1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 69 70 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 71 72 const char *btrfs_decode_error(int errno) 73 { 74 char *errstr = "unknown"; 75 76 switch (errno) { 77 case -EIO: 78 errstr = "IO failure"; 79 break; 80 case -ENOMEM: 81 errstr = "Out of memory"; 82 break; 83 case -EROFS: 84 errstr = "Readonly filesystem"; 85 break; 86 case -EEXIST: 87 errstr = "Object already exists"; 88 break; 89 case -ENOSPC: 90 errstr = "No space left"; 91 break; 92 case -ENOENT: 93 errstr = "No such entry"; 94 break; 95 } 96 97 return errstr; 98 } 99 100 /* btrfs handle error by forcing the filesystem readonly */ 101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 102 { 103 struct super_block *sb = fs_info->sb; 104 105 if (sb->s_flags & MS_RDONLY) 106 return; 107 108 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 109 sb->s_flags |= MS_RDONLY; 110 btrfs_info(fs_info, "forced readonly"); 111 /* 112 * Note that a running device replace operation is not 113 * canceled here although there is no way to update 114 * the progress. It would add the risk of a deadlock, 115 * therefore the canceling is omitted. The only penalty 116 * is that some I/O remains active until the procedure 117 * completes. The next time when the filesystem is 118 * mounted writeable again, the device replace 119 * operation continues. 120 */ 121 } 122 } 123 124 /* 125 * __btrfs_handle_fs_error decodes expected errors from the caller and 126 * invokes the approciate error response. 127 */ 128 __cold 129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 130 unsigned int line, int errno, const char *fmt, ...) 131 { 132 struct super_block *sb = fs_info->sb; 133 #ifdef CONFIG_PRINTK 134 const char *errstr; 135 #endif 136 137 /* 138 * Special case: if the error is EROFS, and we're already 139 * under MS_RDONLY, then it is safe here. 140 */ 141 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 142 return; 143 144 #ifdef CONFIG_PRINTK 145 errstr = btrfs_decode_error(errno); 146 if (fmt) { 147 struct va_format vaf; 148 va_list args; 149 150 va_start(args, fmt); 151 vaf.fmt = fmt; 152 vaf.va = &args; 153 154 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 155 sb->s_id, function, line, errno, errstr, &vaf); 156 va_end(args); 157 } else { 158 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 159 sb->s_id, function, line, errno, errstr); 160 } 161 #endif 162 163 /* 164 * Today we only save the error info to memory. Long term we'll 165 * also send it down to the disk 166 */ 167 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 168 169 /* Don't go through full error handling during mount */ 170 if (sb->s_flags & MS_BORN) 171 btrfs_handle_error(fs_info); 172 } 173 174 #ifdef CONFIG_PRINTK 175 static const char * const logtypes[] = { 176 "emergency", 177 "alert", 178 "critical", 179 "error", 180 "warning", 181 "notice", 182 "info", 183 "debug", 184 }; 185 186 187 /* 188 * Use one ratelimit state per log level so that a flood of less important 189 * messages doesn't cause more important ones to be dropped. 190 */ 191 static struct ratelimit_state printk_limits[] = { 192 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 193 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 200 }; 201 202 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 203 { 204 struct super_block *sb = fs_info->sb; 205 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 206 struct va_format vaf; 207 va_list args; 208 int kern_level; 209 const char *type = logtypes[4]; 210 struct ratelimit_state *ratelimit = &printk_limits[4]; 211 212 va_start(args, fmt); 213 214 while ((kern_level = printk_get_level(fmt)) != 0) { 215 size_t size = printk_skip_level(fmt) - fmt; 216 217 if (kern_level >= '0' && kern_level <= '7') { 218 memcpy(lvl, fmt, size); 219 lvl[size] = '\0'; 220 type = logtypes[kern_level - '0']; 221 ratelimit = &printk_limits[kern_level - '0']; 222 } 223 fmt += size; 224 } 225 226 vaf.fmt = fmt; 227 vaf.va = &args; 228 229 if (__ratelimit(ratelimit)) 230 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 231 232 va_end(args); 233 } 234 #endif 235 236 /* 237 * We only mark the transaction aborted and then set the file system read-only. 238 * This will prevent new transactions from starting or trying to join this 239 * one. 240 * 241 * This means that error recovery at the call site is limited to freeing 242 * any local memory allocations and passing the error code up without 243 * further cleanup. The transaction should complete as it normally would 244 * in the call path but will return -EIO. 245 * 246 * We'll complete the cleanup in btrfs_end_transaction and 247 * btrfs_commit_transaction. 248 */ 249 __cold 250 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 251 const char *function, 252 unsigned int line, int errno) 253 { 254 struct btrfs_fs_info *fs_info = trans->fs_info; 255 256 trans->aborted = errno; 257 /* Nothing used. The other threads that have joined this 258 * transaction may be able to continue. */ 259 if (!trans->dirty && list_empty(&trans->new_bgs)) { 260 const char *errstr; 261 262 errstr = btrfs_decode_error(errno); 263 btrfs_warn(fs_info, 264 "%s:%d: Aborting unused transaction(%s).", 265 function, line, errstr); 266 return; 267 } 268 ACCESS_ONCE(trans->transaction->aborted) = errno; 269 /* Wake up anybody who may be waiting on this transaction */ 270 wake_up(&fs_info->transaction_wait); 271 wake_up(&fs_info->transaction_blocked_wait); 272 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 273 } 274 /* 275 * __btrfs_panic decodes unexpected, fatal errors from the caller, 276 * issues an alert, and either panics or BUGs, depending on mount options. 277 */ 278 __cold 279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 280 unsigned int line, int errno, const char *fmt, ...) 281 { 282 char *s_id = "<unknown>"; 283 const char *errstr; 284 struct va_format vaf = { .fmt = fmt }; 285 va_list args; 286 287 if (fs_info) 288 s_id = fs_info->sb->s_id; 289 290 va_start(args, fmt); 291 vaf.va = &args; 292 293 errstr = btrfs_decode_error(errno); 294 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 295 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 296 s_id, function, line, &vaf, errno, errstr); 297 298 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 299 function, line, &vaf, errno, errstr); 300 va_end(args); 301 /* Caller calls BUG() */ 302 } 303 304 static void btrfs_put_super(struct super_block *sb) 305 { 306 close_ctree(btrfs_sb(sb)); 307 } 308 309 enum { 310 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 311 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 312 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 313 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 314 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 315 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, 316 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, 317 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, 318 Opt_skip_balance, Opt_check_integrity, 319 Opt_check_integrity_including_extent_data, 320 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 321 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 322 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 323 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, 324 Opt_nologreplay, Opt_norecovery, 325 #ifdef CONFIG_BTRFS_DEBUG 326 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 327 #endif 328 Opt_err, 329 }; 330 331 static const match_table_t tokens = { 332 {Opt_degraded, "degraded"}, 333 {Opt_subvol, "subvol=%s"}, 334 {Opt_subvolid, "subvolid=%s"}, 335 {Opt_device, "device=%s"}, 336 {Opt_nodatasum, "nodatasum"}, 337 {Opt_datasum, "datasum"}, 338 {Opt_nodatacow, "nodatacow"}, 339 {Opt_datacow, "datacow"}, 340 {Opt_nobarrier, "nobarrier"}, 341 {Opt_barrier, "barrier"}, 342 {Opt_max_inline, "max_inline=%s"}, 343 {Opt_alloc_start, "alloc_start=%s"}, 344 {Opt_thread_pool, "thread_pool=%d"}, 345 {Opt_compress, "compress"}, 346 {Opt_compress_type, "compress=%s"}, 347 {Opt_compress_force, "compress-force"}, 348 {Opt_compress_force_type, "compress-force=%s"}, 349 {Opt_ssd, "ssd"}, 350 {Opt_ssd_spread, "ssd_spread"}, 351 {Opt_nossd, "nossd"}, 352 {Opt_acl, "acl"}, 353 {Opt_noacl, "noacl"}, 354 {Opt_notreelog, "notreelog"}, 355 {Opt_treelog, "treelog"}, 356 {Opt_nologreplay, "nologreplay"}, 357 {Opt_norecovery, "norecovery"}, 358 {Opt_flushoncommit, "flushoncommit"}, 359 {Opt_noflushoncommit, "noflushoncommit"}, 360 {Opt_ratio, "metadata_ratio=%d"}, 361 {Opt_discard, "discard"}, 362 {Opt_nodiscard, "nodiscard"}, 363 {Opt_space_cache, "space_cache"}, 364 {Opt_space_cache_version, "space_cache=%s"}, 365 {Opt_clear_cache, "clear_cache"}, 366 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 367 {Opt_enospc_debug, "enospc_debug"}, 368 {Opt_noenospc_debug, "noenospc_debug"}, 369 {Opt_subvolrootid, "subvolrootid=%d"}, 370 {Opt_defrag, "autodefrag"}, 371 {Opt_nodefrag, "noautodefrag"}, 372 {Opt_inode_cache, "inode_cache"}, 373 {Opt_noinode_cache, "noinode_cache"}, 374 {Opt_no_space_cache, "nospace_cache"}, 375 {Opt_recovery, "recovery"}, /* deprecated */ 376 {Opt_usebackuproot, "usebackuproot"}, 377 {Opt_skip_balance, "skip_balance"}, 378 {Opt_check_integrity, "check_int"}, 379 {Opt_check_integrity_including_extent_data, "check_int_data"}, 380 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 381 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 382 {Opt_fatal_errors, "fatal_errors=%s"}, 383 {Opt_commit_interval, "commit=%d"}, 384 #ifdef CONFIG_BTRFS_DEBUG 385 {Opt_fragment_data, "fragment=data"}, 386 {Opt_fragment_metadata, "fragment=metadata"}, 387 {Opt_fragment_all, "fragment=all"}, 388 #endif 389 {Opt_err, NULL}, 390 }; 391 392 /* 393 * Regular mount options parser. Everything that is needed only when 394 * reading in a new superblock is parsed here. 395 * XXX JDM: This needs to be cleaned up for remount. 