xref: /openbmc/linux/fs/btrfs/super.c (revision 90741096769bd75152a5fe397343e5893c7d905a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "messages.h"
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "bio.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #include "raid56.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "defrag.h"
56 #include "dir-item.h"
57 #include "ioctl.h"
58 #include "scrub.h"
59 #include "verity.h"
60 #include "super.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63 
64 static const struct super_operations btrfs_super_ops;
65 
66 /*
67  * Types for mounting the default subvolume and a subvolume explicitly
68  * requested by subvol=/path. That way the callchain is straightforward and we
69  * don't have to play tricks with the mount options and recursive calls to
70  * btrfs_mount.
71  *
72  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
73  */
74 static struct file_system_type btrfs_fs_type;
75 static struct file_system_type btrfs_root_fs_type;
76 
77 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
78 
79 static void btrfs_put_super(struct super_block *sb)
80 {
81 	close_ctree(btrfs_sb(sb));
82 }
83 
84 enum {
85 	Opt_acl, Opt_noacl,
86 	Opt_clear_cache,
87 	Opt_commit_interval,
88 	Opt_compress,
89 	Opt_compress_force,
90 	Opt_compress_force_type,
91 	Opt_compress_type,
92 	Opt_degraded,
93 	Opt_device,
94 	Opt_fatal_errors,
95 	Opt_flushoncommit, Opt_noflushoncommit,
96 	Opt_max_inline,
97 	Opt_barrier, Opt_nobarrier,
98 	Opt_datacow, Opt_nodatacow,
99 	Opt_datasum, Opt_nodatasum,
100 	Opt_defrag, Opt_nodefrag,
101 	Opt_discard, Opt_nodiscard,
102 	Opt_discard_mode,
103 	Opt_norecovery,
104 	Opt_ratio,
105 	Opt_rescan_uuid_tree,
106 	Opt_skip_balance,
107 	Opt_space_cache, Opt_no_space_cache,
108 	Opt_space_cache_version,
109 	Opt_ssd, Opt_nossd,
110 	Opt_ssd_spread, Opt_nossd_spread,
111 	Opt_subvol,
112 	Opt_subvol_empty,
113 	Opt_subvolid,
114 	Opt_thread_pool,
115 	Opt_treelog, Opt_notreelog,
116 	Opt_user_subvol_rm_allowed,
117 
118 	/* Rescue options */
119 	Opt_rescue,
120 	Opt_usebackuproot,
121 	Opt_nologreplay,
122 	Opt_ignorebadroots,
123 	Opt_ignoredatacsums,
124 	Opt_rescue_all,
125 
126 	/* Deprecated options */
127 	Opt_recovery,
128 	Opt_inode_cache, Opt_noinode_cache,
129 
130 	/* Debugging options */
131 	Opt_check_integrity,
132 	Opt_check_integrity_including_extent_data,
133 	Opt_check_integrity_print_mask,
134 	Opt_enospc_debug, Opt_noenospc_debug,
135 #ifdef CONFIG_BTRFS_DEBUG
136 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
137 #endif
138 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
139 	Opt_ref_verify,
140 #endif
141 	Opt_err,
142 };
143 
144 static const match_table_t tokens = {
145 	{Opt_acl, "acl"},
146 	{Opt_noacl, "noacl"},
147 	{Opt_clear_cache, "clear_cache"},
148 	{Opt_commit_interval, "commit=%u"},
149 	{Opt_compress, "compress"},
150 	{Opt_compress_type, "compress=%s"},
151 	{Opt_compress_force, "compress-force"},
152 	{Opt_compress_force_type, "compress-force=%s"},
153 	{Opt_degraded, "degraded"},
154 	{Opt_device, "device=%s"},
155 	{Opt_fatal_errors, "fatal_errors=%s"},
156 	{Opt_flushoncommit, "flushoncommit"},
157 	{Opt_noflushoncommit, "noflushoncommit"},
158 	{Opt_inode_cache, "inode_cache"},
159 	{Opt_noinode_cache, "noinode_cache"},
160 	{Opt_max_inline, "max_inline=%s"},
161 	{Opt_barrier, "barrier"},
162 	{Opt_nobarrier, "nobarrier"},
163 	{Opt_datacow, "datacow"},
164 	{Opt_nodatacow, "nodatacow"},
165 	{Opt_datasum, "datasum"},
166 	{Opt_nodatasum, "nodatasum"},
167 	{Opt_defrag, "autodefrag"},
168 	{Opt_nodefrag, "noautodefrag"},
169 	{Opt_discard, "discard"},
170 	{Opt_discard_mode, "discard=%s"},
171 	{Opt_nodiscard, "nodiscard"},
172 	{Opt_norecovery, "norecovery"},
173 	{Opt_ratio, "metadata_ratio=%u"},
174 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
175 	{Opt_skip_balance, "skip_balance"},
176 	{Opt_space_cache, "space_cache"},
177 	{Opt_no_space_cache, "nospace_cache"},
178 	{Opt_space_cache_version, "space_cache=%s"},
179 	{Opt_ssd, "ssd"},
180 	{Opt_nossd, "nossd"},
181 	{Opt_ssd_spread, "ssd_spread"},
182 	{Opt_nossd_spread, "nossd_spread"},
183 	{Opt_subvol, "subvol=%s"},
184 	{Opt_subvol_empty, "subvol="},
185 	{Opt_subvolid, "subvolid=%s"},
186 	{Opt_thread_pool, "thread_pool=%u"},
187 	{Opt_treelog, "treelog"},
188 	{Opt_notreelog, "notreelog"},
189 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
190 
191 	/* Rescue options */
192 	{Opt_rescue, "rescue=%s"},
193 	/* Deprecated, with alias rescue=nologreplay */
194 	{Opt_nologreplay, "nologreplay"},
195 	/* Deprecated, with alias rescue=usebackuproot */
196 	{Opt_usebackuproot, "usebackuproot"},
197 
198 	/* Deprecated options */
199 	{Opt_recovery, "recovery"},
200 
201 	/* Debugging options */
202 	{Opt_check_integrity, "check_int"},
203 	{Opt_check_integrity_including_extent_data, "check_int_data"},
204 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
205 	{Opt_enospc_debug, "enospc_debug"},
206 	{Opt_noenospc_debug, "noenospc_debug"},
207 #ifdef CONFIG_BTRFS_DEBUG
208 	{Opt_fragment_data, "fragment=data"},
209 	{Opt_fragment_metadata, "fragment=metadata"},
210 	{Opt_fragment_all, "fragment=all"},
211 #endif
212 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
213 	{Opt_ref_verify, "ref_verify"},
214 #endif
215 	{Opt_err, NULL},
216 };
217 
218 static const match_table_t rescue_tokens = {
219 	{Opt_usebackuproot, "usebackuproot"},
220 	{Opt_nologreplay, "nologreplay"},
221 	{Opt_ignorebadroots, "ignorebadroots"},
222 	{Opt_ignorebadroots, "ibadroots"},
223 	{Opt_ignoredatacsums, "ignoredatacsums"},
224 	{Opt_ignoredatacsums, "idatacsums"},
225 	{Opt_rescue_all, "all"},
226 	{Opt_err, NULL},
227 };
228 
229 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
230 			    const char *opt_name)
231 {
232 	if (fs_info->mount_opt & opt) {
233 		btrfs_err(fs_info, "%s must be used with ro mount option",
234 			  opt_name);
235 		return true;
236 	}
237 	return false;
238 }
239 
240 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
241 {
242 	char *opts;
243 	char *orig;
244 	char *p;
245 	substring_t args[MAX_OPT_ARGS];
246 	int ret = 0;
247 
248 	opts = kstrdup(options, GFP_KERNEL);
249 	if (!opts)
250 		return -ENOMEM;
251 	orig = opts;
252 
253 	while ((p = strsep(&opts, ":")) != NULL) {
254 		int token;
255 
256 		if (!*p)
257 			continue;
258 		token = match_token(p, rescue_tokens, args);
259 		switch (token){
260 		case Opt_usebackuproot:
261 			btrfs_info(info,
262 				   "trying to use backup root at mount time");
263 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
264 			break;
265 		case Opt_nologreplay:
266 			btrfs_set_and_info(info, NOLOGREPLAY,
267 					   "disabling log replay at mount time");
268 			break;
269 		case Opt_ignorebadroots:
270 			btrfs_set_and_info(info, IGNOREBADROOTS,
271 					   "ignoring bad roots");
272 			break;
273 		case Opt_ignoredatacsums:
274 			btrfs_set_and_info(info, IGNOREDATACSUMS,
275 					   "ignoring data csums");
276 			break;
277 		case Opt_rescue_all:
278 			btrfs_info(info, "enabling all of the rescue options");
279 			btrfs_set_and_info(info, IGNOREDATACSUMS,
280 					   "ignoring data csums");
281 			btrfs_set_and_info(info, IGNOREBADROOTS,
282 					   "ignoring bad roots");
283 			btrfs_set_and_info(info, NOLOGREPLAY,
284 					   "disabling log replay at mount time");
285 			break;
286 		case Opt_err:
287 			btrfs_info(info, "unrecognized rescue option '%s'", p);
288 			ret = -EINVAL;
289 			goto out;
290 		default:
291 			break;
292 		}
293 
294 	}
295 out:
296 	kfree(orig);
297 	return ret;
298 }
299 
300 /*
301  * Regular mount options parser.  Everything that is needed only when
302  * reading in a new superblock is parsed here.
303  * XXX JDM: This needs to be cleaned up for remount.
304  */
305 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
306 			unsigned long new_flags)
307 {
308 	substring_t args[MAX_OPT_ARGS];
309 	char *p, *num;
310 	int intarg;
311 	int ret = 0;
312 	char *compress_type;
313 	bool compress_force = false;
314 	enum btrfs_compression_type saved_compress_type;
315 	int saved_compress_level;
316 	bool saved_compress_force;
317 	int no_compress = 0;
318 	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
319 
320 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
321 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
322 	else if (btrfs_free_space_cache_v1_active(info)) {
323 		if (btrfs_is_zoned(info)) {
324 			btrfs_info(info,
325 			"zoned: clearing existing space cache");
326 			btrfs_set_super_cache_generation(info->super_copy, 0);
327 		} else {
328 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
329 		}
330 	}
331 
332 	/*
333 	 * Even the options are empty, we still need to do extra check
334 	 * against new flags
335 	 */
336 	if (!options)
337 		goto check;
338 
339 	while ((p = strsep(&options, ",")) != NULL) {
340 		int token;
341 		if (!*p)
342 			continue;
343 
344 		token = match_token(p, tokens, args);
345 		switch (token) {
346 		case Opt_degraded:
347 			btrfs_info(info, "allowing degraded mounts");
348 			btrfs_set_opt(info->mount_opt, DEGRADED);
349 			break;
350 		case Opt_subvol:
351 		case Opt_subvol_empty:
352 		case Opt_subvolid:
353 		case Opt_device:
354 			/*
355 			 * These are parsed by btrfs_parse_subvol_options or
356 			 * btrfs_parse_device_options and can be ignored here.
