1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "xattr.h" 52 #include "volumes.h" 53 #include "export.h" 54 #include "compression.h" 55 #include "rcu-string.h" 56 #include "dev-replace.h" 57 #include "free-space-cache.h" 58 #include "backref.h" 59 #include "tests/btrfs-tests.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/btrfs.h> 63 64 static const struct super_operations btrfs_super_ops; 65 static struct file_system_type btrfs_fs_type; 66 67 static const char *btrfs_decode_error(int errno) 68 { 69 char *errstr = "unknown"; 70 71 switch (errno) { 72 case -EIO: 73 errstr = "IO failure"; 74 break; 75 case -ENOMEM: 76 errstr = "Out of memory"; 77 break; 78 case -EROFS: 79 errstr = "Readonly filesystem"; 80 break; 81 case -EEXIST: 82 errstr = "Object already exists"; 83 break; 84 case -ENOSPC: 85 errstr = "No space left"; 86 break; 87 case -ENOENT: 88 errstr = "No such entry"; 89 break; 90 } 91 92 return errstr; 93 } 94 95 static void save_error_info(struct btrfs_fs_info *fs_info) 96 { 97 /* 98 * today we only save the error info into ram. Long term we'll 99 * also send it down to the disk 100 */ 101 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 102 } 103 104 /* btrfs handle error by forcing the filesystem readonly */ 105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 106 { 107 struct super_block *sb = fs_info->sb; 108 109 if (sb->s_flags & MS_RDONLY) 110 return; 111 112 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 113 sb->s_flags |= MS_RDONLY; 114 btrfs_info(fs_info, "forced readonly"); 115 /* 116 * Note that a running device replace operation is not 117 * canceled here although there is no way to update 118 * the progress. It would add the risk of a deadlock, 119 * therefore the canceling is ommited. The only penalty 120 * is that some I/O remains active until the procedure 121 * completes. The next time when the filesystem is 122 * mounted writeable again, the device replace 123 * operation continues. 124 */ 125 } 126 } 127 128 #ifdef CONFIG_PRINTK 129 /* 130 * __btrfs_std_error decodes expected errors from the caller and 131 * invokes the approciate error response. 132 */ 133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 134 unsigned int line, int errno, const char *fmt, ...) 135 { 136 struct super_block *sb = fs_info->sb; 137 const char *errstr; 138 139 /* 140 * Special case: if the error is EROFS, and we're already 141 * under MS_RDONLY, then it is safe here. 142 */ 143 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 144 return; 145 146 errstr = btrfs_decode_error(errno); 147 if (fmt) { 148 struct va_format vaf; 149 va_list args; 150 151 va_start(args, fmt); 152 vaf.fmt = fmt; 153 vaf.va = &args; 154 155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n", 156 sb->s_id, function, line, errno, errstr, &vaf); 157 va_end(args); 158 } else { 159 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n", 160 sb->s_id, function, line, errno, errstr); 161 } 162 163 /* Don't go through full error handling during mount */ 164 save_error_info(fs_info); 165 if (sb->s_flags & MS_BORN) 166 btrfs_handle_error(fs_info); 167 } 168 169 static const char * const logtypes[] = { 170 "emergency", 171 "alert", 172 "critical", 173 "error", 174 "warning", 175 "notice", 176 "info", 177 "debug", 178 }; 179 180 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 181 { 182 struct super_block *sb = fs_info->sb; 183 char lvl[4]; 184 struct va_format vaf; 185 va_list args; 186 const char *type = logtypes[4]; 187 int kern_level; 188 189 va_start(args, fmt); 190 191 kern_level = printk_get_level(fmt); 192 if (kern_level) { 193 size_t size = printk_skip_level(fmt) - fmt; 194 memcpy(lvl, fmt, size); 195 lvl[size] = '\0'; 196 fmt += size; 197 type = logtypes[kern_level - '0']; 198 } else 199 *lvl = '\0'; 200 201 vaf.fmt = fmt; 202 vaf.va = &args; 203 204 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 205 206 va_end(args); 207 } 208 209 #else 210 211 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 212 unsigned int line, int errno, const char *fmt, ...) 213 { 214 struct super_block *sb = fs_info->sb; 215 216 /* 217 * Special case: if the error is EROFS, and we're already 218 * under MS_RDONLY, then it is safe here. 219 */ 220 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 221 return; 222 223 /* Don't go through full error handling during mount */ 224 if (sb->s_flags & MS_BORN) { 225 save_error_info(fs_info); 226 btrfs_handle_error(fs_info); 227 } 228 } 229 #endif 230 231 /* 232 * We only mark the transaction aborted and then set the file system read-only. 233 * This will prevent new transactions from starting or trying to join this 234 * one. 235 * 236 * This means that error recovery at the call site is limited to freeing 237 * any local memory allocations and passing the error code up without 238 * further cleanup. The transaction should complete as it normally would 239 * in the call path but will return -EIO. 240 * 241 * We'll complete the cleanup in btrfs_end_transaction and 242 * btrfs_commit_transaction. 243 */ 244 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 245 struct btrfs_root *root, const char *function, 246 unsigned int line, int errno) 247 { 248 /* 249 * Report first abort since mount 250 */ 251 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, 252 &root->fs_info->fs_state)) { 253 WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n", 254 errno); 255 } 256 trans->aborted = errno; 257 /* Nothing used. The other threads that have joined this 258 * transaction may be able to continue. */ 259 if (!trans->blocks_used) { 260 const char *errstr; 261 262 errstr = btrfs_decode_error(errno); 263 btrfs_warn(root->fs_info, 264 "%s:%d: Aborting unused transaction(%s).", 265 function, line, errstr); 266 return; 267 } 268 ACCESS_ONCE(trans->transaction->aborted) = errno; 269 /* Wake up anybody who may be waiting on this transaction */ 270 wake_up(&root->fs_info->transaction_wait); 271 wake_up(&root->fs_info->transaction_blocked_wait); 272 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 273 } 274 /* 275 * __btrfs_panic decodes unexpected, fatal errors from the caller, 276 * issues an alert, and either panics or BUGs, depending on mount options. 277 */ 278 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 279 unsigned int line, int errno, const char *fmt, ...) 