol_objectid); 1406 if (ret) { 1407 root = ERR_PTR(ret); 1408 goto out; 1409 } 1410 } 1411 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1412 subvol_objectid); 1413 if (IS_ERR(subvol_name)) { 1414 root = ERR_CAST(subvol_name); 1415 subvol_name = NULL; 1416 goto out; 1417 } 1418 1419 } 1420 1421 root = mount_subtree(mnt, subvol_name); 1422 /* mount_subtree() drops our reference on the vfsmount. */ 1423 mnt = NULL; 1424 1425 if (!IS_ERR(root)) { 1426 struct super_block *s = root->d_sb; 1427 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1428 struct inode *root_inode = d_inode(root); 1429 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1430 1431 ret = 0; 1432 if (!is_subvolume_inode(root_inode)) { 1433 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1434 subvol_name); 1435 ret = -EINVAL; 1436 } 1437 if (subvol_objectid && root_objectid != subvol_objectid) { 1438 /* 1439 * This will also catch a race condition where a 1440 * subvolume which was passed by ID is renamed and 1441 * another subvolume is renamed over the old location. 1442 */ 1443 btrfs_err(fs_info, 1444 "subvol '%s' does not match subvolid %llu", 1445 subvol_name, subvol_objectid); 1446 ret = -EINVAL; 1447 } 1448 if (ret) { 1449 dput(root); 1450 root = ERR_PTR(ret); 1451 deactivate_locked_super(s); 1452 } 1453 } 1454 1455 out: 1456 mntput(mnt); 1457 kfree(subvol_name); 1458 return root; 1459 } 1460 1461 static int parse_security_options(char *orig_opts, 1462 struct security_mnt_opts *sec_opts) 1463 { 1464 char *secdata = NULL; 1465 int ret = 0; 1466 1467 secdata = alloc_secdata(); 1468 if (!secdata) 1469 return -ENOMEM; 1470 ret = security_sb_copy_data(orig_opts, secdata); 1471 if (ret) { 1472 free_secdata(secdata); 1473 return ret; 1474 } 1475 ret = security_sb_parse_opts_str(secdata, sec_opts); 1476 free_secdata(secdata); 1477 return ret; 1478 } 1479 1480 static int setup_security_options(struct btrfs_fs_info *fs_info, 1481 struct super_block *sb, 1482 struct security_mnt_opts *sec_opts) 1483 { 1484 int ret = 0; 1485 1486 /* 1487 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1488 * is valid. 1489 */ 1490 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1491 if (ret) 1492 return ret; 1493 1494 #ifdef CONFIG_SECURITY 1495 if (!fs_info->security_opts.num_mnt_opts) { 1496 /* first time security setup, copy sec_opts to fs_info */ 1497 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1498 } else { 1499 /* 1500 * Since SELinux (the only one supporting security_mnt_opts) 1501 * does NOT support changing context during remount/mount of 1502 * the same sb, this must be the same or part of the same 1503 * security options, just free it. 1504 */ 1505 security_free_mnt_opts(sec_opts); 1506 } 1507 #endif 1508 return ret; 1509 } 1510 1511 /* 1512 * Find a superblock for the given device / mount point. 1513 * 1514 * Note: This is based on mount_bdev from fs/super.c with a few additions 1515 * for multiple device setup. Make sure to keep it in sync. 1516 */ 1517 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1518 int flags, const char *device_name, void *data) 1519 { 1520 struct block_device *bdev = NULL; 1521 struct super_block *s; 1522 struct btrfs_device *device = NULL; 1523 struct btrfs_fs_devices *fs_devices = NULL; 1524 struct btrfs_fs_info *fs_info = NULL; 1525 struct security_mnt_opts new_sec_opts; 1526 fmode_t mode = FMODE_READ; 1527 int error = 0; 1528 1529 if (!(flags & SB_RDONLY)) 1530 mode |= FMODE_WRITE; 1531 1532 security_init_mnt_opts(&new_sec_opts); 1533 if (data) { 1534 error = parse_security_options(data, &new_sec_opts); 1535 if (error) 1536 return ERR_PTR(error); 1537 } 1538 1539 /* 1540 * Setup a dummy root and fs_info for test/set super. This is because 1541 * we don't actually fill this stuff out until open_ctree, but we need 1542 * it for searching for existing supers, so this lets us do that and 1543 * then open_ctree will properly initialize everything later. 