xref: /openbmc/linux/fs/btrfs/super.c (revision 79f08d9e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "xattr.h"
52 #include "volumes.h"
53 #include "export.h"
54 #include "compression.h"
55 #include "rcu-string.h"
56 #include "dev-replace.h"
57 #include "free-space-cache.h"
58 #include "backref.h"
59 #include "tests/btrfs-tests.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63 
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66 
67 static const char *btrfs_decode_error(int errno)
68 {
69 	char *errstr = "unknown";
70 
71 	switch (errno) {
72 	case -EIO:
73 		errstr = "IO failure";
74 		break;
75 	case -ENOMEM:
76 		errstr = "Out of memory";
77 		break;
78 	case -EROFS:
79 		errstr = "Readonly filesystem";
80 		break;
81 	case -EEXIST:
82 		errstr = "Object already exists";
83 		break;
84 	case -ENOSPC:
85 		errstr = "No space left";
86 		break;
87 	case -ENOENT:
88 		errstr = "No such entry";
89 		break;
90 	}
91 
92 	return errstr;
93 }
94 
95 static void save_error_info(struct btrfs_fs_info *fs_info)
96 {
97 	/*
98 	 * today we only save the error info into ram.  Long term we'll
99 	 * also send it down to the disk
100 	 */
101 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103 
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 	struct super_block *sb = fs_info->sb;
108 
109 	if (sb->s_flags & MS_RDONLY)
110 		return;
111 
112 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113 		sb->s_flags |= MS_RDONLY;
114 		btrfs_info(fs_info, "forced readonly");
115 		/*
116 		 * Note that a running device replace operation is not
117 		 * canceled here although there is no way to update
118 		 * the progress. It would add the risk of a deadlock,
119 		 * therefore the canceling is ommited. The only penalty
120 		 * is that some I/O remains active until the procedure
121 		 * completes. The next time when the filesystem is
122 		 * mounted writeable again, the device replace
123 		 * operation continues.
124 		 */
125 	}
126 }
127 
128 #ifdef CONFIG_PRINTK
129 /*
130  * __btrfs_std_error decodes expected errors from the caller and
131  * invokes the approciate error response.
132  */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 		       unsigned int line, int errno, const char *fmt, ...)
135 {
136 	struct super_block *sb = fs_info->sb;
137 	const char *errstr;
138 
139 	/*
140 	 * Special case: if the error is EROFS, and we're already
141 	 * under MS_RDONLY, then it is safe here.
142 	 */
143 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144   		return;
145 
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 			sb->s_id, function, line, errno, errstr, &vaf);
157 		va_end(args);
158 	} else {
159 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
160 			sb->s_id, function, line, errno, errstr);
161 	}
162 
163 	/* Don't go through full error handling during mount */
164 	save_error_info(fs_info);
165 	if (sb->s_flags & MS_BORN)
166 		btrfs_handle_error(fs_info);
167 }
168 
169 static const char * const logtypes[] = {
170 	"emergency",
171 	"alert",
172 	"critical",
173 	"error",
174 	"warning",
175 	"notice",
176 	"info",
177 	"debug",
178 };
179 
180 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
181 {
182 	struct super_block *sb = fs_info->sb;
183 	char lvl[4];
184 	struct va_format vaf;
185 	va_list args;
186 	const char *type = logtypes[4];
187 	int kern_level;
188 
189 	va_start(args, fmt);
190 
191 	kern_level = printk_get_level(fmt);
192 	if (kern_level) {
193 		size_t size = printk_skip_level(fmt) - fmt;
194 		memcpy(lvl, fmt,  size);
195 		lvl[size] = '\0';
196 		fmt += size;
197 		type = logtypes[kern_level - '0'];
198 	} else
199 		*lvl = '\0';
200 
201 	vaf.fmt = fmt;
202 	vaf.va = &args;
203 
204 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
205 
206 	va_end(args);
207 }
208 
209 #else
210 
211 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
212 		       unsigned int line, int errno, const char *fmt, ...)
213 {
214 	struct super_block *sb = fs_info->sb;
215 
216 	/*
217 	 * Special case: if the error is EROFS, and we're already
218 	 * under MS_RDONLY, then it is safe here.
219 	 */
220 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
221 		return;
222 
223 	/* Don't go through full error handling during mount */
224 	if (sb->s_flags & MS_BORN) {
225 		save_error_info(fs_info);
226 		btrfs_handle_error(fs_info);
227 	}
228 }
229 #endif
230 
231 /*
232  * We only mark the transaction aborted and then set the file system read-only.
233  * This will prevent new transactions from starting or trying to join this
234  * one.
235  *
236  * This means that error recovery at the call site is limited to freeing
237  * any local memory allocations and passing the error code up without
238  * further cleanup. The transaction should complete as it normally would
239  * in the call path but will return -EIO.
240  *
241  * We'll complete the cleanup in btrfs_end_transaction and
242  * btrfs_commit_transaction.
243  */
244 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
245 			       struct btrfs_root *root, const char *function,
246 			       unsigned int line, int errno)
247 {
248 	/*
249 	 * Report first abort since mount
250 	 */
251 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
252 				&root->fs_info->fs_state)) {
253 		WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
254 				errno);
255 	}
256 	trans->aborted = errno;
257 	/* Nothing used. The other threads that have joined this
258 	 * transaction may be able to continue. */
259 	if (!trans->blocks_used) {
260 		const char *errstr;
261 
262 		errstr = btrfs_decode_error(errno);
263 		btrfs_warn(root->fs_info,
264 		           "%s:%d: Aborting unused transaction(%s).",
265 		           function, line, errstr);
266 		return;
267 	}
268 	ACCESS_ONCE(trans->transaction->aborted) = errno;
269 	/* Wake up anybody who may be waiting on this transaction */
270 	wake_up(&root->fs_info->transaction_wait);
271 	wake_up(&root->fs_info->transaction_blocked_wait);
272 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
273 }
274 /*
275  * __btrfs_panic decodes unexpected, fatal errors from the caller,
276  * issues an alert, and either panics or BUGs, depending on mount options.
277  */
278 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
279 		   unsigned int line, int errno, const char *fmt, ...)
280 {
281 	char *s_id = "<unknown>";
282 	const char *errstr;
283 	struct va_format vaf = { .fmt = fmt };
284 	va_list args;
285 
286 	if (fs_info)
287 		s_id = fs_info->sb->s_id;
288 
289 	va_start(args, fmt);
290 	vaf.va = &args;
291 
292 	errstr = btrfs_decode_error(errno);
293 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
294 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
295 			s_id, function, line, &vaf, errno, errstr);
296 
297 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
298 	       s_id, function, line, &vaf, errno, errstr);
299 	va_end(args);
300 	/* Caller calls BUG() */
301 }
302 
303 static void btrfs_put_super(struct super_block *sb)
304 {
305 	(void)close_ctree(btrfs_sb(sb)->tree_root);
306 	/* FIXME: need to fix VFS to return error? */
307 	/* AV: return it _where_?  ->put_super() can be triggered by any number
308 	 * of async events, up to and including delivery of SIGKILL to the
309 	 * last process that kept it busy.  Or segfault in the aforementioned
310 	 * process...  Whom would you report that to?