280 { 281 char *s_id = "<unknown>"; 282 const char *errstr; 283 struct va_format vaf = { .fmt = fmt }; 284 va_list args; 285 286 if (fs_info) 287 s_id = fs_info->sb->s_id; 288 289 va_start(args, fmt); 290 vaf.va = &args; 291 292 errstr = btrfs_decode_error(errno); 293 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 294 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 295 s_id, function, line, &vaf, errno, errstr); 296 297 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 298 s_id, function, line, &vaf, errno, errstr); 299 va_end(args); 300 /* Caller calls BUG() */ 301 } 302 303 static void btrfs_put_super(struct super_block *sb) 304 { 305 (void)close_ctree(btrfs_sb(sb)->tree_root); 306 /* FIXME: need to fix VFS to return error? */ 307 /* AV: return it _where_? ->put_super() can be triggered by any number 308 * of async events, up to and including delivery of SIGKILL to the 309 * last process that kept it busy. Or segfault in the aforementioned 310 * process... Whom would you report that to? 311 */ 312 } 313 314 enum { 315 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 316 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 317 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 318 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 319 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 320 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 321 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 322 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 323 Opt_check_integrity, Opt_check_integrity_including_extent_data, 324 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 325 Opt_commit_interval, 326 Opt_err, 327 }; 328 329 static match_table_t tokens = { 330 {Opt_degraded, "degraded"}, 331 {Opt_subvol, "subvol=%s"}, 332 {Opt_subvolid, "subvolid=%s"}, 333 {Opt_device, "device=%s"}, 334 {Opt_nodatasum, "nodatasum"}, 335 {Opt_nodatacow, "nodatacow"}, 336 {Opt_nobarrier, "nobarrier"}, 337 {Opt_max_inline, "max_inline=%s"}, 338 {Opt_alloc_start, "alloc_start=%s"}, 339 {Opt_thread_pool, "thread_pool=%d"}, 340 {Opt_compress, "compress"}, 341 {Opt_compress_type, "compress=%s"}, 342 {Opt_compress_force, "compress-force"}, 343 {Opt_compress_force_type, "compress-force=%s"}, 344 {Opt_ssd, "ssd"}, 345 {Opt_ssd_spread, "ssd_spread"}, 346 {Opt_nossd, "nossd"}, 347 {Opt_noacl, "noacl"}, 348 {Opt_notreelog, "notreelog"}, 349 {Opt_flushoncommit, "flushoncommit"}, 350 {Opt_ratio, "metadata_ratio=%d"}, 351 {Opt_discard, "discard"}, 352 {Opt_space_cache, "space_cache"}, 353 {Opt_clear_cache, "clear_cache"}, 354 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 355 {Opt_enospc_debug, "enospc_debug"}, 356 {Opt_subvolrootid, "subvolrootid=%d"}, 357 {Opt_defrag, "autodefrag"}, 358 {Opt_inode_cache, "inode_cache"}, 359 {Opt_no_space_cache, "nospace_cache"}, 360 {Opt_recovery, "recovery"}, 361 {Opt_skip_balance, "skip_balance"}, 362 {Opt_check_integrity, "check_int"}, 363 {Opt_check_integrity_including_extent_data, "check_int_data"}, 364 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 365 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 366 {Opt_fatal_errors, "fatal_errors=%s"}, 367 {Opt_commit_interval, "commit=%d"}, 368 {Opt_err, NULL}, 369 }; 370 371 /* 372 * Regular mount options parser. Everything that is needed only when 373 * reading in a new superblock is parsed here. 374 * XXX JDM: This needs to be cleaned up for remount. 375 */ 376 int btrfs_parse_options(struct btrfs_root *root, char *options) 377 { 378 struct btrfs_fs_info *info = root->fs_info; 379 substring_t args[MAX_OPT_ARGS]; 380 char *p, *num, *orig = NULL; 381 u64 cache_gen; 382 int intarg; 383 int ret = 0; 384 char *compress_type; 385 bool compress_force = false; 386 387 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 388 if (cache_gen) 389 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 390 391 if (!options) 392 goto out; 393 394 /* 395 * strsep changes the string, duplicate it because parse_options 396 * gets called twice 397 */ 398 options = kstrdup(options, GFP_NOFS); 399 if (!options) 400 return -ENOMEM; 401 402 orig = options; 403 404 while ((p = strsep(&options, ",")) != NULL) { 405 int token; 406 if (!*p) 407 continue; 408 409 token = match_token(p, tokens, args); 410 switch (token) { 411 case Opt_degraded: 412 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 413 btrfs_set_opt(info->mount_opt, DEGRADED); 414 break; 415 case Opt_subvol: 416 case Opt_subvolid: 417 case Opt_subvolrootid: 418 case Opt_device: 419 /* 420 * These are parsed by btrfs_parse_early_options 421 * and can be happily ignored here. 422 */ 423 break; 424 case Opt_nodatasum: 425 printk(KERN_INFO "btrfs: setting nodatasum\n"); 426 btrfs_set_opt(info->mount_opt, NODATASUM); 427 break; 428 case Opt_nodatacow: 429 if (!btrfs_test_opt(root, COMPRESS) || 430 !btrfs_test_opt(root, FORCE_COMPRESS)) { 431 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n"); 432 } else { 433 printk(KERN_INFO "btrfs: setting nodatacow\n"); 434 } 435 info->compress_type = BTRFS_COMPRESS_NONE; 436 btrfs_clear_opt(info->mount_opt, COMPRESS); 437 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 438 btrfs_set_opt(info->mount_opt, NODATACOW); 439 btrfs_set_opt(info->mount_opt, NODATASUM); 440 break; 441 case Opt_compress_force: 442 case Opt_compress_force_type: 443 compress_force = true; 444 /* Fallthrough */ 445 case Opt_compress: 446 case Opt_compress_type: 447 if (token == Opt_compress || 448 token == Opt_compress_force || 449 strcmp(args[0].from, "zlib") == 0) { 450 compress_type = "zlib"; 451 info->compress_type = BTRFS_COMPRESS_ZLIB; 452 btrfs_set_opt(info->mount_opt, COMPRESS); 453 btrfs_clear_opt(info->mount_opt, NODATACOW); 454 btrfs_clear_opt(info->mount_opt, NODATASUM); 455 } else if (strcmp(args[0].from, "lzo") == 0) { 456 compress_type = "lzo"; 457 info->compress_type = BTRFS_COMPRESS_LZO; 458 btrfs_set_opt(info->mount_opt, COMPRESS); 459 btrfs_clear_opt(info->mount_opt, NODATACOW); 460 btrfs_clear_opt(info->mount_opt, NODATASUM); 461 btrfs_set_fs_incompat(info, COMPRESS_LZO); 462 } else if (strncmp(args[0].from, "no", 2) == 0) { 463 compress_type = "no"; 464 info->compress_type = BTRFS_COMPRESS_NONE; 465 btrfs_clear_opt(info->mount_opt, COMPRESS); 466 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 467 compress_force = false; 468 } else { 469 ret = -EINVAL; 470 goto out; 471 } 472 473 if (compress_force) { 474 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 