1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include "compat.h" 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "ioctl.h" 51 #include "print-tree.h" 52 #include "xattr.h" 53 #include "volumes.h" 54 #include "version.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/btrfs.h> 61 62 static const struct super_operations btrfs_super_ops; 63 static struct file_system_type btrfs_fs_type; 64 65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno, 66 char nbuf[16]) 67 { 68 char *errstr = NULL; 69 70 switch (errno) { 71 case -EIO: 72 errstr = "IO failure"; 73 break; 74 case -ENOMEM: 75 errstr = "Out of memory"; 76 break; 77 case -EROFS: 78 errstr = "Readonly filesystem"; 79 break; 80 case -EEXIST: 81 errstr = "Object already exists"; 82 break; 83 default: 84 if (nbuf) { 85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 86 errstr = nbuf; 87 } 88 break; 89 } 90 91 return errstr; 92 } 93 94 static void __save_error_info(struct btrfs_fs_info *fs_info) 95 { 96 /* 97 * today we only save the error info into ram. Long term we'll 98 * also send it down to the disk 99 */ 100 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR; 101 } 102 103 static void save_error_info(struct btrfs_fs_info *fs_info) 104 { 105 __save_error_info(fs_info); 106 } 107 108 /* btrfs handle error by forcing the filesystem readonly */ 109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 110 { 111 struct super_block *sb = fs_info->sb; 112 113 if (sb->s_flags & MS_RDONLY) 114 return; 115 116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 117 sb->s_flags |= MS_RDONLY; 118 printk(KERN_INFO "btrfs is forced readonly\n"); 119 __btrfs_scrub_cancel(fs_info); 120 // WARN_ON(1); 121 } 122 } 123 124 #ifdef CONFIG_PRINTK 125 /* 126 * __btrfs_std_error decodes expected errors from the caller and 127 * invokes the approciate error response. 128 */ 129 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 130 unsigned int line, int errno, const char *fmt, ...) 131 { 132 struct super_block *sb = fs_info->sb; 133 char nbuf[16]; 134 const char *errstr; 135 va_list args; 136 va_start(args, fmt); 137 138 /* 139 * Special case: if the error is EROFS, and we're already 140 * under MS_RDONLY, then it is safe here. 141 */ 142 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 143 return; 144 145 errstr = btrfs_decode_error(fs_info, errno, nbuf); 146 if (fmt) { 147 struct va_format vaf = { 148 .fmt = fmt, 149 .va = &args, 150 }; 151 152 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n", 153 sb->s_id, function, line, errstr, &vaf); 154 } else { 155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n", 156 sb->s_id, function, line, errstr); 157 } 158 159 /* Don't go through full error handling during mount */ 160 if (sb->s_flags & MS_BORN) { 161 save_error_info(fs_info); 162 btrfs_handle_error(fs_info); 163 } 164 va_end(args); 165 } 166 167 static const char * const logtypes[] = { 168 "emergency", 169 "alert", 170 "critical", 171 "error", 172 "warning", 173 "notice", 174 "info", 175 "debug", 176 }; 177 178 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...) 179 { 180 struct super_block *sb = fs_info->sb; 181 char lvl[4]; 182 struct va_format vaf; 183 va_list args; 184 const char *type = logtypes[4]; 185 int kern_level; 186 187 va_start(args, fmt); 188 189 kern_level = printk_get_level(fmt); 190 if (kern_level) { 191 size_t size = printk_skip_level(fmt) - fmt; 192 memcpy(lvl, fmt, size); 193 lvl[size] = '\0'; 194 fmt += size; 195 type = logtypes[kern_level - '0']; 196 } else 197 *lvl = '\0'; 198 199 vaf.fmt = fmt; 200 vaf.va = &args; 201 202 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf); 203 204 va_end(args); 205 } 206 207 #else 208 209 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 210 unsigned int line, int errno, const char *fmt, ...) 211 { 212 struct super_block *sb = fs_info->sb; 213 214 /* 215 * Special case: if the error is EROFS, and we're already 216 * under MS_RDONLY, then it is safe here. 217 */ 218 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 219 return; 220 221 /* Don't go through full error handling during mount */ 222 if (sb->s_flags & MS_BORN) { 223 save_error_info(fs_info); 224 btrfs_handle_error(fs_info); 225 } 226 } 227 #endif 228 229 /* 230 * We only mark the transaction aborted and then set the file system read-only. 231 * This will prevent new transactions from starting or trying to join this 232 * one. 233 * 234 * This means that error recovery at the call site is limited to freeing 235 * any local memory allocations and passing the error code up without 236 * further cleanup. The transaction should complete as it normally would 237 * in the call path but will return -EIO. 238 * 239 * We'll complete the cleanup in btrfs_end_transaction and 240 * btrfs_commit_transaction. 241 */ 242 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 243 struct btrfs_root *root, const char *function, 244 unsigned int line, int errno) 245 { 246 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n"); 247 trans->aborted = errno; 248 /* Nothing used. The other threads that have joined this 249 * transaction may be able to continue. */ 250 if (!trans->blocks_used) { 251 char nbuf[16]; 252 const char *errstr; 253 254 errstr = btrfs_decode_error(root->fs_info, errno, nbuf); 255 btrfs_printk(root->fs_info, 256 "%s:%d: Aborting unused transaction(%s).\n", 257 function, line, errstr); 258 return; 259 } 260 trans->transaction->aborted = errno; 261 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 262 } 263 /* 264 * __btrfs_panic decodes unexpected, fatal errors from the caller, 265 * issues an alert, and either panics or BUGs, depending on mount options. 266 */ 267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 268 unsigned int line, int errno, const char *fmt, ...) 