396 */ 397 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 398 unsigned long new_flags) 399 { 400 substring_t args[MAX_OPT_ARGS]; 401 char *p, *num, *orig = NULL; 402 u64 cache_gen; 403 int intarg; 404 int ret = 0; 405 char *compress_type; 406 bool compress_force = false; 407 enum btrfs_compression_type saved_compress_type; 408 bool saved_compress_force; 409 int no_compress = 0; 410 411 cache_gen = btrfs_super_cache_generation(info->super_copy); 412 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 413 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 414 else if (cache_gen) 415 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 416 417 /* 418 * Even the options are empty, we still need to do extra check 419 * against new flags 420 */ 421 if (!options) 422 goto check; 423 424 /* 425 * strsep changes the string, duplicate it because parse_options 426 * gets called twice 427 */ 428 options = kstrdup(options, GFP_NOFS); 429 if (!options) 430 return -ENOMEM; 431 432 orig = options; 433 434 while ((p = strsep(&options, ",")) != NULL) { 435 int token; 436 if (!*p) 437 continue; 438 439 token = match_token(p, tokens, args); 440 switch (token) { 441 case Opt_degraded: 442 btrfs_info(info, "allowing degraded mounts"); 443 btrfs_set_opt(info->mount_opt, DEGRADED); 444 break; 445 case Opt_subvol: 446 case Opt_subvolid: 447 case Opt_subvolrootid: 448 case Opt_device: 449 /* 450 * These are parsed by btrfs_parse_early_options 451 * and can be happily ignored here. 452 */ 453 break; 454 case Opt_nodatasum: 455 btrfs_set_and_info(info, NODATASUM, 456 "setting nodatasum"); 457 break; 458 case Opt_datasum: 459 if (btrfs_test_opt(info, NODATASUM)) { 460 if (btrfs_test_opt(info, NODATACOW)) 461 btrfs_info(info, 462 "setting datasum, datacow enabled"); 463 else 464 btrfs_info(info, "setting datasum"); 465 } 466 btrfs_clear_opt(info->mount_opt, NODATACOW); 467 btrfs_clear_opt(info->mount_opt, NODATASUM); 468 break; 469 case Opt_nodatacow: 470 if (!btrfs_test_opt(info, NODATACOW)) { 471 if (!btrfs_test_opt(info, COMPRESS) || 472 !btrfs_test_opt(info, FORCE_COMPRESS)) { 473 btrfs_info(info, 474 "setting nodatacow, compression disabled"); 475 } else { 476 btrfs_info(info, "setting nodatacow"); 477 } 478 } 479 btrfs_clear_opt(info->mount_opt, COMPRESS); 480 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 481 btrfs_set_opt(info->mount_opt, NODATACOW); 482 btrfs_set_opt(info->mount_opt, NODATASUM); 483 break; 484 case Opt_datacow: 485 btrfs_clear_and_info(info, NODATACOW, 486 "setting datacow"); 487 break; 488 case Opt_compress_force: 489 case Opt_compress_force_type: 490 compress_force = true; 491 /* Fallthrough */ 492 case Opt_compress: 493 case Opt_compress_type: 494 saved_compress_type = btrfs_test_opt(info, 495 COMPRESS) ? 496 info->compress_type : BTRFS_COMPRESS_NONE; 497 saved_compress_force = 498 btrfs_test_opt(info, FORCE_COMPRESS); 499 if (token == Opt_compress || 500 token == Opt_compress_force || 501 strcmp(args[0].from, "zlib") == 0) { 502 compress_type = "zlib"; 503 info->compress_type = BTRFS_COMPRESS_ZLIB; 504 btrfs_set_opt(info->mount_opt, COMPRESS); 505 btrfs_clear_opt(info->mount_opt, NODATACOW); 506 btrfs_clear_opt(info->mount_opt, NODATASUM); 507 no_compress = 0; 508 } else if (strcmp(args[0].from, "lzo") == 0) { 509 compress_type = "lzo"; 510 info->compress_type = BTRFS_COMPRESS_LZO; 511 btrfs_set_opt(info->mount_opt, COMPRESS); 512 btrfs_clear_opt(info->mount_opt, NODATACOW); 513 btrfs_clear_opt(info->mount_opt, NODATASUM); 514 btrfs_set_fs_incompat(info, COMPRESS_LZO); 515 no_compress = 0; 516 } else if (strncmp(args[0].from, "no", 2) == 0) { 517 compress_type = "no"; 518 btrfs_clear_opt(info->mount_opt, COMPRESS); 519 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 520 compress_force = false; 521 no_compress++; 522 } else { 523 ret = -EINVAL; 524 goto out; 525 } 526 527 if (compress_force) { 528 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 529 } else { 530 /* 531 * If we remount from compress-force=xxx to 532 * compress=xxx, we need clear FORCE_COMPRESS 533 * flag, otherwise, there is no way for users 534 * to disable forcible compression separately. 535 */ 536 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 537 } 538 if ((btrfs_test_opt(info, COMPRESS) && 539 (info->compress_type != saved_compress_type || 540 compress_force != saved_compress_force)) || 541 (!btrfs_test_opt(info, COMPRESS) && 542 no_compress == 1)) { 543 btrfs_info(info, "%s %s compression", 544 (compress_force) ? "force" : "use", 545 compress_type); 546 } 547 compress_force = false; 548 break; 549 case Opt_ssd: 550 btrfs_set_and_info(info, SSD, 551 "use ssd allocation scheme"); 552 break; 553 case Opt_ssd_spread: 554 btrfs_set_and_info(info, SSD_SPREAD, 555 "use spread ssd allocation scheme"); 556 btrfs_set_opt(info->mount_opt, SSD); 557 break; 558 case Opt_nossd: 559 btrfs_set_and_info(info, NOSSD, 560 "not using ssd allocation scheme"); 561 btrfs_clear_opt(info->mount_opt, SSD); 562 break; 563 case Opt_barrier: 564 btrfs_clear_and_info(info, NOBARRIER, 565 "turning on barriers"); 566 break; 567 case Opt_nobarrier: 568 btrfs_set_and_info(info, NOBARRIER, 569 "turning off barriers"); 570 break; 571 case Opt_thread_pool: 572 ret = match_int(&args[0], &intarg); 573 if (ret) { 574 goto out; 575 } else if (intarg > 0) { 576 info->thread_pool_size = intarg; 577 } else { 578 ret = -EINVAL; 579 goto out; 580 } 581 break; 582 case Opt_max_inline: 583 num = match_strdup(&args[0]); 584 if (num) { 585 info->max_inline = memparse(num, NULL); 586 kfree(num); 587 588 if (info->max_inline) { 589 info->max_inline = min_t(u64, 590 info->max_inline, 591 info->sectorsize); 592 } 593 btrfs_info(info, "max_inline at %llu", 594 info->max_inline); 595 } else { 596 ret = -ENOMEM; 597 goto out; 598 } 599 break; 600 case Opt_alloc_start: 601 num = match_strdup(&args[0]); 602 if (num) { 603 mutex_lock(&info->chunk_mutex); 604 info->alloc_start = memparse(num, NULL); 605 mutex_unlock(&info->chunk_mutex); 606 kfree(num); 607 btrfs_info(info, "allocations start at %llu", 608 info->alloc_start); 609 } else { 610 ret = -ENOMEM; 611 goto out; 612 } 613 break; 614 case Opt_acl: 615 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 616 info->sb->s_flags |= MS_POSIXACL; 617 break; 618 #else 619 btrfs_err(info, "support for ACL not compiled in!"); 620 ret = -EINVAL; 621 goto out; 622 #endif 623 case Opt_noacl: 624 info->sb->s_flags &= ~MS_POSIXACL; 625 break; 626 case Opt_notreelog: 627 btrfs_set_and_info(info, NOTREELOG, 628 "disabling tree log"); 629 break; 630 case Opt_treelog: 631 btrfs_clear_and_info(info, NOTREELOG, 632 "enabling tree log"); 633 break; 634 case Opt_norecovery: 635 case Opt_nologreplay: 636 btrfs_set_and_info(info, NOLOGREPLAY, 637 "disabling log replay at mount time"); 638 break; 639 case Opt_flushoncommit: 640 btrfs_set_and_info(info, FLUSHONCOMMIT, 641 "turning on flush-on-commit"); 642 break; 643 case Opt_noflushoncommit: 644 btrfs_clear_and_info(info, FLUSHONCOMMIT, 645 "turning off flush-on-commit"); 646 break; 647 case Opt_ratio: 648 ret = match_int(&args[0], &intarg); 649 if (ret) { 650 goto out; 651 } else if (intarg >= 0) { 652 info->metadata_ratio = intarg; 653 btrfs_info(info, "metadata ratio %d", 654 info->metadata_ratio); 655 } else { 656 ret = -EINVAL; 657 goto out; 658 } 659 break; 660 case Opt_discard: 