475 pr_info("btrfs: force %s compression\n", 476 compress_type); 477 } else 478 pr_info("btrfs: use %s compression\n", 479 compress_type); 480 break; 481 case Opt_ssd: 482 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 483 btrfs_set_opt(info->mount_opt, SSD); 484 break; 485 case Opt_ssd_spread: 486 printk(KERN_INFO "btrfs: use spread ssd " 487 "allocation scheme\n"); 488 btrfs_set_opt(info->mount_opt, SSD); 489 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 490 break; 491 case Opt_nossd: 492 printk(KERN_INFO "btrfs: not using ssd allocation " 493 "scheme\n"); 494 btrfs_set_opt(info->mount_opt, NOSSD); 495 btrfs_clear_opt(info->mount_opt, SSD); 496 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 497 break; 498 case Opt_nobarrier: 499 printk(KERN_INFO "btrfs: turning off barriers\n"); 500 btrfs_set_opt(info->mount_opt, NOBARRIER); 501 break; 502 case Opt_thread_pool: 503 ret = match_int(&args[0], &intarg); 504 if (ret) { 505 goto out; 506 } else if (intarg > 0) { 507 info->thread_pool_size = intarg; 508 } else { 509 ret = -EINVAL; 510 goto out; 511 } 512 break; 513 case Opt_max_inline: 514 num = match_strdup(&args[0]); 515 if (num) { 516 info->max_inline = memparse(num, NULL); 517 kfree(num); 518 519 if (info->max_inline) { 520 info->max_inline = max_t(u64, 521 info->max_inline, 522 root->sectorsize); 523 } 524 printk(KERN_INFO "btrfs: max_inline at %llu\n", 525 info->max_inline); 526 } else { 527 ret = -ENOMEM; 528 goto out; 529 } 530 break; 531 case Opt_alloc_start: 532 num = match_strdup(&args[0]); 533 if (num) { 534 mutex_lock(&info->chunk_mutex); 535 info->alloc_start = memparse(num, NULL); 536 mutex_unlock(&info->chunk_mutex); 537 kfree(num); 538 printk(KERN_INFO 539 "btrfs: allocations start at %llu\n", 540 info->alloc_start); 541 } else { 542 ret = -ENOMEM; 543 goto out; 544 } 545 break; 546 case Opt_noacl: 547 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 548 break; 549 case Opt_notreelog: 550 printk(KERN_INFO "btrfs: disabling tree log\n"); 551 btrfs_set_opt(info->mount_opt, NOTREELOG); 552 break; 553 case Opt_flushoncommit: 554 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 555 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 556 break; 557 case Opt_ratio: 558 ret = match_int(&args[0], &intarg); 559 if (ret) { 560 goto out; 561 } else if (intarg >= 0) { 562 info->metadata_ratio = intarg; 563 printk(KERN_INFO "btrfs: metadata ratio %d\n", 564 info->metadata_ratio); 565 } else { 566 ret = -EINVAL; 567 goto out; 568 } 569 break; 570 case Opt_discard: 571 btrfs_set_opt(info->mount_opt, DISCARD); 572 break; 573 case Opt_space_cache: 574 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 575 break; 576 case Opt_rescan_uuid_tree: 577 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 578 break; 579 case Opt_no_space_cache: 580 printk(KERN_INFO "btrfs: disabling disk space caching\n"); 581 btrfs_clear_opt(info->mount_opt, SPACE_CACHE); 582 break; 583 case Opt_inode_cache: 584 printk(KERN_INFO "btrfs: enabling inode map caching\n"); 585 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); 586 break; 587 case Opt_clear_cache: 588 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 589 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 590 break; 591 case Opt_user_subvol_rm_allowed: 592 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 593 break; 594 case Opt_enospc_debug: 595 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 596 break; 597 case Opt_defrag: 598 printk(KERN_INFO "btrfs: enabling auto defrag\n"); 599 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); 600 break; 601 case Opt_recovery: 602 printk(KERN_INFO "btrfs: enabling auto recovery\n"); 603 btrfs_set_opt(info->mount_opt, RECOVERY); 604 break; 605 case Opt_skip_balance: 606 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 607 break; 608 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 609 case Opt_check_integrity_including_extent_data: 610 printk(KERN_INFO "btrfs: enabling check integrity" 611 " including extent data\n"); 612 btrfs_set_opt(info->mount_opt, 613 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 614 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 615 break; 616 case Opt_check_integrity: 617 printk(KERN_INFO "btrfs: enabling check integrity\n"); 618 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 619 break; 620 case Opt_check_integrity_print_mask: 621 ret = match_int(&args[0], &intarg); 622 if (ret) { 623 goto out; 624 } else if (intarg >= 0) { 625 info->check_integrity_print_mask = intarg; 626 printk(KERN_INFO "btrfs:" 627 " check_integrity_print_mask 0x%x\n", 628 info->check_integrity_print_mask); 629 } else { 630 ret = -EINVAL; 631 goto out; 632 } 633 break; 634 #else 635 case Opt_check_integrity_including_extent_data: 636 case Opt_check_integrity: 637 case Opt_check_integrity_print_mask: 638 printk(KERN_ERR "btrfs: support for check_integrity*" 639 " not compiled in!\n"); 640 ret = -EINVAL; 641 goto out; 642 #endif 643 case Opt_fatal_errors: 644 if (strcmp(args[0].from, "panic") == 0) 645 btrfs_set_opt(info->mount_opt, 646 PANIC_ON_FATAL_ERROR); 647 else if (strcmp(args[0].from, "bug") == 0) 648 btrfs_clear_opt(info->mount_opt, 649 PANIC_ON_FATAL_ERROR); 650 else { 651 ret = -EINVAL; 652 goto out; 653 } 654 break; 655 case Opt_commit_interval: 656 intarg = 0; 657 ret = match_int(&args[0], &intarg); 658 if (ret < 0) { 659 printk(KERN_ERR 660 "btrfs: invalid commit interval\n"); 661 ret = -EINVAL; 662 goto out; 663 } 664 if (intarg > 0) { 665 if (intarg > 300) { 666 printk(KERN_WARNING 667 "btrfs: excessive commit interval %d\n", 668 intarg); 669 } 670 info->commit_interval = intarg; 671 } else { 672 printk(KERN_INFO 673 "btrfs: using default commit interval %ds\n", 674 BTRFS_DEFAULT_COMMIT_INTERVAL); 675 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 676 } 677 break; 678 case Opt_err: 679 printk(KERN_INFO "btrfs: unrecognized mount option " 680 "'%s'\n", p); 681 ret = -EINVAL; 682 goto out; 683 default: 684 break; 685 } 686 } 687 out: 688 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 689 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 690 kfree(orig); 691 return ret; 692 } 693 694 /* 695 * Parse mount options that are required early in the mount process. 696 * 697 * All other options will be parsed on much later in the mount process and 698 * only when we need to allocate a new super block. 