269 { 270 char nbuf[16]; 271 char *s_id = "<unknown>"; 272 const char *errstr; 273 struct va_format vaf = { .fmt = fmt }; 274 va_list args; 275 276 if (fs_info) 277 s_id = fs_info->sb->s_id; 278 279 va_start(args, fmt); 280 vaf.va = &args; 281 282 errstr = btrfs_decode_error(fs_info, errno, nbuf); 283 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR) 284 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n", 285 s_id, function, line, &vaf, errstr); 286 287 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n", 288 s_id, function, line, &vaf, errstr); 289 va_end(args); 290 /* Caller calls BUG() */ 291 } 292 293 static void btrfs_put_super(struct super_block *sb) 294 { 295 (void)close_ctree(btrfs_sb(sb)->tree_root); 296 /* FIXME: need to fix VFS to return error? */ 297 /* AV: return it _where_? ->put_super() can be triggered by any number 298 * of async events, up to and including delivery of SIGKILL to the 299 * last process that kept it busy. Or segfault in the aforementioned 300 * process... Whom would you report that to? 301 */ 302 } 303 304 enum { 305 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 306 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 307 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 308 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 309 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 310 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 311 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 312 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 313 Opt_check_integrity, Opt_check_integrity_including_extent_data, 314 Opt_check_integrity_print_mask, Opt_fatal_errors, 315 Opt_err, 316 }; 317 318 static match_table_t tokens = { 319 {Opt_degraded, "degraded"}, 320 {Opt_subvol, "subvol=%s"}, 321 {Opt_subvolid, "subvolid=%d"}, 322 {Opt_device, "device=%s"}, 323 {Opt_nodatasum, "nodatasum"}, 324 {Opt_nodatacow, "nodatacow"}, 325 {Opt_nobarrier, "nobarrier"}, 326 {Opt_max_inline, "max_inline=%s"}, 327 {Opt_alloc_start, "alloc_start=%s"}, 328 {Opt_thread_pool, "thread_pool=%d"}, 329 {Opt_compress, "compress"}, 330 {Opt_compress_type, "compress=%s"}, 331 {Opt_compress_force, "compress-force"}, 332 {Opt_compress_force_type, "compress-force=%s"}, 333 {Opt_ssd, "ssd"}, 334 {Opt_ssd_spread, "ssd_spread"}, 335 {Opt_nossd, "nossd"}, 336 {Opt_noacl, "noacl"}, 337 {Opt_notreelog, "notreelog"}, 338 {Opt_flushoncommit, "flushoncommit"}, 339 {Opt_ratio, "metadata_ratio=%d"}, 340 {Opt_discard, "discard"}, 341 {Opt_space_cache, "space_cache"}, 342 {Opt_clear_cache, "clear_cache"}, 343 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 344 {Opt_enospc_debug, "enospc_debug"}, 345 {Opt_subvolrootid, "subvolrootid=%d"}, 346 {Opt_defrag, "autodefrag"}, 347 {Opt_inode_cache, "inode_cache"}, 348 {Opt_no_space_cache, "nospace_cache"}, 349 {Opt_recovery, "recovery"}, 350 {Opt_skip_balance, "skip_balance"}, 351 {Opt_check_integrity, "check_int"}, 352 {Opt_check_integrity_including_extent_data, "check_int_data"}, 353 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 354 {Opt_fatal_errors, "fatal_errors=%s"}, 355 {Opt_err, NULL}, 356 }; 357 358 /* 359 * Regular mount options parser. Everything that is needed only when 360 * reading in a new superblock is parsed here. 361 * XXX JDM: This needs to be cleaned up for remount. 362 */ 363 int btrfs_parse_options(struct btrfs_root *root, char *options) 364 { 365 struct btrfs_fs_info *info = root->fs_info; 366 substring_t args[MAX_OPT_ARGS]; 367 char *p, *num, *orig = NULL; 368 u64 cache_gen; 369 int intarg; 370 int ret = 0; 371 char *compress_type; 372 bool compress_force = false; 373 374 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 375 if (cache_gen) 376 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 377 378 if (!options) 379 goto out; 380 381 /* 382 * strsep changes the string, duplicate it because parse_options 383 * gets called twice 384 */ 385 options = kstrdup(options, GFP_NOFS); 386 if (!options) 387 return -ENOMEM; 388 389 orig = options; 390 391 while ((p = strsep(&options, ",")) != NULL) { 392 int token; 393 if (!*p) 394 continue; 395 396 token = match_token(p, tokens, args); 397 switch (token) { 398 case Opt_degraded: 399 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 400 btrfs_set_opt(info->mount_opt, DEGRADED); 401 break; 402 case Opt_subvol: 403 case Opt_subvolid: 404 case Opt_subvolrootid: 405 case Opt_device: 406 /* 407 * These are parsed by btrfs_parse_early_options 408 * and can be happily ignored here. 409 */ 410 break; 411 case Opt_nodatasum: 412 printk(KERN_INFO "btrfs: setting nodatasum\n"); 413 btrfs_set_opt(info->mount_opt, NODATASUM); 414 break; 415 case Opt_nodatacow: 416 if (!btrfs_test_opt(root, COMPRESS) || 417 !btrfs_test_opt(root, FORCE_COMPRESS)) { 418 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n"); 419 } else { 420 printk(KERN_INFO "btrfs: setting nodatacow\n"); 421 } 422 info->compress_type = BTRFS_COMPRESS_NONE; 423 btrfs_clear_opt(info->mount_opt, COMPRESS); 424 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 425 btrfs_set_opt(info->mount_opt, NODATACOW); 426 btrfs_set_opt(info->mount_opt, NODATASUM); 427 break; 428 case Opt_compress_force: 429 case Opt_compress_force_type: 430 compress_force = true; 431 case Opt_compress: 432 case Opt_compress_type: 433 if (token == Opt_compress || 434 token == Opt_compress_force || 435 strcmp(args[0].from, "zlib") == 0) { 436 compress_type = "zlib"; 437 info->compress_type = BTRFS_COMPRESS_ZLIB; 438 btrfs_set_opt(info->mount_opt, COMPRESS); 439 btrfs_clear_opt(info->mount_opt, NODATACOW); 440 btrfs_clear_opt(info->mount_opt, NODATASUM); 441 } else if (strcmp(args[0].from, "lzo") == 0) { 442 compress_type = "lzo"; 443 info->compress_type = BTRFS_COMPRESS_LZO; 444 btrfs_set_opt(info->mount_opt, COMPRESS); 445 btrfs_clear_opt(info->mount_opt, NODATACOW); 446 btrfs_clear_opt(info->mount_opt, NODATASUM); 447 btrfs_set_fs_incompat(info, COMPRESS_LZO); 448 } else if (strncmp(args[0].from, "no", 2) == 0) { 449 compress_type = "no"; 450 info->compress_type = BTRFS_COMPRESS_NONE; 