661 btrfs_set_and_info(info, DISCARD, 662 "turning on discard"); 663 break; 664 case Opt_nodiscard: 665 btrfs_clear_and_info(info, DISCARD, 666 "turning off discard"); 667 break; 668 case Opt_space_cache: 669 case Opt_space_cache_version: 670 if (token == Opt_space_cache || 671 strcmp(args[0].from, "v1") == 0) { 672 btrfs_clear_opt(info->mount_opt, 673 FREE_SPACE_TREE); 674 btrfs_set_and_info(info, SPACE_CACHE, 675 "enabling disk space caching"); 676 } else if (strcmp(args[0].from, "v2") == 0) { 677 btrfs_clear_opt(info->mount_opt, 678 SPACE_CACHE); 679 btrfs_set_and_info(info, FREE_SPACE_TREE, 680 "enabling free space tree"); 681 } else { 682 ret = -EINVAL; 683 goto out; 684 } 685 break; 686 case Opt_rescan_uuid_tree: 687 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 688 break; 689 case Opt_no_space_cache: 690 if (btrfs_test_opt(info, SPACE_CACHE)) { 691 btrfs_clear_and_info(info, SPACE_CACHE, 692 "disabling disk space caching"); 693 } 694 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 695 btrfs_clear_and_info(info, FREE_SPACE_TREE, 696 "disabling free space tree"); 697 } 698 break; 699 case Opt_inode_cache: 700 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 701 "enabling inode map caching"); 702 break; 703 case Opt_noinode_cache: 704 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 705 "disabling inode map caching"); 706 break; 707 case Opt_clear_cache: 708 btrfs_set_and_info(info, CLEAR_CACHE, 709 "force clearing of disk cache"); 710 break; 711 case Opt_user_subvol_rm_allowed: 712 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 713 break; 714 case Opt_enospc_debug: 715 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 716 break; 717 case Opt_noenospc_debug: 718 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 719 break; 720 case Opt_defrag: 721 btrfs_set_and_info(info, AUTO_DEFRAG, 722 "enabling auto defrag"); 723 break; 724 case Opt_nodefrag: 725 btrfs_clear_and_info(info, AUTO_DEFRAG, 726 "disabling auto defrag"); 727 break; 728 case Opt_recovery: 729 btrfs_warn(info, 730 "'recovery' is deprecated, use 'usebackuproot' instead"); 731 case Opt_usebackuproot: 732 btrfs_info(info, 733 "trying to use backup root at mount time"); 734 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 735 break; 736 case Opt_skip_balance: 737 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 738 break; 739 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 740 case Opt_check_integrity_including_extent_data: 741 btrfs_info(info, 742 "enabling check integrity including extent data"); 743 btrfs_set_opt(info->mount_opt, 744 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 745 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 746 break; 747 case Opt_check_integrity: 748 btrfs_info(info, "enabling check integrity"); 749 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 750 break; 751 case Opt_check_integrity_print_mask: 752 ret = match_int(&args[0], &intarg); 753 if (ret) { 754 goto out; 755 } else if (intarg >= 0) { 756 info->check_integrity_print_mask = intarg; 757 btrfs_info(info, 758 "check_integrity_print_mask 0x%x", 759 info->check_integrity_print_mask); 760 } else { 761 ret = -EINVAL; 762 goto out; 763 } 764 break; 765 #else 766 case Opt_check_integrity_including_extent_data: 767 case Opt_check_integrity: 768 case Opt_check_integrity_print_mask: 769 btrfs_err(info, 770 "support for check_integrity* not compiled in!"); 771 ret = -EINVAL; 772 goto out; 773 #endif 774 case Opt_fatal_errors: 775 if (strcmp(args[0].from, "panic") == 0) 776 btrfs_set_opt(info->mount_opt, 777 PANIC_ON_FATAL_ERROR); 778 else if (strcmp(args[0].from, "bug") == 0) 779 btrfs_clear_opt(info->mount_opt, 780 PANIC_ON_FATAL_ERROR); 781 else { 782 ret = -EINVAL; 783 goto out; 784 } 785 break; 786 case Opt_commit_interval: 787 intarg = 0; 788 ret = match_int(&args[0], &intarg); 789 if (ret < 0) { 790 btrfs_err(info, "invalid commit interval"); 791 ret = -EINVAL; 792 goto out; 793 } 794 if (intarg > 0) { 795 if (intarg > 300) { 796 btrfs_warn(info, 797 "excessive commit interval %d", 798 intarg); 799 } 800 info->commit_interval = intarg; 801 } else { 802 btrfs_info(info, 803 "using default commit interval %ds", 804 BTRFS_DEFAULT_COMMIT_INTERVAL); 805 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 806 } 807 break; 808 #ifdef CONFIG_BTRFS_DEBUG 809 case Opt_fragment_all: 810 btrfs_info(info, "fragmenting all space"); 811 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 812 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 813 break; 814 case Opt_fragment_metadata: 815 btrfs_info(info, "fragmenting metadata"); 816 btrfs_set_opt(info->mount_opt, 817 FRAGMENT_METADATA); 818 break; 819 case Opt_fragment_data: 820 btrfs_info(info, "fragmenting data"); 821 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 822 break; 823 #endif 824 case Opt_err: 825 btrfs_info(info, "unrecognized mount option '%s'", p); 826 ret = -EINVAL; 827 goto out; 828 default: 829 break; 830 } 831 } 832 check: 833 /* 834 * Extra check for current option against current flag 835 */ 836 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) { 837 btrfs_err(info, 838 "nologreplay must be used with ro mount option"); 839 ret = -EINVAL; 840 } 841 out: 842 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 843 !btrfs_test_opt(info, FREE_SPACE_TREE) && 844 !btrfs_test_opt(info, CLEAR_CACHE)) { 845 btrfs_err(info, "cannot disable free space tree"); 846 ret = -EINVAL; 847 848 } 849 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 850 btrfs_info(info, "disk space caching is enabled"); 851 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 852 btrfs_info(info, "using free space tree"); 853 kfree(orig); 854 return ret; 855 } 856 857 /* 858 * Parse mount options that are required early in the mount process. 859 * 860 * All other options will be parsed on much later in the mount process and 861 * only when we need to allocate a new super block. 862 */ 863 static int btrfs_parse_early_options(const char *options, fmode_t flags, 864 void *holder, char **subvol_name, u64 *subvol_objectid, 865 struct btrfs_fs_devices **fs_devices) 866 { 867 substring_t args[MAX_OPT_ARGS]; 868 char *device_name, *opts, *orig, *p; 869 char *num = NULL; 870 int error = 0; 871 872 if (!options) 873 return 0; 874 875 /* 876 * strsep changes the string, duplicate it because parse_options 877 * gets called twice 878 */ 879 opts = kstrdup(options, GFP_KERNEL); 880 if (!opts) 881 return -ENOMEM; 882 orig = opts; 883 884 while ((p = strsep(&opts, ",")) != NULL) { 885 int token; 886 if (!*p) 887 continue; 888 889 token = match_token(p, tokens, args); 890 switch (token) { 891 case Opt_subvol: 892 kfree(*subvol_name); 893 *subvol_name = match_strdup(&args[0]); 894 if (!*subvol_name) { 895 error = -ENOMEM; 896 goto out; 897 } 898 break; 899 case Opt_subvolid: 900 num = match_strdup(&args[0]); 901 if (num) { 902 *subvol_objectid = memparse(num, NULL); 903 kfree(num); 904 /* we want the original fs_tree */ 905 if (!*subvol_objectid) 906 *subvol_objectid = 907 BTRFS_FS_TREE_OBJECTID; 908 } else { 909 error = -EINVAL; 910 goto out; 911 } 912 break; 913 case Opt_subvolrootid: 914 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 915 break; 916 case Opt_device: 917 device_name = match_strdup(&args[0]); 918 if (!device_name) { 919 error = -ENOMEM; 920 goto out; 921 } 922 error = btrfs_scan_one_device(device_name, 923 flags, holder, fs_devices); 924 kfree(device_name); 925 if (error) 926 goto out; 927 break; 928 default: 929 break; 930 } 931 } 932 933 out: 934 kfree(orig); 935 return error; 936 } 937 938 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 939 u64 subvol_objectid) 940 { 941 struct btrfs_root *root = fs_info->tree_root; 942 struct btrfs_root *fs_root; 943 struct btrfs_root_ref *root_ref; 944 struct btrfs_inode_ref *inode_ref; 945 struct btrfs_key key; 946 struct btrfs_path *path = NULL; 947 char *name = NULL, *ptr; 948 u64 dirid; 949 int len; 950 int ret; 951 952 path = btrfs_alloc_path(); 953 if (!path) { 954 ret = -ENOMEM; 955 goto err; 956 } 957 path->leave_spinning = 1; 958 959 name = kmalloc(PATH_MAX, GFP_NOFS); 960 if (!name) { 961 ret = -ENOMEM; 962 goto err; 963 } 964 ptr = name + PATH_MAX - 1; 965 ptr[0] = '\0'; 966 967 /* 968 * Walk up the subvolume trees in the tree of tree roots by root 969 * backrefs until we hit the top-level subvolume. 