311 	 */
312 }
313 
314 enum {
315 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
324 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
325 	Opt_commit_interval,
326 	Opt_err,
327 };
328 
329 static match_table_t tokens = {
330 	{Opt_degraded, "degraded"},
331 	{Opt_subvol, "subvol=%s"},
332 	{Opt_subvolid, "subvolid=%s"},
333 	{Opt_device, "device=%s"},
334 	{Opt_nodatasum, "nodatasum"},
335 	{Opt_nodatacow, "nodatacow"},
336 	{Opt_nobarrier, "nobarrier"},
337 	{Opt_max_inline, "max_inline=%s"},
338 	{Opt_alloc_start, "alloc_start=%s"},
339 	{Opt_thread_pool, "thread_pool=%d"},
340 	{Opt_compress, "compress"},
341 	{Opt_compress_type, "compress=%s"},
342 	{Opt_compress_force, "compress-force"},
343 	{Opt_compress_force_type, "compress-force=%s"},
344 	{Opt_ssd, "ssd"},
345 	{Opt_ssd_spread, "ssd_spread"},
346 	{Opt_nossd, "nossd"},
347 	{Opt_noacl, "noacl"},
348 	{Opt_notreelog, "notreelog"},
349 	{Opt_flushoncommit, "flushoncommit"},
350 	{Opt_ratio, "metadata_ratio=%d"},
351 	{Opt_discard, "discard"},
352 	{Opt_space_cache, "space_cache"},
353 	{Opt_clear_cache, "clear_cache"},
354 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
355 	{Opt_enospc_debug, "enospc_debug"},
356 	{Opt_subvolrootid, "subvolrootid=%d"},
357 	{Opt_defrag, "autodefrag"},
358 	{Opt_inode_cache, "inode_cache"},
359 	{Opt_no_space_cache, "nospace_cache"},
360 	{Opt_recovery, "recovery"},
361 	{Opt_skip_balance, "skip_balance"},
362 	{Opt_check_integrity, "check_int"},
363 	{Opt_check_integrity_including_extent_data, "check_int_data"},
364 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
365 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
366 	{Opt_fatal_errors, "fatal_errors=%s"},
367 	{Opt_commit_interval, "commit=%d"},
368 	{Opt_err, NULL},
369 };
370 
371 /*
372  * Regular mount options parser.  Everything that is needed only when
373  * reading in a new superblock is parsed here.
374  * XXX JDM: This needs to be cleaned up for remount.
375  */
376 int btrfs_parse_options(struct btrfs_root *root, char *options)
377 {
378 	struct btrfs_fs_info *info = root->fs_info;
379 	substring_t args[MAX_OPT_ARGS];
380 	char *p, *num, *orig = NULL;
381 	u64 cache_gen;
382 	int intarg;
383 	int ret = 0;
384 	char *compress_type;
385 	bool compress_force = false;
386 
387 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
388 	if (cache_gen)
389 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
390 
391 	if (!options)
392 		goto out;
393 
394 	/*
395 	 * strsep changes the string, duplicate it because parse_options
396 	 * gets called twice
397 	 */
398 	options = kstrdup(options, GFP_NOFS);
399 	if (!options)
400 		return -ENOMEM;
401 
402 	orig = options;
403 
404 	while ((p = strsep(&options, ",")) != NULL) {
405 		int token;
406 		if (!*p)
407 			continue;
408 
409 		token = match_token(p, tokens, args);
410 		switch (token) {
411 		case Opt_degraded:
412 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
413 			btrfs_set_opt(info->mount_opt, DEGRADED);
414 			break;
415 		case Opt_subvol:
416 		case Opt_subvolid:
417 		case Opt_subvolrootid:
418 		case Opt_device:
419 			/*
420 			 * These are parsed by btrfs_parse_early_options
421 			 * and can be happily ignored here.
422 			 */
423 			break;
424 		case Opt_nodatasum:
425 			printk(KERN_INFO "btrfs: setting nodatasum\n");
426 			btrfs_set_opt(info->mount_opt, NODATASUM);
427 			break;
428 		case Opt_nodatacow:
429 			if (!btrfs_test_opt(root, COMPRESS) ||
430 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
431 					printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
432 			} else {
433 				printk(KERN_INFO "btrfs: setting nodatacow\n");
434 			}
435 			info->compress_type = BTRFS_COMPRESS_NONE;
436 			btrfs_clear_opt(info->mount_opt, COMPRESS);
437 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
438 			btrfs_set_opt(info->mount_opt, NODATACOW);
439 			btrfs_set_opt(info->mount_opt, NODATASUM);
440 			break;
441 		case Opt_compress_force:
442 		case Opt_compress_force_type:
443 			compress_force = true;
444 			/* Fallthrough */
445 		case Opt_compress:
446 		case Opt_compress_type:
447 			if (token == Opt_compress ||
448 			    token == Opt_compress_force ||
449 			    strcmp(args[0].from, "zlib") == 0) {
450 				compress_type = "zlib";
451 				info->compress_type = BTRFS_COMPRESS_ZLIB;
452 				btrfs_set_opt(info->mount_opt, COMPRESS);
453 				btrfs_clear_opt(info->mount_opt, NODATACOW);
454 				btrfs_clear_opt(info->mount_opt, NODATASUM);
455 			} else if (strcmp(args[0].from, "lzo") == 0) {
456 				compress_type = "lzo";
457 				info->compress_type = BTRFS_COMPRESS_LZO;
458 				btrfs_set_opt(info->mount_opt, COMPRESS);
459 				btrfs_clear_opt(info->mount_opt, NODATACOW);
460 				btrfs_clear_opt(info->mount_opt, NODATASUM);
461 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
462 			} else if (strncmp(args[0].from, "no", 2) == 0) {
463 				compress_type = "no";
464 				info->compress_type = BTRFS_COMPRESS_NONE;
465 				btrfs_clear_opt(info->mount_opt, COMPRESS);
466 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
467 				compress_force = false;
468 			} else {
469 				ret = -EINVAL;
470 				goto out;
471 			}
472 
473 			if (compress_force) {
474 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
475 				pr_info("btrfs: force %s compression\n",
476 					compress_type);
477 			} else
478 				pr_info("btrfs: use %s compression\n",
479 					compress_type);
480 			break;
481 		case Opt_ssd:
482 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
483 			btrfs_set_opt(info->mount_opt, SSD);
484 			break;
485 		case Opt_ssd_spread:
486 			printk(KERN_INFO "btrfs: use spread ssd "
487 			       "allocation scheme\n");
488 			btrfs_set_opt(info->mount_opt, SSD);
489 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
490 			break;
491 		case Opt_nossd:
492 			printk(KERN_INFO "btrfs: not using ssd allocation "
493 			       "scheme\n");
494 			btrfs_set_opt(info->mount_opt, NOSSD);
495 			btrfs_clear_opt(info->mount_opt, SSD);
496 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
497 			break;
498 		case Opt_nobarrier:
499 			printk(KERN_INFO "btrfs: turning off barriers\n");
500 			btrfs_set_opt(info->mount_opt, NOBARRIER);
501 			break;
502 		case Opt_thread_pool:
503 			ret = match_int(&args[0], &intarg);
504 			if (ret) {
505 				goto out;
506 			} else if (intarg > 0) {
507 				info->thread_pool_size = intarg;
508 			} else {
509 				ret = -EINVAL;
510 				goto out;
511 			}
512 			break;
513 		case Opt_max_inline:
514 			num = match_strdup(&args[0]);
515 			if (num) {
516 				info->max_inline = memparse(num, NULL);
517 				kfree(num);
518 
519 				if (info->max_inline) {
520 					info->max_inline = max_t(u64,
521 						info->max_inline,
522 						root->sectorsize);
523 				}
524 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
525 					info->max_inline);
526 			} else {
527 				ret = -ENOMEM;
528 				goto out;
529 			}
530 			break;
531 		case Opt_alloc_start:
532 			num = match_strdup(&args[0]);
533 			if (num) {
534 				mutex_lock(&info->chunk_mutex);
535 				info->alloc_start = memparse(num, NULL);
536 				mutex_unlock(&info->chunk_mutex);
537 				kfree(num);
538 				printk(KERN_INFO
539 					"btrfs: allocations start at %llu\n",
540 					info->alloc_start);
541 			} else {
542 				ret = -ENOMEM;
543 				goto out;
544 			}
545 			break;