357 			 */
358 			break;
359 		case Opt_nodatasum:
360 			btrfs_set_and_info(info, NODATASUM,
361 					   "setting nodatasum");
362 			break;
363 		case Opt_datasum:
364 			if (btrfs_test_opt(info, NODATASUM)) {
365 				if (btrfs_test_opt(info, NODATACOW))
366 					btrfs_info(info,
367 						   "setting datasum, datacow enabled");
368 				else
369 					btrfs_info(info, "setting datasum");
370 			}
371 			btrfs_clear_opt(info->mount_opt, NODATACOW);
372 			btrfs_clear_opt(info->mount_opt, NODATASUM);
373 			break;
374 		case Opt_nodatacow:
375 			if (!btrfs_test_opt(info, NODATACOW)) {
376 				if (!btrfs_test_opt(info, COMPRESS) ||
377 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
378 					btrfs_info(info,
379 						   "setting nodatacow, compression disabled");
380 				} else {
381 					btrfs_info(info, "setting nodatacow");
382 				}
383 			}
384 			btrfs_clear_opt(info->mount_opt, COMPRESS);
385 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
386 			btrfs_set_opt(info->mount_opt, NODATACOW);
387 			btrfs_set_opt(info->mount_opt, NODATASUM);
388 			break;
389 		case Opt_datacow:
390 			btrfs_clear_and_info(info, NODATACOW,
391 					     "setting datacow");
392 			break;
393 		case Opt_compress_force:
394 		case Opt_compress_force_type:
395 			compress_force = true;
396 			fallthrough;
397 		case Opt_compress:
398 		case Opt_compress_type:
399 			saved_compress_type = btrfs_test_opt(info,
400 							     COMPRESS) ?
401 				info->compress_type : BTRFS_COMPRESS_NONE;
402 			saved_compress_force =
403 				btrfs_test_opt(info, FORCE_COMPRESS);
404 			saved_compress_level = info->compress_level;
405 			if (token == Opt_compress ||
406 			    token == Opt_compress_force ||
407 			    strncmp(args[0].from, "zlib", 4) == 0) {
408 				compress_type = "zlib";
409 
410 				info->compress_type = BTRFS_COMPRESS_ZLIB;
411 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
412 				/*
413 				 * args[0] contains uninitialized data since
414 				 * for these tokens we don't expect any
415 				 * parameter.
416 				 */
417 				if (token != Opt_compress &&
418 				    token != Opt_compress_force)
419 					info->compress_level =
420 					  btrfs_compress_str2level(
421 							BTRFS_COMPRESS_ZLIB,
422 							args[0].from + 4);
423 				btrfs_set_opt(info->mount_opt, COMPRESS);
424 				btrfs_clear_opt(info->mount_opt, NODATACOW);
425 				btrfs_clear_opt(info->mount_opt, NODATASUM);
426 				no_compress = 0;
427 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
428 				compress_type = "lzo";
429 				info->compress_type = BTRFS_COMPRESS_LZO;
430 				info->compress_level = 0;
431 				btrfs_set_opt(info->mount_opt, COMPRESS);
432 				btrfs_clear_opt(info->mount_opt, NODATACOW);
433 				btrfs_clear_opt(info->mount_opt, NODATASUM);
434 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
435 				no_compress = 0;
436 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
437 				compress_type = "zstd";
438 				info->compress_type = BTRFS_COMPRESS_ZSTD;
439 				info->compress_level =
440 					btrfs_compress_str2level(
441 							 BTRFS_COMPRESS_ZSTD,
442 							 args[0].from + 4);
443 				btrfs_set_opt(info->mount_opt, COMPRESS);
444 				btrfs_clear_opt(info->mount_opt, NODATACOW);
445 				btrfs_clear_opt(info->mount_opt, NODATASUM);
446 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
447 				no_compress = 0;
448 			} else if (strncmp(args[0].from, "no", 2) == 0) {
449 				compress_type = "no";
450 				info->compress_level = 0;
451 				info->compress_type = 0;
452 				btrfs_clear_opt(info->mount_opt, COMPRESS);
453 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
454 				compress_force = false;
455 				no_compress++;
456 			} else {
457 				btrfs_err(info, "unrecognized compression value %s",
458 					  args[0].from);
459 				ret = -EINVAL;
460 				goto out;
461 			}
462 
463 			if (compress_force) {
464 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
465 			} else {
466 				/*
467 				 * If we remount from compress-force=xxx to
468 				 * compress=xxx, we need clear FORCE_COMPRESS
469 				 * flag, otherwise, there is no way for users
470 				 * to disable forcible compression separately.
471 				 */
472 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
473 			}
474 			if (no_compress == 1) {
475 				btrfs_info(info, "use no compression");
476 			} else if ((info->compress_type != saved_compress_type) ||
477 				   (compress_force != saved_compress_force) ||
478 				   (info->compress_level != saved_compress_level)) {
479 				btrfs_info(info, "%s %s compression, level %d",
480 					   (compress_force) ? "force" : "use",
481 					   compress_type, info->compress_level);
482 			}
483 			compress_force = false;
484 			break;
485 		case Opt_ssd:
486 			btrfs_set_and_info(info, SSD,
487 					   "enabling ssd optimizations");
488 			btrfs_clear_opt(info->mount_opt, NOSSD);
489 			break;
490 		case Opt_ssd_spread:
491 			btrfs_set_and_info(info, SSD,
492 					   "enabling ssd optimizations");
493 			btrfs_set_and_info(info, SSD_SPREAD,
494 					   "using spread ssd allocation scheme");
495 			btrfs_clear_opt(info->mount_opt, NOSSD);
496 			break;
497 		case Opt_nossd:
498 			btrfs_set_opt(info->mount_opt, NOSSD);
499 			btrfs_clear_and_info(info, SSD,
500 					     "not using ssd optimizations");
501 			fallthrough;
502 		case Opt_nossd_spread:
503 			btrfs_clear_and_info(info, SSD_SPREAD,
504 					     "not using spread ssd allocation scheme");
505 			break;
506 		case Opt_barrier:
507 			btrfs_clear_and_info(info, NOBARRIER,
508 					     "turning on barriers");
509 			break;
510 		case Opt_nobarrier:
511 			btrfs_set_and_info(info, NOBARRIER,
512 					   "turning off barriers");
513 			break;
514 		case Opt_thread_pool:
515 			ret = match_int(&args[0], &intarg);
516 			if (ret) {
517 				btrfs_err(info, "unrecognized thread_pool value %s",
518 					  args[0].from);
519 				goto out;
520 			} else if (intarg == 0) {
521 				btrfs_err(info, "invalid value 0 for thread_pool");
522 				ret = -EINVAL;
523 				goto out;
524 			}
525 			info->thread_pool_size = intarg;
526 			break;
527 		case Opt_max_inline:
528 			num = match_strdup(&args[0]);
529 			if (num) {
530 				info->max_inline = memparse(num, NULL);
531 				kfree(num);
532 
533 				if (info->max_inline) {
534 					info->max_inline = min_t(u64,
535 						info->max_inline,
536 						info->sectorsize);
537 				}
538 				btrfs_info(info, "max_inline at %llu",
539 					   info->max_inline);
540 			} else {
541 				ret = -ENOMEM;
542 				goto out;
543 			}
544 			break;
545 		case Opt_acl:
546 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
547 			info->sb->s_flags |= SB_POSIXACL;
548 			break;
549 #else
550 			btrfs_err(info, "support for ACL not compiled in!");
551 			ret = -EINVAL;
552 			goto out;
553 #endif
554 		case Opt_noacl:
555 			info->sb->s_flags &= ~SB_POSIXACL;
556 			break;
557 		case Opt_notreelog:
558 			btrfs_set_and_info(info, NOTREELOG,
559 					   "disabling tree log");
560 			break;
561 		case Opt_treelog:
562 			btrfs_clear_and_info(info, NOTREELOG,
563 					     "enabling tree log");
564 			break;
565 		case Opt_norecovery:
566 		case Opt_nologreplay:
567 			btrfs_warn(info,
568 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
569 			btrfs_set_and_info(info, NOLOGREPLAY,
570 					   "disabling log replay at mount time");
571 			break;
572 		case Opt_flushoncommit:
573 			btrfs_set_and_info(info, FLUSHONCOMMIT,
574 					   "turning on flush-on-commit");
575 			break;
576 		case Opt_noflushoncommit:
577 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
578 					     "turning off flush-on-commit");
579 			break;
580 		case Opt_ratio:
581 			ret = match_int(&args[0], &intarg);
582 			if (ret) {
583 				btrfs_err(info, "unrecognized metadata_ratio value %s",
584 					  args[0].from);
585 				goto out;
586 			}
587 			info->metadata_ratio = intarg;
588 			btrfs_info(info, "metadata ratio %u",
589 				   info->metadata_ratio);
590 			break;
591 		case Opt_discard:
592 		case Opt_discard_mode:
593 			if (token == Opt_discard ||
594 			    strcmp(args[0].from, "sync") == 0) {
595 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
596 				btrfs_set_and_info(info, DISCARD_SYNC,
597 						   "turning on sync discard");
598 			} else if (strcmp(args[0].from, "async") == 0) {
599 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
600 				btrfs_set_and_info(info, DISCARD_ASYNC,
601 						   "turning on async discard");
602 			} else {
603 				btrfs_err(info, "unrecognized discard mode value %s",
604 					  args[0].from);
605 				ret = -EINVAL;
606 				goto out;
607 			}
608 			btrfs_clear_opt(info->mount_opt, NODISCARD);
609 			break;
610 		case Opt_nodiscard:
611 			btrfs_clear_and_info(info, DISCARD_SYNC,
612 					     "turning off discard");
613 			btrfs_clear_and_info(info, DISCARD_ASYNC,
614 					     "turning off async discard");
615 			btrfs_set_opt(info->mount_opt, NODISCARD);
616 			break;
617 		case Opt_space_cache:
618 		case Opt_space_cache_version:
619 			/*
620 			 * We already set FREE_SPACE_TREE above because we have
621 			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
622 			 * to allow v1 to be set for extent tree v2, simply
623 			 * ignore this setting if we're extent tree v2.