451 btrfs_clear_opt(info->mount_opt, COMPRESS); 452 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 453 compress_force = false; 454 } else { 455 ret = -EINVAL; 456 goto out; 457 } 458 459 if (compress_force) { 460 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 461 pr_info("btrfs: force %s compression\n", 462 compress_type); 463 } else 464 pr_info("btrfs: use %s compression\n", 465 compress_type); 466 break; 467 case Opt_ssd: 468 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 469 btrfs_set_opt(info->mount_opt, SSD); 470 break; 471 case Opt_ssd_spread: 472 printk(KERN_INFO "btrfs: use spread ssd " 473 "allocation scheme\n"); 474 btrfs_set_opt(info->mount_opt, SSD); 475 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 476 break; 477 case Opt_nossd: 478 printk(KERN_INFO "btrfs: not using ssd allocation " 479 "scheme\n"); 480 btrfs_set_opt(info->mount_opt, NOSSD); 481 btrfs_clear_opt(info->mount_opt, SSD); 482 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 483 break; 484 case Opt_nobarrier: 485 printk(KERN_INFO "btrfs: turning off barriers\n"); 486 btrfs_set_opt(info->mount_opt, NOBARRIER); 487 break; 488 case Opt_thread_pool: 489 intarg = 0; 490 match_int(&args[0], &intarg); 491 if (intarg) 492 info->thread_pool_size = intarg; 493 break; 494 case Opt_max_inline: 495 num = match_strdup(&args[0]); 496 if (num) { 497 info->max_inline = memparse(num, NULL); 498 kfree(num); 499 500 if (info->max_inline) { 501 info->max_inline = max_t(u64, 502 info->max_inline, 503 root->sectorsize); 504 } 505 printk(KERN_INFO "btrfs: max_inline at %llu\n", 506 (unsigned long long)info->max_inline); 507 } 508 break; 509 case Opt_alloc_start: 510 num = match_strdup(&args[0]); 511 if (num) { 512 info->alloc_start = memparse(num, NULL); 513 kfree(num); 514 printk(KERN_INFO 515 "btrfs: allocations start at %llu\n", 516 (unsigned long long)info->alloc_start); 517 } 518 break; 519 case Opt_noacl: 520 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 521 break; 522 case Opt_notreelog: 523 printk(KERN_INFO "btrfs: disabling tree log\n"); 524 btrfs_set_opt(info->mount_opt, NOTREELOG); 525 break; 526 case Opt_flushoncommit: 527 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 528 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 529 break; 530 case Opt_ratio: 531 intarg = 0; 532 match_int(&args[0], &intarg); 533 if (intarg) { 534 info->metadata_ratio = intarg; 535 printk(KERN_INFO "btrfs: metadata ratio %d\n", 536 info->metadata_ratio); 537 } 538 break; 539 case Opt_discard: 540 btrfs_set_opt(info->mount_opt, DISCARD); 541 break; 542 case Opt_space_cache: 543 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 544 break; 545 case Opt_no_space_cache: 546 printk(KERN_INFO "btrfs: disabling disk space caching\n"); 547 btrfs_clear_opt(info->mount_opt, SPACE_CACHE); 548 break; 549 case Opt_inode_cache: 550 printk(KERN_INFO "btrfs: enabling inode map caching\n"); 551 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); 552 break; 553 case Opt_clear_cache: 554 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 555 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 556 break; 557 case Opt_user_subvol_rm_allowed: 558 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 559 break; 560 case Opt_enospc_debug: 561 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 562 break; 563 case Opt_defrag: 564 printk(KERN_INFO "btrfs: enabling auto defrag\n"); 565 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); 566 break; 567 case Opt_recovery: 568 printk(KERN_INFO "btrfs: enabling auto recovery\n"); 569 btrfs_set_opt(info->mount_opt, RECOVERY); 570 break; 571 case Opt_skip_balance: 572 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 573 break; 574 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 575 case Opt_check_integrity_including_extent_data: 576 printk(KERN_INFO "btrfs: enabling check integrity" 577 " including extent data\n"); 578 btrfs_set_opt(info->mount_opt, 579 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 580 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 581 break; 582 case Opt_check_integrity: 583 printk(KERN_INFO "btrfs: enabling check integrity\n"); 584 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 585 break; 586 case Opt_check_integrity_print_mask: 587 intarg = 0; 588 match_int(&args[0], &intarg); 589 if (intarg) { 590 info->check_integrity_print_mask = intarg; 591 printk(KERN_INFO "btrfs:" 592 " check_integrity_print_mask 0x%x\n", 593 info->check_integrity_print_mask); 594 } 595 break; 596 #else 597 case Opt_check_integrity_including_extent_data: 598 case Opt_check_integrity: 599 case Opt_check_integrity_print_mask: 600 printk(KERN_ERR "btrfs: support for check_integrity*" 601 " not compiled in!\n"); 602 ret = -EINVAL; 603 goto out; 604 #endif 605 case Opt_fatal_errors: 606 if (strcmp(args[0].from, "panic") == 0) 607 btrfs_set_opt(info->mount_opt, 608 PANIC_ON_FATAL_ERROR); 609 else if (strcmp(args[0].from, "bug") == 0) 610 btrfs_clear_opt(info->mount_opt, 611 PANIC_ON_FATAL_ERROR); 612 else { 613 ret = -EINVAL; 614 goto out; 615 } 616 break; 617 case Opt_err: 618 printk(KERN_INFO "btrfs: unrecognized mount option " 619 "'%s'\n", p); 620 ret = -EINVAL; 621 goto out; 622 default: 623 break; 624 } 625 } 626 out: 627 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 628 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 629 kfree(orig); 630 return ret; 631 } 632 633 /* 634 * Parse mount options that are required early in the mount process. 635 * 636 * All other options will be parsed on much later in the mount process and 637 * only when we need to allocate a new super block. 