546 		case Opt_noacl:
547 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
548 			break;
549 		case Opt_notreelog:
550 			printk(KERN_INFO "btrfs: disabling tree log\n");
551 			btrfs_set_opt(info->mount_opt, NOTREELOG);
552 			break;
553 		case Opt_flushoncommit:
554 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
555 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
556 			break;
557 		case Opt_ratio:
558 			ret = match_int(&args[0], &intarg);
559 			if (ret) {
560 				goto out;
561 			} else if (intarg >= 0) {
562 				info->metadata_ratio = intarg;
563 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
564 				       info->metadata_ratio);
565 			} else {
566 				ret = -EINVAL;
567 				goto out;
568 			}
569 			break;
570 		case Opt_discard:
571 			btrfs_set_opt(info->mount_opt, DISCARD);
572 			break;
573 		case Opt_space_cache:
574 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
575 			break;
576 		case Opt_rescan_uuid_tree:
577 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
578 			break;
579 		case Opt_no_space_cache:
580 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
581 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
582 			break;
583 		case Opt_inode_cache:
584 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
585 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
586 			break;
587 		case Opt_clear_cache:
588 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
589 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
590 			break;
591 		case Opt_user_subvol_rm_allowed:
592 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
593 			break;
594 		case Opt_enospc_debug:
595 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
596 			break;
597 		case Opt_defrag:
598 			printk(KERN_INFO "btrfs: enabling auto defrag\n");
599 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
600 			break;
601 		case Opt_recovery:
602 			printk(KERN_INFO "btrfs: enabling auto recovery\n");
603 			btrfs_set_opt(info->mount_opt, RECOVERY);
604 			break;
605 		case Opt_skip_balance:
606 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
607 			break;
608 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
609 		case Opt_check_integrity_including_extent_data:
610 			printk(KERN_INFO "btrfs: enabling check integrity"
611 			       " including extent data\n");
612 			btrfs_set_opt(info->mount_opt,
613 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
614 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
615 			break;
616 		case Opt_check_integrity:
617 			printk(KERN_INFO "btrfs: enabling check integrity\n");
618 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
619 			break;
620 		case Opt_check_integrity_print_mask:
621 			ret = match_int(&args[0], &intarg);
622 			if (ret) {
623 				goto out;
624 			} else if (intarg >= 0) {
625 				info->check_integrity_print_mask = intarg;
626 				printk(KERN_INFO "btrfs:"
627 				       " check_integrity_print_mask 0x%x\n",
628 				       info->check_integrity_print_mask);
629 			} else {
630 				ret = -EINVAL;
631 				goto out;
632 			}
633 			break;
634 #else
635 		case Opt_check_integrity_including_extent_data:
636 		case Opt_check_integrity:
637 		case Opt_check_integrity_print_mask:
638 			printk(KERN_ERR "btrfs: support for check_integrity*"
639 			       " not compiled in!\n");
640 			ret = -EINVAL;
641 			goto out;
642 #endif
643 		case Opt_fatal_errors:
644 			if (strcmp(args[0].from, "panic") == 0)
645 				btrfs_set_opt(info->mount_opt,
646 					      PANIC_ON_FATAL_ERROR);
647 			else if (strcmp(args[0].from, "bug") == 0)
648 				btrfs_clear_opt(info->mount_opt,
649 					      PANIC_ON_FATAL_ERROR);
650 			else {
651 				ret = -EINVAL;
652 				goto out;
653 			}
654 			break;
655 		case Opt_commit_interval:
656 			intarg = 0;
657 			ret = match_int(&args[0], &intarg);
658 			if (ret < 0) {
659 				printk(KERN_ERR
660 					"btrfs: invalid commit interval\n");
661 				ret = -EINVAL;
662 				goto out;
663 			}
664 			if (intarg > 0) {
665 				if (intarg > 300) {
666 					printk(KERN_WARNING
667 					    "btrfs: excessive commit interval %d\n",
668 							intarg);
669 				}
670 				info->commit_interval = intarg;
671 			} else {
672 				printk(KERN_INFO
673 				    "btrfs: using default commit interval %ds\n",
674 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
675 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
676 			}
677 			break;
678 		case Opt_err:
679 			printk(KERN_INFO "btrfs: unrecognized mount option "
680 			       "'%s'\n", p);
681 			ret = -EINVAL;
682 			goto out;
683 		default:
684 			break;
685 		}
686 	}
687 out:
688 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
689 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
690 	kfree(orig);
691 	return ret;
692 }
693 
694 /*
695  * Parse mount options that are required early in the mount process.
696  *
697  * All other options will be parsed on much later in the mount process and
698  * only when we need to allocate a new super block.
699  */
700 static int btrfs_parse_early_options(const char *options, fmode_t flags,
701 		void *holder, char **subvol_name, u64 *subvol_objectid,
702 		struct btrfs_fs_devices **fs_devices)
703 {
704 	substring_t args[MAX_OPT_ARGS];
705 	char *device_name, *opts, *orig, *p;
706 	char *num = NULL;
707 	int error = 0;
708 
709 	if (!options)
710 		return 0;
711 
712 	/*
713 	 * strsep changes the string, duplicate it because parse_options
714 	 * gets called twice
715 	 */
716 	opts = kstrdup(options, GFP_KERNEL);
717 	if (!opts)
718 		return -ENOMEM;
719 	orig = opts;
720 
721 	while ((p = strsep(&opts, ",")) != NULL) {
722 		int token;
723 		if (!*p)
724 			continue;
725 
726 		token = match_token(p, tokens, args);
727 		switch (token) {
728 		case Opt_subvol:
729 			kfree(*subvol_name);
730 			*subvol_name = match_strdup(&args[0]);
731 			if (!*subvol_name) {
732 				error = -ENOMEM;
733 				goto out;
734 			}
735 			break;
736 		case Opt_subvolid:
737 			num = match_strdup(&args[0]);
738 			if (num) {
739 				*subvol_objectid = memparse(num, NULL);
740 				kfree(num);
741 				/* we want the original fs_tree */
742 				if (!*subvol_objectid)
743 					*subvol_objectid =
744 						BTRFS_FS_TREE_OBJECTID;
745 			} else {
746 				error = -EINVAL;
747 				goto out;
748 			}
749 			break;
750 		case Opt_subvolrootid:
751 			printk(KERN_WARNING
752 				"btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
753 			break;
754 		case Opt_device:
755 			device_name = match_strdup(&args[0]);
756 			if (!device_name) {
757 				error = -ENOMEM;
758 				goto out;
759 			}
760 			error = btrfs_scan_one_device(device_name,
761 					flags, holder, fs_devices);
762 			kfree(device_name);
763 			if (error)
764 				goto out;
765 			break;
766 		default:
767 			break;
768 		}
769 	}
770 
771 out:
772 	kfree(orig);
773 	return error;
774 }
775 
776 static struct dentry *get_default_root(struct super_block *sb,
777 				       u64 subvol_objectid)
778 {
779 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
780 	struct btrfs_root *root = fs_info->tree_root;
781 	struct btrfs_root *new_root;
782 	struct btrfs_dir_item *di;
783 	struct btrfs_path *path;
784 	struct btrfs_key location;
785 	struct inode *inode;
786 	u64 dir_id;
787 	int new = 0;
788 
789 	/*
790 	 * We have a specific subvol we want to mount, just setup location and
791 	 * go look up the root.