624 			 */
625 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
626 				break;
627 			if (token == Opt_space_cache ||
628 			    strcmp(args[0].from, "v1") == 0) {
629 				btrfs_clear_opt(info->mount_opt,
630 						FREE_SPACE_TREE);
631 				btrfs_set_and_info(info, SPACE_CACHE,
632 					   "enabling disk space caching");
633 			} else if (strcmp(args[0].from, "v2") == 0) {
634 				btrfs_clear_opt(info->mount_opt,
635 						SPACE_CACHE);
636 				btrfs_set_and_info(info, FREE_SPACE_TREE,
637 						   "enabling free space tree");
638 			} else {
639 				btrfs_err(info, "unrecognized space_cache value %s",
640 					  args[0].from);
641 				ret = -EINVAL;
642 				goto out;
643 			}
644 			break;
645 		case Opt_rescan_uuid_tree:
646 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
647 			break;
648 		case Opt_no_space_cache:
649 			/*
650 			 * We cannot operate without the free space tree with
651 			 * extent tree v2, ignore this option.
652 			 */
653 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
654 				break;
655 			if (btrfs_test_opt(info, SPACE_CACHE)) {
656 				btrfs_clear_and_info(info, SPACE_CACHE,
657 					     "disabling disk space caching");
658 			}
659 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
660 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
661 					     "disabling free space tree");
662 			}
663 			break;
664 		case Opt_inode_cache:
665 		case Opt_noinode_cache:
666 			btrfs_warn(info,
667 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
668 			break;
669 		case Opt_clear_cache:
670 			/*
671 			 * We cannot clear the free space tree with extent tree
672 			 * v2, ignore this option.
673 			 */
674 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
675 				break;
676 			btrfs_set_and_info(info, CLEAR_CACHE,
677 					   "force clearing of disk cache");
678 			break;
679 		case Opt_user_subvol_rm_allowed:
680 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
681 			break;
682 		case Opt_enospc_debug:
683 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
684 			break;
685 		case Opt_noenospc_debug:
686 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
687 			break;
688 		case Opt_defrag:
689 			btrfs_set_and_info(info, AUTO_DEFRAG,
690 					   "enabling auto defrag");
691 			break;
692 		case Opt_nodefrag:
693 			btrfs_clear_and_info(info, AUTO_DEFRAG,
694 					     "disabling auto defrag");
695 			break;
696 		case Opt_recovery:
697 		case Opt_usebackuproot:
698 			btrfs_warn(info,
699 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
700 				   token == Opt_recovery ? "recovery" :
701 				   "usebackuproot");
702 			btrfs_info(info,
703 				   "trying to use backup root at mount time");
704 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
705 			break;
706 		case Opt_skip_balance:
707 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
708 			break;
709 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
710 		case Opt_check_integrity_including_extent_data:
711 			btrfs_info(info,
712 				   "enabling check integrity including extent data");
713 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
714 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
715 			break;
716 		case Opt_check_integrity:
717 			btrfs_info(info, "enabling check integrity");
718 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
719 			break;
720 		case Opt_check_integrity_print_mask:
721 			ret = match_int(&args[0], &intarg);
722 			if (ret) {
723 				btrfs_err(info,
724 				"unrecognized check_integrity_print_mask value %s",
725 					args[0].from);
726 				goto out;
727 			}
728 			info->check_integrity_print_mask = intarg;
729 			btrfs_info(info, "check_integrity_print_mask 0x%x",
730 				   info->check_integrity_print_mask);
731 			break;
732 #else
733 		case Opt_check_integrity_including_extent_data:
734 		case Opt_check_integrity:
735 		case Opt_check_integrity_print_mask:
736 			btrfs_err(info,
737 				  "support for check_integrity* not compiled in!");
738 			ret = -EINVAL;
739 			goto out;
740 #endif
741 		case Opt_fatal_errors:
742 			if (strcmp(args[0].from, "panic") == 0) {
743 				btrfs_set_opt(info->mount_opt,
744 					      PANIC_ON_FATAL_ERROR);
745 			} else if (strcmp(args[0].from, "bug") == 0) {
746 				btrfs_clear_opt(info->mount_opt,
747 					      PANIC_ON_FATAL_ERROR);
748 			} else {
749 				btrfs_err(info, "unrecognized fatal_errors value %s",
750 					  args[0].from);
751 				ret = -EINVAL;
752 				goto out;
753 			}
754 			break;
755 		case Opt_commit_interval:
756 			intarg = 0;
757 			ret = match_int(&args[0], &intarg);
758 			if (ret) {
759 				btrfs_err(info, "unrecognized commit_interval value %s",
760 					  args[0].from);
761 				ret = -EINVAL;
762 				goto out;
763 			}
764 			if (intarg == 0) {
765 				btrfs_info(info,
766 					   "using default commit interval %us",
767 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
768 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
769 			} else if (intarg > 300) {
770 				btrfs_warn(info, "excessive commit interval %d",
771 					   intarg);
772 			}
773 			info->commit_interval = intarg;
774 			break;
775 		case Opt_rescue:
776 			ret = parse_rescue_options(info, args[0].from);
777 			if (ret < 0) {
778 				btrfs_err(info, "unrecognized rescue value %s",
779 					  args[0].from);
780 				goto out;
781 			}
782 			break;
783 #ifdef CONFIG_BTRFS_DEBUG
784 		case Opt_fragment_all:
785 			btrfs_info(info, "fragmenting all space");
786 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
787 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
788 			break;
789 		case Opt_fragment_metadata:
790 			btrfs_info(info, "fragmenting metadata");
791 			btrfs_set_opt(info->mount_opt,
792 				      FRAGMENT_METADATA);
793 			break;
794 		case Opt_fragment_data:
795 			btrfs_info(info, "fragmenting data");
796 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
797 			break;
798 #endif
799 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
800 		case Opt_ref_verify:
801 			btrfs_info(info, "doing ref verification");
802 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
803 			break;
804 #endif
805 		case Opt_err:
806 			btrfs_err(info, "unrecognized mount option '%s'", p);
807 			ret = -EINVAL;
808 			goto out;
809 		default:
810 			break;
811 		}
812 	}
813 check:
814 	/* We're read-only, don't have to check. */
815 	if (new_flags & SB_RDONLY)
816 		goto out;
817 
818 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
819 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
820 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
821 		ret = -EINVAL;
822 out:
823 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
824 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
825 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
826 		btrfs_err(info, "cannot disable free space tree");
827 		ret = -EINVAL;
828 
829 	}
830 	if (!ret)
831 		ret = btrfs_check_mountopts_zoned(info);
832 	if (!ret && !remounting) {
833 		if (btrfs_test_opt(info, SPACE_CACHE))
834 			btrfs_info(info, "disk space caching is enabled");
835 		if (btrfs_test_opt(info, FREE_SPACE_TREE))
836 			btrfs_info(info, "using free space tree");
837 	}
838 	return ret;
839 }
840 
841 /*
842  * Parse mount options that are required early in the mount process.
843  *
844  * All other options will be parsed on much later in the mount process and
845  * only when we need to allocate a new super block.
846  */
847 static int btrfs_parse_device_options(const char *options, fmode_t flags,
848 				      void *holder)
849 {
850 	substring_t args[MAX_OPT_ARGS];
851 	char *device_name, *opts, *orig, *p;
852 	struct btrfs_device *device = NULL;
853 	int error = 0;
854 
855 	lockdep_assert_held(&uuid_mutex);
856 
857 	if (!options)
858 		return 0;
859 
860 	/*
861 	 * strsep changes the string, duplicate it because btrfs_parse_options
862 	 * gets called later
863 	 */
864 	opts = kstrdup(options, GFP_KERNEL);
865 	if (!opts)
866 		return -ENOMEM;
867 	orig = opts;
868 
869 	while ((p = strsep(&opts, ",")) != NULL) {
870 		int token;
871 
872 		if (!*p)
873 			continue;
874 
875 		token = match_token(p, tokens, args);
876 		if (token == Opt_device) {
877 			device_name = match_strdup(&args[0]);
878 			if (!device_name) {
879 				error = -ENOMEM;
880 				goto out;
881 			}
882 			device = btrfs_scan_one_device(device_name, flags,
883 					holder);
884 			kfree(device_name);
885 			if (IS_ERR(device)) {
886 				error = PTR_ERR(device);
887 				goto out;
888 			}
889 		}
890 	}
891 
892 out:
893 	kfree(orig);
894 	return error;
895 }
896 
897 /*
898  * Parse mount options that are related to subvolume id
899  *
900  * The value is later passed to mount_subvol()
901  */
902 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
903 		u64 *subvol_objectid)
904 {
905 	substring_t args[MAX_OPT_ARGS];
906 	char *opts, *orig, *p;
907 	int error = 0;
908 	u64 subvolid;
909 
910 	if (!options)
911 		return 0;
912 
913 	/*
914 	 * strsep changes the string, duplicate it because
915 	 * btrfs_parse_device_options gets called later
916 	 */
917 	opts = kstrdup(options, GFP_KERNEL);
918 	if (!opts)
919 		return -ENOMEM;
920 	orig = opts;
921 
922 	while ((p = strsep(&opts, ",")) != NULL) {
923 		int token;
924 		if (!*p)
925 			continue;
926 
927 		token = match_token(p, tokens, args);
928 		switch (token) {
929 		case Opt_subvol:
930 			kfree(*subvol_name);
931 			*subvol_name = match_strdup(&args[0]);
932 			if (!*subvol_name) {
933 				error = -ENOMEM;
934 				goto out;
935 			}
936 			break;
937 		case Opt_subvolid:
938 			error = match_u64(&args[0], &subvolid);
939 			if (error)
940 				goto out;
941 
942 			/* we want the original fs_tree */
943 			if (subvolid == 0)
944 				subvolid = BTRFS_FS_TREE_OBJECTID;
945 
946 			*subvol_objectid = subvolid;
947 			break;
948 		default:
949 			break;
950 		}
951 	}
952 
953 out:
954 	kfree(orig);
955 	return error;
956 }
957 
958 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
959 					  u64 subvol_objectid)
960 {
961 	struct btrfs_root *root = fs_info->tree_root;
962 	struct btrfs_root *fs_root = NULL;
963 	struct btrfs_root_ref *root_ref;
964 	struct btrfs_inode_ref *inode_ref;
965 	struct btrfs_key key;
966 	struct btrfs_path *path = NULL;
967 	char *name = NULL, *ptr;
968 	u64 dirid;
969 	int len;
970 	int ret;
971 
972 	path = btrfs_alloc_path();
973 	if (!path) {
974 		ret = -ENOMEM;
975 		goto err;
976 	}
977 
978 	name = kmalloc(PATH_MAX, GFP_KERNEL);
979 	if (!name) {
980 		ret = -ENOMEM;
981 		goto err;
982 	}
983 	ptr = name + PATH_MAX - 1;
984 	ptr[0] = '\0';
985 
986 	/*
987 	 * Walk up the subvolume trees in the tree of tree roots by root
988 	 * backrefs until we hit the top-level subvolume.