970 */ 971 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 972 key.objectid = subvol_objectid; 973 key.type = BTRFS_ROOT_BACKREF_KEY; 974 key.offset = (u64)-1; 975 976 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 977 if (ret < 0) { 978 goto err; 979 } else if (ret > 0) { 980 ret = btrfs_previous_item(root, path, subvol_objectid, 981 BTRFS_ROOT_BACKREF_KEY); 982 if (ret < 0) { 983 goto err; 984 } else if (ret > 0) { 985 ret = -ENOENT; 986 goto err; 987 } 988 } 989 990 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 991 subvol_objectid = key.offset; 992 993 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 994 struct btrfs_root_ref); 995 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 996 ptr -= len + 1; 997 if (ptr < name) { 998 ret = -ENAMETOOLONG; 999 goto err; 1000 } 1001 read_extent_buffer(path->nodes[0], ptr + 1, 1002 (unsigned long)(root_ref + 1), len); 1003 ptr[0] = '/'; 1004 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1005 btrfs_release_path(path); 1006 1007 key.objectid = subvol_objectid; 1008 key.type = BTRFS_ROOT_ITEM_KEY; 1009 key.offset = (u64)-1; 1010 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1011 if (IS_ERR(fs_root)) { 1012 ret = PTR_ERR(fs_root); 1013 goto err; 1014 } 1015 1016 /* 1017 * Walk up the filesystem tree by inode refs until we hit the 1018 * root directory. 1019 */ 1020 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1021 key.objectid = dirid; 1022 key.type = BTRFS_INODE_REF_KEY; 1023 key.offset = (u64)-1; 1024 1025 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1026 if (ret < 0) { 1027 goto err; 1028 } else if (ret > 0) { 1029 ret = btrfs_previous_item(fs_root, path, dirid, 1030 BTRFS_INODE_REF_KEY); 1031 if (ret < 0) { 1032 goto err; 1033 } else if (ret > 0) { 1034 ret = -ENOENT; 1035 goto err; 1036 } 1037 } 1038 1039 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1040 dirid = key.offset; 1041 1042 inode_ref = btrfs_item_ptr(path->nodes[0], 1043 path->slots[0], 1044 struct btrfs_inode_ref); 1045 len = btrfs_inode_ref_name_len(path->nodes[0], 1046 inode_ref); 1047 ptr -= len + 1; 1048 if (ptr < name) { 1049 ret = -ENAMETOOLONG; 1050 goto err; 1051 } 1052 read_extent_buffer(path->nodes[0], ptr + 1, 1053 (unsigned long)(inode_ref + 1), len); 1054 ptr[0] = '/'; 1055 btrfs_release_path(path); 1056 } 1057 } 1058 1059 btrfs_free_path(path); 1060 if (ptr == name + PATH_MAX - 1) { 1061 name[0] = '/'; 1062 name[1] = '\0'; 1063 } else { 1064 memmove(name, ptr, name + PATH_MAX - ptr); 1065 } 1066 return name; 1067 1068 err: 1069 btrfs_free_path(path); 1070 kfree(name); 1071 return ERR_PTR(ret); 1072 } 1073 1074 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1075 { 1076 struct btrfs_root *root = fs_info->tree_root; 1077 struct btrfs_dir_item *di; 1078 struct btrfs_path *path; 1079 struct btrfs_key location; 1080 u64 dir_id; 1081 1082 path = btrfs_alloc_path(); 1083 if (!path) 1084 return -ENOMEM; 1085 path->leave_spinning = 1; 1086 1087 /* 1088 * Find the "default" dir item which points to the root item that we 1089 * will mount by default if we haven't been given a specific subvolume 1090 * to mount. 1091 */ 1092 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1093 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1094 if (IS_ERR(di)) { 1095 btrfs_free_path(path); 1096 return PTR_ERR(di); 1097 } 1098 if (!di) { 1099 /* 1100 * Ok the default dir item isn't there. This is weird since 1101 * it's always been there, but don't freak out, just try and 1102 * mount the top-level subvolume. 1103 */ 1104 btrfs_free_path(path); 1105 *objectid = BTRFS_FS_TREE_OBJECTID; 1106 return 0; 1107 } 1108 1109 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1110 btrfs_free_path(path); 1111 *objectid = location.objectid; 1112 return 0; 1113 } 1114 1115 static int btrfs_fill_super(struct super_block *sb, 1116 struct btrfs_fs_devices *fs_devices, 1117 void *data, int silent) 1118 { 1119 struct inode *inode; 1120 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1121 struct btrfs_key key; 1122 int err; 1123 1124 sb->s_maxbytes = MAX_LFS_FILESIZE; 1125 sb->s_magic = BTRFS_SUPER_MAGIC; 1126 sb->s_op = &btrfs_super_ops; 1127 sb->s_d_op = &btrfs_dentry_operations; 1128 sb->s_export_op = &btrfs_export_ops; 1129 sb->s_xattr = btrfs_xattr_handlers; 1130 sb->s_time_gran = 1; 1131 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1132 sb->s_flags |= MS_POSIXACL; 1133 #endif 1134 sb->s_flags |= MS_I_VERSION; 1135 sb->s_iflags |= SB_I_CGROUPWB; 1136 err = open_ctree(sb, fs_devices, (char *)data); 1137 if (err) { 1138 btrfs_err(fs_info, "open_ctree failed"); 1139 return err; 1140 } 1141 1142 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1143 key.type = BTRFS_INODE_ITEM_KEY; 1144 key.offset = 0; 1145 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1146 if (IS_ERR(inode)) { 1147 err = PTR_ERR(inode); 1148 goto fail_close; 1149 } 1150 1151 sb->s_root = d_make_root(inode); 1152 if (!sb->s_root) { 1153 err = -ENOMEM; 1154 goto fail_close; 1155 } 1156 1157 save_mount_options(sb, data); 1158 cleancache_init_fs(sb); 1159 sb->s_flags |= MS_ACTIVE; 1160 return 0; 1161 1162 fail_close: 1163 close_ctree(fs_info); 1164 return err; 1165 } 1166 1167 int btrfs_sync_fs(struct super_block *sb, int wait) 1168 { 1169 struct btrfs_trans_handle *trans; 1170 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1171 struct btrfs_root *root = fs_info->tree_root; 1172 1173 trace_btrfs_sync_fs(fs_info, wait); 1174 1175 if (!wait) { 1176 filemap_flush(fs_info->btree_inode->i_mapping); 1177 return 0; 1178 } 1179 1180 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1181 1182 trans = btrfs_attach_transaction_barrier(root); 1183 if (IS_ERR(trans)) { 1184 /* no transaction, don't bother */ 1185 if (PTR_ERR(trans) == -ENOENT) { 1186 /* 1187 * Exit unless we have some pending changes 1188 * that need to go through commit 1189 */ 1190 if (fs_info->pending_changes == 0) 1191 return 0; 1192 /* 1193 * A non-blocking test if the fs is frozen. We must not 1194 * start a new transaction here otherwise a deadlock 1195 * happens. The pending operations are delayed to the 1196 * next commit after thawing. 1197 */ 1198 if (__sb_start_write(sb, SB_FREEZE_WRITE, false)) 1199 __sb_end_write(sb, SB_FREEZE_WRITE); 1200 else 1201 return 0; 1202 trans = btrfs_start_transaction(root, 0); 1203 } 1204 if (IS_ERR(trans)) 1205 return PTR_ERR(trans); 1206 } 1207 return btrfs_commit_transaction(trans); 1208 } 1209 1210 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1211 { 1212 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1213 char *compress_type; 1214 1215 if (btrfs_test_opt(info, DEGRADED)) 1216 seq_puts(seq, ",degraded"); 1217 if (btrfs_test_opt(info, NODATASUM)) 1218 seq_puts(seq, ",nodatasum"); 1219 if (btrfs_test_opt(info, NODATACOW)) 1220 seq_puts(seq, ",nodatacow"); 1221 if (btrfs_test_opt(info, NOBARRIER)) 1222 seq_puts(seq, ",nobarrier"); 1223 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1224 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1225 if (info->alloc_start != 0) 1226 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1227 if (info->thread_pool_size != min_t(unsigned long, 1228 num_online_cpus() + 2, 8)) 1229 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1230 if (btrfs_test_opt(info, COMPRESS)) { 1231 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1232 compress_type = "zlib"; 1233 else 1234 compress_type = "lzo"; 1235 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1236 seq_printf(seq, ",compress-force=%s", compress_type); 1237 else 1238 seq_printf(seq, ",compress=%s", compress_type); 1239 } 1240 if (btrfs_test_opt(info, NOSSD)) 1241 seq_puts(seq, ",nossd"); 1242 if (btrfs_test_opt(info, SSD_SPREAD)) 1243 seq_puts(seq, ",ssd_spread"); 1244 else if (btrfs_test_opt(info, SSD)) 1245 seq_puts(seq, ",ssd"); 1246 if (btrfs_test_opt(info, NOTREELOG)) 1247 seq_puts(seq, ",notreelog"); 1248 if (btrfs_test_opt(info, NOLOGREPLAY)) 1249 seq_puts(seq, ",nologreplay"); 1250 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1251 seq_puts(seq, ",flushoncommit"); 1252 if (btrfs_test_opt(info, DISCARD)) 1253 seq_puts(seq, ",discard"); 1254 if (!