792 	 */
793 	if (subvol_objectid) {
794 		location.objectid = subvol_objectid;
795 		location.type = BTRFS_ROOT_ITEM_KEY;
796 		location.offset = (u64)-1;
797 		goto find_root;
798 	}
799 
800 	path = btrfs_alloc_path();
801 	if (!path)
802 		return ERR_PTR(-ENOMEM);
803 	path->leave_spinning = 1;
804 
805 	/*
806 	 * Find the "default" dir item which points to the root item that we
807 	 * will mount by default if we haven't been given a specific subvolume
808 	 * to mount.
809 	 */
810 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
811 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
812 	if (IS_ERR(di)) {
813 		btrfs_free_path(path);
814 		return ERR_CAST(di);
815 	}
816 	if (!di) {
817 		/*
818 		 * Ok the default dir item isn't there.  This is weird since
819 		 * it's always been there, but don't freak out, just try and
820 		 * mount to root most subvolume.
821 		 */
822 		btrfs_free_path(path);
823 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
824 		new_root = fs_info->fs_root;
825 		goto setup_root;
826 	}
827 
828 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
829 	btrfs_free_path(path);
830 
831 find_root:
832 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
833 	if (IS_ERR(new_root))
834 		return ERR_CAST(new_root);
835 
836 	dir_id = btrfs_root_dirid(&new_root->root_item);
837 setup_root:
838 	location.objectid = dir_id;
839 	location.type = BTRFS_INODE_ITEM_KEY;
840 	location.offset = 0;
841 
842 	inode = btrfs_iget(sb, &location, new_root, &new);
843 	if (IS_ERR(inode))
844 		return ERR_CAST(inode);
845 
846 	/*
847 	 * If we're just mounting the root most subvol put the inode and return
848 	 * a reference to the dentry.  We will have already gotten a reference
849 	 * to the inode in btrfs_fill_super so we're good to go.
850 	 */
851 	if (!new && sb->s_root->d_inode == inode) {
852 		iput(inode);
853 		return dget(sb->s_root);
854 	}
855 
856 	return d_obtain_alias(inode);
857 }
858 
859 static int btrfs_fill_super(struct super_block *sb,
860 			    struct btrfs_fs_devices *fs_devices,
861 			    void *data, int silent)
862 {
863 	struct inode *inode;
864 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
865 	struct btrfs_key key;
866 	int err;
867 
868 	sb->s_maxbytes = MAX_LFS_FILESIZE;
869 	sb->s_magic = BTRFS_SUPER_MAGIC;
870 	sb->s_op = &btrfs_super_ops;
871 	sb->s_d_op = &btrfs_dentry_operations;
872 	sb->s_export_op = &btrfs_export_ops;
873 	sb->s_xattr = btrfs_xattr_handlers;
874 	sb->s_time_gran = 1;
875 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
876 	sb->s_flags |= MS_POSIXACL;
877 #endif
878 	sb->s_flags |= MS_I_VERSION;
879 	err = open_ctree(sb, fs_devices, (char *)data);
880 	if (err) {
881 		printk("btrfs: open_ctree failed\n");
882 		return err;
883 	}
884 
885 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
886 	key.type = BTRFS_INODE_ITEM_KEY;
887 	key.offset = 0;
888 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
889 	if (IS_ERR(inode)) {
890 		err = PTR_ERR(inode);
891 		goto fail_close;
892 	}
893 
894 	sb->s_root = d_make_root(inode);
895 	if (!sb->s_root) {
896 		err = -ENOMEM;
897 		goto fail_close;
898 	}
899 
900 	save_mount_options(sb, data);
901 	cleancache_init_fs(sb);
902 	sb->s_flags |= MS_ACTIVE;
903 	return 0;
904 
905 fail_close:
906 	close_ctree(fs_info->tree_root);
907 	return err;
908 }
909 
910 int btrfs_sync_fs(struct super_block *sb, int wait)
911 {
912 	struct btrfs_trans_handle *trans;
913 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
914 	struct btrfs_root *root = fs_info->tree_root;
915 
916 	trace_btrfs_sync_fs(wait);
917 
918 	if (!wait) {
919 		filemap_flush(fs_info->btree_inode->i_mapping);
920 		return 0;
921 	}
922 
923 	btrfs_wait_ordered_roots(fs_info, -1);
924 
925 	trans = btrfs_attach_transaction_barrier(root);
926 	if (IS_ERR(trans)) {
927 		/* no transaction, don't bother */
928 		if (PTR_ERR(trans) == -ENOENT)
929 			return 0;
930 		return PTR_ERR(trans);
931 	}
932 	return btrfs_commit_transaction(trans, root);
933 }
934 
935 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
936 {
937 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
938 	struct btrfs_root *root = info->tree_root;
939 	char *compress_type;
940 
941 	if (btrfs_test_opt(root, DEGRADED))
942 		seq_puts(seq, ",degraded");
943 	if (btrfs_test_opt(root, NODATASUM))
944 		seq_puts(seq, ",nodatasum");
945 	if (btrfs_test_opt(root, NODATACOW))
946 		seq_puts(seq, ",nodatacow");
947 	if (btrfs_test_opt(root, NOBARRIER))
948 		seq_puts(seq, ",nobarrier");
949 	if (info->max_inline != 8192 * 1024)
950 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
951 	if (info->alloc_start != 0)
952 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
953 	if (info->thread_pool_size !=  min_t(unsigned long,
954 					     num_online_cpus() + 2, 8))
955 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
956 	if (btrfs_test_opt(root, COMPRESS)) {
957 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
958 			compress_type = "zlib";
959 		else
960 			compress_type = "lzo";
961 		if (btrfs_test_opt(root, FORCE_COMPRESS))
962 			seq_printf(seq, ",compress-force=%s", compress_type);
963 		else
964 			seq_printf(seq, ",compress=%s", compress_type);
965 	}
966 	if (btrfs_test_opt(root, NOSSD))
967 		seq_puts(seq, ",nossd");
968 	if (btrfs_test_opt(root, SSD_SPREAD))
969 		seq_puts(seq, ",ssd_spread");
970 	else if (btrfs_test_opt(root, SSD))
971 		seq_puts(seq, ",ssd");
972 	if (btrfs_test_opt(root, NOTREELOG))
973 		seq_puts(seq, ",notreelog");
974 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
975 		seq_puts(seq, ",flushoncommit");
976 	if (btrfs_test_opt(root, DISCARD))
977 		seq_puts(seq, ",discard");
978 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
979 		seq_puts(seq, ",noacl");
980 	if (btrfs_test_opt(root, SPACE_CACHE))
981 		seq_puts(seq, ",space_cache");
982 	else
983 		seq_puts(seq, ",nospace_cache");
984 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
985 		seq_puts(seq, ",rescan_uuid_tree");
986 	if (btrfs_test_opt(root, CLEAR_CACHE))
987 		seq_puts(seq, ",clear_cache");
988 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
989 		seq_puts(seq, ",user_subvol_rm_allowed");
990 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
991 		seq_puts(seq, ",enospc_debug");
992 	if (btrfs_test_opt(root, AUTO_DEFRAG))
993 		seq_puts(seq, ",autodefrag");
994 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
995 		seq_puts(seq, ",inode_cache");
996 	if (btrfs_test_opt(root, SKIP_BALANCE))
997 		seq_puts(seq, ",skip_balance");
998 	if (btrfs_test_opt(root, RECOVERY))
999 		seq_puts(seq, ",recovery");
1000 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1001 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1002 		seq_puts(seq, ",check_int_data");
1003 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1004 		seq_puts(seq, ",check_int");
1005 	if (info->check_integrity_print_mask)
1006 		seq_printf(seq, ",check_int_print_mask=%d",
1007 				info->check_integrity_print_mask);
1008 #endif
1009 	if (info->metadata_ratio)
1010 		seq_printf(seq, ",metadata_ratio=%d",
1011 				info->metadata_ratio);
1012 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1013 		seq_puts(seq, ",fatal_errors=panic");
1014 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1015 		seq_printf(seq, ",commit=%d", info->commit_interval);
1016 	return 0;
1017 }
1018 
1019 static int btrfs_test_super(struct super_block *s, void *data)
1020 {
1021 	struct btrfs_fs_info *p = data;
1022 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1023 
1024 	return fs_info->fs_devices == p->fs_devices;
1025 }
1026 
1027 static int btrfs_set_super(struct super_block *s, void *data)
1028 {
1029 	int err = set_anon_super(s, data);
1030 	if (!err)
1031 		s->s_fs_info = data;
1032 	return err;
1033 }
1034 
1035 /*
1036  * subvolumes are identified by ino 256
1037  */
1038 static inline int is_subvolume_inode(struct inode *inode)
1039 {
1040 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1041 		return 1;
1042 	return 0;
1043 }
1044 
1045 /*
1046  * This will strip out the subvol=%s argument for an argument string and add
1047  * subvolid=0 to make sure we get the actual tree root for path walking to the
1048  * subvol we want.