699 */ 700 static int btrfs_parse_early_options(const char *options, fmode_t flags, 701 void *holder, char **subvol_name, u64 *subvol_objectid, 702 struct btrfs_fs_devices **fs_devices) 703 { 704 substring_t args[MAX_OPT_ARGS]; 705 char *device_name, *opts, *orig, *p; 706 char *num = NULL; 707 int error = 0; 708 709 if (!options) 710 return 0; 711 712 /* 713 * strsep changes the string, duplicate it because parse_options 714 * gets called twice 715 */ 716 opts = kstrdup(options, GFP_KERNEL); 717 if (!opts) 718 return -ENOMEM; 719 orig = opts; 720 721 while ((p = strsep(&opts, ",")) != NULL) { 722 int token; 723 if (!*p) 724 continue; 725 726 token = match_token(p, tokens, args); 727 switch (token) { 728 case Opt_subvol: 729 kfree(*subvol_name); 730 *subvol_name = match_strdup(&args[0]); 731 if (!*subvol_name) { 732 error = -ENOMEM; 733 goto out; 734 } 735 break; 736 case Opt_subvolid: 737 num = match_strdup(&args[0]); 738 if (num) { 739 *subvol_objectid = memparse(num, NULL); 740 kfree(num); 741 /* we want the original fs_tree */ 742 if (!*subvol_objectid) 743 *subvol_objectid = 744 BTRFS_FS_TREE_OBJECTID; 745 } else { 746 error = -EINVAL; 747 goto out; 748 } 749 break; 750 case Opt_subvolrootid: 751 printk(KERN_WARNING 752 "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n"); 753 break; 754 case Opt_device: 755 device_name = match_strdup(&args[0]); 756 if (!device_name) { 757 error = -ENOMEM; 758 goto out; 759 } 760 error = btrfs_scan_one_device(device_name, 761 flags, holder, fs_devices); 762 kfree(device_name); 763 if (error) 764 goto out; 765 break; 766 default: 767 break; 768 } 769 } 770 771 out: 772 kfree(orig); 773 return error; 774 } 775 776 static struct dentry *get_default_root(struct super_block *sb, 777 u64 subvol_objectid) 778 { 779 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 780 struct btrfs_root *root = fs_info->tree_root; 781 struct btrfs_root *new_root; 782 struct btrfs_dir_item *di; 783 struct btrfs_path *path; 784 struct btrfs_key location; 785 struct inode *inode; 786 u64 dir_id; 787 int new = 0; 788 789 /* 790 * We have a specific subvol we want to mount, just setup location and 791 * go look up the root. 792 */ 793 if (subvol_objectid) { 794 location.objectid = subvol_objectid; 795 location.type = BTRFS_ROOT_ITEM_KEY; 796 location.offset = (u64)-1; 797 goto find_root; 798 } 799 800 path = btrfs_alloc_path(); 801 if (!path) 802 return ERR_PTR(-ENOMEM); 803 path->leave_spinning = 1; 804 805 /* 806 * Find the "default" dir item which points to the root item that we 807 * will mount by default if we haven't been given a specific subvolume 808 * to mount. 809 */ 810 dir_id = btrfs_super_root_dir(fs_info->super_copy); 811 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 812 if (IS_ERR(di)) { 813 btrfs_free_path(path); 814 return ERR_CAST(di); 815 } 816 if (!di) { 817 /* 818 * Ok the default dir item isn't there. This is weird since 819 * it's always been there, but don't freak out, just try and 820 * mount to root most subvolume. 821 */ 822 btrfs_free_path(path); 823 dir_id = BTRFS_FIRST_FREE_OBJECTID; 824 new_root = fs_info->fs_root; 825 goto setup_root; 826 } 827 828 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 829 btrfs_free_path(path); 830 831 find_root: 832 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 833 if (IS_ERR(new_root)) 834 return ERR_CAST(new_root); 835 836 dir_id = btrfs_root_dirid(&new_root->root_item); 837 setup_root: 838 location.objectid = dir_id; 839 location.type = BTRFS_INODE_ITEM_KEY; 840 location.offset = 0; 841 842 inode = btrfs_iget(sb, &location, new_root, &new); 843 if (IS_ERR(inode)) 844 return ERR_CAST(inode); 845 846 /* 847 * If we're just mounting the root most subvol put the inode and return 848 * a reference to the dentry. We will have already gotten a reference 849 * to the inode in btrfs_fill_super so we're good to go. 850 */ 851 if (!new && sb->s_root->d_inode == inode) { 852 iput(inode); 853 return dget(sb->s_root); 854 } 855 856 return d_obtain_alias(inode); 857 } 858 859 static int btrfs_fill_super(struct super_block *sb, 860 struct btrfs_fs_devices *fs_devices, 861 void *data, int silent) 862 { 863 struct inode *inode; 864 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 865 struct btrfs_key key; 866 int err; 867 868 sb->s_maxbytes = MAX_LFS_FILESIZE; 869 sb->s_magic = BTRFS_SUPER_MAGIC; 870 sb->s_op = &btrfs_super_ops; 871 sb->s_d_op = &btrfs_dentry_operations; 872 sb->s_export_op = &btrfs_export_ops; 873 sb->s_xattr = btrfs_xattr_handlers; 874 sb->s_time_gran = 1; 875 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 876 sb->s_flags |= MS_POSIXACL; 877 #endif 878 sb->s_flags |= MS_I_VERSION; 879 err = open_ctree(sb, fs_devices, (char *)data); 880 if (err) { 881 printk("btrfs: open_ctree failed\n"); 882 return err; 883 } 884 885 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 886 key.type = BTRFS_INODE_ITEM_KEY; 887 key.offset = 0; 888 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 889 if (IS_ERR(inode)) { 890 err = PTR_ERR(inode); 891 goto fail_close; 892 } 893 894 sb->s_root = d_make_root(inode); 895 if (!sb->s_root) { 896 err = -ENOMEM; 897 goto fail_close; 898 } 899 900 save_mount_options(sb, data); 901 cleancache_init_fs(sb); 902 sb->s_flags |= MS_ACTIVE; 903 return 0; 904 905 fail_close: 906 close_ctree(fs_info->tree_root); 907 return err; 908 } 909 910 int btrfs_sync_fs(struct super_block *sb, int wait) 911 { 912 struct btrfs_trans_handle *trans; 913 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 914 struct btrfs_root *root = fs_info->tree_root; 915 916 trace_btrfs_sync_fs(wait); 917 918 if (!wait) { 919 filemap_flush(fs_info->btree_inode->i_mapping); 920 return 0; 921 } 922 923 btrfs_wait_ordered_roots(fs_info, -1); 924 925 trans = btrfs_attach_transaction_barrier(root); 926 if (IS_ERR(trans)) { 927 /* no transaction, don't bother */ 928 if (PTR_ERR(trans) == -ENOENT) 929 return 0; 930 return PTR_ERR(trans); 931 } 932 return btrfs_commit_transaction(trans, root); 933 } 934 935 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 936 { 937 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 938 struct btrfs_root *root = info->tree_root; 939 char *compress_type; 940 941 if (btrfs_test_opt(root, DEGRADED)) 942 seq_puts(seq, ",degraded"); 943 if (btrfs_test_opt(root, NODATASUM)) 944 seq_puts(seq, ",nodatasum"); 