638 */ 639 static int btrfs_parse_early_options(const char *options, fmode_t flags, 640 void *holder, char **subvol_name, u64 *subvol_objectid, 641 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices) 642 { 643 substring_t args[MAX_OPT_ARGS]; 644 char *device_name, *opts, *orig, *p; 645 int error = 0; 646 int intarg; 647 648 if (!options) 649 return 0; 650 651 /* 652 * strsep changes the string, duplicate it because parse_options 653 * gets called twice 654 */ 655 opts = kstrdup(options, GFP_KERNEL); 656 if (!opts) 657 return -ENOMEM; 658 orig = opts; 659 660 while ((p = strsep(&opts, ",")) != NULL) { 661 int token; 662 if (!*p) 663 continue; 664 665 token = match_token(p, tokens, args); 666 switch (token) { 667 case Opt_subvol: 668 kfree(*subvol_name); 669 *subvol_name = match_strdup(&args[0]); 670 break; 671 case Opt_subvolid: 672 intarg = 0; 673 error = match_int(&args[0], &intarg); 674 if (!error) { 675 /* we want the original fs_tree */ 676 if (!intarg) 677 *subvol_objectid = 678 BTRFS_FS_TREE_OBJECTID; 679 else 680 *subvol_objectid = intarg; 681 } 682 break; 683 case Opt_subvolrootid: 684 intarg = 0; 685 error = match_int(&args[0], &intarg); 686 if (!error) { 687 /* we want the original fs_tree */ 688 if (!intarg) 689 *subvol_rootid = 690 BTRFS_FS_TREE_OBJECTID; 691 else 692 *subvol_rootid = intarg; 693 } 694 break; 695 case Opt_device: 696 device_name = match_strdup(&args[0]); 697 if (!device_name) { 698 error = -ENOMEM; 699 goto out; 700 } 701 error = btrfs_scan_one_device(device_name, 702 flags, holder, fs_devices); 703 kfree(device_name); 704 if (error) 705 goto out; 706 break; 707 default: 708 break; 709 } 710 } 711 712 out: 713 kfree(orig); 714 return error; 715 } 716 717 static struct dentry *get_default_root(struct super_block *sb, 718 u64 subvol_objectid) 719 { 720 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 721 struct btrfs_root *root = fs_info->tree_root; 722 struct btrfs_root *new_root; 723 struct btrfs_dir_item *di; 724 struct btrfs_path *path; 725 struct btrfs_key location; 726 struct inode *inode; 727 u64 dir_id; 728 int new = 0; 729 730 /* 731 * We have a specific subvol we want to mount, just setup location and 732 * go look up the root. 733 */ 734 if (subvol_objectid) { 735 location.objectid = subvol_objectid; 736 location.type = BTRFS_ROOT_ITEM_KEY; 737 location.offset = (u64)-1; 738 goto find_root; 739 } 740 741 path = btrfs_alloc_path(); 742 if (!path) 743 return ERR_PTR(-ENOMEM); 744 path->leave_spinning = 1; 745 746 /* 747 * Find the "default" dir item which points to the root item that we 748 * will mount by default if we haven't been given a specific subvolume 749 * to mount. 750 */ 751 dir_id = btrfs_super_root_dir(fs_info->super_copy); 752 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 753 if (IS_ERR(di)) { 754 btrfs_free_path(path); 755 return ERR_CAST(di); 756 } 757 if (!di) { 758 /* 759 * Ok the default dir item isn't there. This is weird since 760 * it's always been there, but don't freak out, just try and 761 * mount to root most subvolume. 762 */ 763 btrfs_free_path(path); 764 dir_id = BTRFS_FIRST_FREE_OBJECTID; 765 new_root = fs_info->fs_root; 766 goto setup_root; 767 } 768 769 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 770 btrfs_free_path(path); 771 772 find_root: 773 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 774 if (IS_ERR(new_root)) 775 return ERR_CAST(new_root); 776 777 if (btrfs_root_refs(&new_root->root_item) == 0) 778 return ERR_PTR(-ENOENT); 779 780 dir_id = btrfs_root_dirid(&new_root->root_item); 781 setup_root: 782 location.objectid = dir_id; 783 location.type = BTRFS_INODE_ITEM_KEY; 784 location.offset = 0; 785 786 inode = btrfs_iget(sb, &location, new_root, &new); 787 if (IS_ERR(inode)) 788 return ERR_CAST(inode); 789 790 /* 791 * If we're just mounting the root most subvol put the inode and return 792 * a reference to the dentry. We will have already gotten a reference 793 * to the inode in btrfs_fill_super so we're good to go. 794 */ 795 if (!new && sb->s_root->d_inode == inode) { 796 iput(inode); 797 return dget(sb->s_root); 798 } 799 800 return d_obtain_alias(inode); 801 } 802 803 static int btrfs_fill_super(struct super_block *sb, 804 struct btrfs_fs_devices *fs_devices, 805 void *data, int silent) 806 { 807 struct inode *inode; 808 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 809 struct btrfs_key key; 810 int err; 811 812 sb->s_maxbytes = MAX_LFS_FILESIZE; 813 sb->s_magic = BTRFS_SUPER_MAGIC; 814 sb->s_op = &btrfs_super_ops; 815 sb->s_d_op = &btrfs_dentry_operations; 816 sb->s_export_op = &btrfs_export_ops; 817 sb->s_xattr = btrfs_xattr_handlers; 818 sb->s_time_gran = 1; 819 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 820 sb->s_flags |= MS_POSIXACL; 821 #endif 822 sb->s_flags |= MS_I_VERSION; 823 err = open_ctree(sb, fs_devices, (char *)data); 824 if (err) { 825 printk("btrfs: open_ctree failed\n"); 826 return err; 827 } 828 829 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 830 key.type = BTRFS_INODE_ITEM_KEY; 831 key.offset = 0; 832 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 833 if (IS_ERR(inode)) { 834 err = PTR_ERR(inode); 835 goto fail_close; 836 } 837 838 sb->s_root = d_make_root(inode); 839 if (!sb->s_root) { 840 err = -ENOMEM; 841 goto fail_close; 842 } 843 844 save_mount_options(sb, data); 845 cleancache_init_fs(sb); 846 sb->s_flags |= MS_ACTIVE; 847 return 0; 848 849 fail_close: 850 close_ctree(fs_info->tree_root); 851 return err; 852 } 853 854 int btrfs_sync_fs(struct super_block *sb, int wait) 855 { 856 struct btrfs_trans_handle *trans; 857 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 858 struct btrfs_root *root = fs_info->tree_root; 859 860 trace_btrfs_sync_fs(wait); 861 862 if (!wait) { 863 filemap_flush(fs_info->btree_inode->i_mapping); 864 return 0; 865 } 866 867 btrfs_wait_ordered_extents(root, 0); 868 869 trans = btrfs_attach_transaction(root); 870 if (IS_ERR(trans)) { 871 /* no transaction, don't bother */ 872 if (PTR_ERR(trans) == -ENOENT) 873 return 0; 874 return PTR_ERR(trans); 875 } 876 return btrfs_commit_transaction(trans, root); 877 } 878 879 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 880 { 881 