1049  */
1050 static char *setup_root_args(char *args)
1051 {
1052 	unsigned len = strlen(args) + 2 + 1;
1053 	char *src, *dst, *buf;
1054 
1055 	/*
1056 	 * We need the same args as before, but with this substitution:
1057 	 * s!subvol=[^,]+!subvolid=0!
1058 	 *
1059 	 * Since the replacement string is up to 2 bytes longer than the
1060 	 * original, allocate strlen(args) + 2 + 1 bytes.
1061 	 */
1062 
1063 	src = strstr(args, "subvol=");
1064 	/* This shouldn't happen, but just in case.. */
1065 	if (!src)
1066 		return NULL;
1067 
1068 	buf = dst = kmalloc(len, GFP_NOFS);
1069 	if (!buf)
1070 		return NULL;
1071 
1072 	/*
1073 	 * If the subvol= arg is not at the start of the string,
1074 	 * copy whatever precedes it into buf.
1075 	 */
1076 	if (src != args) {
1077 		*src++ = '\0';
1078 		strcpy(buf, args);
1079 		dst += strlen(args);
1080 	}
1081 
1082 	strcpy(dst, "subvolid=0");
1083 	dst += strlen("subvolid=0");
1084 
1085 	/*
1086 	 * If there is a "," after the original subvol=... string,
1087 	 * copy that suffix into our buffer.  Otherwise, we're done.
1088 	 */
1089 	src = strchr(src, ',');
1090 	if (src)
1091 		strcpy(dst, src);
1092 
1093 	return buf;
1094 }
1095 
1096 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1097 				   const char *device_name, char *data)
1098 {
1099 	struct dentry *root;
1100 	struct vfsmount *mnt;
1101 	char *newargs;
1102 
1103 	newargs = setup_root_args(data);
1104 	if (!newargs)
1105 		return ERR_PTR(-ENOMEM);
1106 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1107 			     newargs);
1108 	kfree(newargs);
1109 	if (IS_ERR(mnt))
1110 		return ERR_CAST(mnt);
1111 
1112 	root = mount_subtree(mnt, subvol_name);
1113 
1114 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1115 		struct super_block *s = root->d_sb;
1116 		dput(root);
1117 		root = ERR_PTR(-EINVAL);
1118 		deactivate_locked_super(s);
1119 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1120 				subvol_name);
1121 	}
1122 
1123 	return root;
1124 }
1125 
1126 /*
1127  * Find a superblock for the given device / mount point.
1128  *
1129  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1130  *	  for multiple device setup.  Make sure to keep it in sync.
1131  */
1132 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1133 		const char *device_name, void *data)
1134 {
1135 	struct block_device *bdev = NULL;
1136 	struct super_block *s;
1137 	struct dentry *root;
1138 	struct btrfs_fs_devices *fs_devices = NULL;
1139 	struct btrfs_fs_info *fs_info = NULL;
1140 	fmode_t mode = FMODE_READ;
1141 	char *subvol_name = NULL;
1142 	u64 subvol_objectid = 0;
1143 	int error = 0;
1144 
1145 	if (!(flags & MS_RDONLY))
1146 		mode |= FMODE_WRITE;
1147 
1148 	error = btrfs_parse_early_options(data, mode, fs_type,
1149 					  &subvol_name, &subvol_objectid,
1150 					  &fs_devices);
1151 	if (error) {
1152 		kfree(subvol_name);
1153 		return ERR_PTR(error);
1154 	}
1155 
1156 	if (subvol_name) {
1157 		root = mount_subvol(subvol_name, flags, device_name, data);
1158 		kfree(subvol_name);
1159 		return root;
1160 	}
1161 
1162 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1163 	if (error)
1164 		return ERR_PTR(error);
1165 
1166 	/*
1167 	 * Setup a dummy root and fs_info for test/set super.  This is because
1168 	 * we don't actually fill this stuff out until open_ctree, but we need
1169 	 * it for searching for existing supers, so this lets us do that and
1170 	 * then open_ctree will properly initialize everything later.
1171 	 */
1172 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1173 	if (!fs_info)
1174 		return ERR_PTR(-ENOMEM);
1175 
1176 	fs_info->fs_devices = fs_devices;
1177 
1178 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1179 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1180 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1181 		error = -ENOMEM;
1182 		goto error_fs_info;
1183 	}
1184 
1185 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1186 	if (error)
1187 		goto error_fs_info;
1188 
1189 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1190 		error = -EACCES;
1191 		goto error_close_devices;
1192 	}
1193 
1194 	bdev = fs_devices->latest_bdev;
1195 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1196 		 fs_info);
1197 	if (IS_ERR(s)) {
1198 		error = PTR_ERR(s);
1199 		goto error_close_devices;
1200 	}
1201 
1202 	if (s->s_root) {
1203 		btrfs_close_devices(fs_devices);
1204 		free_fs_info(fs_info);
1205 		if ((flags ^ s->s_flags) & MS_RDONLY)
1206 			error = -EBUSY;
1207 	} else {
1208 		char b[BDEVNAME_SIZE];
1209 
1210 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1211 		btrfs_sb(s)->bdev_holder = fs_type;
1212 		error = btrfs_fill_super(s, fs_devices, data,
1213 					 flags & MS_SILENT ? 1 : 0);
1214 	}
1215 
1216 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1217 	if (IS_ERR(root))
1218 		deactivate_locked_super(s);
1219 
1220 	return root;
1221 
1222 error_close_devices:
1223 	btrfs_close_devices(fs_devices);
1224 error_fs_info:
1225 	free_fs_info(fs_info);
1226 	return ERR_PTR(error);
1227 }
1228 
1229 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1230 {
1231 	spin_lock_irq(&workers->lock);
1232 	workers->max_workers = new_limit;
1233 	spin_unlock_irq(&workers->lock);
1234 }
1235 
1236 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1237 				     int new_pool_size, int old_pool_size)
1238 {
1239 	if (new_pool_size == old_pool_size)
1240 		return;
1241 
1242 	fs_info->thread_pool_size = new_pool_size;
1243 
1244 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1245 	       old_pool_size, new_pool_size);
1246 
1247 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1248 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1249 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1250 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1251 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1252 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1253 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1254 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1255 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1256 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1257 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1258 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1259 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1260 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1261 			      new_pool_size);
1262 }
1263 
1264 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1265 {
1266 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1267 }
1268 
1269 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1270 				       unsigned long old_opts, int flags)
1271 {
1272 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1273 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1274 	     (flags & MS_RDONLY))) {
1275 		/* wait for any defraggers to finish */
1276 		wait_event(fs_info->transaction_wait,
1277 			   (atomic_read(&fs_info->defrag_running) == 0));
1278 		if (flags & MS_RDONLY)
1279 			sync_filesystem(fs_info->sb);
1280 	}
1281 }
1282 
1283 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1284 					 unsigned long old_opts)
1285 {
1286 	/*
1287 	 * We need cleanup all defragable inodes if the autodefragment is
1288 	 * close or the fs is R/O.