1544 */ 1545 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1546 if (!fs_info) { 1547 error = -ENOMEM; 1548 goto error_sec_opts; 1549 } 1550 1551 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1552 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1553 security_init_mnt_opts(&fs_info->security_opts); 1554 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1555 error = -ENOMEM; 1556 goto error_fs_info; 1557 } 1558 1559 mutex_lock(&uuid_mutex); 1560 error = btrfs_parse_device_options(data, mode, fs_type); 1561 if (error) { 1562 mutex_unlock(&uuid_mutex); 1563 goto error_fs_info; 1564 } 1565 1566 device = btrfs_scan_one_device(device_name, mode, fs_type); 1567 if (IS_ERR(device)) { 1568 mutex_unlock(&uuid_mutex); 1569 error = PTR_ERR(device); 1570 goto error_fs_info; 1571 } 1572 1573 fs_devices = device->fs_devices; 1574 fs_info->fs_devices = fs_devices; 1575 1576 error = btrfs_open_devices(fs_devices, mode, fs_type); 1577 mutex_unlock(&uuid_mutex); 1578 if (error) 1579 goto error_fs_info; 1580 1581 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1582 error = -EACCES; 1583 goto error_close_devices; 1584 } 1585 1586 bdev = fs_devices->latest_bdev; 1587 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1588 fs_info); 1589 if (IS_ERR(s)) { 1590 error = PTR_ERR(s); 1591 goto error_close_devices; 1592 } 1593 1594 if (s->s_root) { 1595 btrfs_close_devices(fs_devices); 1596 free_fs_info(fs_info); 1597 if ((flags ^ s->s_flags) & SB_RDONLY) 1598 error = -EBUSY; 1599 } else { 1600 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1601 btrfs_sb(s)->bdev_holder = fs_type; 1602 error = btrfs_fill_super(s, fs_devices, data); 1603 } 1604 if (error) { 1605 deactivate_locked_super(s); 1606 goto error_sec_opts; 1607 } 1608 1609 fs_info = btrfs_sb(s); 1610 error = setup_security_options(fs_info, s, &new_sec_opts); 1611 if (error) { 1612 deactivate_locked_super(s); 1613 goto error_sec_opts; 1614 } 1615 1616 return dget(s->s_root); 1617 1618 error_close_devices: 1619 btrfs_close_devices(fs_devices); 1620 error_fs_info: 1621 free_fs_info(fs_info); 1622 error_sec_opts: 1623 security_free_mnt_opts(&new_sec_opts); 1624 return ERR_PTR(error); 1625 } 1626 1627 /* 1628 * Mount function which is called by VFS layer. 1629 * 1630 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1631 * which needs vfsmount* of device's root (/). This means device's root has to 1632 * be mounted internally in any case. 1633 * 1634 * Operation flow: 1635 * 1. Parse subvol id related options for later use in mount_subvol(). 1636 * 1637 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1638 * 1639 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1640 * first place. In order to avoid calling btrfs_mount() again, we use 1641 * different file_system_type which is not registered to VFS by 1642 * register_filesystem() (btrfs_root_fs_type). As a result, 1643 * btrfs_mount_root() is called. The return value will be used by 1644 * mount_subtree() in mount_subvol(). 1645 * 1646 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1647 * "btrfs subvolume set-default", mount_subvol() is called always. 1648 */ 1649 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1650 const char *device_name, void *data) 1651 { 1652 struct vfsmount *mnt_root; 1653 struct dentry *root; 1654 fmode_t mode = FMODE_READ; 1655 char *subvol_name = NULL; 1656 u64 subvol_objectid = 0; 1657 int error = 0; 1658 1659 if (!(flags & SB_RDONLY)) 1660 mode |= FMODE_WRITE; 1661 1662 error = btrfs_parse_subvol_options(data, &subvol_name, 1663 &subvol_objectid); 1664 if (error) { 1665 kfree(subvol_name); 1666 return ERR_PTR(error); 1667 } 1668 1669 /* mount device's root (/) */ 1670 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1671 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1672 if (flags & SB_RDONLY) { 1673 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1674 flags & ~SB_RDONLY, device_name, data); 1675 } else { 1676 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1677 flags | SB_RDONLY, device_name, data); 1678 if (IS_ERR(mnt_root)) { 1679 root = ERR_CAST(mnt_root); 