989 	 */
990 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
991 		key.objectid = subvol_objectid;
992 		key.type = BTRFS_ROOT_BACKREF_KEY;
993 		key.offset = (u64)-1;
994 
995 		ret = btrfs_search_backwards(root, &key, path);
996 		if (ret < 0) {
997 			goto err;
998 		} else if (ret > 0) {
999 			ret = -ENOENT;
1000 			goto err;
1001 		}
1002 
1003 		subvol_objectid = key.offset;
1004 
1005 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1006 					  struct btrfs_root_ref);
1007 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1008 		ptr -= len + 1;
1009 		if (ptr < name) {
1010 			ret = -ENAMETOOLONG;
1011 			goto err;
1012 		}
1013 		read_extent_buffer(path->nodes[0], ptr + 1,
1014 				   (unsigned long)(root_ref + 1), len);
1015 		ptr[0] = '/';
1016 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1017 		btrfs_release_path(path);
1018 
1019 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1020 		if (IS_ERR(fs_root)) {
1021 			ret = PTR_ERR(fs_root);
1022 			fs_root = NULL;
1023 			goto err;
1024 		}
1025 
1026 		/*
1027 		 * Walk up the filesystem tree by inode refs until we hit the
1028 		 * root directory.
1029 		 */
1030 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1031 			key.objectid = dirid;
1032 			key.type = BTRFS_INODE_REF_KEY;
1033 			key.offset = (u64)-1;
1034 
1035 			ret = btrfs_search_backwards(fs_root, &key, path);
1036 			if (ret < 0) {
1037 				goto err;
1038 			} else if (ret > 0) {
1039 				ret = -ENOENT;
1040 				goto err;
1041 			}
1042 
1043 			dirid = key.offset;
1044 
1045 			inode_ref = btrfs_item_ptr(path->nodes[0],
1046 						   path->slots[0],
1047 						   struct btrfs_inode_ref);
1048 			len = btrfs_inode_ref_name_len(path->nodes[0],
1049 						       inode_ref);
1050 			ptr -= len + 1;
1051 			if (ptr < name) {
1052 				ret = -ENAMETOOLONG;
1053 				goto err;
1054 			}
1055 			read_extent_buffer(path->nodes[0], ptr + 1,
1056 					   (unsigned long)(inode_ref + 1), len);
1057 			ptr[0] = '/';
1058 			btrfs_release_path(path);
1059 		}
1060 		btrfs_put_root(fs_root);
1061 		fs_root = NULL;
1062 	}
1063 
1064 	btrfs_free_path(path);
1065 	if (ptr == name + PATH_MAX - 1) {
1066 		name[0] = '/';
1067 		name[1] = '\0';
1068 	} else {
1069 		memmove(name, ptr, name + PATH_MAX - ptr);
1070 	}
1071 	return name;
1072 
1073 err:
1074 	btrfs_put_root(fs_root);
1075 	btrfs_free_path(path);
1076 	kfree(name);
1077 	return ERR_PTR(ret);
1078 }
1079 
1080 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1081 {
1082 	struct btrfs_root *root = fs_info->tree_root;
1083 	struct btrfs_dir_item *di;
1084 	struct btrfs_path *path;
1085 	struct btrfs_key location;
1086 	struct fscrypt_str name = FSTR_INIT("default", 7);
1087 	u64 dir_id;
1088 
1089 	path = btrfs_alloc_path();
1090 	if (!path)
1091 		return -ENOMEM;
1092 
1093 	/*
1094 	 * Find the "default" dir item which points to the root item that we
1095 	 * will mount by default if we haven't been given a specific subvolume
1096 	 * to mount.
1097 	 */
1098 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1099 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
1100 	if (IS_ERR(di)) {
1101 		btrfs_free_path(path);
1102 		return PTR_ERR(di);
1103 	}
1104 	if (!di) {
1105 		/*
1106 		 * Ok the default dir item isn't there.  This is weird since
1107 		 * it's always been there, but don't freak out, just try and
1108 		 * mount the top-level subvolume.
1109 		 */
1110 		btrfs_free_path(path);
1111 		*objectid = BTRFS_FS_TREE_OBJECTID;
1112 		return 0;
1113 	}
1114 
1115 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1116 	btrfs_free_path(path);
1117 	*objectid = location.objectid;
1118 	return 0;
1119 }
1120 
1121 static int btrfs_fill_super(struct super_block *sb,
1122 			    struct btrfs_fs_devices *fs_devices,
1123 			    void *data)
1124 {
1125 	struct inode *inode;
1126 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1127 	int err;
1128 
1129 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1130 	sb->s_magic = BTRFS_SUPER_MAGIC;
1131 	sb->s_op = &btrfs_super_ops;
1132 	sb->s_d_op = &btrfs_dentry_operations;
1133 	sb->s_export_op = &btrfs_export_ops;
1134 #ifdef CONFIG_FS_VERITY
1135 	sb->s_vop = &btrfs_verityops;
1136 #endif
1137 	sb->s_xattr = btrfs_xattr_handlers;
1138 	sb->s_time_gran = 1;
1139 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1140 	sb->s_flags |= SB_POSIXACL;
1141 #endif
1142 	sb->s_flags |= SB_I_VERSION;
1143 	sb->s_iflags |= SB_I_CGROUPWB;
1144 
1145 	err = super_setup_bdi(sb);
1146 	if (err) {
1147 		btrfs_err(fs_info, "super_setup_bdi failed");
1148 		return err;
1149 	}
1150 
1151 	err = open_ctree(sb, fs_devices, (char *)data);
1152 	if (err) {
1153 		btrfs_err(fs_info, "open_ctree failed");
1154 		return err;
1155 	}
1156 
1157 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1158 	if (IS_ERR(inode)) {
1159 		err = PTR_ERR(inode);
1160 		goto fail_close;
1161 	}
1162 
1163 	sb->s_root = d_make_root(inode);
1164 	if (!sb->s_root) {
1165 		err = -ENOMEM;
1166 		goto fail_close;
1167 	}
1168 
1169 	sb->s_flags |= SB_ACTIVE;
1170 	return 0;
1171 
1172 fail_close:
1173 	close_ctree(fs_info);
1174 	return err;
1175 }
1176 
1177 int btrfs_sync_fs(struct super_block *sb, int wait)
1178 {
1179 	struct btrfs_trans_handle *trans;
1180 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1181 	struct btrfs_root *root = fs_info->tree_root;
1182 
1183 	trace_btrfs_sync_fs(fs_info, wait);
1184 
1185 	if (!wait) {
1186 		filemap_flush(fs_info->btree_inode->i_mapping);
1187 		return 0;
1188 	}
1189 
1190 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1191 
1192 	trans = btrfs_attach_transaction_barrier(root);
1193 	if (IS_ERR(trans)) {
1194 		/* no transaction, don't bother */
1195 		if (PTR_ERR(trans) == -ENOENT) {
1196 			/*
1197 			 * Exit unless we have some pending changes
1198 			 * that need to go through commit
1199 			 */
1200 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1201 				      &fs_info->flags))
1202 				return 0;
1203 			/*
1204 			 * A non-blocking test if the fs is frozen. We must not
1205 			 * start a new transaction here otherwise a deadlock
1206 			 * happens. The pending operations are delayed to the
1207 			 * next commit after thawing.