1289 	 */
1290 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1291 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1292 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1293 		btrfs_cleanup_defrag_inodes(fs_info);
1294 	}
1295 
1296 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1297 }
1298 
1299 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1300 {
1301 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1302 	struct btrfs_root *root = fs_info->tree_root;
1303 	unsigned old_flags = sb->s_flags;
1304 	unsigned long old_opts = fs_info->mount_opt;
1305 	unsigned long old_compress_type = fs_info->compress_type;
1306 	u64 old_max_inline = fs_info->max_inline;
1307 	u64 old_alloc_start = fs_info->alloc_start;
1308 	int old_thread_pool_size = fs_info->thread_pool_size;
1309 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1310 	int ret;
1311 
1312 	btrfs_remount_prepare(fs_info);
1313 
1314 	ret = btrfs_parse_options(root, data);
1315 	if (ret) {
1316 		ret = -EINVAL;
1317 		goto restore;
1318 	}
1319 
1320 	btrfs_remount_begin(fs_info, old_opts, *flags);
1321 	btrfs_resize_thread_pool(fs_info,
1322 		fs_info->thread_pool_size, old_thread_pool_size);
1323 
1324 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1325 		goto out;
1326 
1327 	if (*flags & MS_RDONLY) {
1328 		/*
1329 		 * this also happens on 'umount -rf' or on shutdown, when
1330 		 * the filesystem is busy.
1331 		 */
1332 
1333 		/* wait for the uuid_scan task to finish */
1334 		down(&fs_info->uuid_tree_rescan_sem);
1335 		/* avoid complains from lockdep et al. */
1336 		up(&fs_info->uuid_tree_rescan_sem);
1337 
1338 		sb->s_flags |= MS_RDONLY;
1339 
1340 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1341 		btrfs_scrub_cancel(fs_info);
1342 		btrfs_pause_balance(fs_info);
1343 
1344 		ret = btrfs_commit_super(root);
1345 		if (ret)
1346 			goto restore;
1347 	} else {
1348 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1349 			btrfs_err(fs_info,
1350 				"Remounting read-write after error is not allowed\n");
1351 			ret = -EINVAL;
1352 			goto restore;
1353 		}
1354 		if (fs_info->fs_devices->rw_devices == 0) {
1355 			ret = -EACCES;
1356 			goto restore;
1357 		}
1358 
1359 		if (fs_info->fs_devices->missing_devices >
1360 		     fs_info->num_tolerated_disk_barrier_failures &&
1361 		    !(*flags & MS_RDONLY)) {
1362 			printk(KERN_WARNING
1363 			       "Btrfs: too many missing devices, writeable remount is not allowed\n");
1364 			ret = -EACCES;
1365 			goto restore;
1366 		}
1367 
1368 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1369 			ret = -EINVAL;
1370 			goto restore;
1371 		}
1372 
1373 		ret = btrfs_cleanup_fs_roots(fs_info);
1374 		if (ret)
1375 			goto restore;
1376 
1377 		/* recover relocation */
1378 		ret = btrfs_recover_relocation(root);
1379 		if (ret)
1380 			goto restore;
1381 
1382 		ret = btrfs_resume_balance_async(fs_info);
1383 		if (ret)
1384 			goto restore;
1385 
1386 		ret = btrfs_resume_dev_replace_async(fs_info);
1387 		if (ret) {
1388 			pr_warn("btrfs: failed to resume dev_replace\n");
1389 			goto restore;
1390 		}
1391 
1392 		if (!fs_info->uuid_root) {
1393 			pr_info("btrfs: creating UUID tree\n");
1394 			ret = btrfs_create_uuid_tree(fs_info);
1395 			if (ret) {
1396 				pr_warn("btrfs: failed to create the uuid tree"
1397 					"%d\n", ret);
1398 				goto restore;
1399 			}
1400 		}
1401 		sb->s_flags &= ~MS_RDONLY;
1402 	}
1403 out:
1404 	btrfs_remount_cleanup(fs_info, old_opts);
1405 	return 0;
1406 
1407 restore:
1408 	/* We've hit an error - don't reset MS_RDONLY */
1409 	if (sb->s_flags & MS_RDONLY)
1410 		old_flags |= MS_RDONLY;
1411 	sb->s_flags = old_flags;
1412 	fs_info->mount_opt = old_opts;
1413 	fs_info->compress_type = old_compress_type;
1414 	fs_info->max_inline = old_max_inline;
1415 	mutex_lock(&fs_info->chunk_mutex);
1416 	fs_info->alloc_start = old_alloc_start;
1417 	mutex_unlock(&fs_info->chunk_mutex);
1418 	btrfs_resize_thread_pool(fs_info,
1419 		old_thread_pool_size, fs_info->thread_pool_size);
1420 	fs_info->metadata_ratio = old_metadata_ratio;
1421 	btrfs_remount_cleanup(fs_info, old_opts);
1422 	return ret;
1423 }
1424 
1425 /* Used to sort the devices by max_avail(descending sort) */
1426 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1427 				       const void *dev_info2)
1428 {
1429 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1430 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1431 		return -1;
1432 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1433 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1434 		return 1;
1435 	else
1436 	return 0;
1437 }
1438 
1439 /*
1440  * sort the devices by max_avail, in which max free extent size of each device
1441  * is stored.(Descending Sort)
1442  */
1443 static inline void btrfs_descending_sort_devices(
1444 					struct btrfs_device_info *devices,
1445 					size_t nr_devices)
1446 {
1447 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1448 	     btrfs_cmp_device_free_bytes, NULL);
1449 }
1450 
1451 /*
1452  * The helper to calc the free space on the devices that can be used to store
1453  * file data.