(info->sb->s_flags & MS_POSIXACL)) 1255 seq_puts(seq, ",noacl"); 1256 if (btrfs_test_opt(info, SPACE_CACHE)) 1257 seq_puts(seq, ",space_cache"); 1258 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1259 seq_puts(seq, ",space_cache=v2"); 1260 else 1261 seq_puts(seq, ",nospace_cache"); 1262 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1263 seq_puts(seq, ",rescan_uuid_tree"); 1264 if (btrfs_test_opt(info, CLEAR_CACHE)) 1265 seq_puts(seq, ",clear_cache"); 1266 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1267 seq_puts(seq, ",user_subvol_rm_allowed"); 1268 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1269 seq_puts(seq, ",enospc_debug"); 1270 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1271 seq_puts(seq, ",autodefrag"); 1272 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1273 seq_puts(seq, ",inode_cache"); 1274 if (btrfs_test_opt(info, SKIP_BALANCE)) 1275 seq_puts(seq, ",skip_balance"); 1276 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1277 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1278 seq_puts(seq, ",check_int_data"); 1279 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1280 seq_puts(seq, ",check_int"); 1281 if (info->check_integrity_print_mask) 1282 seq_printf(seq, ",check_int_print_mask=%d", 1283 info->check_integrity_print_mask); 1284 #endif 1285 if (info->metadata_ratio) 1286 seq_printf(seq, ",metadata_ratio=%d", 1287 info->metadata_ratio); 1288 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1289 seq_puts(seq, ",fatal_errors=panic"); 1290 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1291 seq_printf(seq, ",commit=%d", info->commit_interval); 1292 #ifdef CONFIG_BTRFS_DEBUG 1293 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1294 seq_puts(seq, ",fragment=data"); 1295 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1296 seq_puts(seq, ",fragment=metadata"); 1297 #endif 1298 seq_printf(seq, ",subvolid=%llu", 1299 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1300 seq_puts(seq, ",subvol="); 1301 seq_dentry(seq, dentry, " \t\n\\"); 1302 return 0; 1303 } 1304 1305 static int btrfs_test_super(struct super_block *s, void *data) 1306 { 1307 struct btrfs_fs_info *p = data; 1308 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1309 1310 return fs_info->fs_devices == p->fs_devices; 1311 } 1312 1313 static int btrfs_set_super(struct super_block *s, void *data) 1314 { 1315 int err = set_anon_super(s, data); 1316 if (!err) 1317 s->s_fs_info = data; 1318 return err; 1319 } 1320 1321 /* 1322 * subvolumes are identified by ino 256 1323 */ 1324 static inline int is_subvolume_inode(struct inode *inode) 1325 { 1326 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1327 return 1; 1328 return 0; 1329 } 1330 1331 /* 1332 * This will add subvolid=0 to the argument string while removing any subvol= 1333 * and subvolid= arguments to make sure we get the top-level root for path 1334 * walking to the subvol we want. 1335 */ 1336 static char *setup_root_args(char *args) 1337 { 1338 char *buf, *dst, *sep; 1339 1340 if (!args) 1341 return kstrdup("subvolid=0", GFP_NOFS); 1342 1343 /* The worst case is that we add ",subvolid=0" to the end. */ 1344 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS); 1345 if (!buf) 1346 return NULL; 1347 1348 while (1) { 1349 sep = strchrnul(args, ','); 1350 if (!strstarts(args, "subvol=") && 1351 !strstarts(args, "subvolid=")) { 1352 memcpy(dst, args, sep - args); 1353 dst += sep - args; 1354 *dst++ = ','; 1355 } 1356 if (*sep) 1357 args = sep + 1; 1358 else 1359 break; 1360 } 1361 strcpy(dst, "subvolid=0"); 1362 1363 return buf; 1364 } 1365 1366 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1367 int flags, const char *device_name, 1368 char *data) 1369 { 1370 struct dentry *root; 1371 struct vfsmount *mnt = NULL; 1372 char *newargs; 1373 int ret; 1374 1375 newargs = setup_root_args(data); 1376 if (!newargs) { 1377 root = ERR_PTR(-ENOMEM); 1378 goto out; 1379 } 1380 1381 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); 1382 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { 1383 if (flags & MS_RDONLY) { 1384 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, 1385 device_name, newargs); 1386 } else { 1387 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, 1388 device_name, newargs); 1389 if (IS_ERR(mnt)) { 1390 root = ERR_CAST(mnt); 1391 mnt = NULL; 1392 goto out; 1393 } 1394 1395 down_write(&mnt->mnt_sb->s_umount); 1396 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1397 up_write(&mnt->mnt_sb->s_umount); 1398 if (ret < 0) { 1399 root = ERR_PTR(ret); 1400 goto out; 1401 } 1402 } 1403 } 1404 if (IS_ERR(mnt)) { 1405 root = ERR_CAST(mnt); 1406 mnt = NULL; 1407 goto out; 1408 } 1409 1410 if (!subvol_name) { 1411 if (!subvol_objectid) { 1412 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1413 &subvol_objectid); 1414 if (ret) { 1415 root = ERR_PTR(ret); 1416 goto out; 1417 } 1418 } 1419 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1420 subvol_objectid); 1421 if (IS_ERR(subvol_name)) { 1422 root = ERR_CAST(subvol_name); 1423 subvol_name = NULL; 1424 goto out; 1425 } 1426 1427 } 1428 1429 root = mount_subtree(mnt, subvol_name); 1430 /* mount_subtree() drops our reference on the vfsmount. */ 1431 mnt = NULL; 1432 1433 if (!IS_ERR(root)) { 1434 struct super_block *s = root->d_sb; 1435 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1436 struct inode *root_inode = d_inode(root); 1437 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1438 1439 ret = 0; 1440 if (!is_subvolume_inode(root_inode)) { 1441 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1442 subvol_name); 1443 ret = -EINVAL; 1444 } 1445 if (subvol_objectid && root_objectid != subvol_objectid) { 1446 /* 1447 * This will also catch a race condition where a 1448 * subvolume which was passed by ID is renamed and 1449 * another subvolume is renamed over the old location. 1450 */ 1451 btrfs_err(fs_info, 1452 "subvol '%s' does not match subvolid %llu", 1453 subvol_name, subvol_objectid); 1454 ret = -EINVAL; 1455 } 1456 if (ret) { 1457 dput(root); 1458 root = ERR_PTR(ret); 1459 deactivate_locked_super(s); 1460 } 1461 } 1462 1463 out: 1464 mntput(mnt); 1465 kfree(newargs); 1466 kfree(subvol_name); 1467 return root; 1468 } 1469 1470 static int parse_security_options(char *orig_opts, 1471 struct security_mnt_opts *sec_opts) 1472 { 1473 char *secdata = NULL; 1474 int ret = 0; 1475 1476 secdata = alloc_secdata(); 1477 if (!secdata) 1478 return -ENOMEM; 1479 ret = security_sb_copy_data(orig_opts, secdata); 1480 if (ret) { 1481 free_secdata(secdata); 1482 return ret; 1483 } 1484 ret = security_sb_parse_opts_str(secdata, sec_opts); 1485 free_secdata(secdata); 1486 return ret; 1487 } 1488 1489 static int setup_security_options(struct btrfs_fs_info *fs_info, 1490 struct super_block *sb, 1491 struct security_mnt_opts *sec_opts) 1492 { 1493 int ret = 0; 1494 1495 /* 1496 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1497 * is valid. 1498 */ 1499 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1500 if (ret) 1501 return ret; 1502 1503 #ifdef CONFIG_SECURITY 1504 if (!fs_info->security_opts.num_mnt_opts) { 1505 /* first time security setup, copy sec_opts to fs_info */ 1506 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1507 } else { 1508 /* 1509 * Since SELinux (the only one supporting security_mnt_opts) 1510 * does NOT support changing context during remount/mount of 1511 * the same sb, this must be the same or part of the same 1512 * security options, just free it. 1513 */ 1514 security_free_mnt_opts(sec_opts); 1515 } 1516 #endif 1517 return ret; 1518 } 1519 1520 /* 1521 * Find a superblock for the given device / mount point. 1522 * 1523 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1524 * for multiple device setup. Make sure to keep it in sync. 1525 */ 1526 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1527 const char *device_name, void *data) 1528 { 1529 struct block_device *bdev = NULL; 1530 struct super_block *s; 1531 struct btrfs_fs_devices *fs_devices = NULL; 1532 struct btrfs_fs_info *fs_info = NULL; 1533 struct security_mnt_opts new_sec_opts; 1534 fmode_t mode = FMODE_READ; 1535 char *subvol_name = NULL; 1536 u64 subvol_objectid = 0; 1537 int error = 0; 1538 1539 if (!(flags & MS_RDONLY)) 1540 mode |= FMODE_WRITE; 1541 1542 error = btrfs_parse_early_options(data, mode, fs_type, 1543 &subvol_name, &subvol_objectid, 1544 &fs_devices); 1545 if (error) { 1546 kfree(subvol_name); 1547 return ERR_PTR(error); 1548 } 1549 1550 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1551 /* mount_subvol() will free subvol_name. */ 1552 return mount_subvol(subvol_name, subvol_objectid, flags, 1553 device_name, data); 1554 } 1555 1556 security_init_mnt_opts(&new_sec_opts); 1557 if (data) { 1558 error = parse_security_options(data, &new_sec_opts); 1559 if (error) 1560 return ERR_PTR(error); 1561 } 1562 1563 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1564 if (error) 1565 goto error_sec_opts; 1566 1567 /* 1568 * Setup a dummy root and fs_info for test/set super. This is because 1569 * we don't actually fill this stuff out until open_ctree, but we need 1570 * it for searching for existing supers, so this lets us do that and 1571 * then open_ctree will properly initialize everything later. 