945 if (btrfs_test_opt(root, NODATACOW)) 946 seq_puts(seq, ",nodatacow"); 947 if (btrfs_test_opt(root, NOBARRIER)) 948 seq_puts(seq, ",nobarrier"); 949 if (info->max_inline != 8192 * 1024) 950 seq_printf(seq, ",max_inline=%llu", info->max_inline); 951 if (info->alloc_start != 0) 952 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 953 if (info->thread_pool_size != min_t(unsigned long, 954 num_online_cpus() + 2, 8)) 955 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 956 if (btrfs_test_opt(root, COMPRESS)) { 957 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 958 compress_type = "zlib"; 959 else 960 compress_type = "lzo"; 961 if (btrfs_test_opt(root, FORCE_COMPRESS)) 962 seq_printf(seq, ",compress-force=%s", compress_type); 963 else 964 seq_printf(seq, ",compress=%s", compress_type); 965 } 966 if (btrfs_test_opt(root, NOSSD)) 967 seq_puts(seq, ",nossd"); 968 if (btrfs_test_opt(root, SSD_SPREAD)) 969 seq_puts(seq, ",ssd_spread"); 970 else if (btrfs_test_opt(root, SSD)) 971 seq_puts(seq, ",ssd"); 972 if (btrfs_test_opt(root, NOTREELOG)) 973 seq_puts(seq, ",notreelog"); 974 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 975 seq_puts(seq, ",flushoncommit"); 976 if (btrfs_test_opt(root, DISCARD)) 977 seq_puts(seq, ",discard"); 978 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 979 seq_puts(seq, ",noacl"); 980 if (btrfs_test_opt(root, SPACE_CACHE)) 981 seq_puts(seq, ",space_cache"); 982 else 983 seq_puts(seq, ",nospace_cache"); 984 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 985 seq_puts(seq, ",rescan_uuid_tree"); 986 if (btrfs_test_opt(root, CLEAR_CACHE)) 987 seq_puts(seq, ",clear_cache"); 988 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 989 seq_puts(seq, ",user_subvol_rm_allowed"); 990 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 991 seq_puts(seq, ",enospc_debug"); 992 if (btrfs_test_opt(root, AUTO_DEFRAG)) 993 seq_puts(seq, ",autodefrag"); 994 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 995 seq_puts(seq, ",inode_cache"); 996 if (btrfs_test_opt(root, SKIP_BALANCE)) 997 seq_puts(seq, ",skip_balance"); 998 if (btrfs_test_opt(root, RECOVERY)) 999 seq_puts(seq, ",recovery"); 1000 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1001 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1002 seq_puts(seq, ",check_int_data"); 1003 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1004 seq_puts(seq, ",check_int"); 1005 if (info->check_integrity_print_mask) 1006 seq_printf(seq, ",check_int_print_mask=%d", 1007 info->check_integrity_print_mask); 1008 #endif 1009 if (info->metadata_ratio) 1010 seq_printf(seq, ",metadata_ratio=%d", 1011 info->metadata_ratio); 1012 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1013 seq_puts(seq, ",fatal_errors=panic"); 1014 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1015 seq_printf(seq, ",commit=%d", info->commit_interval); 1016 return 0; 1017 } 1018 1019 static int btrfs_test_super(struct super_block *s, void *data) 1020 { 1021 struct btrfs_fs_info *p = data; 1022 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1023 1024 return fs_info->fs_devices == p->fs_devices; 1025 } 1026 1027 static int btrfs_set_super(struct super_block *s, void *data) 1028 { 1029 int err = set_anon_super(s, data); 1030 if (!err) 1031 s->s_fs_info = data; 1032 return err; 1033 } 1034 1035 /* 1036 * subvolumes are identified by ino 256 1037 */ 1038 static inline int is_subvolume_inode(struct inode *inode) 1039 { 1040 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1041 return 1; 1042 return 0; 1043 } 1044 1045 /* 1046 * This will strip out the subvol=%s argument for an argument string and add 1047 * subvolid=0 to make sure we get the actual tree root for path walking to the 1048 * subvol we want. 1049 */ 1050 static char *setup_root_args(char *args) 1051 { 1052 unsigned len = strlen(args) + 2 + 1; 1053 char *src, *dst, *buf; 1054 1055 /* 1056 * We need the same args as before, but with this substitution: 1057 * s!subvol=[^,]+!subvolid=0! 1058 * 1059 * Since the replacement string is up to 2 bytes longer than the 1060 * original, allocate strlen(args) + 2 + 1 bytes. 1061 */ 1062 1063 src = strstr(args, "subvol="); 1064 /* This shouldn't happen, but just in case.. */ 1065 if (!src) 1066 return NULL; 1067 1068 buf = dst = kmalloc(len, GFP_NOFS); 1069 if (!buf) 1070 return NULL; 1071 1072 /* 1073 * If the subvol= arg is not at the start of the string, 1074 * copy whatever precedes it into buf. 1075 */ 1076 if (src != args) { 1077 *src++ = '\0'; 1078 strcpy(buf, args); 1079 dst += strlen(args); 1080 } 1081 1082 strcpy(dst, "subvolid=0"); 1083 dst += strlen("subvolid=0"); 1084 1085 /* 1086 * If there is a "," after the original subvol=... string, 1087 * copy that suffix into our buffer. Otherwise, we're done. 1088 */ 1089 src = strchr(src, ','); 1090 if (src) 1091 strcpy(dst, src); 1092 1093 return buf; 1094 } 1095 1096 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1097 const char *device_name, char *data) 1098 { 1099 struct dentry *root; 1100 struct vfsmount *mnt; 1101 char *newargs; 1102 1103 newargs = setup_root_args(data); 1104 if (!newargs) 1105 return ERR_PTR(-ENOMEM); 1106 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1107 newargs); 1108 kfree(newargs); 1109 if (IS_ERR(mnt)) 1110 return ERR_CAST(mnt); 1111 1112 root = mount_subtree(mnt, subvol_name); 1113 1114 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1115 struct super_block *s = root->d_sb; 1116 dput(root); 1117 root = ERR_PTR(-EINVAL); 1118 deactivate_locked_super(s); 1119 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", 1120 subvol_name); 1121 } 1122 1123 return root; 1124 } 1125 1126 /* 1127 * Find a superblock for the given device / mount point. 1128 * 1129 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1130 * for multiple device setup. Make sure to keep it in sync. 1131 */ 1132 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1133 const char *device_name, void *data) 1134 { 1135 struct block_device *bdev = NULL; 1136 struct super_block *s; 1137 struct dentry *root; 1138 struct btrfs_fs_devices *fs_devices = NULL; 1139 struct btrfs_fs_info *fs_info = NULL; 1140 fmode_t mode = FMODE_READ; 1141 char *subvol_name = NULL; 1142 u64 subvol_objectid = 0; 1143 int error = 0; 1144 1145 if (!