1454  */
1455 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1456 {
1457 	struct btrfs_fs_info *fs_info = root->fs_info;
1458 	struct btrfs_device_info *devices_info;
1459 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1460 	struct btrfs_device *device;
1461 	u64 skip_space;
1462 	u64 type;
1463 	u64 avail_space;
1464 	u64 used_space;
1465 	u64 min_stripe_size;
1466 	int min_stripes = 1, num_stripes = 1;
1467 	int i = 0, nr_devices;
1468 	int ret;
1469 
1470 	nr_devices = fs_info->fs_devices->open_devices;
1471 	BUG_ON(!nr_devices);
1472 
1473 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1474 			       GFP_NOFS);
1475 	if (!devices_info)
1476 		return -ENOMEM;
1477 
1478 	/* calc min stripe number for data space alloction */
1479 	type = btrfs_get_alloc_profile(root, 1);
1480 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1481 		min_stripes = 2;
1482 		num_stripes = nr_devices;
1483 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1484 		min_stripes = 2;
1485 		num_stripes = 2;
1486 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1487 		min_stripes = 4;
1488 		num_stripes = 4;
1489 	}
1490 
1491 	if (type & BTRFS_BLOCK_GROUP_DUP)
1492 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1493 	else
1494 		min_stripe_size = BTRFS_STRIPE_LEN;
1495 
1496 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1497 		if (!device->in_fs_metadata || !device->bdev ||
1498 		    device->is_tgtdev_for_dev_replace)
1499 			continue;
1500 
1501 		avail_space = device->total_bytes - device->bytes_used;
1502 
1503 		/* align with stripe_len */
1504 		do_div(avail_space, BTRFS_STRIPE_LEN);
1505 		avail_space *= BTRFS_STRIPE_LEN;
1506 
1507 		/*
1508 		 * In order to avoid overwritting the superblock on the drive,
1509 		 * btrfs starts at an offset of at least 1MB when doing chunk
1510 		 * allocation.
1511 		 */
1512 		skip_space = 1024 * 1024;
1513 
1514 		/* user can set the offset in fs_info->alloc_start. */
1515 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1516 		    device->total_bytes)
1517 			skip_space = max(fs_info->alloc_start, skip_space);
1518 
1519 		/*
1520 		 * btrfs can not use the free space in [0, skip_space - 1],
1521 		 * we must subtract it from the total. In order to implement
1522 		 * it, we account the used space in this range first.
1523 		 */
1524 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1525 						     &used_space);
1526 		if (ret) {
1527 			kfree(devices_info);
1528 			return ret;
1529 		}
1530 
1531 		/* calc the free space in [0, skip_space - 1] */
1532 		skip_space -= used_space;
1533 
1534 		/*
1535 		 * we can use the free space in [0, skip_space - 1], subtract
1536 		 * it from the total.
1537 		 */
1538 		if (avail_space && avail_space >= skip_space)
1539 			avail_space -= skip_space;
1540 		else
1541 			avail_space = 0;
1542 
1543 		if (avail_space < min_stripe_size)
1544 			continue;
1545 
1546 		devices_info[i].dev = device;
1547 		devices_info[i].max_avail = avail_space;
1548 
1549 		i++;
1550 	}
1551 
1552 	nr_devices = i;
1553 
1554 	btrfs_descending_sort_devices(devices_info, nr_devices);
1555 
1556 	i = nr_devices - 1;
1557 	avail_space = 0;
1558 	while (nr_devices >= min_stripes) {
1559 		if (num_stripes > nr_devices)
1560 			num_stripes = nr_devices;
1561 
1562 		if (devices_info[i].max_avail >= min_stripe_size) {
1563 			int j;
1564 			u64 alloc_size;
1565 
1566 			avail_space += devices_info[i].max_avail * num_stripes;
1567 			alloc_size = devices_info[i].max_avail;
1568 			for (j = i + 1 - num_stripes; j <= i; j++)
1569 				devices_info[j].max_avail -= alloc_size;
1570 		}
1571 		i--;
1572 		nr_devices--;
1573 	}
1574 
1575 	kfree(devices_info);
1576 	*free_bytes = avail_space;
1577 	return 0;
1578 }
1579 
1580 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1581 {
1582 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1583 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1584 	struct list_head *head = &fs_info->space_info;
1585 	struct btrfs_space_info *found;
1586 	u64 total_used = 0;
1587 	u64 total_free_data = 0;
1588 	int bits = dentry->d_sb->s_blocksize_bits;
1589 	__be32 *fsid = (__be32 *)fs_info->fsid;
1590 	int ret;
1591 
1592 	/* holding chunk_muext to avoid allocating new chunks */
1593 	mutex_lock(&fs_info->chunk_mutex);
1594 	rcu_read_lock();
1595 	list_for_each_entry_rcu(found, head, list) {
1596 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1597 			total_free_data += found->disk_total - found->disk_used;
1598 			total_free_data -=
1599 				btrfs_account_ro_block_groups_free_space(found);
1600 		}
1601 
1602 		total_used += found->disk_used;
1603 	}
1604 	rcu_read_unlock();
1605 
1606 	buf->f_namelen = BTRFS_NAME_LEN;
1607 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1608 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1609 	buf->f_bsize = dentry->d_sb->s_blocksize;
1610 	buf->f_type = BTRFS_SUPER_MAGIC;
1611 	buf->f_bavail = total_free_data;
1612 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1613 	if (ret) {
1614 		mutex_unlock(&fs_info->chunk_mutex);
1615 		return ret;
1616 	}
1617 	buf->f_bavail += total_free_data;
1618 	buf->f_bavail = buf->f_bavail >> bits;
1619 	mutex_unlock(&fs_info->chunk_mutex);
1620 
1621 	/* We treat it as constant endianness (it doesn't matter _which_)
1622 	   because we want the fsid to come out the same whether mounted
1623 	   on a big-endian or little-endian host */
1624 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1625 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1626 	/* Mask in the root object ID too, to disambiguate subvols */
1627 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1628 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1629 
1630 	return 0;
1631 }
1632 
1633 static void btrfs_kill_super(struct super_block *sb)
1634 {
1635 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1636 	kill_anon_super(sb);
1637 	free_fs_info(fs_info);
1638 }
1639 
1640 static struct file_system_type btrfs_fs_type = {
1641 	.owner		= THIS_MODULE,
1642 	.name		= "btrfs",
1643 	.mount		= btrfs_mount,
1644 	.kill_sb	= btrfs_kill_super,
1645 	.fs_flags	= FS_REQUIRES_DEV,
1646 };
1647 MODULE_ALIAS_FS("btrfs");
1648 
1649 /*
1650  * used by btrfsctl to scan devices when no FS is mounted
1651  */
1652 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1653 				unsigned long arg)
1654 {
1655 	struct btrfs_ioctl_vol_args *vol;
1656 	struct btrfs_fs_devices *fs_devices;
1657 	int ret = -ENOTTY;
1658 
1659 	if (!capable(CAP_SYS_ADMIN))
1660 		return -EPERM;
1661 