1680 goto out; 1681 } 1682 1683 down_write(&mnt_root->mnt_sb->s_umount); 1684 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1685 up_write(&mnt_root->mnt_sb->s_umount); 1686 if (error < 0) { 1687 root = ERR_PTR(error); 1688 mntput(mnt_root); 1689 goto out; 1690 } 1691 } 1692 } 1693 if (IS_ERR(mnt_root)) { 1694 root = ERR_CAST(mnt_root); 1695 goto out; 1696 } 1697 1698 /* mount_subvol() will free subvol_name and mnt_root */ 1699 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root); 1700 1701 out: 1702 return root; 1703 } 1704 1705 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1706 u32 new_pool_size, u32 old_pool_size) 1707 { 1708 if (new_pool_size == old_pool_size) 1709 return; 1710 1711 fs_info->thread_pool_size = new_pool_size; 1712 1713 btrfs_info(fs_info, "resize thread pool %d -> %d", 1714 old_pool_size, new_pool_size); 1715 1716 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1717 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1718 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1719 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1720 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1721 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1722 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1723 new_pool_size); 1724 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1725 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1726 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1727 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1728 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1729 new_pool_size); 1730 } 1731 1732 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1733 { 1734 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1735 } 1736 1737 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1738 unsigned long old_opts, int flags) 1739 { 1740 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1741 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1742 (flags & SB_RDONLY))) { 1743 /* wait for any defraggers to finish */ 1744 wait_event(fs_info->transaction_wait, 1745 (atomic_read(&fs_info->defrag_running) == 0)); 1746 if (flags & SB_RDONLY) 1747 sync_filesystem(fs_info->sb); 1748 } 1749 } 1750 1751 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1752 unsigned long old_opts) 1753 { 1754 /* 1755 * We need to cleanup all defragable inodes if the autodefragment is 1756 * close or the filesystem is read only. 1757 */ 1758 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1759 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1760 btrfs_cleanup_defrag_inodes(fs_info); 1761 } 1762 1763 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1764 } 1765 1766 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1767 { 1768 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1769 struct btrfs_root *root = fs_info->tree_root; 1770 unsigned old_flags = sb->s_flags; 1771 unsigned long old_opts = fs_info->mount_opt; 1772 unsigned long old_compress_type = fs_info->compress_type; 1773 u64 old_max_inline = fs_info->max_inline; 1774 u32 old_thread_pool_size = fs_info->thread_pool_size; 1775 u32 old_metadata_ratio = fs_info->metadata_ratio; 1776 int ret; 1777 1778 sync_filesystem(sb); 1779 btrfs_remount_prepare(fs_info); 1780 1781 if (data) { 1782 struct security_mnt_opts new_sec_opts; 1783 1784 security_init_mnt_opts(&new_sec_opts); 1785 ret = parse_security_options(data, &new_sec_opts); 1786 if (ret) 1787 goto restore; 1788 ret = setup_security_options(fs_info, sb, 1789 &new_sec_opts); 1790 if (ret) { 1791 security_free_mnt_opts(&new_sec_opts); 1792 goto restore; 1793 } 1794 } 1795 1796 ret = btrfs_parse_options(fs_info, data, *flags); 1797 if (ret) 1798 goto restore; 1799 1800 btrfs_remount_begin(fs_info, old_opts, *flags); 1801 btrfs_resize_thread_pool(fs_info, 1802 fs_info->thread_pool_size, old_thread_pool_size); 1803 1804 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1805 goto out; 1806 1807 if (*flags & SB_RDONLY) { 1808 /* 1809 * this also happens on 'umount -rf' or on shutdown, when 1810 * the filesystem is busy. 1811 */ 1812 cancel_work_sync(&fs_info->async_reclaim_work); 1813 1814 /* wait for the uuid_scan task to finish */ 1815 down(&fs_info->uuid_tree_rescan_sem); 1816 /* avoid complains from lockdep et al. */ 1817 up(&fs_info->uuid_tree_rescan_sem); 1818 1819 sb->s_flags |= SB_RDONLY; 1820 1821 /* 1822 * Setting SB_RDONLY will put the cleaner thread to 1823 * sleep at the next loop if it's already active. 