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 882 struct btrfs_root *root = info->tree_root; 883 char *compress_type; 884 885 if (btrfs_test_opt(root, DEGRADED)) 886 seq_puts(seq, ",degraded"); 887 if (btrfs_test_opt(root, NODATASUM)) 888 seq_puts(seq, ",nodatasum"); 889 if (btrfs_test_opt(root, NODATACOW)) 890 seq_puts(seq, ",nodatacow"); 891 if (btrfs_test_opt(root, NOBARRIER)) 892 seq_puts(seq, ",nobarrier"); 893 if (info->max_inline != 8192 * 1024) 894 seq_printf(seq, ",max_inline=%llu", 895 (unsigned long long)info->max_inline); 896 if (info->alloc_start != 0) 897 seq_printf(seq, ",alloc_start=%llu", 898 (unsigned long long)info->alloc_start); 899 if (info->thread_pool_size != min_t(unsigned long, 900 num_online_cpus() + 2, 8)) 901 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 902 if (btrfs_test_opt(root, COMPRESS)) { 903 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 904 compress_type = "zlib"; 905 else 906 compress_type = "lzo"; 907 if (btrfs_test_opt(root, FORCE_COMPRESS)) 908 seq_printf(seq, ",compress-force=%s", compress_type); 909 else 910 seq_printf(seq, ",compress=%s", compress_type); 911 } 912 if (btrfs_test_opt(root, NOSSD)) 913 seq_puts(seq, ",nossd"); 914 if (btrfs_test_opt(root, SSD_SPREAD)) 915 seq_puts(seq, ",ssd_spread"); 916 else if (btrfs_test_opt(root, SSD)) 917 seq_puts(seq, ",ssd"); 918 if (btrfs_test_opt(root, NOTREELOG)) 919 seq_puts(seq, ",notreelog"); 920 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 921 seq_puts(seq, ",flushoncommit"); 922 if (btrfs_test_opt(root, DISCARD)) 923 seq_puts(seq, ",discard"); 924 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 925 seq_puts(seq, ",noacl"); 926 if (btrfs_test_opt(root, SPACE_CACHE)) 927 seq_puts(seq, ",space_cache"); 928 else 929 seq_puts(seq, ",nospace_cache"); 930 if (btrfs_test_opt(root, CLEAR_CACHE)) 931 seq_puts(seq, ",clear_cache"); 932 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 933 seq_puts(seq, ",user_subvol_rm_allowed"); 934 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 935 seq_puts(seq, ",enospc_debug"); 936 if (btrfs_test_opt(root, AUTO_DEFRAG)) 937 seq_puts(seq, ",autodefrag"); 938 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 939 seq_puts(seq, ",inode_cache"); 940 if (btrfs_test_opt(root, SKIP_BALANCE)) 941 seq_puts(seq, ",skip_balance"); 942 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 943 seq_puts(seq, ",fatal_errors=panic"); 944 return 0; 945 } 946 947 static int btrfs_test_super(struct super_block *s, void *data) 948 { 949 struct btrfs_fs_info *p = data; 950 struct btrfs_fs_info *fs_info = btrfs_sb(s); 951 952 return fs_info->fs_devices == p->fs_devices; 953 } 954 955 static int btrfs_set_super(struct super_block *s, void *data) 956 { 957 int err = set_anon_super(s, data); 958 if (!err) 959 s->s_fs_info = data; 960 return err; 961 } 962 963 /* 964 * subvolumes are identified by ino 256 965 */ 966 static inline int is_subvolume_inode(struct inode *inode) 967 { 968 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 969 return 1; 970 return 0; 971 } 972 973 /* 974 * This will strip out the subvol=%s argument for an argument string and add 975 * subvolid=0 to make sure we get the actual tree root for path walking to the 976 * subvol we want. 977 */ 978 static char *setup_root_args(char *args) 979 { 980 unsigned len = strlen(args) + 2 + 1; 981 char *src, *dst, *buf; 982 983 /* 984 * We need the same args as before, but with this substitution: 985 * s!subvol=[^,]+!subvolid=0! 986 * 987 * Since the replacement string is up to 2 bytes longer than the 988 * original, allocate strlen(args) + 2 + 1 bytes. 989 */ 990 991 src = strstr(args, "subvol="); 992 /* This shouldn't happen, but just in case.. */ 993 if (!src) 994 return NULL; 995 996 buf = dst = kmalloc(len, GFP_NOFS); 997 if (!buf) 998 return NULL; 999 1000 /* 1001 * If the subvol= arg is not at the start of the string, 1002 * copy whatever precedes it into buf. 1003 */ 1004 if (src != args) { 1005 *src++ = '\0'; 1006 strcpy(buf, args); 1007 dst += strlen(args); 1008 } 1009 1010 strcpy(dst, "subvolid=0"); 1011 dst += strlen("subvolid=0"); 1012 1013 /* 1014 * If there is a "," after the original subvol=... string, 1015 * copy that suffix into our buffer. Otherwise, we're done. 1016 */ 1017 src = strchr(src, ','); 1018 if (src) 1019 strcpy(dst, src); 1020 1021 return buf; 1022 } 1023 1024 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1025 const char *device_name, char *data) 1026 { 1027 struct dentry *root; 1028 struct vfsmount *mnt; 1029 char *newargs; 1030 1031 newargs = setup_root_args(data); 1032 if (!newargs) 1033 return ERR_PTR(-ENOMEM); 1034 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1035 newargs); 1036 kfree(newargs); 1037 if (IS_ERR(mnt)) 1038 return ERR_CAST(mnt); 1039 1040 root = mount_subtree(mnt, subvol_name); 1041 1042 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1043 struct super_block *s = root->d_sb; 1044 dput(root); 1045 root = ERR_PTR(-EINVAL); 1046 deactivate_locked_super(s); 1047 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", 1048 subvol_name); 1049 } 1050 1051 return root; 1052 } 1053 1054 /* 1055 * Find a superblock for the given device / mount point. 1056 * 1057 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1058 * for multiple device setup. Make sure to keep it in sync. 1059 */ 1060 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1061 const char *device_name, void *data) 1062 { 1063 struct block_device *bdev = NULL; 1064 struct super_block *s; 1065 struct dentry *root; 1066 struct btrfs_fs_devices *fs_devices = NULL; 1067 struct btrfs_fs_info *fs_info = NULL; 1068 fmode_t mode = FMODE_READ; 1069 char *subvol_name = NULL; 1070 u64 subvol_objectid = 0; 1071 u64 subvol_rootid = 0; 1072 int error = 0; 1073 1074 if (!