1208 			 */
1209 			if (sb_start_write_trylock(sb))
1210 				sb_end_write(sb);
1211 			else
1212 				return 0;
1213 			trans = btrfs_start_transaction(root, 0);
1214 		}
1215 		if (IS_ERR(trans))
1216 			return PTR_ERR(trans);
1217 	}
1218 	return btrfs_commit_transaction(trans);
1219 }
1220 
1221 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1222 {
1223 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1224 	*printed = true;
1225 }
1226 
1227 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1228 {
1229 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1230 	const char *compress_type;
1231 	const char *subvol_name;
1232 	bool printed = false;
1233 
1234 	if (btrfs_test_opt(info, DEGRADED))
1235 		seq_puts(seq, ",degraded");
1236 	if (btrfs_test_opt(info, NODATASUM))
1237 		seq_puts(seq, ",nodatasum");
1238 	if (btrfs_test_opt(info, NODATACOW))
1239 		seq_puts(seq, ",nodatacow");
1240 	if (btrfs_test_opt(info, NOBARRIER))
1241 		seq_puts(seq, ",nobarrier");
1242 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1243 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1244 	if (info->thread_pool_size !=  min_t(unsigned long,
1245 					     num_online_cpus() + 2, 8))
1246 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1247 	if (btrfs_test_opt(info, COMPRESS)) {
1248 		compress_type = btrfs_compress_type2str(info->compress_type);
1249 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1250 			seq_printf(seq, ",compress-force=%s", compress_type);
1251 		else
1252 			seq_printf(seq, ",compress=%s", compress_type);
1253 		if (info->compress_level)
1254 			seq_printf(seq, ":%d", info->compress_level);
1255 	}
1256 	if (btrfs_test_opt(info, NOSSD))
1257 		seq_puts(seq, ",nossd");
1258 	if (btrfs_test_opt(info, SSD_SPREAD))
1259 		seq_puts(seq, ",ssd_spread");
1260 	else if (btrfs_test_opt(info, SSD))
1261 		seq_puts(seq, ",ssd");
1262 	if (btrfs_test_opt(info, NOTREELOG))
1263 		seq_puts(seq, ",notreelog");
1264 	if (btrfs_test_opt(info, NOLOGREPLAY))
1265 		print_rescue_option(seq, "nologreplay", &printed);
1266 	if (btrfs_test_opt(info, USEBACKUPROOT))
1267 		print_rescue_option(seq, "usebackuproot", &printed);
1268 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1269 		print_rescue_option(seq, "ignorebadroots", &printed);
1270 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1271 		print_rescue_option(seq, "ignoredatacsums", &printed);
1272 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1273 		seq_puts(seq, ",flushoncommit");
1274 	if (btrfs_test_opt(info, DISCARD_SYNC))
1275 		seq_puts(seq, ",discard");
1276 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1277 		seq_puts(seq, ",discard=async");
1278 	if (!(info->sb->s_flags & SB_POSIXACL))
1279 		seq_puts(seq, ",noacl");
1280 	if (btrfs_free_space_cache_v1_active(info))
1281 		seq_puts(seq, ",space_cache");
1282 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1283 		seq_puts(seq, ",space_cache=v2");
1284 	else
1285 		seq_puts(seq, ",nospace_cache");
1286 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1287 		seq_puts(seq, ",rescan_uuid_tree");
1288 	if (btrfs_test_opt(info, CLEAR_CACHE))
1289 		seq_puts(seq, ",clear_cache");
1290 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1291 		seq_puts(seq, ",user_subvol_rm_allowed");
1292 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1293 		seq_puts(seq, ",enospc_debug");
1294 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1295 		seq_puts(seq, ",autodefrag");
1296 	if (btrfs_test_opt(info, SKIP_BALANCE))
1297 		seq_puts(seq, ",skip_balance");
1298 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1299 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1300 		seq_puts(seq, ",check_int_data");
1301 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1302 		seq_puts(seq, ",check_int");
1303 	if (info->check_integrity_print_mask)
1304 		seq_printf(seq, ",check_int_print_mask=%d",
1305 				info->check_integrity_print_mask);
1306 #endif
1307 	if (info->metadata_ratio)
1308 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1309 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1310 		seq_puts(seq, ",fatal_errors=panic");
1311 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1312 		seq_printf(seq, ",commit=%u", info->commit_interval);
1313 #ifdef CONFIG_BTRFS_DEBUG
1314 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1315 		seq_puts(seq, ",fragment=data");
1316 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1317 		seq_puts(seq, ",fragment=metadata");
1318 #endif
1319 	if (btrfs_test_opt(info, REF_VERIFY))
1320 		seq_puts(seq, ",ref_verify");
1321 	seq_printf(seq, ",subvolid=%llu",
1322 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1323 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1324 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1325 	if (!IS_ERR(subvol_name)) {
1326 		seq_puts(seq, ",subvol=");
1327 		seq_escape(seq, subvol_name, " \t\n\\");
1328 		kfree(subvol_name);
1329 	}
1330 	return 0;
1331 }
1332 
1333 static int btrfs_test_super(struct super_block *s, void *data)
1334 {
1335 	struct btrfs_fs_info *p = data;
1336 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1337 
1338 	return fs_info->fs_devices == p->fs_devices;
1339 }
1340 
1341 static int btrfs_set_super(struct super_block *s, void *data)
1342 {
1343 	int err = set_anon_super(s, data);
1344 	if (!err)
1345 		s->s_fs_info = data;
1346 	return err;
1347 }
1348 
1349 /*
1350  * subvolumes are identified by ino 256
1351  */
1352 static inline int is_subvolume_inode(struct inode *inode)
1353 {
1354 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1355 		return 1;
1356 	return 0;
1357 }
1358 
1359 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1360 				   struct vfsmount *mnt)
1361 {
1362 	struct dentry *root;
1363 	int ret;
1364 
1365 	if (!subvol_name) {
1366 		if (!subvol_objectid) {
1367 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1368 							  &subvol_objectid);
1369 			if (ret) {
1370 				root = ERR_PTR(ret);
1371 				goto out;
1372 			}
1373 		}
1374 		subvol_name = btrfs_get_subvol_name_from_objectid(
1375 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1376 		if (IS_ERR(subvol_name)) {
1377 			root = ERR_CAST(subvol_name);
1378 			subvol_name = NULL;
1379 			goto out;
1380 		}
1381 
1382 	}
1383 
1384 	root = mount_subtree(mnt, subvol_name);
1385 	/* mount_subtree() drops our reference on the vfsmount. */
1386 	mnt = NULL;
1387 
1388 	if (!IS_ERR(root)) {
1389 		struct super_block *s = root->d_sb;
1390 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1391 		struct inode *root_inode = d_inode(root);
1392 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1393 
1394 		ret = 0;
1395 		if (!is_subvolume_inode(root_inode)) {
1396 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1397 			       subvol_name);
1398 			ret = -EINVAL;
1399 		}
1400 		if (subvol_objectid && root_objectid != subvol_objectid) {
1401 			/*
1402 			 * This will also catch a race condition where a
1403 			 * subvolume which was passed by ID is renamed and
1404 			 * another subvolume is renamed over the old location.
1405 			 */
1406 			btrfs_err(fs_info,
1407 				  "subvol '%s' does not match subvolid %llu",
1408 				  subvol_name, subvol_objectid);
1409 			ret = -EINVAL;
1410 		}
1411 		if (ret) {
1412 			dput(root);
1413 			root = ERR_PTR(ret);
1414 			deactivate_locked_super(s);
1415 		}
1416 	}
1417 
1418 out:
1419 	mntput(mnt);
1420 	kfree(subvol_name);
1421 	return root;
1422 }
1423 
1424 /*
1425  * Find a superblock for the given device / mount point.
1426  *
1427  * Note: This is based on mount_bdev from fs/super.c with a few additions
1428  *       for multiple device setup.  Make sure to keep it in sync.
1429  */
1430 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1431 		int flags, const char *device_name, void *data)
1432 {
1433 	struct block_device *bdev = NULL;
1434 	struct super_block *s;
1435 	struct btrfs_device *device = NULL;
1436 	struct btrfs_fs_devices *fs_devices = NULL;
1437 	struct btrfs_fs_info *fs_info = NULL;
1438 	void *new_sec_opts = NULL;
1439 	fmode_t mode = FMODE_READ;
1440 	int error = 0;
1441 
1442 	if (!(flags & SB_RDONLY))
1443 		mode |= FMODE_WRITE;
1444 
1445 	if (data) {
1446 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1447 		if (error)
1448 			return ERR_PTR(error);
1449 	}
1450 
1451 	/*
1452 	 * Setup a dummy root and fs_info for test/set super.  This is because
1453 	 * we don't actually fill this stuff out until open_ctree, but we need
1454 	 * then open_ctree will properly initialize the file system specific
1455 	 * settings later.  btrfs_init_fs_info initializes the static elements
1456 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1457 	 * superblock with our given fs_devices later on at sget() time.
1458 	 */
1459 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1460 	if (!fs_info) {
1461 		error = -ENOMEM;
1462 		goto error_sec_opts;
1463 	}
1464 	btrfs_init_fs_info(fs_info);
1465 
1466 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1467 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1468 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1469 		error = -ENOMEM;
1470 		goto error_fs_info;
1471 	}
1472 
1473 	mutex_lock(&uuid_mutex);
1474 	error = btrfs_parse_device_options(data, mode, fs_type);
1475 	if (error) {
1476 		mutex_unlock(&uuid_mutex);
1477 		goto error_fs_info;
1478 	}
1479 
1480 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1481 	if (IS_ERR(device)) {
1482 		mutex_unlock(&uuid_mutex);
1483 		error = PTR_ERR(device);
1484 		goto error_fs_info;
1485 	}
1486 
1487 	fs_devices = device->fs_devices;
1488 	fs_info->fs_devices = fs_devices;
1489 
1490 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1491 	mutex_unlock(&uuid_mutex);
1492 	if (error)
1493 		goto error_fs_info;
1494 
1495 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1496 		error = -EACCES;
1497 		goto error_close_devices;
1498 	}
1499 
1500 	bdev = fs_devices->latest_dev->bdev;
1501 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1502 		 fs_info);
1503 	if (IS_ERR(s)) {
1504 		error = PTR_ERR(s);
1505 		goto error_close_devices;
1506 	}
1507 
1508 	if (s->s_root) {
1509 		btrfs_close_devices(fs_devices);
1510 		btrfs_free_fs_info(fs_info);
1511 		if ((flags ^ s->s_flags) & SB_RDONLY)
1512 			error = -EBUSY;
1513 	} else {
1514 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1515 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1516 					s->s_id);
1517 		btrfs_sb(s)->bdev_holder = fs_type;
1518 		if (!strstr(crc32c_impl(), "generic"))
1519 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1520 		error = btrfs_fill_super(s, fs_devices, data);
1521 	}
1522 	if (!error)
1523 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1524 	security_free_mnt_opts(&new_sec_opts);
1525 	if (error) {
1526 		deactivate_locked_super(s);
1527 		return ERR_PTR(error);
1528 	}
1529 
1530 	return dget(s->s_root);
1531 
1532 error_close_devices:
1533 	btrfs_close_devices(fs_devices);
1534 error_fs_info:
1535 	btrfs_free_fs_info(fs_info);
1536 error_sec_opts:
1537 	security_free_mnt_opts(&new_sec_opts);
1538 	return ERR_PTR(error);
1539 }
1540 
1541 /*
1542  * Mount function which is called by VFS layer.
1543  *
1544  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1545  * which needs vfsmount* of device's root (/).  This means device's root has to
1546  * be mounted internally in any case.
1547  *
1548  * Operation flow:
1549  *   1. Parse subvol id related options for later use in mount_subvol().
1550  *
1551  *   2. Mount device's root (/) by calling vfs_kern_mount().
1552  *
1553  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1554  *      first place. In order to avoid calling btrfs_mount() again, we use
1555  *      different file_system_type which is not registered to VFS by
1556  *      register_filesystem() (btrfs_root_fs_type). As a result,
1557  *      btrfs_mount_root() is called. The return value will be used by
1558  *      mount_subtree() in mount_subvol().
1559  *
1560  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1561  *      "btrfs subvolume set-default", mount_subvol() is called always.