(flags & MS_RDONLY)) 1146 mode |= FMODE_WRITE; 1147 1148 error = btrfs_parse_early_options(data, mode, fs_type, 1149 &subvol_name, &subvol_objectid, 1150 &fs_devices); 1151 if (error) { 1152 kfree(subvol_name); 1153 return ERR_PTR(error); 1154 } 1155 1156 if (subvol_name) { 1157 root = mount_subvol(subvol_name, flags, device_name, data); 1158 kfree(subvol_name); 1159 return root; 1160 } 1161 1162 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1163 if (error) 1164 return ERR_PTR(error); 1165 1166 /* 1167 * Setup a dummy root and fs_info for test/set super. This is because 1168 * we don't actually fill this stuff out until open_ctree, but we need 1169 * it for searching for existing supers, so this lets us do that and 1170 * then open_ctree will properly initialize everything later. 1171 */ 1172 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1173 if (!fs_info) 1174 return ERR_PTR(-ENOMEM); 1175 1176 fs_info->fs_devices = fs_devices; 1177 1178 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1179 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1180 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1181 error = -ENOMEM; 1182 goto error_fs_info; 1183 } 1184 1185 error = btrfs_open_devices(fs_devices, mode, fs_type); 1186 if (error) 1187 goto error_fs_info; 1188 1189 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1190 error = -EACCES; 1191 goto error_close_devices; 1192 } 1193 1194 bdev = fs_devices->latest_bdev; 1195 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1196 fs_info); 1197 if (IS_ERR(s)) { 1198 error = PTR_ERR(s); 1199 goto error_close_devices; 1200 } 1201 1202 if (s->s_root) { 1203 btrfs_close_devices(fs_devices); 1204 free_fs_info(fs_info); 1205 if ((flags ^ s->s_flags) & MS_RDONLY) 1206 error = -EBUSY; 1207 } else { 1208 char b[BDEVNAME_SIZE]; 1209 1210 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1211 btrfs_sb(s)->bdev_holder = fs_type; 1212 error = btrfs_fill_super(s, fs_devices, data, 1213 flags & MS_SILENT ? 1 : 0); 1214 } 1215 1216 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1217 if (IS_ERR(root)) 1218 deactivate_locked_super(s); 1219 1220 return root; 1221 1222 error_close_devices: 1223 btrfs_close_devices(fs_devices); 1224 error_fs_info: 1225 free_fs_info(fs_info); 1226 return ERR_PTR(error); 1227 } 1228 1229 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit) 1230 { 1231 spin_lock_irq(&workers->lock); 1232 workers->max_workers = new_limit; 1233 spin_unlock_irq(&workers->lock); 1234 } 1235 1236 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1237 int new_pool_size, int old_pool_size) 1238 { 1239 if (new_pool_size == old_pool_size) 1240 return; 1241 1242 fs_info->thread_pool_size = new_pool_size; 1243 1244 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n", 1245 old_pool_size, new_pool_size); 1246 1247 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size); 1248 btrfs_set_max_workers(&fs_info->workers, new_pool_size); 1249 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size); 1250 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size); 1251 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size); 1252 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size); 1253 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size); 1254 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size); 1255 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size); 1256 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size); 1257 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size); 1258 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size); 1259 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size); 1260 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers, 1261 new_pool_size); 1262 } 1263 1264 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1265 { 1266 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1267 } 1268 1269 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1270 unsigned long old_opts, int flags) 1271 { 1272 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1273 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1274 (flags & MS_RDONLY))) { 1275 /* wait for any defraggers to finish */ 1276 wait_event(fs_info->transaction_wait, 1277 (atomic_read(&fs_info->defrag_running) == 0)); 1278 if (flags & MS_RDONLY) 1279 sync_filesystem(fs_info->sb); 1280 } 1281 } 1282 1283 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1284 unsigned long old_opts) 1285 { 1286 /* 1287 * We need cleanup all defragable inodes if the autodefragment is 1288 * close or the fs is R/O. 1289 */ 1290 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1291 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1292 (fs_info->sb->s_flags & MS_RDONLY))) { 1293 btrfs_cleanup_defrag_inodes(fs_info); 1294 } 1295 1296 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1297 } 1298 1299 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1300 { 1301 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1302 struct btrfs_root *root = fs_info->tree_root; 1303 unsigned old_flags = sb->s_flags; 1304 unsigned long old_opts = fs_info->mount_opt; 1305 unsigned long old_compress_type = fs_info->compress_type; 1306 u64 old_max_inline = fs_info->max_inline; 1307 u64 old_alloc_start = fs_info->alloc_start; 1308 int old_thread_pool_size = fs_info->thread_pool_size; 1309 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1310 int ret; 1311 1312 btrfs_remount_prepare(fs_info); 1313 1314 ret = btrfs_parse_options(root, data); 1315 if (ret) { 1316 ret = -EINVAL; 1317 goto restore; 1318 } 1319 1320 btrfs_remount_begin(fs_info, old_opts, *flags); 1321 btrfs_resize_thread_pool(fs_info, 1322 fs_info->thread_pool_size, old_thread_pool_size); 1323 1324 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1325 goto out; 1326 1327 if (*flags & MS_RDONLY) { 1328 /* 1329 * this also happens on 'umount -rf' or on shutdown, when 1330 * the filesystem is busy. 1331 */ 1332 1333 /* wait for the uuid_scan task to finish */ 1334 down(&fs_info->uuid_tree_rescan_sem); 1335 /* avoid complains from lockdep et al. */ 1336 up(&fs_info->uuid_tree_rescan_sem); 1337 1338 sb->s_flags |= MS_RDONLY; 1339 1340 btrfs_dev_replace_suspend_for_unmount(fs_info); 1341 btrfs_scrub_cancel(fs_info); 1342 btrfs_pause_balance(fs_info); 1343 1344 ret = btrfs_commit_super(root); 1345 if (ret) 1346 goto restore; 1347 } else { 1348 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1349 btrfs_err(fs_info, 1350 "Remounting read-write after error is not allowed\n"); 1351 ret = -EINVAL; 1352 goto restore; 1353 } 1354 if (fs_info->fs_devices->rw_devices == 0) { 1355 ret = -EACCES; 1356 goto restore; 1357 } 1358 1359 if (fs_info->fs_devices->missing_devices > 1360 fs_info->num_tolerated_disk_barrier_failures && 1361 !