1662 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1663 	if (IS_ERR(vol))
1664 		return PTR_ERR(vol);
1665 
1666 	switch (cmd) {
1667 	case BTRFS_IOC_SCAN_DEV:
1668 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1669 					    &btrfs_fs_type, &fs_devices);
1670 		break;
1671 	case BTRFS_IOC_DEVICES_READY:
1672 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1673 					    &btrfs_fs_type, &fs_devices);
1674 		if (ret)
1675 			break;
1676 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1677 		break;
1678 	}
1679 
1680 	kfree(vol);
1681 	return ret;
1682 }
1683 
1684 static int btrfs_freeze(struct super_block *sb)
1685 {
1686 	struct btrfs_trans_handle *trans;
1687 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1688 
1689 	trans = btrfs_attach_transaction_barrier(root);
1690 	if (IS_ERR(trans)) {
1691 		/* no transaction, don't bother */
1692 		if (PTR_ERR(trans) == -ENOENT)
1693 			return 0;
1694 		return PTR_ERR(trans);
1695 	}
1696 	return btrfs_commit_transaction(trans, root);
1697 }
1698 
1699 static int btrfs_unfreeze(struct super_block *sb)
1700 {
1701 	return 0;
1702 }
1703 
1704 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1705 {
1706 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1707 	struct btrfs_fs_devices *cur_devices;
1708 	struct btrfs_device *dev, *first_dev = NULL;
1709 	struct list_head *head;
1710 	struct rcu_string *name;
1711 
1712 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1713 	cur_devices = fs_info->fs_devices;
1714 	while (cur_devices) {
1715 		head = &cur_devices->devices;
1716 		list_for_each_entry(dev, head, dev_list) {
1717 			if (dev->missing)
1718 				continue;
1719 			if (!first_dev || dev->devid < first_dev->devid)
1720 				first_dev = dev;
1721 		}
1722 		cur_devices = cur_devices->seed;
1723 	}
1724 
1725 	if (first_dev) {
1726 		rcu_read_lock();
1727 		name = rcu_dereference(first_dev->name);
1728 		seq_escape(m, name->str, " \t\n\\");
1729 		rcu_read_unlock();
1730 	} else {
1731 		WARN_ON(1);
1732 	}
1733 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1734 	return 0;
1735 }
1736 
1737 static const struct super_operations btrfs_super_ops = {
1738 	.drop_inode	= btrfs_drop_inode,
1739 	.evict_inode	= btrfs_evict_inode,
1740 	.put_super	= btrfs_put_super,
1741 	.sync_fs	= btrfs_sync_fs,
1742 	.show_options	= btrfs_show_options,
1743 	.show_devname	= btrfs_show_devname,
1744 	.write_inode	= btrfs_write_inode,
1745 	.alloc_inode	= btrfs_alloc_inode,
1746 	.destroy_inode	= btrfs_destroy_inode,
1747 	.statfs		= btrfs_statfs,
1748 	.remount_fs	= btrfs_remount,
1749 	.freeze_fs	= btrfs_freeze,
1750 	.unfreeze_fs	= btrfs_unfreeze,
1751 };
1752 
1753 static const struct file_operations btrfs_ctl_fops = {
1754 	.unlocked_ioctl	 = btrfs_control_ioctl,
1755 	.compat_ioctl = btrfs_control_ioctl,
1756 	.owner	 = THIS_MODULE,
1757 	.llseek = noop_llseek,
1758 };
1759 
1760 static struct miscdevice btrfs_misc = {
1761 	.minor		= BTRFS_MINOR,
1762 	.name		= "btrfs-control",
1763 	.fops		= &btrfs_ctl_fops
1764 };
1765 
1766 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1767 MODULE_ALIAS("devname:btrfs-control");
1768 
1769 static int btrfs_interface_init(void)
1770 {
1771 	return misc_register(&btrfs_misc);
1772 }
1773 
1774 static void btrfs_interface_exit(void)
1775 {
1776 	if (misc_deregister(&btrfs_misc) < 0)
1777 		printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1778 }
1779 
1780 static void btrfs_print_info(void)
1781 {
1782 	printk(KERN_INFO "Btrfs loaded"
1783 #ifdef CONFIG_BTRFS_DEBUG
1784 			", debug=on"
1785 #endif
1786 #ifdef CONFIG_BTRFS_ASSERT
1787 			", assert=on"
1788 #endif
1789 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1790 			", integrity-checker=on"
1791 #endif
1792 			"\n");
1793 }
1794 
1795 static int btrfs_run_sanity_tests(void)
1796 {
1797 	int ret;
1798 
1799 	ret = btrfs_init_test_fs();
1800 	if (ret)
1801 		return ret;
1802 
1803 	ret = btrfs_test_free_space_cache();
1804 	if (ret)
1805 		goto out;
1806 	ret = btrfs_test_extent_buffer_operations();
1807 	if (ret)
1808 		goto out;
1809 	ret = btrfs_test_extent_io();
1810 	if (ret)
1811 		goto out;
1812 	ret = btrfs_test_inodes();
1813 out:
1814 	btrfs_destroy_test_fs();
1815 	return ret;
1816 }
1817 
1818 static int __init init_btrfs_fs(void)
1819 {
1820 	int err;
1821 
1822 	err = btrfs_init_sysfs();
1823 	if (err)
1824 		return err;
1825 
1826 	btrfs_init_compress();
1827 
1828 	err = btrfs_init_cachep();
1829 	if (err)
1830 		goto free_compress;
1831 
1832 	err = extent_io_init();
1833 	if (err)
1834 		goto free_cachep;
1835 
1836 	err = extent_map_init();
1837 	if (err)
1838 		goto free_extent_io;
1839 
1840 	err = ordered_data_init();
1841 	if (err)
1842 		goto free_extent_map;
1843 
1844 	err = btrfs_delayed_inode_init();
1845 	if (err)
1846 		goto free_ordered_data;
1847 
1848 	err = btrfs_auto_defrag_init();
1849 	if (err)
1850 		goto free_delayed_inode;
1851 
1852 	err = btrfs_delayed_ref_init();
1853 	if (err)
1854 		goto free_auto_defrag;
1855 
1856 	err = btrfs_prelim_ref_init();
1857 	if (err)
1858 		goto free_prelim_ref;
1859 
1860 	err = btrfs_interface_init();
1861 	if (err)
1862 		goto free_delayed_ref;
1863 
1864 	btrfs_init_lockdep();
1865 
1866 	btrfs_print_info();
1867 
1868 	err = btrfs_run_sanity_tests();
1869 	if (err)
1870 		goto unregister_ioctl;
1871 
1872 	err = register_filesystem(&btrfs_fs_type);
1873 	if (err)
1874 		goto unregister_ioctl;
1875 
1876 	return 0;
1877 
1878 unregister_ioctl:
1879 	btrfs_interface_exit();
1880 free_prelim_ref:
1881 	btrfs_prelim_ref_exit();
1882 free_delayed_ref:
1883 	btrfs_delayed_ref_exit();
1884 free_auto_defrag:
1885 	btrfs_auto_defrag_exit();
1886 free_delayed_inode:
1887 	btrfs_delayed_inode_exit();
1888 free_ordered_data:
1889 	ordered_data_exit();
1890 free_extent_map:
1891 	extent_map_exit();
1892 free_extent_io:
1893 	extent_io_exit();
1894 free_cachep:
1895 	btrfs_destroy_cachep();
1896 free_compress:
1897 	btrfs_exit_compress();
1898 	btrfs_exit_sysfs();
1899 	return err;
1900 }
1901 
1902 static void __exit exit_btrfs_fs(void)
1903 {
1904 	btrfs_destroy_cachep();
1905 	btrfs_delayed_ref_exit();
1906 	btrfs_auto_defrag_exit();
1907 	btrfs_delayed_inode_exit();
1908 	btrfs_prelim_ref_exit();
1909 	ordered_data_exit();
1910 	extent_map_exit();
1911 	extent_io_exit();
1912 	btrfs_interface_exit();
1913 	unregister_filesystem(&btrfs_fs_type);
1914 	btrfs_exit_sysfs();
1915 	btrfs_cleanup_fs_uuids();
1916 	btrfs_exit_compress();
1917 }
1918 
1919 module_init(init_btrfs_fs)
1920 module_exit(exit_btrfs_fs)
1921 
1922 MODULE_LICENSE("GPL");
1923