1562  */
1563 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1564 		const char *device_name, void *data)
1565 {
1566 	struct vfsmount *mnt_root;
1567 	struct dentry *root;
1568 	char *subvol_name = NULL;
1569 	u64 subvol_objectid = 0;
1570 	int error = 0;
1571 
1572 	error = btrfs_parse_subvol_options(data, &subvol_name,
1573 					&subvol_objectid);
1574 	if (error) {
1575 		kfree(subvol_name);
1576 		return ERR_PTR(error);
1577 	}
1578 
1579 	/* mount device's root (/) */
1580 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1581 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1582 		if (flags & SB_RDONLY) {
1583 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1584 				flags & ~SB_RDONLY, device_name, data);
1585 		} else {
1586 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1587 				flags | SB_RDONLY, device_name, data);
1588 			if (IS_ERR(mnt_root)) {
1589 				root = ERR_CAST(mnt_root);
1590 				kfree(subvol_name);
1591 				goto out;
1592 			}
1593 
1594 			down_write(&mnt_root->mnt_sb->s_umount);
1595 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1596 			up_write(&mnt_root->mnt_sb->s_umount);
1597 			if (error < 0) {
1598 				root = ERR_PTR(error);
1599 				mntput(mnt_root);
1600 				kfree(subvol_name);
1601 				goto out;
1602 			}
1603 		}
1604 	}
1605 	if (IS_ERR(mnt_root)) {
1606 		root = ERR_CAST(mnt_root);
1607 		kfree(subvol_name);
1608 		goto out;
1609 	}
1610 
1611 	/* mount_subvol() will free subvol_name and mnt_root */
1612 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1613 
1614 out:
1615 	return root;
1616 }
1617 
1618 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1619 				     u32 new_pool_size, u32 old_pool_size)
1620 {
1621 	if (new_pool_size == old_pool_size)
1622 		return;
1623 
1624 	fs_info->thread_pool_size = new_pool_size;
1625 
1626 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1627 	       old_pool_size, new_pool_size);
1628 
1629 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1630 	btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1631 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1632 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1633 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1634 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1635 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1636 }
1637 
1638 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1639 				       unsigned long old_opts, int flags)
1640 {
1641 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1642 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1643 	     (flags & SB_RDONLY))) {
1644 		/* wait for any defraggers to finish */
1645 		wait_event(fs_info->transaction_wait,
1646 			   (atomic_read(&fs_info->defrag_running) == 0));
1647 		if (flags & SB_RDONLY)
1648 			sync_filesystem(fs_info->sb);
1649 	}
1650 }
1651 
1652 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1653 					 unsigned long old_opts)
1654 {
1655 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1656 
1657 	/*
1658 	 * We need to cleanup all defragable inodes if the autodefragment is
1659 	 * close or the filesystem is read only.
1660 	 */
1661 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1662 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1663 		btrfs_cleanup_defrag_inodes(fs_info);
1664 	}
1665 
1666 	/* If we toggled discard async */
1667 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1668 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1669 		btrfs_discard_resume(fs_info);
1670 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1671 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1672 		btrfs_discard_cleanup(fs_info);
1673 
1674 	/* If we toggled space cache */
1675 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1676 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1677 }
1678 
1679 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1680 {
1681 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1682 	unsigned old_flags = sb->s_flags;
1683 	unsigned long old_opts = fs_info->mount_opt;
1684 	unsigned long old_compress_type = fs_info->compress_type;
1685 	u64 old_max_inline = fs_info->max_inline;
1686 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1687 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1688 	int ret;
1689 
1690 	sync_filesystem(sb);
1691 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1692 
1693 	if (data) {
1694 		void *new_sec_opts = NULL;
1695 
1696 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1697 		if (!ret)
1698 			ret = security_sb_remount(sb, new_sec_opts);
1699 		security_free_mnt_opts(&new_sec_opts);
1700 		if (ret)
1701 			goto restore;
1702 	}
1703 
1704 	ret = btrfs_parse_options(fs_info, data, *flags);
1705 	if (ret)
1706 		goto restore;
1707 
1708 	ret = btrfs_check_features(fs_info, sb);
1709 	if (ret < 0)
1710 		goto restore;
1711 
1712 	btrfs_remount_begin(fs_info, old_opts, *flags);
1713 	btrfs_resize_thread_pool(fs_info,
1714 		fs_info->thread_pool_size, old_thread_pool_size);
1715 
1716 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1717 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1718 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1719 		btrfs_warn(fs_info,
1720 		"remount supports changing free space tree only from ro to rw");
1721 		/* Make sure free space cache options match the state on disk */
1722 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1723 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1724 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1725 		}
1726 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1727 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1728 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1729 		}
1730 	}
1731 
1732 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1733 		goto out;
1734 
1735 	if (*flags & SB_RDONLY) {
1736 		/*
1737 		 * this also happens on 'umount -rf' or on shutdown, when
1738 		 * the filesystem is busy.
1739 		 */
1740 		cancel_work_sync(&fs_info->async_reclaim_work);
1741 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1742 
1743 		btrfs_discard_cleanup(fs_info);
1744 
1745 		/* wait for the uuid_scan task to finish */
1746 		down(&fs_info->uuid_tree_rescan_sem);
1747 		/* avoid complains from lockdep et al. */
1748 		up(&fs_info->uuid_tree_rescan_sem);
1749 
1750 		btrfs_set_sb_rdonly(sb);
1751 
1752 		/*
1753 		 * Setting SB_RDONLY will put the cleaner thread to
1754 		 * sleep at the next loop if it's already active.
1755 		 * If it's already asleep, we'll leave unused block
1756 		 * groups on disk until we're mounted read-write again
1757 		 * unless we clean them up here.
1758 		 */
1759 		btrfs_delete_unused_bgs(fs_info);
1760 
1761 		/*
1762 		 * The cleaner task could be already running before we set the
1763 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1764 		 * We must make sure that after we finish the remount, i.e. after
1765 		 * we call btrfs_commit_super(), the cleaner can no longer start
1766 		 * a transaction - either because it was dropping a dead root,
1767 		 * running delayed iputs or deleting an unused block group (the
1768 		 * cleaner picked a block group from the list of unused block
1769 		 * groups before we were able to in the previous call to
1770 		 * btrfs_delete_unused_bgs()).
1771 		 */
1772 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1773 			    TASK_UNINTERRUPTIBLE);
1774 
1775 		/*
1776 		 * We've set the superblock to RO mode, so we might have made
1777 		 * the cleaner task sleep without running all pending delayed
1778 		 * iputs. Go through all the delayed iputs here, so that if an
1779 		 * unmount happens without remounting RW we don't end up at
1780 		 * finishing close_ctree() with a non-empty list of delayed
1781 		 * iputs.
1782 		 */
1783 		btrfs_run_delayed_iputs(fs_info);
1784 
1785 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1786 		btrfs_scrub_cancel(fs_info);
1787 		btrfs_pause_balance(fs_info);
1788 
1789 		/*
1790 		 * Pause the qgroup rescan worker if it is running. We don't want
1791 		 * it to be still running after we are in RO mode, as after that,
1792 		 * by the time we unmount, it might have left a transaction open,
1793 		 * so we would leak the transaction and/or crash.
1794 		 */
1795 		btrfs_qgroup_wait_for_completion(fs_info, false);
1796 
1797 		ret = btrfs_commit_super(fs_info);
1798 		if (ret)
1799 			goto restore;
1800 	} else {
1801 		if (BTRFS_FS_ERROR(fs_info)) {
1802 			btrfs_err(fs_info,
1803 				"Remounting read-write after error is not allowed");
1804 			ret = -EINVAL;
1805 			goto restore;
1806 		}
1807 		if (fs_info->fs_devices->rw_devices == 0) {
1808 			ret = -EACCES;
1809 			goto restore;
1810 		}
1811 
1812 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1813 			btrfs_warn(fs_info,
1814 		"too many missing devices, writable remount is not allowed");
1815 			ret = -EACCES;
1816 			goto restore;
1817 		}
1818 
1819 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1820 			btrfs_warn(fs_info,
1821 		"mount required to replay tree-log, cannot remount read-write");
1822 			ret = -EINVAL;
1823 			goto restore;
1824 		}
1825 
1826 		/*
1827 		 * NOTE: when remounting with a change that does writes, don't
1828 		 * put it anywhere above this point, as we are not sure to be
1829 		 * safe to write until we pass the above checks.
1830 		 */
1831 		ret = btrfs_start_pre_rw_mount(fs_info);
1832 		if (ret)
1833 			goto restore;
1834 
1835 		btrfs_clear_sb_rdonly(sb);
1836 
1837 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1838 	}
1839 out:
1840 	/*
1841 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1842 	 * since the absence of the flag means it can be toggled off by remount.
1843 	 */
1844 	*flags |= SB_I_VERSION;
1845 
1846 	wake_up_process(fs_info->transaction_kthread);
1847 	btrfs_remount_cleanup(fs_info, old_opts);
1848 	btrfs_clear_oneshot_options(fs_info);
1849 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1850 
1851 	return 0;
1852 
1853 restore:
1854 	/* We've hit an error - don't reset SB_RDONLY */
1855 	if (sb_rdonly(sb))
1856 		old_flags |= SB_RDONLY;
1857 	if (!(old_flags & SB_RDONLY))
1858 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
1859 	sb->s_flags = old_flags;
1860 	fs_info->mount_opt = old_opts;
1861 	fs_info->compress_type = old_compress_type;
1862 	fs_info->max_inline = old_max_inline;
1863 	btrfs_resize_thread_pool(fs_info,
1864 		old_thread_pool_size, fs_info->thread_pool_size);
1865 	fs_info->metadata_ratio = old_metadata_ratio;
1866 	btrfs_remount_cleanup(fs_info, old_opts);
1867 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1868 
1869 	return ret;
1870 }
1871 
1872 /* Used to sort the devices by max_avail(descending sort) */
1873 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1874 {
1875 	const struct btrfs_device_info *dev_info1 = a;
1876 	const struct btrfs_device_info *dev_info2 = b;
1877 
1878 	if (dev_info1->max_avail > dev_info2->max_avail)
1879 		return -1;
1880 	else if (dev_info1->max_avail < dev_info2->max_avail)
1881 		return 1;
1882 	return 0;
1883 }
1884 
1885 /*
1886  * sort the devices by max_avail, in which max free extent size of each device
1887  * is stored.(Descending Sort)
1888  */
1889 static inline void btrfs_descending_sort_devices(
1890 					struct btrfs_device_info *devices,
1891 					size_t nr_devices)
1892 {
1893 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1894 	     btrfs_cmp_device_free_bytes, NULL);
1895 }
1896 
1897 /*
1898  * The helper to calc the free space on the devices that can be used to store
1899  * file data.
1900  */
1901 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1902 					      u64 *free_bytes)
1903 {
1904 	struct btrfs_device_info *devices_info;
1905 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1906 	struct btrfs_device *device;
1907 	u64 type;
1908 	u64 avail_space;
1909 	u64 min_stripe_size;
1910 	int num_stripes = 1;
1911 	int i = 0, nr_devices;
1912 	const struct btrfs_raid_attr *rattr;
1913 
1914 	/*
1915 	 * We aren't under the device list lock, so this is racy-ish, but good
1916 	 * enough for our purposes.