(*flags & MS_RDONLY)) { 1362 printk(KERN_WARNING 1363 "Btrfs: too many missing devices, writeable remount is not allowed\n"); 1364 ret = -EACCES; 1365 goto restore; 1366 } 1367 1368 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1369 ret = -EINVAL; 1370 goto restore; 1371 } 1372 1373 ret = btrfs_cleanup_fs_roots(fs_info); 1374 if (ret) 1375 goto restore; 1376 1377 /* recover relocation */ 1378 ret = btrfs_recover_relocation(root); 1379 if (ret) 1380 goto restore; 1381 1382 ret = btrfs_resume_balance_async(fs_info); 1383 if (ret) 1384 goto restore; 1385 1386 ret = btrfs_resume_dev_replace_async(fs_info); 1387 if (ret) { 1388 pr_warn("btrfs: failed to resume dev_replace\n"); 1389 goto restore; 1390 } 1391 1392 if (!fs_info->uuid_root) { 1393 pr_info("btrfs: creating UUID tree\n"); 1394 ret = btrfs_create_uuid_tree(fs_info); 1395 if (ret) { 1396 pr_warn("btrfs: failed to create the uuid tree" 1397 "%d\n", ret); 1398 goto restore; 1399 } 1400 } 1401 sb->s_flags &= ~MS_RDONLY; 1402 } 1403 out: 1404 btrfs_remount_cleanup(fs_info, old_opts); 1405 return 0; 1406 1407 restore: 1408 /* We've hit an error - don't reset MS_RDONLY */ 1409 if (sb->s_flags & MS_RDONLY) 1410 old_flags |= MS_RDONLY; 1411 sb->s_flags = old_flags; 1412 fs_info->mount_opt = old_opts; 1413 fs_info->compress_type = old_compress_type; 1414 fs_info->max_inline = old_max_inline; 1415 mutex_lock(&fs_info->chunk_mutex); 1416 fs_info->alloc_start = old_alloc_start; 1417 mutex_unlock(&fs_info->chunk_mutex); 1418 btrfs_resize_thread_pool(fs_info, 1419 old_thread_pool_size, fs_info->thread_pool_size); 1420 fs_info->metadata_ratio = old_metadata_ratio; 1421 btrfs_remount_cleanup(fs_info, old_opts); 1422 return ret; 1423 } 1424 1425 /* Used to sort the devices by max_avail(descending sort) */ 1426 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1427 const void *dev_info2) 1428 { 1429 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1430 ((struct btrfs_device_info *)dev_info2)->max_avail) 1431 return -1; 1432 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1433 ((struct btrfs_device_info *)dev_info2)->max_avail) 1434 return 1; 1435 else 1436 return 0; 1437 } 1438 1439 /* 1440 * sort the devices by max_avail, in which max free extent size of each device 1441 * is stored.(Descending Sort) 1442 */ 1443 static inline void btrfs_descending_sort_devices( 1444 struct btrfs_device_info *devices, 1445 size_t nr_devices) 1446 { 1447 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1448 btrfs_cmp_device_free_bytes, NULL); 1449 } 1450 1451 /* 1452 * The helper to calc the free space on the devices that can be used to store 1453 * file data. 1454 */ 1455 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1456 { 1457 struct btrfs_fs_info *fs_info = root->fs_info; 1458 struct btrfs_device_info *devices_info; 1459 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1460 struct btrfs_device *device; 1461 u64 skip_space; 1462 u64 type; 1463 u64 avail_space; 1464 u64 used_space; 1465 u64 min_stripe_size; 1466 int min_stripes = 1, num_stripes = 1; 1467 int i = 0, nr_devices; 1468 int ret; 1469 1470 nr_devices = fs_info->fs_devices->open_devices; 1471 BUG_ON(!nr_devices); 1472 1473 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1474 GFP_NOFS); 1475 if (!devices_info) 1476 return -ENOMEM; 1477 1478 /* calc min stripe number for data space alloction */ 1479 type = btrfs_get_alloc_profile(root, 1); 1480 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1481 min_stripes = 2; 1482 num_stripes = nr_devices; 1483 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1484 min_stripes = 2; 1485 num_stripes = 2; 1486 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1487 min_stripes = 4; 1488 num_stripes = 4; 1489 } 1490 1491 if (type & BTRFS_BLOCK_GROUP_DUP) 1492 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1493 else 1494 min_stripe_size = BTRFS_STRIPE_LEN; 1495 1496 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1497 if (!device->in_fs_metadata || !device->bdev || 1498 device->is_tgtdev_for_dev_replace) 1499 continue; 1500 1501 avail_space = device->total_bytes - device->bytes_used; 1502 1503 /* align with stripe_len */ 1504 do_div(avail_space, BTRFS_STRIPE_LEN); 1505 avail_space *= BTRFS_STRIPE_LEN; 1506 1507 /* 1508 * In order to avoid overwritting the superblock on the drive, 1509 * btrfs starts at an offset of at least 1MB when doing chunk 1510 * allocation. 1511 */ 1512 skip_space = 1024 * 1024; 1513 1514 /* user can set the offset in fs_info->alloc_start. */ 1515 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1516 device->total_bytes) 1517 skip_space = max(fs_info->alloc_start, skip_space); 1518 1519 /* 1520 * btrfs can not use the free space in [0, skip_space - 1], 1521 * we must subtract it from the total. In order to implement 1522 * it, we account the used space in this range first. 1523 */ 1524 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1525 &used_space); 1526 if (ret) { 1527 kfree(devices_info); 1528 return ret; 1529 } 1530 1531 /* calc the free space in [0, skip_space - 1] */ 1532 skip_space -= used_space; 1533 1534 /* 1535 * we can use the free space in [0, skip_space - 1], subtract 1536 * it from the total. 