1824 * If it's already asleep, we'll leave unused block 1825 * groups on disk until we're mounted read-write again 1826 * unless we clean them up here. 1827 */ 1828 btrfs_delete_unused_bgs(fs_info); 1829 1830 btrfs_dev_replace_suspend_for_unmount(fs_info); 1831 btrfs_scrub_cancel(fs_info); 1832 btrfs_pause_balance(fs_info); 1833 1834 ret = btrfs_commit_super(fs_info); 1835 if (ret) 1836 goto restore; 1837 } else { 1838 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1839 btrfs_err(fs_info, 1840 "Remounting read-write after error is not allowed"); 1841 ret = -EINVAL; 1842 goto restore; 1843 } 1844 if (fs_info->fs_devices->rw_devices == 0) { 1845 ret = -EACCES; 1846 goto restore; 1847 } 1848 1849 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1850 btrfs_warn(fs_info, 1851 "too many missing devices, writeable remount is not allowed"); 1852 ret = -EACCES; 1853 goto restore; 1854 } 1855 1856 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1857 ret = -EINVAL; 1858 goto restore; 1859 } 1860 1861 ret = btrfs_cleanup_fs_roots(fs_info); 1862 if (ret) 1863 goto restore; 1864 1865 /* recover relocation */ 1866 mutex_lock(&fs_info->cleaner_mutex); 1867 ret = btrfs_recover_relocation(root); 1868 mutex_unlock(&fs_info->cleaner_mutex); 1869 if (ret) 1870 goto restore; 1871 1872 ret = btrfs_resume_balance_async(fs_info); 1873 if (ret) 1874 goto restore; 1875 1876 ret = btrfs_resume_dev_replace_async(fs_info); 1877 if (ret) { 1878 btrfs_warn(fs_info, "failed to resume dev_replace"); 1879 goto restore; 1880 } 1881 1882 btrfs_qgroup_rescan_resume(fs_info); 1883 1884 if (!fs_info->uuid_root) { 1885 btrfs_info(fs_info, "creating UUID tree"); 1886 ret = btrfs_create_uuid_tree(fs_info); 1887 if (ret) { 1888 btrfs_warn(fs_info, 1889 "failed to create the UUID tree %d", 1890 ret); 1891 goto restore; 1892 } 1893 } 1894 sb->s_flags &= ~SB_RDONLY; 1895 1896 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1897 } 1898 out: 1899 wake_up_process(fs_info->transaction_kthread); 1900 btrfs_remount_cleanup(fs_info, old_opts); 1901 return 0; 1902 1903 restore: 1904 /* We've hit an error - don't reset SB_RDONLY */ 1905 if (sb_rdonly(sb)) 1906 old_flags |= SB_RDONLY; 1907 sb->s_flags = old_flags; 1908 fs_info->mount_opt = old_opts; 1909 fs_info->compress_type = old_compress_type; 1910 fs_info->max_inline = old_max_inline; 1911 btrfs_resize_thread_pool(fs_info, 1912 old_thread_pool_size, fs_info->thread_pool_size); 1913 fs_info->metadata_ratio = old_metadata_ratio; 1914 btrfs_remount_cleanup(fs_info, old_opts); 1915 return ret; 1916 } 1917 1918 /* Used to sort the devices by max_avail(descending sort) */ 1919 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1920 const void *dev_info2) 1921 { 1922 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1923 ((struct btrfs_device_info *)dev_info2)->max_avail) 1924 return -1; 1925 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1926 ((struct btrfs_device_info *)dev_info2)->max_avail) 1927 return 1; 1928 else 1929 return 0; 1930 } 1931 1932 /* 1933 * sort the devices by max_avail, in which max free extent size of each device 1934 * is stored.