1917 	 */
1918 	nr_devices = fs_info->fs_devices->open_devices;
1919 	if (!nr_devices) {
1920 		smp_mb();
1921 		nr_devices = fs_info->fs_devices->open_devices;
1922 		ASSERT(nr_devices);
1923 		if (!nr_devices) {
1924 			*free_bytes = 0;
1925 			return 0;
1926 		}
1927 	}
1928 
1929 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1930 			       GFP_KERNEL);
1931 	if (!devices_info)
1932 		return -ENOMEM;
1933 
1934 	/* calc min stripe number for data space allocation */
1935 	type = btrfs_data_alloc_profile(fs_info);
1936 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1937 
1938 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1939 		num_stripes = nr_devices;
1940 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1941 		num_stripes = rattr->ncopies;
1942 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1943 		num_stripes = 4;
1944 
1945 	/* Adjust for more than 1 stripe per device */
1946 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1947 
1948 	rcu_read_lock();
1949 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1950 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1951 						&device->dev_state) ||
1952 		    !device->bdev ||
1953 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1954 			continue;
1955 
1956 		if (i >= nr_devices)
1957 			break;
1958 
1959 		avail_space = device->total_bytes - device->bytes_used;
1960 
1961 		/* align with stripe_len */
1962 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1963 
1964 		/*
1965 		 * Ensure we have at least min_stripe_size on top of the
1966 		 * reserved space on the device.
1967 		 */
1968 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1969 			continue;
1970 
1971 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1972 
1973 		devices_info[i].dev = device;
1974 		devices_info[i].max_avail = avail_space;
1975 
1976 		i++;
1977 	}
1978 	rcu_read_unlock();
1979 
1980 	nr_devices = i;
1981 
1982 	btrfs_descending_sort_devices(devices_info, nr_devices);
1983 
1984 	i = nr_devices - 1;
1985 	avail_space = 0;
1986 	while (nr_devices >= rattr->devs_min) {
1987 		num_stripes = min(num_stripes, nr_devices);
1988 
1989 		if (devices_info[i].max_avail >= min_stripe_size) {
1990 			int j;
1991 			u64 alloc_size;
1992 
1993 			avail_space += devices_info[i].max_avail * num_stripes;
1994 			alloc_size = devices_info[i].max_avail;
1995 			for (j = i + 1 - num_stripes; j <= i; j++)
1996 				devices_info[j].max_avail -= alloc_size;
1997 		}
1998 		i--;
1999 		nr_devices--;
2000 	}
2001 
2002 	kfree(devices_info);
2003 	*free_bytes = avail_space;
2004 	return 0;
2005 }
2006 
2007 /*
2008  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2009  *
2010  * If there's a redundant raid level at DATA block groups, use the respective
2011  * multiplier to scale the sizes.
2012  *
2013  * Unused device space usage is based on simulating the chunk allocator
2014  * algorithm that respects the device sizes and order of allocations.  This is
2015  * a close approximation of the actual use but there are other factors that may
2016  * change the result (like a new metadata chunk).
2017  *
2018  * If metadata is exhausted, f_bavail will be 0.
2019  */
2020 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2021 {
2022 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2023 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2024 	struct btrfs_space_info *found;
2025 	u64 total_used = 0;
2026 	u64 total_free_data = 0;
2027 	u64 total_free_meta = 0;
2028 	u32 bits = fs_info->sectorsize_bits;
2029 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2030 	unsigned factor = 1;
2031 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2032 	int ret;
2033 	u64 thresh = 0;
2034 	int mixed = 0;
2035 
2036 	list_for_each_entry(found, &fs_info->space_info, list) {
2037 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2038 			int i;
2039 
2040 			total_free_data += found->disk_total - found->disk_used;
2041 			total_free_data -=
2042 				btrfs_account_ro_block_groups_free_space(found);
2043 
2044 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2045 				if (!list_empty(&found->block_groups[i]))
2046 					factor = btrfs_bg_type_to_factor(
2047 						btrfs_raid_array[i].bg_flag);
2048 			}
2049 		}
2050 
2051 		/*
2052 		 * Metadata in mixed block goup profiles are accounted in data
2053 		 */
2054 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2055 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2056 				mixed = 1;
2057 			else
2058 				total_free_meta += found->disk_total -
2059 					found->disk_used;
2060 		}
2061 
2062 		total_used += found->disk_used;
2063 	}
2064 
2065 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2066 	buf->f_blocks >>= bits;
2067 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2068 
2069 	/* Account global block reserve as used, it's in logical size already */
2070 	spin_lock(&block_rsv->lock);
2071 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2072 	if (buf->f_bfree >= block_rsv->size >> bits)
2073 		buf->f_bfree -= block_rsv->size >> bits;
2074 	else
2075 		buf->f_bfree = 0;
2076 	spin_unlock(&block_rsv->lock);
2077 
2078 	buf->f_bavail = div_u64(total_free_data, factor);
2079 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2080 	if (ret)
2081 		return ret;
2082 	buf->f_bavail += div_u64(total_free_data, factor);
2083 	buf->f_bavail = buf->f_bavail >> bits;
2084 
2085 	/*
2086 	 * We calculate the remaining metadata space minus global reserve. If
2087 	 * this is (supposedly) smaller than zero, there's no space. But this
2088 	 * does not hold in practice, the exhausted state happens where's still
2089 	 * some positive delta. So we apply some guesswork and compare the
2090 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2091 	 *
2092 	 * We probably cannot calculate the exact threshold value because this
2093 	 * depends on the internal reservations requested by various
2094 	 * operations, so some operations that consume a few metadata will
2095 	 * succeed even if the Avail is zero. But this is better than the other
2096 	 * way around.
2097 	 */
2098 	thresh = SZ_4M;
2099 
2100 	/*
2101 	 * We only want to claim there's no available space if we can no longer
2102 	 * allocate chunks for our metadata profile and our global reserve will
2103 	 * not fit in the free metadata space.  If we aren't ->full then we
2104 	 * still can allocate chunks and thus are fine using the currently
2105 	 * calculated f_bavail.
2106 	 */
2107 	if (!mixed && block_rsv->space_info->full &&
2108 	    total_free_meta - thresh < block_rsv->size)
2109 		buf->f_bavail = 0;
2110 
2111 	buf->f_type = BTRFS_SUPER_MAGIC;
2112 	buf->f_bsize = dentry->d_sb->s_blocksize;
2113 	buf->f_namelen = BTRFS_NAME_LEN;
2114 
2115 	/* We treat it as constant endianness (it doesn't matter _which_)
2116 	   because we want the fsid to come out the same whether mounted
2117 	   on a big-endian or little-endian host */
2118 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2119 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2120 	/* Mask in the root object ID too, to disambiguate subvols */
2121 	buf->f_fsid.val[0] ^=
2122 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2123 	buf->f_fsid.val[1] ^=
2124 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2125 
2126 	return 0;
2127 }
2128 
2129 static void btrfs_kill_super(struct super_block *sb)
2130 {
2131 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2132 	kill_anon_super(sb);
2133 	btrfs_free_fs_info(fs_info);
2134 }
2135 
2136 static struct file_system_type btrfs_fs_type = {
2137 	.owner		= THIS_MODULE,
2138 	.name		= "btrfs",
2139 	.mount		= btrfs_mount,
2140 	.kill_sb	= btrfs_kill_super,
2141 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2142 };
2143 
2144 static struct file_system_type btrfs_root_fs_type = {
2145 	.owner		= THIS_MODULE,
2146 	.name		= "btrfs",
2147 	.mount		= btrfs_mount_root,
2148 	.kill_sb	= btrfs_kill_super,
2149 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2150 };
2151 
2152 MODULE_ALIAS_FS("btrfs");
2153 
2154 static int btrfs_control_open(struct inode *inode, struct file *file)
2155 {
2156 	/*
2157 	 * The control file's private_data is used to hold the
2158 	 * transaction when it is started and is used to keep
2159 	 * track of whether a transaction is already in progress.
2160 	 */
2161 	file->private_data = NULL;
2162 	return 0;
2163 }
2164 
2165 /*
2166  * Used by /dev/btrfs-control for devices ioctls.
2167  */
2168 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2169 				unsigned long arg)
2170 {
2171 	struct btrfs_ioctl_vol_args *vol;
2172 	struct btrfs_device *device = NULL;
2173 	dev_t devt = 0;
2174 	int ret = -ENOTTY;
2175 
2176 	if (!capable(CAP_SYS_ADMIN))
2177 		return -EPERM;
2178 
2179 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2180 	if (IS_ERR(vol))
2181 		return PTR_ERR(vol);
2182 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2183 
2184 	switch (cmd) {
2185 	case BTRFS_IOC_SCAN_DEV:
2186 		mutex_lock(&uuid_mutex);
2187 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2188 					       &btrfs_root_fs_type);
2189 		ret = PTR_ERR_OR_ZERO(device);
2190 		mutex_unlock(&uuid_mutex);
2191 		break;
2192 	case BTRFS_IOC_FORGET_DEV:
2193 		if (vol->name[0] != 0) {
2194 			ret = lookup_bdev(vol->name, &devt);
2195 			if (ret)
2196 				break;
2197 		}
2198 		ret = btrfs_forget_devices(devt);
2199 		break;
2200 	case BTRFS_IOC_DEVICES_READY:
2201 		mutex_lock(&uuid_mutex);
2202 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2203 					       &btrfs_root_fs_type);
2204 		if (IS_ERR(device)) {
2205 			mutex_unlock(&uuid_mutex);
2206 			ret = PTR_ERR(device);
2207 			break;
2208 		}
2209 		ret = !(device->fs_devices->num_devices ==
2210 			device->fs_devices->total_devices);
2211 		mutex_unlock(&uuid_mutex);
2212 		break;
2213 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2214 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2215 		break;
2216 	}
2217 
2218 	kfree(vol);
2219 	return ret;
2220 }
2221 
2222 static int btrfs_freeze(struct super_block *sb)
2223 {
2224 	struct btrfs_trans_handle *trans;
2225 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2226 	struct btrfs_root *root = fs_info->tree_root;
2227 
2228 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2229 	/*
2230 	 * We don't need a barrier here, we'll wait for any transaction that
2231 	 * could be in progress on other threads (and do delayed iputs that
2232 	 * we want to avoid on a frozen filesystem), or do the commit
2233 	 * ourselves.