1572 */ 1573 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1574 if (!fs_info) { 1575 error = -ENOMEM; 1576 goto error_sec_opts; 1577 } 1578 1579 fs_info->fs_devices = fs_devices; 1580 1581 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1582 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1583 security_init_mnt_opts(&fs_info->security_opts); 1584 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1585 error = -ENOMEM; 1586 goto error_fs_info; 1587 } 1588 1589 error = btrfs_open_devices(fs_devices, mode, fs_type); 1590 if (error) 1591 goto error_fs_info; 1592 1593 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1594 error = -EACCES; 1595 goto error_close_devices; 1596 } 1597 1598 bdev = fs_devices->latest_bdev; 1599 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1600 fs_info); 1601 if (IS_ERR(s)) { 1602 error = PTR_ERR(s); 1603 goto error_close_devices; 1604 } 1605 1606 if (s->s_root) { 1607 btrfs_close_devices(fs_devices); 1608 free_fs_info(fs_info); 1609 if ((flags ^ s->s_flags) & MS_RDONLY) 1610 error = -EBUSY; 1611 } else { 1612 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1613 btrfs_sb(s)->bdev_holder = fs_type; 1614 error = btrfs_fill_super(s, fs_devices, data, 1615 flags & MS_SILENT ? 1 : 0); 1616 } 1617 if (error) { 1618 deactivate_locked_super(s); 1619 goto error_sec_opts; 1620 } 1621 1622 fs_info = btrfs_sb(s); 1623 error = setup_security_options(fs_info, s, &new_sec_opts); 1624 if (error) { 1625 deactivate_locked_super(s); 1626 goto error_sec_opts; 1627 } 1628 1629 return dget(s->s_root); 1630 1631 error_close_devices: 1632 btrfs_close_devices(fs_devices); 1633 error_fs_info: 1634 free_fs_info(fs_info); 1635 error_sec_opts: 1636 security_free_mnt_opts(&new_sec_opts); 1637 return ERR_PTR(error); 1638 } 1639 1640 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1641 int new_pool_size, int old_pool_size) 1642 { 1643 if (new_pool_size == old_pool_size) 1644 return; 1645 1646 fs_info->thread_pool_size = new_pool_size; 1647 1648 btrfs_info(fs_info, "resize thread pool %d -> %d", 1649 old_pool_size, new_pool_size); 1650 1651 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1652 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1653 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1654 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1655 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1656 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1657 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1658 new_pool_size); 1659 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1660 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1661 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1662 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1663 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1664 new_pool_size); 1665 } 1666 1667 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1668 { 1669 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1670 } 1671 1672 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1673 unsigned long old_opts, int flags) 1674 { 1675 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1676 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1677 (flags & MS_RDONLY))) { 1678 /* wait for any defraggers to finish */ 1679 wait_event(fs_info->transaction_wait, 1680 (atomic_read(&fs_info->defrag_running) == 0)); 1681 if (flags & MS_RDONLY) 1682 sync_filesystem(fs_info->sb); 1683 } 1684 } 1685 1686 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1687 unsigned long old_opts) 1688 { 1689 /* 1690 * We need to cleanup all defragable inodes if the autodefragment is 1691 * close or the filesystem is read only. 1692 */ 1693 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1694 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1695 (fs_info->sb->s_flags & MS_RDONLY))) { 1696 btrfs_cleanup_defrag_inodes(fs_info); 1697 } 1698 1699 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1700 } 1701 1702 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1703 { 1704 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1705 struct btrfs_root *root = fs_info->tree_root; 1706 unsigned old_flags = sb->s_flags; 1707 unsigned long old_opts = fs_info->mount_opt; 1708 unsigned long old_compress_type = fs_info->compress_type; 1709 u64 old_max_inline = fs_info->max_inline; 1710 u64 old_alloc_start = fs_info->alloc_start; 1711 int old_thread_pool_size = fs_info->thread_pool_size; 1712 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1713 int ret; 1714 1715 sync_filesystem(sb); 1716 btrfs_remount_prepare(fs_info); 1717 1718 if (data) { 1719 struct security_mnt_opts new_sec_opts; 1720 1721 security_init_mnt_opts(&new_sec_opts); 1722 ret = parse_security_options(data, &new_sec_opts); 1723 if (ret) 1724 goto restore; 1725 ret = setup_security_options(fs_info, sb, 1726 &new_sec_opts); 1727 if (ret) { 1728 security_free_mnt_opts(&new_sec_opts); 1729 goto restore; 1730 } 1731 } 1732 1733 ret = btrfs_parse_options(fs_info, data, *flags); 1734 if (ret) { 1735 ret = -EINVAL; 1736 goto restore; 1737 } 1738 1739 btrfs_remount_begin(fs_info, old_opts, *flags); 1740 btrfs_resize_thread_pool(fs_info, 1741 fs_info->thread_pool_size, old_thread_pool_size); 1742 1743 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1744 goto out; 1745 1746 if (*flags & MS_RDONLY) { 1747 /* 1748 * this also happens on 'umount -rf' or on shutdown, when 1749 * the filesystem is busy. 1750 */ 1751 cancel_work_sync(&fs_info->async_reclaim_work); 1752 1753 /* wait for the uuid_scan task to finish */ 1754 down(&fs_info->uuid_tree_rescan_sem); 1755 /* avoid complains from lockdep et al. */ 1756 up(&fs_info->uuid_tree_rescan_sem); 1757 1758 sb->s_flags |= MS_RDONLY; 1759 1760 /* 1761 * Setting MS_RDONLY will put the cleaner thread to 1762 * sleep at the next loop if it's already active. 1763 * If it's already asleep, we'll leave unused block 1764 * groups on disk until we're mounted read-write again 1765 * unless we clean them up here. 1766 */ 1767 btrfs_delete_unused_bgs(fs_info); 1768 1769 btrfs_dev_replace_suspend_for_unmount(fs_info); 1770 btrfs_scrub_cancel(fs_info); 1771 btrfs_pause_balance(fs_info); 1772 1773 ret = btrfs_commit_super(fs_info); 1774 if (ret) 1775 goto restore; 1776 } else { 1777 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1778 btrfs_err(fs_info, 1779 "Remounting read-write after error is not allowed"); 1780 ret = -EINVAL; 1781 goto restore; 1782 } 1783 if (fs_info->fs_devices->rw_devices == 0) { 1784 ret = -EACCES; 1785 goto restore; 1786 } 1787 1788 if (fs_info->fs_devices->missing_devices > 1789 fs_info->num_tolerated_disk_barrier_failures && 1790 !(*flags & MS_RDONLY)) { 1791 btrfs_warn(fs_info, 1792 "too many missing devices, writeable remount is not allowed"); 1793 ret = -EACCES; 1794 goto restore; 1795 } 1796 1797 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1798 ret = -EINVAL; 1799 goto restore; 1800 } 1801 1802 ret = btrfs_cleanup_fs_roots(fs_info); 1803 if (ret) 1804 goto restore; 1805 1806 /* recover relocation */ 1807 mutex_lock(&fs_info->cleaner_mutex); 1808 ret = btrfs_recover_relocation(root); 1809 mutex_unlock(&fs_info->cleaner_mutex); 1810 if (ret) 1811 goto restore; 1812 1813 ret = btrfs_resume_balance_async(fs_info); 1814 if (ret) 1815 goto restore; 1816 1817 ret = btrfs_resume_dev_replace_async(fs_info); 1818 if (ret) { 1819 btrfs_warn(fs_info, "failed to resume dev_replace"); 1820 goto restore; 1821 } 1822 1823 if (!fs_info->uuid_root) { 1824 btrfs_info(fs_info, "creating UUID tree"); 1825 ret = btrfs_create_uuid_tree(fs_info); 1826 if (ret) { 1827 btrfs_warn(fs_info, 1828 "failed to create the UUID tree %d", 1829 ret); 1830 goto restore; 1831 } 1832 } 1833 sb->s_flags &= ~MS_RDONLY; 1834 1835 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1836 } 1837 out: 1838 wake_up_process(fs_info->transaction_kthread); 1839 btrfs_remount_cleanup(fs_info, old_opts); 1840 return 0; 1841 1842 restore: 1843 /* We've hit an error - don't reset MS_RDONLY */ 1844 if (sb->s_flags & MS_RDONLY) 1845 old_flags |= MS_RDONLY; 1846 sb->s_flags = old_flags; 1847 fs_info->mount_opt = old_opts; 1848 fs_info->compress_type = old_compress_type; 1849 fs_info->max_inline = old_max_inline; 1850 mutex_lock(&fs_info->chunk_mutex); 1851 fs_info->alloc_start = old_alloc_start; 1852 mutex_unlock(&fs_info->chunk_mutex); 1853 btrfs_resize_thread_pool(fs_info, 1854 old_thread_pool_size, fs_info->thread_pool_size); 1855 fs_info->metadata_ratio = old_metadata_ratio; 1856 btrfs_remount_cleanup(fs_info, old_opts); 1857 return ret; 1858 } 1859 1860 /* Used to sort the devices by max_avail(descending sort) */ 1861 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1862 const void *dev_info2) 1863 { 1864 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1865 ((struct btrfs_device_info *)dev_info2)->max_avail) 1866 return -1; 1867 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1868 ((struct btrfs_device_info *)dev_info2)->max_avail) 1869 return 1; 1870 else 1871 return 0; 1872 } 1873 1874 /* 1875 * sort the devices by max_avail, in which max free extent size of each device 1876 * is stored.