(Descending Sort) 1935 */ 1936 static inline void btrfs_descending_sort_devices( 1937 struct btrfs_device_info *devices, 1938 size_t nr_devices) 1939 { 1940 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1941 btrfs_cmp_device_free_bytes, NULL); 1942 } 1943 1944 /* 1945 * The helper to calc the free space on the devices that can be used to store 1946 * file data. 1947 */ 1948 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1949 u64 *free_bytes) 1950 { 1951 struct btrfs_device_info *devices_info; 1952 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1953 struct btrfs_device *device; 1954 u64 skip_space; 1955 u64 type; 1956 u64 avail_space; 1957 u64 min_stripe_size; 1958 int min_stripes = 1, num_stripes = 1; 1959 int i = 0, nr_devices; 1960 1961 /* 1962 * We aren't under the device list lock, so this is racy-ish, but good 1963 * enough for our purposes. 1964 */ 1965 nr_devices = fs_info->fs_devices->open_devices; 1966 if (!nr_devices) { 1967 smp_mb(); 1968 nr_devices = fs_info->fs_devices->open_devices; 1969 ASSERT(nr_devices); 1970 if (!nr_devices) { 1971 *free_bytes = 0; 1972 return 0; 1973 } 1974 } 1975 1976 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1977 GFP_KERNEL); 1978 if (!devices_info) 1979 return -ENOMEM; 1980 1981 /* calc min stripe number for data space allocation */ 1982 type = btrfs_data_alloc_profile(fs_info); 1983 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1984 min_stripes = 2; 1985 num_stripes = nr_devices; 1986 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1987 min_stripes = 2; 1988 num_stripes = 2; 1989 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1990 min_stripes = 4; 1991 num_stripes = 4; 1992 } 1993 1994 if (type & BTRFS_BLOCK_GROUP_DUP) 1995 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1996 else 1997 min_stripe_size = BTRFS_STRIPE_LEN; 1998 1999 rcu_read_lock(); 2000 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2001 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2002 &device->dev_state) || 2003 !device->bdev || 2004 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2005 continue; 2006 2007 if (i >= nr_devices) 2008 break; 2009 2010 avail_space = device->total_bytes - device->bytes_used; 2011 2012 /* align with stripe_len */ 2013 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 2014 avail_space *= BTRFS_STRIPE_LEN; 2015 2016 /* 2017 * In order to avoid overwriting the superblock on the drive, 2018 * btrfs starts at an offset of at least 1MB when doing chunk 2019 * allocation. 2020 */ 2021 skip_space = SZ_1M; 2022 2023 /* 2024 * we can use the free space in [0, skip_space - 1], subtract 2025 * it from the total. 2026 */ 2027 if (avail_space && avail_space >= skip_space) 2028 avail_space -= skip_space; 2029 else 2030 avail_space = 0; 2031 2032 if (avail_space < min_stripe_size) 2033 continue; 2034 2035 devices_info[i].dev = device; 2036 devices_info[i].max_avail = avail_space; 2037 2038 i++; 2039 } 2040 rcu_read_unlock(); 2041 2042 nr_devices = i; 2043 2044 btrfs_descending_sort_devices(devices_info, nr_devices); 2045 2046 i = nr_devices - 1; 2047 avail_space = 0; 2048 while (nr_devices >= min_stripes) { 2049 if (num_stripes > nr_devices) 2050 num_stripes = nr_devices; 2051 2052 if (devices_info[i].max_avail >= min_stripe_size) { 2053 int j; 2054 u64 alloc_size; 2055 2056 avail_space += devices_info[i].max_avail * num_stripes; 2057 alloc_size = devices_info[i].max_avail; 2058 for (j = i + 1 - num_stripes; j <= i; j++) 2059 devices_info[j].max_avail -= alloc_size; 2060 } 2061 i--; 2062 nr_devices--; 2063 } 2064 2065 kfree(devices_info); 2066 *free_bytes = avail_space; 2067 return 0; 2068 } 2069 2070 /* 2071 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2072 * 2073 * If there's a redundant raid level at DATA block groups, use the respective 2074 * multiplier to scale the sizes. 2075 * 2076 * Unused device space usage is based on simulating the chunk allocator 2077 * algorithm that respects the device sizes and order of allocations. This is 2078 * a close approximation of the actual use but there are other factors that may 2079 * change the result (like a new metadata chunk). 2080 * 2081 * If metadata is exhausted, f_bavail will be 0. 