2234 	 */
2235 	trans = btrfs_attach_transaction_barrier(root);
2236 	if (IS_ERR(trans)) {
2237 		/* no transaction, don't bother */
2238 		if (PTR_ERR(trans) == -ENOENT)
2239 			return 0;
2240 		return PTR_ERR(trans);
2241 	}
2242 	return btrfs_commit_transaction(trans);
2243 }
2244 
2245 static int check_dev_super(struct btrfs_device *dev)
2246 {
2247 	struct btrfs_fs_info *fs_info = dev->fs_info;
2248 	struct btrfs_super_block *sb;
2249 	u16 csum_type;
2250 	int ret = 0;
2251 
2252 	/* This should be called with fs still frozen. */
2253 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2254 
2255 	/* Missing dev, no need to check. */
2256 	if (!dev->bdev)
2257 		return 0;
2258 
2259 	/* Only need to check the primary super block. */
2260 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2261 	if (IS_ERR(sb))
2262 		return PTR_ERR(sb);
2263 
2264 	/* Verify the checksum. */
2265 	csum_type = btrfs_super_csum_type(sb);
2266 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2267 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2268 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2269 		ret = -EUCLEAN;
2270 		goto out;
2271 	}
2272 
2273 	if (btrfs_check_super_csum(fs_info, sb)) {
2274 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2275 		ret = -EUCLEAN;
2276 		goto out;
2277 	}
2278 
2279 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2280 	ret = btrfs_validate_super(fs_info, sb, 0);
2281 	if (ret < 0)
2282 		goto out;
2283 
2284 	if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2285 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2286 			btrfs_super_generation(sb),
2287 			fs_info->last_trans_committed);
2288 		ret = -EUCLEAN;
2289 		goto out;
2290 	}
2291 out:
2292 	btrfs_release_disk_super(sb);
2293 	return ret;
2294 }
2295 
2296 static int btrfs_unfreeze(struct super_block *sb)
2297 {
2298 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2299 	struct btrfs_device *device;
2300 	int ret = 0;
2301 
2302 	/*
2303 	 * Make sure the fs is not changed by accident (like hibernation then
2304 	 * modified by other OS).
2305 	 * If we found anything wrong, we mark the fs error immediately.
2306 	 *
2307 	 * And since the fs is frozen, no one can modify the fs yet, thus
2308 	 * we don't need to hold device_list_mutex.
2309 	 */
2310 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2311 		ret = check_dev_super(device);
2312 		if (ret < 0) {
2313 			btrfs_handle_fs_error(fs_info, ret,
2314 				"super block on devid %llu got modified unexpectedly",
2315 				device->devid);
2316 			break;
2317 		}
2318 	}
2319 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2320 
2321 	/*
2322 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2323 	 * above checks failed. Since the fs is either fine or read-only, we're
2324 	 * safe to continue, without causing further damage.
2325 	 */
2326 	return 0;
2327 }
2328 
2329 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2330 {
2331 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2332 
2333 	/*
2334 	 * There should be always a valid pointer in latest_dev, it may be stale
2335 	 * for a short moment in case it's being deleted but still valid until
2336 	 * the end of RCU grace period.
2337 	 */
2338 	rcu_read_lock();
2339 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2340 	rcu_read_unlock();
2341 
2342 	return 0;
2343 }
2344 
2345 static const struct super_operations btrfs_super_ops = {
2346 	.drop_inode	= btrfs_drop_inode,
2347 	.evict_inode	= btrfs_evict_inode,
2348 	.put_super	= btrfs_put_super,
2349 	.sync_fs	= btrfs_sync_fs,
2350 	.show_options	= btrfs_show_options,
2351 	.show_devname	= btrfs_show_devname,
2352 	.alloc_inode	= btrfs_alloc_inode,
2353 	.destroy_inode	= btrfs_destroy_inode,
2354 	.free_inode	= btrfs_free_inode,
2355 	.statfs		= btrfs_statfs,
2356 	.remount_fs	= btrfs_remount,
2357 	.freeze_fs	= btrfs_freeze,
2358 	.unfreeze_fs	= btrfs_unfreeze,
2359 };
2360 
2361 static const struct file_operations btrfs_ctl_fops = {
2362 	.open = btrfs_control_open,
2363 	.unlocked_ioctl	 = btrfs_control_ioctl,
2364 	.compat_ioctl = compat_ptr_ioctl,
2365 	.owner	 = THIS_MODULE,
2366 	.llseek = noop_llseek,
2367 };
2368 
2369 static struct miscdevice btrfs_misc = {
2370 	.minor		= BTRFS_MINOR,
2371 	.name		= "btrfs-control",
2372 	.fops		= &btrfs_ctl_fops
2373 };
2374 
2375 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2376 MODULE_ALIAS("devname:btrfs-control");
2377 
2378 static int __init btrfs_interface_init(void)
2379 {
2380 	return misc_register(&btrfs_misc);
2381 }
2382 
2383 static __cold void btrfs_interface_exit(void)
2384 {
2385 	misc_deregister(&btrfs_misc);
2386 }
2387 
2388 static int __init btrfs_print_mod_info(void)
2389 {
2390 	static const char options[] = ""
2391 #ifdef CONFIG_BTRFS_DEBUG
2392 			", debug=on"
2393 #endif
2394 #ifdef CONFIG_BTRFS_ASSERT
2395 			", assert=on"
2396 #endif
2397 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2398 			", integrity-checker=on"
2399 #endif
2400 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2401 			", ref-verify=on"
2402 #endif
2403 #ifdef CONFIG_BLK_DEV_ZONED
2404 			", zoned=yes"
2405 #else
2406 			", zoned=no"
2407 #endif
2408 #ifdef CONFIG_FS_VERITY
2409 			", fsverity=yes"
2410 #else
2411 			", fsverity=no"
2412 #endif
2413 			;
2414 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2415 	return 0;
2416 }
2417 
2418 static int register_btrfs(void)
2419 {
2420 	return register_filesystem(&btrfs_fs_type);
2421 }
2422 
2423 static void unregister_btrfs(void)
2424 {
2425 	unregister_filesystem(&btrfs_fs_type);
2426 }
2427 
2428 /* Helper structure for long init/exit functions. */
2429 struct init_sequence {
2430 	int (*init_func)(void);
2431 	/* Can be NULL if the init_func doesn't need cleanup. */
2432 	void (*exit_func)(void);
2433 };
2434 
2435 static const struct init_sequence mod_init_seq[] = {
2436 	{
2437 		.init_func = btrfs_props_init,
2438 		.exit_func = NULL,
2439 	}, {
2440 		.init_func = btrfs_init_sysfs,
2441 		.exit_func = btrfs_exit_sysfs,
2442 	}, {
2443 		.init_func = btrfs_init_compress,
2444 		.exit_func = btrfs_exit_compress,
2445 	}, {
2446 		.init_func = btrfs_init_cachep,
2447 		.exit_func = btrfs_destroy_cachep,
2448 	}, {
2449 		.init_func = btrfs_transaction_init,
2450 		.exit_func = btrfs_transaction_exit,
2451 	}, {
2452 		.init_func = btrfs_ctree_init,
2453 		.exit_func = btrfs_ctree_exit,
2454 	}, {
2455 		.init_func = btrfs_free_space_init,
2456 		.exit_func = btrfs_free_space_exit,
2457 	}, {
2458 		.init_func = extent_state_init_cachep,
2459 		.exit_func = extent_state_free_cachep,
2460 	}, {
2461 		.init_func = extent_buffer_init_cachep,
2462 		.exit_func = extent_buffer_free_cachep,
2463 	}, {
2464 		.init_func = btrfs_bioset_init,
2465 		.exit_func = btrfs_bioset_exit,
2466 	}, {
2467 		.init_func = extent_map_init,
2468 		.exit_func = extent_map_exit,
2469 	}, {
2470 		.init_func = ordered_data_init,
2471 		.exit_func = ordered_data_exit,
2472 	}, {
2473 		.init_func = btrfs_delayed_inode_init,
2474 		.exit_func = btrfs_delayed_inode_exit,
2475 	}, {
2476 		.init_func = btrfs_auto_defrag_init,
2477 		.exit_func = btrfs_auto_defrag_exit,
2478 	}, {
2479 		.init_func = btrfs_delayed_ref_init,
2480 		.exit_func = btrfs_delayed_ref_exit,
2481 	}, {
2482 		.init_func = btrfs_prelim_ref_init,
2483 		.exit_func = btrfs_prelim_ref_exit,
2484 	}, {
2485 		.init_func = btrfs_interface_init,
2486 		.exit_func = btrfs_interface_exit,
2487 	}, {
2488 		.init_func = btrfs_print_mod_info,
2489 		.exit_func = NULL,
2490 	}, {
2491 		.init_func = btrfs_run_sanity_tests,
2492 		.exit_func = NULL,
2493 	}, {
2494 		.init_func = register_btrfs,
2495 		.exit_func = unregister_btrfs,
2496 	}
2497 };
2498 
2499 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2500 
2501 static __always_inline void btrfs_exit_btrfs_fs(void)
2502 {
2503 	int i;
2504 
2505 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2506 		if (!mod_init_result[i])
2507 			continue;
2508 		if (mod_init_seq[i].exit_func)
2509 			mod_init_seq[i].exit_func();
2510 		mod_init_result[i] = false;
2511 	}
2512 }
2513 
2514 static void __exit exit_btrfs_fs(void)
2515 {
2516 	btrfs_exit_btrfs_fs();
2517 }
2518 
2519 static int __init init_btrfs_fs(void)
2520 {
2521 	int ret;
2522 	int i;
2523 
2524 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2525 		ASSERT(!mod_init_result[i]);
2526 		ret = mod_init_seq[i].init_func();
2527 		if (ret < 0) {
2528 			btrfs_exit_btrfs_fs();
2529 			return ret;
2530 		}
2531 		mod_init_result[i] = true;
2532 	}
2533 	return 0;
2534 }
2535 
2536 late_initcall(init_btrfs_fs);
2537 module_exit(exit_btrfs_fs)
2538 
2539 MODULE_LICENSE("GPL");
2540 MODULE_SOFTDEP("pre: crc32c");
2541 MODULE_SOFTDEP("pre: xxhash64");
2542 MODULE_SOFTDEP("pre: sha256");
2543 MODULE_SOFTDEP("pre: blake2b-256");
2544