(flags & MS_RDONLY)) 1075 mode |= FMODE_WRITE; 1076 1077 error = btrfs_parse_early_options(data, mode, fs_type, 1078 &subvol_name, &subvol_objectid, 1079 &subvol_rootid, &fs_devices); 1080 if (error) { 1081 kfree(subvol_name); 1082 return ERR_PTR(error); 1083 } 1084 1085 if (subvol_name) { 1086 root = mount_subvol(subvol_name, flags, device_name, data); 1087 kfree(subvol_name); 1088 return root; 1089 } 1090 1091 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1092 if (error) 1093 return ERR_PTR(error); 1094 1095 /* 1096 * Setup a dummy root and fs_info for test/set super. This is because 1097 * we don't actually fill this stuff out until open_ctree, but we need 1098 * it for searching for existing supers, so this lets us do that and 1099 * then open_ctree will properly initialize everything later. 1100 */ 1101 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1102 if (!fs_info) 1103 return ERR_PTR(-ENOMEM); 1104 1105 fs_info->fs_devices = fs_devices; 1106 1107 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1108 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1109 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1110 error = -ENOMEM; 1111 goto error_fs_info; 1112 } 1113 1114 error = btrfs_open_devices(fs_devices, mode, fs_type); 1115 if (error) 1116 goto error_fs_info; 1117 1118 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1119 error = -EACCES; 1120 goto error_close_devices; 1121 } 1122 1123 bdev = fs_devices->latest_bdev; 1124 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1125 fs_info); 1126 if (IS_ERR(s)) { 1127 error = PTR_ERR(s); 1128 goto error_close_devices; 1129 } 1130 1131 if (s->s_root) { 1132 btrfs_close_devices(fs_devices); 1133 free_fs_info(fs_info); 1134 if ((flags ^ s->s_flags) & MS_RDONLY) 1135 error = -EBUSY; 1136 } else { 1137 char b[BDEVNAME_SIZE]; 1138 1139 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1140 btrfs_sb(s)->bdev_holder = fs_type; 1141 error = btrfs_fill_super(s, fs_devices, data, 1142 flags & MS_SILENT ? 1 : 0); 1143 } 1144 1145 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1146 if (IS_ERR(root)) 1147 deactivate_locked_super(s); 1148 1149 return root; 1150 1151 error_close_devices: 1152 btrfs_close_devices(fs_devices); 1153 error_fs_info: 1154 free_fs_info(fs_info); 1155 return ERR_PTR(error); 1156 } 1157 1158 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit) 1159 { 1160 spin_lock_irq(&workers->lock); 1161 workers->max_workers = new_limit; 1162 spin_unlock_irq(&workers->lock); 1163 } 1164 1165 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1166 int new_pool_size, int old_pool_size) 1167 { 1168 if (new_pool_size == old_pool_size) 1169 return; 1170 1171 fs_info->thread_pool_size = new_pool_size; 1172 1173 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n", 1174 old_pool_size, new_pool_size); 1175 1176 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size); 1177 btrfs_set_max_workers(&fs_info->workers, new_pool_size); 1178 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size); 1179 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size); 1180 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size); 1181 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size); 1182 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size); 1183 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size); 1184 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size); 1185 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size); 1186 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size); 1187 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size); 1188 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size); 1189 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size); 1190 } 1191 1192 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1193 { 1194 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1195 struct btrfs_root *root = fs_info->tree_root; 1196 unsigned old_flags = sb->s_flags; 1197 unsigned long old_opts = fs_info->mount_opt; 1198 unsigned long old_compress_type = fs_info->compress_type; 1199 u64 old_max_inline = fs_info->max_inline; 1200 u64 old_alloc_start = fs_info->alloc_start; 1201 int old_thread_pool_size = fs_info->thread_pool_size; 1202 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1203 int ret; 1204 1205 ret = btrfs_parse_options(root, data); 1206 if (ret) { 1207 ret = -EINVAL; 1208 goto restore; 1209 } 1210 1211 btrfs_resize_thread_pool(fs_info, 1212 fs_info->thread_pool_size, old_thread_pool_size); 1213 1214 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1215 return 0; 1216 1217 if (*flags & MS_RDONLY) { 1218 sb->s_flags |= MS_RDONLY; 1219 1220 ret = btrfs_commit_super(root); 1221 if (ret) 1222 goto restore; 1223 } else { 1224 if (fs_info->fs_devices->rw_devices == 0) { 1225 ret = -EACCES; 1226 goto restore; 1227 } 1228 1229 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1230 ret = -EINVAL; 1231 goto restore; 1232 } 1233 1234 ret = btrfs_cleanup_fs_roots(fs_info); 1235 if (ret) 1236 goto restore; 1237 1238 /* recover relocation */ 1239 ret = btrfs_recover_relocation(root); 1240 if (ret) 1241 goto restore; 1242 1243 ret = btrfs_resume_balance_async(fs_info); 1244 if (ret) 1245 goto restore; 1246 1247 sb->s_flags &= ~MS_RDONLY; 1248 } 1249 1250 return 0; 1251 1252 restore: 1253 /* We've hit an error - don't reset MS_RDONLY */ 1254 if (sb->s_flags & MS_RDONLY) 1255 old_flags |= MS_RDONLY; 1256 sb->s_flags = old_flags; 1257 fs_info->mount_opt = old_opts; 1258 fs_info->compress_type = old_compress_type; 1259 fs_info->max_inline = old_max_inline; 1260 fs_info->alloc_start = old_alloc_start; 1261 btrfs_resize_thread_pool(fs_info, 1262 old_thread_pool_size, fs_info->thread_pool_size); 1263 fs_info->metadata_ratio = old_metadata_ratio; 1264 return ret; 1265 } 1266 1267 /* Used to sort the devices by max_avail(descending sort) */ 1268 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1269 const void *dev_info2) 1270 { 1271 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1272 ((struct btrfs_device_info *)dev_info2)->max_avail) 1273 return -1; 1274 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1275 ((struct btrfs_device_info *)dev_info2)->max_avail) 1276 return 1; 1277 else 1278 return 0; 1279 } 1280 1281 /* 1282 * sort the devices by max_avail, in which max free extent size of each device 1283 * is stored.