2082 */ 2083 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2084 { 2085 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2086 struct btrfs_super_block *disk_super = fs_info->super_copy; 2087 struct list_head *head = &fs_info->space_info; 2088 struct btrfs_space_info *found; 2089 u64 total_used = 0; 2090 u64 total_free_data = 0; 2091 u64 total_free_meta = 0; 2092 int bits = dentry->d_sb->s_blocksize_bits; 2093 __be32 *fsid = (__be32 *)fs_info->fsid; 2094 unsigned factor = 1; 2095 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2096 int ret; 2097 u64 thresh = 0; 2098 int mixed = 0; 2099 2100 rcu_read_lock(); 2101 list_for_each_entry_rcu(found, head, list) { 2102 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2103 int i; 2104 2105 total_free_data += found->disk_total - found->disk_used; 2106 total_free_data -= 2107 btrfs_account_ro_block_groups_free_space(found); 2108 2109 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2110 if (!list_empty(&found->block_groups[i])) 2111 factor = btrfs_bg_type_to_factor( 2112 btrfs_raid_array[i].bg_flag); 2113 } 2114 } 2115 2116 /* 2117 * Metadata in mixed block goup profiles are accounted in data 2118 */ 2119 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2120 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2121 mixed = 1; 2122 else 2123 total_free_meta += found->disk_total - 2124 found->disk_used; 2125 } 2126 2127 total_used += found->disk_used; 2128 } 2129 2130 rcu_read_unlock(); 2131 2132 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2133 buf->f_blocks >>= bits; 2134 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2135 2136 /* Account global block reserve as used, it's in logical size already */ 2137 spin_lock(&block_rsv->lock); 2138 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2139 if (buf->f_bfree >= block_rsv->size >> bits) 2140 buf->f_bfree -= block_rsv->size >> bits; 2141 else 2142 buf->f_bfree = 0; 2143 spin_unlock(&block_rsv->lock); 2144 2145 buf->f_bavail = div_u64(total_free_data, factor); 2146 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2147 if (ret) 2148 return ret; 2149 buf->f_bavail += div_u64(total_free_data, factor); 2150 buf->f_bavail = buf->f_bavail >> bits; 2151 2152 /* 2153 * We calculate the remaining metadata space minus global reserve. If 2154 * this is (supposedly) smaller than zero, there's no space. But this 2155 * does not hold in practice, the exhausted state happens where's still 2156 * some positive delta. So we apply some guesswork and compare the 2157 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2158 * 2159 * We probably cannot calculate the exact threshold value because this 2160 * depends on the internal reservations requested by various 2161 * operations, so some operations that consume a few metadata will 2162 * succeed even if the Avail is zero. But this is better than the other 2163 * way around. 2164 */ 2165 thresh = SZ_4M; 2166 2167 if (!mixed && total_free_meta - thresh < block_rsv->size) 2168 buf->f_bavail = 0; 2169 2170 buf->f_type = BTRFS_SUPER_MAGIC; 2171 buf->f_bsize = dentry->d_sb->s_blocksize; 2172 buf->f_namelen = BTRFS_NAME_LEN; 2173 2174 /* We treat it as constant endianness (it doesn't matter _which_) 2175 because we want the fsid to come out the same whether mounted 2176 on a big-endian or little-endian host */ 2177 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2178 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2179 /* Mask in the root object ID too, to disambiguate subvols */ 2180 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2181 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2182 2183 return 0; 2184 } 2185 2186 static void btrfs_kill_super(struct super_block *sb) 2187 { 2188 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2189 kill_anon_super(sb); 2190 free_fs_info(fs_info); 2191 } 2192 2193 static struct file_system_type btrfs_fs_type = { 2194 .owner = THIS_MODULE, 2195 .name = "btrfs", 2196 .mount = btrfs_mount, 2197 .kill_sb = btrfs_kill_super, 2198 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2199 }; 2200 2201 static struct file_system_type btrfs_root_fs_type = { 2202 .owner = THIS_MODULE, 2203 .name = "btrfs", 2204 .mount = btrfs_mount_root, 2205 .kill_sb = btrfs_kill_super, 2206 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2207 }; 2208 2209 MODULE_ALIAS_FS("btrfs"); 2210 2211 static int btrfs_control_open(struct inode *inode, struct file *file) 2212 { 2213 /* 2214 * The control file's private_data is used to hold the 2215 * transaction when it is started and is used to keep 2216 * track of whether a transaction is already in progress. 