(Descending Sort) 1877 */ 1878 static inline void btrfs_descending_sort_devices( 1879 struct btrfs_device_info *devices, 1880 size_t nr_devices) 1881 { 1882 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1883 btrfs_cmp_device_free_bytes, NULL); 1884 } 1885 1886 /* 1887 * The helper to calc the free space on the devices that can be used to store 1888 * file data. 1889 */ 1890 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1891 u64 *free_bytes) 1892 { 1893 struct btrfs_root *root = fs_info->tree_root; 1894 struct btrfs_device_info *devices_info; 1895 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1896 struct btrfs_device *device; 1897 u64 skip_space; 1898 u64 type; 1899 u64 avail_space; 1900 u64 used_space; 1901 u64 min_stripe_size; 1902 int min_stripes = 1, num_stripes = 1; 1903 int i = 0, nr_devices; 1904 int ret; 1905 1906 /* 1907 * We aren't under the device list lock, so this is racy-ish, but good 1908 * enough for our purposes. 1909 */ 1910 nr_devices = fs_info->fs_devices->open_devices; 1911 if (!nr_devices) { 1912 smp_mb(); 1913 nr_devices = fs_info->fs_devices->open_devices; 1914 ASSERT(nr_devices); 1915 if (!nr_devices) { 1916 *free_bytes = 0; 1917 return 0; 1918 } 1919 } 1920 1921 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1922 GFP_NOFS); 1923 if (!devices_info) 1924 return -ENOMEM; 1925 1926 /* calc min stripe number for data space allocation */ 1927 type = btrfs_get_alloc_profile(root, 1); 1928 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1929 min_stripes = 2; 1930 num_stripes = nr_devices; 1931 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1932 min_stripes = 2; 1933 num_stripes = 2; 1934 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1935 min_stripes = 4; 1936 num_stripes = 4; 1937 } 1938 1939 if (type & BTRFS_BLOCK_GROUP_DUP) 1940 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1941 else 1942 min_stripe_size = BTRFS_STRIPE_LEN; 1943 1944 if (fs_info->alloc_start) 1945 mutex_lock(&fs_devices->device_list_mutex); 1946 rcu_read_lock(); 1947 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1948 if (!device->in_fs_metadata || !device->bdev || 1949 device->is_tgtdev_for_dev_replace) 1950 continue; 1951 1952 if (i >= nr_devices) 1953 break; 1954 1955 avail_space = device->total_bytes - device->bytes_used; 1956 1957 /* align with stripe_len */ 1958 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1959 avail_space *= BTRFS_STRIPE_LEN; 1960 1961 /* 1962 * In order to avoid overwriting the superblock on the drive, 1963 * btrfs starts at an offset of at least 1MB when doing chunk 1964 * allocation. 1965 */ 1966 skip_space = SZ_1M; 1967 1968 /* user can set the offset in fs_info->alloc_start. */ 1969 if (fs_info->alloc_start && 1970 fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1971 device->total_bytes) { 1972 rcu_read_unlock(); 1973 skip_space = max(fs_info->alloc_start, skip_space); 1974 1975 /* 1976 * btrfs can not use the free space in 1977 * [0, skip_space - 1], we must subtract it from the 1978 * total. In order to implement it, we account the used 1979 * space in this range first. 1980 */ 1981 ret = btrfs_account_dev_extents_size(device, 0, 1982 skip_space - 1, 1983 &used_space); 1984 if (ret) { 1985 kfree(devices_info); 1986 mutex_unlock(&fs_devices->device_list_mutex); 1987 return ret; 1988 } 1989 1990 rcu_read_lock(); 1991 1992 /* calc the free space in [0, skip_space - 1] */ 1993 skip_space -= used_space; 1994 } 1995 1996 /* 1997 * we can use the free space in [0, skip_space - 1], subtract 1998 * it from the total. 1999 */ 2000 if (avail_space && avail_space >= skip_space) 2001 avail_space -= skip_space; 2002 else 2003 avail_space = 0; 2004 2005 if (avail_space < min_stripe_size) 2006 continue; 2007 2008 devices_info[i].dev = device; 2009 devices_info[i].max_avail = avail_space; 2010 2011 i++; 2012 } 2013 rcu_read_unlock(); 2014 if (fs_info->alloc_start) 2015 mutex_unlock(&fs_devices->device_list_mutex); 2016 2017 nr_devices = i; 2018 2019 btrfs_descending_sort_devices(devices_info, nr_devices); 2020 2021 i = nr_devices - 1; 2022 avail_space = 0; 2023 while (nr_devices >= min_stripes) { 2024 if (num_stripes > nr_devices) 2025 num_stripes = nr_devices; 2026 2027 if (devices_info[i].max_avail >= min_stripe_size) { 2028 int j; 2029 u64 alloc_size; 2030 2031 avail_space += devices_info[i].max_avail * num_stripes; 2032 alloc_size = devices_info[i].max_avail; 2033 for (j = i + 1 - num_stripes; j <= i; j++) 2034 devices_info[j].max_avail -= alloc_size; 2035 } 2036 i--; 2037 nr_devices--; 2038 } 2039 2040 kfree(devices_info); 2041 *free_bytes = avail_space; 2042 return 0; 2043 } 2044 2045 /* 2046 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2047 * 2048 * If there's a redundant raid level at DATA block groups, use the respective 2049 * multiplier to scale the sizes. 2050 * 2051 * Unused device space usage is based on simulating the chunk allocator 2052 * algorithm that respects the device sizes, order of allocations and the 2053 * 'alloc_start' value, this is a close approximation of the actual use but 2054 * there are other factors that may change the result (like a new metadata 2055 * chunk). 2056 * 2057 * If metadata is exhausted, f_bavail will be 0. 2058 */ 2059 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2060 { 2061 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2062 struct btrfs_super_block *disk_super = fs_info->super_copy; 2063 struct list_head *head = &fs_info->space_info; 2064 struct btrfs_space_info *found; 2065 u64 total_used = 0; 2066 u64 total_free_data = 0; 2067 u64 total_free_meta = 0; 2068 int bits = dentry->d_sb->s_blocksize_bits; 2069 __be32 *fsid = (__be32 *)fs_info->fsid; 2070 unsigned factor = 1; 2071 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2072 int ret; 2073 u64 thresh = 0; 2074 int mixed = 0; 2075 2076 rcu_read_lock(); 2077 list_for_each_entry_rcu(found, head, list) { 2078 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2079 int i; 2080 2081 total_free_data += found->disk_total - found->disk_used; 2082 total_free_data -= 2083 btrfs_account_ro_block_groups_free_space(found); 2084 2085 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2086 if (!list_empty(&found->block_groups[i])) { 2087 switch (i) { 2088 case BTRFS_RAID_DUP: 2089 case BTRFS_RAID_RAID1: 2090 case BTRFS_RAID_RAID10: 2091 factor = 2; 2092 } 2093 } 2094 } 2095 } 2096 2097 /* 2098 * Metadata in mixed block goup profiles are accounted in data 2099 */ 2100 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2101 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2102 mixed = 1; 2103 else 2104 total_free_meta += found->disk_total - 2105 found->disk_used; 2106 } 2107 2108 total_used += found->disk_used; 2109 } 2110 2111 rcu_read_unlock(); 2112 2113 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2114 buf->f_blocks >>= bits; 2115 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2116 2117 /* Account global block reserve as used, it's in logical size already */ 2118 spin_lock(&block_rsv->lock); 2119 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2120 if (buf->f_bfree >= block_rsv->size >> bits) 2121 buf->f_bfree -= block_rsv->size >> bits; 2122 else 2123 buf->f_bfree = 0; 2124 spin_unlock(&block_rsv->lock); 2125 2126 buf->f_bavail = div_u64(total_free_data, factor); 2127 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2128 if (ret) 2129 return ret; 2130 buf->f_bavail += div_u64(total_free_data, factor); 2131 buf->f_bavail = buf->f_bavail >> bits; 2132 2133 /* 2134 * We calculate the remaining metadata space minus global reserve. If 2135 * this is (supposedly) smaller than zero, there's no space. But this 2136 * does not hold in practice, the exhausted state happens where's still 2137 * some positive delta. So we apply some guesswork and compare the 2138 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2139 * 2140 * We probably cannot calculate the exact threshold value because this 2141 * depends on the internal reservations requested by various 2142 * operations, so some operations that consume a few metadata will 2143 * succeed even if the Avail is zero. But this is better than the other 2144 * way around. 