(Descending Sort) 1284 */ 1285 static inline void btrfs_descending_sort_devices( 1286 struct btrfs_device_info *devices, 1287 size_t nr_devices) 1288 { 1289 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1290 btrfs_cmp_device_free_bytes, NULL); 1291 } 1292 1293 /* 1294 * The helper to calc the free space on the devices that can be used to store 1295 * file data. 1296 */ 1297 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1298 { 1299 struct btrfs_fs_info *fs_info = root->fs_info; 1300 struct btrfs_device_info *devices_info; 1301 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1302 struct btrfs_device *device; 1303 u64 skip_space; 1304 u64 type; 1305 u64 avail_space; 1306 u64 used_space; 1307 u64 min_stripe_size; 1308 int min_stripes = 1, num_stripes = 1; 1309 int i = 0, nr_devices; 1310 int ret; 1311 1312 nr_devices = fs_info->fs_devices->open_devices; 1313 BUG_ON(!nr_devices); 1314 1315 devices_info = kmalloc(sizeof(*devices_info) * nr_devices, 1316 GFP_NOFS); 1317 if (!devices_info) 1318 return -ENOMEM; 1319 1320 /* calc min stripe number for data space alloction */ 1321 type = btrfs_get_alloc_profile(root, 1); 1322 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1323 min_stripes = 2; 1324 num_stripes = nr_devices; 1325 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1326 min_stripes = 2; 1327 num_stripes = 2; 1328 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1329 min_stripes = 4; 1330 num_stripes = 4; 1331 } 1332 1333 if (type & BTRFS_BLOCK_GROUP_DUP) 1334 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1335 else 1336 min_stripe_size = BTRFS_STRIPE_LEN; 1337 1338 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1339 if (!device->in_fs_metadata || !device->bdev) 1340 continue; 1341 1342 avail_space = device->total_bytes - device->bytes_used; 1343 1344 /* align with stripe_len */ 1345 do_div(avail_space, BTRFS_STRIPE_LEN); 1346 avail_space *= BTRFS_STRIPE_LEN; 1347 1348 /* 1349 * In order to avoid overwritting the superblock on the drive, 1350 * btrfs starts at an offset of at least 1MB when doing chunk 1351 * allocation. 1352 */ 1353 skip_space = 1024 * 1024; 1354 1355 /* user can set the offset in fs_info->alloc_start. */ 1356 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1357 device->total_bytes) 1358 skip_space = max(fs_info->alloc_start, skip_space); 1359 1360 /* 1361 * btrfs can not use the free space in [0, skip_space - 1], 1362 * we must subtract it from the total. In order to implement 1363 * it, we account the used space in this range first. 1364 */ 1365 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1366 &used_space); 1367 if (ret) { 1368 kfree(devices_info); 1369 return ret; 1370 } 1371 1372 /* calc the free space in [0, skip_space - 1] */ 1373 skip_space -= used_space; 1374 1375 /* 1376 * we can use the free space in [0, skip_space - 1], subtract 1377 * it from the total. 1378 */ 1379 if (avail_space && avail_space >= skip_space) 1380 avail_space -= skip_space; 1381 else 1382 avail_space = 0; 1383 1384 if (avail_space < min_stripe_size) 1385 continue; 1386 1387 devices_info[i].dev = device; 1388 devices_info[i].max_avail = avail_space; 1389 1390 i++; 1391 } 1392 1393 nr_devices = i; 1394 1395 btrfs_descending_sort_devices(devices_info, nr_devices); 1396 1397 i = nr_devices - 1; 1398 avail_space = 0; 1399 while (nr_devices >= min_stripes) { 1400 if (num_stripes > nr_devices) 1401 num_stripes = nr_devices; 1402 1403 if (devices_info[i].max_avail >= min_stripe_size) { 1404 int j; 1405 u64 alloc_size; 1406 1407 avail_space += devices_info[i].max_avail * num_stripes; 1408 alloc_size = devices_info[i].max_avail; 1409 for (j = i + 1 - num_stripes; j <= i; j++) 1410 devices_info[j].max_avail -= alloc_size; 1411 } 1412 i--; 1413 nr_devices--; 1414 } 1415 1416 kfree(devices_info); 1417 *free_bytes = avail_space; 1418 return 0; 1419 } 1420 1421 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1422 { 1423 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1424 struct btrfs_super_block *disk_super = fs_info->super_copy; 1425 struct list_head *head = &fs_info->space_info; 1426 struct btrfs_space_info *found; 1427 u64 total_used = 0; 1428 u64 total_free_data = 0; 1429 int bits = dentry->d_sb->s_blocksize_bits; 1430 __be32 *fsid = (__be32 *)fs_info->fsid; 1431 int ret; 1432 1433 /* holding chunk_muext to avoid allocating new chunks */ 1434 mutex_lock(&fs_info->chunk_mutex); 1435 rcu_read_lock(); 1436 list_for_each_entry_rcu(found, head, list) { 1437 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1438 total_free_data += found->disk_total - found->disk_used; 1439 total_free_data -= 1440 btrfs_account_ro_block_groups_free_space(found); 1441 } 1442 1443 total_used += found->disk_used; 1444 } 1445 rcu_read_unlock(); 1446 1447 buf->f_namelen = BTRFS_NAME_LEN; 1448 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1449 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1450 buf->f_bsize = dentry->d_sb->s_blocksize; 1451 buf->f_type = BTRFS_SUPER_MAGIC; 1452 buf->f_bavail = total_free_data; 1453 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1454 if (ret) { 1455 mutex_unlock(&fs_info->chunk_mutex); 1456 return ret; 1457 } 1458 buf->f_bavail += total_free_data; 1459 buf->f_bavail = buf->f_bavail >> bits; 1460 mutex_unlock(&fs_info->chunk_mutex); 1461 1462 /* We treat it as constant endianness (it doesn't matter _which_) 1463 because we want the fsid to come out the same whether mounted 1464 on a big-endian or little-endian host */ 1465 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1466 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1467 /* Mask in the root object ID too, to disambiguate subvols */ 1468 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1469 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1470 1471 return 0; 1472 } 1473 1474 static void btrfs_kill_super(struct super_block *sb) 1475 { 1476 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1477 kill_anon_super(sb); 1478 free_fs_info(fs_info); 1479 } 1480 1481 static struct file_system_type btrfs_fs_type = { 1482 .owner = THIS_MODULE, 1483 .name = "btrfs", 1484 .mount = btrfs_mount, 1485 .kill_sb = btrfs_kill_super, 1486 .fs_flags = FS_REQUIRES_DEV, 1487 }; 1488 1489 /* 1490 * used by btrfsctl to scan devices when no FS is mounted 1491 */ 1492 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1493 unsigned long arg) 1494 { 1495 struct btrfs_ioctl_vol_args *vol; 1496 struct btrfs_fs_devices *fs_devices; 1497 int ret = -ENOTTY; 1498 1499 if (!capable(CAP_SYS_ADMIN)) 1500 return -EPERM; 1501 1502 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1503 if (IS_ERR(vol)) 1504 return PTR_ERR(vol); 1505 1506 switch (cmd) { 1507 case BTRFS_IOC_SCAN_DEV: 1508 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1509 &btrfs_fs_type, &fs_devices); 1510 break; 1511 case BTRFS_IOC_DEVICES_READY: 1512 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1513 &btrfs_fs_type, &fs_devices); 1514 if (ret) 1515 break; 1516 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1517 break; 1518 } 1519 1520 kfree(vol); 1521 return ret; 1522 } 1523 1524 static int btrfs_freeze(struct super_block *sb) 1525 { 1526 struct btrfs_trans_handle *trans; 1527 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1528 1529 trans = btrfs_attach_transaction(root); 1530 if (IS_ERR(trans)) { 1531 /* no transaction, don't bother */ 1532 if (PTR_ERR(trans) == -ENOENT) 1533 return 0; 1534 return PTR_ERR(trans); 1535 } 1536 return btrfs_commit_transaction(trans, root); 1537 } 1538 1539 static int btrfs_unfreeze(struct super_block *sb) 1540 { 1541 return 0; 1542 } 1543 1544 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1545 { 1546 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1547 struct btrfs_fs_devices *cur_devices; 1548 struct btrfs_device *dev, *first_dev = NULL; 1549 struct list_head *head; 1550 struct rcu_string *name; 1551 1552 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1553 cur_devices = fs_info->fs_devices; 1554 while (cur_devices) { 1555 head = &cur_devices->devices; 1556 list_for_each_entry(dev, head, dev_list) { 1557 if (dev->missing) 1558 continue; 1559 if (!first_dev || dev->devid < first_dev->devid) 1560 first_dev = dev; 1561 } 1562 cur_devices = cur_devices->seed; 1563 } 1564 1565 if (first_dev) { 1566 rcu_read_lock(); 1567 name = rcu_dereference(first_dev->name); 1568 seq_escape(m, name->str, " \t\n\\"); 1569 rcu_read_unlock(); 1570 } else { 1571 WARN_ON(1); 1572 } 1573 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1574 return 0; 1575 } 1576 1577 static const struct super_operations btrfs_super_ops = { 1578 .drop_inode = btrfs_drop_inode, 1579 .evict_inode = btrfs_evict_inode, 1580 .put_super = btrfs_put_super, 1581 .sync_fs = btrfs_sync_fs, 1582 .show_options = btrfs_show_options, 1583 .show_devname = btrfs_show_devname, 1584 .write_inode = btrfs_write_inode, 1585 .alloc_inode = btrfs_alloc_inode, 1586 .destroy_inode = btrfs_destroy_inode, 1587 .statfs = btrfs_statfs, 1588 .remount_fs = btrfs_remount, 1589 .freeze_fs = btrfs_freeze, 1590 .unfreeze_fs = btrfs_unfreeze, 1591 }; 1592 1593 static const struct file_operations btrfs_ctl_fops = { 1594 .unlocked_ioctl = btrfs_control_ioctl, 1595 .compat_ioctl = btrfs_control_ioctl, 1596 .owner = THIS_MODULE, 1597 .llseek = noop_llseek, 1598 }; 1599 1600 static struct miscdevice btrfs_misc = { 1601 .minor = BTRFS_MINOR, 1602 .name = "btrfs-control", 1603 .fops = &btrfs_ctl_fops 1604 }; 1605 1606 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1607 MODULE_ALIAS("devname:btrfs-control"); 1608 1609 static int btrfs_interface_init(void) 1610 { 1611 return misc_register(&btrfs_misc); 1612 } 1613 1614 static void btrfs_interface_exit(void) 1615 { 1616 if (misc_deregister(&btrfs_misc) < 0) 1617 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n"); 1618 } 1619 1620 static int __init init_btrfs_fs(void) 1621 { 1622 int err; 1623 1624 err = btrfs_init_sysfs(); 1625 if (err) 1626 return err; 1627 1628 btrfs_init_compress(); 1629 1630 err = btrfs_init_cachep(); 1631 if (err) 1632 goto free_compress; 1633 1634 err = extent_io_init(); 1635 if (err) 1636 goto free_cachep; 1637 1638 err = extent_map_init(); 1639 if (err) 1640 goto free_extent_io; 1641 1642 err = ordered_data_init(); 1643 if (err) 1644 goto free_extent_map; 1645 1646 err = btrfs_delayed_inode_init(); 1647 if (err) 1648 goto free_ordered_data; 1649 1650 err = btrfs_interface_init(); 1651 if (err) 1652 goto free_delayed_inode; 1653 1654 err = register_filesystem(&btrfs_fs_type); 1655 if (err) 1656 goto unregister_ioctl; 1657 1658 btrfs_init_lockdep(); 1659 1660 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); 1661 return 0; 1662 1663 unregister_ioctl: 1664 btrfs_interface_exit(); 1665 free_delayed_inode: 1666 btrfs_delayed_inode_exit(); 1667 free_ordered_data: 1668 ordered_data_exit(); 1669 free_extent_map: 1670 extent_map_exit(); 1671 free_extent_io: 1672 extent_io_exit(); 1673 free_cachep: 1674 btrfs_destroy_cachep(); 1675 free_compress: 1676 btrfs_exit_compress(); 1677 btrfs_exit_sysfs(); 1678 return err; 1679 } 1680 1681 static void __exit exit_btrfs_fs(void) 1682 { 1683 btrfs_destroy_cachep(); 1684 btrfs_delayed_inode_exit(); 1685 ordered_data_exit(); 1686 extent_map_exit(); 1687 extent_io_exit(); 1688 btrfs_interface_exit(); 1689 unregister_filesystem(&btrfs_fs_type); 1690 btrfs_exit_sysfs(); 1691 btrfs_cleanup_fs_uuids(); 1692 btrfs_exit_compress(); 1693 } 1694 1695 module_init(init_btrfs_fs) 1696 module_exit(exit_btrfs_fs) 1697 1698 MODULE_LICENSE("GPL"); 1699