2217 */ 2218 file->private_data = NULL; 2219 return 0; 2220 } 2221 2222 /* 2223 * used by btrfsctl to scan devices when no FS is mounted 2224 */ 2225 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2226 unsigned long arg) 2227 { 2228 struct btrfs_ioctl_vol_args *vol; 2229 struct btrfs_device *device = NULL; 2230 int ret = -ENOTTY; 2231 2232 if (!capable(CAP_SYS_ADMIN)) 2233 return -EPERM; 2234 2235 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2236 if (IS_ERR(vol)) 2237 return PTR_ERR(vol); 2238 2239 switch (cmd) { 2240 case BTRFS_IOC_SCAN_DEV: 2241 mutex_lock(&uuid_mutex); 2242 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2243 &btrfs_root_fs_type); 2244 ret = PTR_ERR_OR_ZERO(device); 2245 mutex_unlock(&uuid_mutex); 2246 break; 2247 case BTRFS_IOC_DEVICES_READY: 2248 mutex_lock(&uuid_mutex); 2249 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2250 &btrfs_root_fs_type); 2251 if (IS_ERR(device)) { 2252 mutex_unlock(&uuid_mutex); 2253 ret = PTR_ERR(device); 2254 break; 2255 } 2256 ret = !(device->fs_devices->num_devices == 2257 device->fs_devices->total_devices); 2258 mutex_unlock(&uuid_mutex); 2259 break; 2260 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2261 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2262 break; 2263 } 2264 2265 kfree(vol); 2266 return ret; 2267 } 2268 2269 static int btrfs_freeze(struct super_block *sb) 2270 { 2271 struct btrfs_trans_handle *trans; 2272 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2273 struct btrfs_root *root = fs_info->tree_root; 2274 2275 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2276 /* 2277 * We don't need a barrier here, we'll wait for any transaction that 2278 * could be in progress on other threads (and do delayed iputs that 2279 * we want to avoid on a frozen filesystem), or do the commit 2280 * ourselves. 2281 */ 2282 trans = btrfs_attach_transaction_barrier(root); 2283 if (IS_ERR(trans)) { 2284 /* no transaction, don't bother */ 2285 if (PTR_ERR(trans) == -ENOENT) 2286 return 0; 2287 return PTR_ERR(trans); 2288 } 2289 return btrfs_commit_transaction(trans); 2290 } 2291 2292 static int btrfs_unfreeze(struct super_block *sb) 2293 { 2294 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2295 2296 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2297 return 0; 2298 } 2299 2300 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2301 { 2302 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2303 struct btrfs_fs_devices *cur_devices; 2304 struct btrfs_device *dev, *first_dev = NULL; 2305 struct list_head *head; 2306 2307 /* 2308 * Lightweight locking of the devices. We should not need 2309 * device_list_mutex here as we only read the device data and the list 2310 * is protected by RCU. Even if a device is deleted during the list 2311 * traversals, we'll get valid data, the freeing callback will wait at 2312 * least until until the rcu_read_unlock. 2313 */ 2314 rcu_read_lock(); 2315 cur_devices = fs_info->fs_devices; 2316 while (cur_devices) { 2317 head = &cur_devices->devices; 2318 list_for_each_entry_rcu(dev, head, dev_list) { 2319 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2320 continue; 2321 if (!dev->name) 2322 continue; 2323 if (!first_dev || dev->devid < first_dev->devid) 2324 first_dev = dev; 2325 } 2326 cur_devices = cur_devices->seed; 2327 } 2328 2329 if (first_dev) 2330 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2331 else 2332 WARN_ON(1); 2333 rcu_read_unlock(); 2334 return 0; 2335 } 2336 2337 static const struct super_operations btrfs_super_ops = { 2338 .drop_inode = btrfs_drop_inode, 2339 .evict_inode = btrfs_evict_inode, 2340 .put_super = btrfs_put_super, 2341 .sync_fs = btrfs_sync_fs, 2342 .show_options = btrfs_show_options, 2343 .show_devname = btrfs_show_devname, 2344 .alloc_inode = btrfs_alloc_inode, 2345 .destroy_inode = btrfs_destroy_inode, 2346 .statfs = btrfs_statfs, 2347 .remount_fs = btrfs_remount, 2348 .freeze_fs = btrfs_freeze, 2349 .unfreeze_fs = btrfs_unfreeze, 2350 }; 2351 2352 static const struct file_operations btrfs_ctl_fops = { 2353 .open = btrfs_control_open, 2354 .unlocked_ioctl = btrfs_control_ioctl, 2355 .compat_ioctl = btrfs_control_ioctl, 2356 .owner = THIS_MODULE, 2357 .llseek = noop_llseek, 2358 }; 2359 2360 static struct miscdevice btrfs_misc = { 2361 .minor = BTRFS_MINOR, 2362 .name = "btrfs-control", 2363 .fops = &btrfs_ctl_fops 2364 }; 2365 2366 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2367 MODULE_ALIAS("devname:btrfs-control"); 2368 2369 static int __init btrfs_interface_init(void) 2370 { 2371 return misc_register(&btrfs_misc); 2372 } 2373 2374 static __cold void btrfs_interface_exit(void) 2375 { 2376 misc_deregister(&btrfs_misc); 2377 } 2378 2379 static void __init btrfs_print_mod_info(void) 2380 { 2381 static const char options[] = "" 2382 #ifdef CONFIG_BTRFS_DEBUG 2383 ", debug=on" 2384 #endif 2385 #ifdef CONFIG_BTRFS_ASSERT 2386 ", assert=on" 2387 #endif 2388 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2389 ", integrity-checker=on" 2390 #endif 2391 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2392 ", ref-verify=on" 2393 #endif 2394 ; 2395 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2396 } 2397 2398 static int __init init_btrfs_fs(void) 2399 { 2400 int err; 2401 2402 btrfs_props_init(); 2403 2404 err = btrfs_init_sysfs(); 2405 if (err) 2406 return err; 2407 2408 btrfs_init_compress(); 2409 2410 err = btrfs_init_cachep(); 2411 if (err) 2412 goto free_compress; 2413 2414 err = extent_io_init(); 2415 if (err) 2416 goto free_cachep; 2417 2418 err = extent_map_init(); 2419 if (err) 2420 goto free_extent_io; 2421 2422 err = ordered_data_init(); 2423 if (err) 2424 goto free_extent_map; 2425 2426 err = btrfs_delayed_inode_init(); 2427 if (err) 2428 goto free_ordered_data; 2429 2430 err = btrfs_auto_defrag_init(); 2431 if (err) 2432 goto free_delayed_inode; 2433 2434 err = btrfs_delayed_ref_init(); 2435 if (err) 2436 goto free_auto_defrag; 2437 2438 err = btrfs_prelim_ref_init(); 2439 if (err) 2440 goto free_delayed_ref; 2441 2442 err = btrfs_end_io_wq_init(); 2443 if (err) 2444 goto free_prelim_ref; 2445 2446 err = btrfs_interface_init(); 2447 if (err) 2448 goto free_end_io_wq; 2449 2450 btrfs_init_lockdep(); 2451 2452 btrfs_print_mod_info(); 2453 2454 err = btrfs_run_sanity_tests(); 2455 if (err) 2456 goto unregister_ioctl; 2457 2458 err = register_filesystem(&btrfs_fs_type); 2459 if (err) 2460 goto unregister_ioctl; 2461 2462 return 0; 2463 2464 unregister_ioctl: 2465 btrfs_interface_exit(); 2466 free_end_io_wq: 2467 btrfs_end_io_wq_exit(); 2468 free_prelim_ref: 2469 btrfs_prelim_ref_exit(); 2470 free_delayed_ref: 2471 btrfs_delayed_ref_exit(); 2472 free_auto_defrag: 2473 btrfs_auto_defrag_exit(); 2474 free_delayed_inode: 2475 btrfs_delayed_inode_exit(); 2476 free_ordered_data: 2477 ordered_data_exit(); 2478 free_extent_map: 2479 extent_map_exit(); 2480 free_extent_io: 2481 extent_io_exit(); 2482 free_cachep: 2483 btrfs_destroy_cachep(); 2484 free_compress: 2485 btrfs_exit_compress(); 2486 btrfs_exit_sysfs(); 2487 2488 return err; 2489 } 2490 2491 static void __exit exit_btrfs_fs(void) 2492 { 2493 btrfs_destroy_cachep(); 2494 btrfs_delayed_ref_exit(); 2495 btrfs_auto_defrag_exit(); 2496 btrfs_delayed_inode_exit(); 2497 btrfs_prelim_ref_exit(); 2498 ordered_data_exit(); 2499 extent_map_exit(); 2500 extent_io_exit(); 2501 btrfs_interface_exit(); 2502 btrfs_end_io_wq_exit(); 2503 unregister_filesystem(&btrfs_fs_type); 2504 btrfs_exit_sysfs(); 2505 btrfs_cleanup_fs_uuids(); 2506 btrfs_exit_compress(); 2507 } 2508 2509 late_initcall(init_btrfs_fs); 2510 module_exit(exit_btrfs_fs) 2511 2512 MODULE_LICENSE("GPL"); 2513