2145 */ 2146 thresh = 4 * 1024 * 1024; 2147 2148 if (!mixed && total_free_meta - thresh < block_rsv->size) 2149 buf->f_bavail = 0; 2150 2151 buf->f_type = BTRFS_SUPER_MAGIC; 2152 buf->f_bsize = dentry->d_sb->s_blocksize; 2153 buf->f_namelen = BTRFS_NAME_LEN; 2154 2155 /* We treat it as constant endianness (it doesn't matter _which_) 2156 because we want the fsid to come out the same whether mounted 2157 on a big-endian or little-endian host */ 2158 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2159 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2160 /* Mask in the root object ID too, to disambiguate subvols */ 2161 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2162 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2163 2164 return 0; 2165 } 2166 2167 static void btrfs_kill_super(struct super_block *sb) 2168 { 2169 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2170 kill_anon_super(sb); 2171 free_fs_info(fs_info); 2172 } 2173 2174 static struct file_system_type btrfs_fs_type = { 2175 .owner = THIS_MODULE, 2176 .name = "btrfs", 2177 .mount = btrfs_mount, 2178 .kill_sb = btrfs_kill_super, 2179 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2180 }; 2181 MODULE_ALIAS_FS("btrfs"); 2182 2183 static int btrfs_control_open(struct inode *inode, struct file *file) 2184 { 2185 /* 2186 * The control file's private_data is used to hold the 2187 * transaction when it is started and is used to keep 2188 * track of whether a transaction is already in progress. 2189 */ 2190 file->private_data = NULL; 2191 return 0; 2192 } 2193 2194 /* 2195 * used by btrfsctl to scan devices when no FS is mounted 2196 */ 2197 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2198 unsigned long arg) 2199 { 2200 struct btrfs_ioctl_vol_args *vol; 2201 struct btrfs_fs_devices *fs_devices; 2202 int ret = -ENOTTY; 2203 2204 if (!capable(CAP_SYS_ADMIN)) 2205 return -EPERM; 2206 2207 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2208 if (IS_ERR(vol)) 2209 return PTR_ERR(vol); 2210 2211 switch (cmd) { 2212 case BTRFS_IOC_SCAN_DEV: 2213 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2214 &btrfs_fs_type, &fs_devices); 2215 break; 2216 case BTRFS_IOC_DEVICES_READY: 2217 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2218 &btrfs_fs_type, &fs_devices); 2219 if (ret) 2220 break; 2221 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2222 break; 2223 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2224 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2225 break; 2226 } 2227 2228 kfree(vol); 2229 return ret; 2230 } 2231 2232 static int btrfs_freeze(struct super_block *sb) 2233 { 2234 struct btrfs_trans_handle *trans; 2235 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2236 struct btrfs_root *root = fs_info->tree_root; 2237 2238 fs_info->fs_frozen = 1; 2239 /* 2240 * We don't need a barrier here, we'll wait for any transaction that 2241 * could be in progress on other threads (and do delayed iputs that 2242 * we want to avoid on a frozen filesystem), or do the commit 2243 * ourselves. 2244 */ 2245 trans = btrfs_attach_transaction_barrier(root); 2246 if (IS_ERR(trans)) { 2247 /* no transaction, don't bother */ 2248 if (PTR_ERR(trans) == -ENOENT) 2249 return 0; 2250 return PTR_ERR(trans); 2251 } 2252 return btrfs_commit_transaction(trans); 2253 } 2254 2255 static int btrfs_unfreeze(struct super_block *sb) 2256 { 2257 btrfs_sb(sb)->fs_frozen = 0; 2258 return 0; 2259 } 2260 2261 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2262 { 2263 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2264 struct btrfs_fs_devices *cur_devices; 2265 struct btrfs_device *dev, *first_dev = NULL; 2266 struct list_head *head; 2267 struct rcu_string *name; 2268 2269 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2270 cur_devices = fs_info->fs_devices; 2271 while (cur_devices) { 2272 head = &cur_devices->devices; 2273 list_for_each_entry(dev, head, dev_list) { 2274 if (dev->missing) 2275 continue; 2276 if (!dev->name) 2277 continue; 2278 if (!first_dev || dev->devid < first_dev->devid) 2279 first_dev = dev; 2280 } 2281 cur_devices = cur_devices->seed; 2282 } 2283 2284 if (first_dev) { 2285 rcu_read_lock(); 2286 name = rcu_dereference(first_dev->name); 2287 seq_escape(m, name->str, " \t\n\\"); 2288 rcu_read_unlock(); 2289 } else { 2290 WARN_ON(1); 2291 } 2292 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2293 return 0; 2294 } 2295 2296 static const struct super_operations btrfs_super_ops = { 2297 .drop_inode = btrfs_drop_inode, 2298 .evict_inode = btrfs_evict_inode, 2299 .put_super = btrfs_put_super, 2300 .sync_fs = btrfs_sync_fs, 2301 .show_options = btrfs_show_options, 2302 .show_devname = btrfs_show_devname, 2303 .write_inode = btrfs_write_inode, 2304 .alloc_inode = btrfs_alloc_inode, 2305 .destroy_inode = btrfs_destroy_inode, 2306 .statfs = btrfs_statfs, 2307 .remount_fs = btrfs_remount, 2308 .freeze_fs = btrfs_freeze, 2309 .unfreeze_fs = btrfs_unfreeze, 2310 }; 2311 2312 static const struct file_operations btrfs_ctl_fops = { 2313 .open = btrfs_control_open, 2314 .unlocked_ioctl = btrfs_control_ioctl, 2315 .compat_ioctl = btrfs_control_ioctl, 2316 .owner = THIS_MODULE, 2317 .llseek = noop_llseek, 2318 }; 2319 2320 static struct miscdevice btrfs_misc = { 2321 .minor = BTRFS_MINOR, 2322 .name = "btrfs-control", 2323 .fops = &btrfs_ctl_fops 2324 }; 2325 2326 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2327 MODULE_ALIAS("devname:btrfs-control"); 2328 2329 static int btrfs_interface_init(void) 2330 { 2331 return misc_register(&btrfs_misc); 2332 } 2333 2334 static void btrfs_interface_exit(void) 2335 { 2336 misc_deregister(&btrfs_misc); 2337 } 2338 2339 static void btrfs_print_mod_info(void) 2340 { 2341 pr_info("Btrfs loaded, crc32c=%s" 2342 #ifdef CONFIG_BTRFS_DEBUG 2343 ", debug=on" 2344 #endif 2345 #ifdef CONFIG_BTRFS_ASSERT 2346 ", assert=on" 2347 #endif 2348 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2349 ", integrity-checker=on" 2350 #endif 2351 "\n", 2352 btrfs_crc32c_impl()); 2353 } 2354 2355 static int __init init_btrfs_fs(void) 2356 { 2357 int err; 2358 2359 err = btrfs_hash_init(); 2360 if (err) 2361 return err; 2362 2363 btrfs_props_init(); 2364 2365 err = btrfs_init_sysfs(); 2366 if (err) 2367 goto free_hash; 2368 2369 btrfs_init_compress(); 2370 2371 err = btrfs_init_cachep(); 2372 if (err) 2373 goto free_compress; 2374 2375 err = extent_io_init(); 2376 if (err) 2377 goto free_cachep; 2378 2379 err = extent_map_init(); 2380 if (err) 2381 goto free_extent_io; 2382 2383 err = ordered_data_init(); 2384 if (err) 2385 goto free_extent_map; 2386 2387 err = btrfs_delayed_inode_init(); 2388 if (err) 2389 goto free_ordered_data; 2390 2391 err = btrfs_auto_defrag_init(); 2392 if (err) 2393 goto free_delayed_inode; 2394 2395 err = btrfs_delayed_ref_init(); 2396 if (err) 2397 goto free_auto_defrag; 2398 2399 err = btrfs_prelim_ref_init(); 2400 if (err) 2401 goto free_delayed_ref; 2402 2403 err = btrfs_end_io_wq_init(); 2404 if (err) 2405 goto free_prelim_ref; 2406 2407 err = btrfs_interface_init(); 2408 if (err) 2409 goto free_end_io_wq; 2410 2411 btrfs_init_lockdep(); 2412 2413 btrfs_print_mod_info(); 2414 2415 err = btrfs_run_sanity_tests(); 2416 if (err) 2417 goto unregister_ioctl; 2418 2419 err = register_filesystem(&btrfs_fs_type); 2420 if (err) 2421 goto unregister_ioctl; 2422 2423 return 0; 2424 2425 unregister_ioctl: 2426 btrfs_interface_exit(); 2427 free_end_io_wq: 2428 btrfs_end_io_wq_exit(); 2429 free_prelim_ref: 2430 btrfs_prelim_ref_exit(); 2431 free_delayed_ref: 2432 btrfs_delayed_ref_exit(); 2433 free_auto_defrag: 2434 btrfs_auto_defrag_exit(); 2435 free_delayed_inode: 2436 btrfs_delayed_inode_exit(); 2437 free_ordered_data: 2438 ordered_data_exit(); 2439 free_extent_map: 2440 extent_map_exit(); 2441 free_extent_io: 2442 extent_io_exit(); 2443 free_cachep: 2444 btrfs_destroy_cachep(); 2445 free_compress: 2446 btrfs_exit_compress(); 2447 btrfs_exit_sysfs(); 2448 free_hash: 2449 btrfs_hash_exit(); 2450 return err; 2451 } 2452 2453 static void __exit exit_btrfs_fs(void) 2454 { 2455 btrfs_destroy_cachep(); 2456 btrfs_delayed_ref_exit(); 2457 btrfs_auto_defrag_exit(); 2458 btrfs_delayed_inode_exit(); 2459 btrfs_prelim_ref_exit(); 2460 ordered_data_exit(); 2461 extent_map_exit(); 2462 extent_io_exit(); 2463 btrfs_interface_exit(); 2464 btrfs_end_io_wq_exit(); 2465 unregister_filesystem(&btrfs_fs_type); 2466 btrfs_exit_sysfs(); 2467 btrfs_cleanup_fs_uuids(); 2468 btrfs_exit_compress(); 2469 btrfs_hash_exit(); 2470 } 2471 2472 late_initcall(init_btrfs_fs); 2473 module_exit(exit_btrfs_fs) 2474 2475 MODULE_LICENSE("GPL"); 2476