1537 */ 1538 if (avail_space && avail_space >= skip_space) 1539 avail_space -= skip_space; 1540 else 1541 avail_space = 0; 1542 1543 if (avail_space < min_stripe_size) 1544 continue; 1545 1546 devices_info[i].dev = device; 1547 devices_info[i].max_avail = avail_space; 1548 1549 i++; 1550 } 1551 1552 nr_devices = i; 1553 1554 btrfs_descending_sort_devices(devices_info, nr_devices); 1555 1556 i = nr_devices - 1; 1557 avail_space = 0; 1558 while (nr_devices >= min_stripes) { 1559 if (num_stripes > nr_devices) 1560 num_stripes = nr_devices; 1561 1562 if (devices_info[i].max_avail >= min_stripe_size) { 1563 int j; 1564 u64 alloc_size; 1565 1566 avail_space += devices_info[i].max_avail * num_stripes; 1567 alloc_size = devices_info[i].max_avail; 1568 for (j = i + 1 - num_stripes; j <= i; j++) 1569 devices_info[j].max_avail -= alloc_size; 1570 } 1571 i--; 1572 nr_devices--; 1573 } 1574 1575 kfree(devices_info); 1576 *free_bytes = avail_space; 1577 return 0; 1578 } 1579 1580 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1581 { 1582 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1583 struct btrfs_super_block *disk_super = fs_info->super_copy; 1584 struct list_head *head = &fs_info->space_info; 1585 struct btrfs_space_info *found; 1586 u64 total_used = 0; 1587 u64 total_free_data = 0; 1588 int bits = dentry->d_sb->s_blocksize_bits; 1589 __be32 *fsid = (__be32 *)fs_info->fsid; 1590 int ret; 1591 1592 /* holding chunk_muext to avoid allocating new chunks */ 1593 mutex_lock(&fs_info->chunk_mutex); 1594 rcu_read_lock(); 1595 list_for_each_entry_rcu(found, head, list) { 1596 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1597 total_free_data += found->disk_total - found->disk_used; 1598 total_free_data -= 1599 btrfs_account_ro_block_groups_free_space(found); 1600 } 1601 1602 total_used += found->disk_used; 1603 } 1604 rcu_read_unlock(); 1605 1606 buf->f_namelen = BTRFS_NAME_LEN; 1607 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1608 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1609 buf->f_bsize = dentry->d_sb->s_blocksize; 1610 buf->f_type = BTRFS_SUPER_MAGIC; 1611 buf->f_bavail = total_free_data; 1612 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1613 if (ret) { 1614 mutex_unlock(&fs_info->chunk_mutex); 1615 return ret; 1616 } 1617 buf->f_bavail += total_free_data; 1618 buf->f_bavail = buf->f_bavail >> bits; 1619 mutex_unlock(&fs_info->chunk_mutex); 1620 1621 /* We treat it as constant endianness (it doesn't matter _which_) 1622 because we want the fsid to come out the same whether mounted 1623 on a big-endian or little-endian host */ 1624 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1625 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1626 /* Mask in the root object ID too, to disambiguate subvols */ 1627 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1628 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1629 1630 return 0; 1631 } 1632 1633 static void btrfs_kill_super(struct super_block *sb) 1634 { 1635 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1636 kill_anon_super(sb); 1637 free_fs_info(fs_info); 1638 } 1639 1640 static struct file_system_type btrfs_fs_type = { 1641 .owner = THIS_MODULE, 1642 .name = "btrfs", 1643 .mount = btrfs_mount, 1644 .kill_sb = btrfs_kill_super, 1645 .fs_flags = FS_REQUIRES_DEV, 1646 }; 1647 MODULE_ALIAS_FS("btrfs"); 1648 1649 /* 1650 * used by btrfsctl to scan devices when no FS is mounted 1651 */ 1652 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1653 unsigned long arg) 1654 { 1655 struct btrfs_ioctl_vol_args *vol; 1656 struct btrfs_fs_devices *fs_devices; 1657 int ret = -ENOTTY; 1658 1659 if (!capable(CAP_SYS_ADMIN)) 1660 return -EPERM; 1661 1662 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1663 if (IS_ERR(vol)) 1664 return PTR_ERR(vol); 1665 1666 switch (cmd) { 1667 case BTRFS_IOC_SCAN_DEV: 1668 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1669 &btrfs_fs_type, &fs_devices); 1670 break; 1671 case BTRFS_IOC_DEVICES_READY: 1672 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1673 &btrfs_fs_type, &fs_devices); 1674 if (ret) 1675 break; 1676 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1677 break; 1678 } 1679 1680 kfree(vol); 1681 return ret; 1682 } 1683 1684 static int btrfs_freeze(struct super_block *sb) 1685 { 1686 struct btrfs_trans_handle *trans; 1687 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1688 1689 trans = btrfs_attach_transaction_barrier(root); 1690 if (IS_ERR(trans)) { 1691 /* no transaction, don't bother */ 1692 if (PTR_ERR(trans) == -ENOENT) 1693 return 0; 1694 return PTR_ERR(trans); 1695 } 1696 return btrfs_commit_transaction(trans, root); 1697 } 1698 1699 static int btrfs_unfreeze(struct super_block *sb) 1700 { 1701 return 0; 1702 } 1703 1704 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1705 { 1706 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1707 struct btrfs_fs_devices *cur_devices; 1708 struct btrfs_device *dev, *first_dev = NULL; 1709 struct list_head *head; 1710 struct rcu_string *name; 1711 1712 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1713 cur_devices = fs_info->fs_devices; 1714 while (cur_devices) { 1715 head = &cur_devices->devices; 1716 list_for_each_entry(dev, head, dev_list) { 1717 if (dev->missing) 1718 continue; 1719 if (!first_dev || dev->devid < first_dev->devid) 1720 first_dev = dev; 1721 } 1722 cur_devices = cur_devices->seed; 1723 } 1724 1725 if (first_dev) { 1726 rcu_read_lock(); 1727 name = rcu_dereference(first_dev->name); 1728 seq_escape(m, name->str, " \t\n\\"); 1729 rcu_read_unlock(); 1730 } else { 1731 WARN_ON(1); 1732 } 1733 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1734 return 0; 1735 } 1736 1737 static const struct super_operations btrfs_super_ops = { 1738 .drop_inode = btrfs_drop_inode, 1739 .evict_inode = btrfs_evict_inode, 1740 .put_super = btrfs_put_super, 1741 .sync_fs = btrfs_sync_fs, 1742 .show_options = btrfs_show_options, 1743 .show_devname = btrfs_show_devname, 1744 .write_inode = btrfs_write_inode, 1745 .alloc_inode = btrfs_alloc_inode, 1746 .destroy_inode = btrfs_destroy_inode, 1747 .statfs = btrfs_statfs, 1748 .remount_fs = btrfs_remount, 1749 .freeze_fs = btrfs_freeze, 1750 .unfreeze_fs = btrfs_unfreeze, 1751 }; 1752 1753 static const struct file_operations btrfs_ctl_fops = { 1754 .unlocked_ioctl = btrfs_control_ioctl, 1755 .compat_ioctl = btrfs_control_ioctl, 1756 .owner = THIS_MODULE, 1757 .llseek = noop_llseek, 1758 }; 1759 1760 static struct miscdevice btrfs_misc = { 1761 .minor = BTRFS_MINOR, 1762 .name = "btrfs-control", 1763 .fops = &btrfs_ctl_fops 1764 }; 1765 1766 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1767 MODULE_ALIAS("devname:btrfs-control"); 1768 1769 static int btrfs_interface_init(void) 1770 { 1771 return misc_register(&btrfs_misc); 1772 } 1773 1774 static void btrfs_interface_exit(void) 1775 { 1776 if (misc_deregister(&btrfs_misc) < 0) 1777 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n"); 1778 } 1779 1780 static void btrfs_print_info(void) 1781 { 1782 printk(KERN_INFO "Btrfs loaded" 1783 #ifdef CONFIG_BTRFS_DEBUG 1784 ", debug=on" 1785 #endif 1786 #ifdef CONFIG_BTRFS_ASSERT 1787 ", assert=on" 1788 #endif 1789 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1790 ", integrity-checker=on" 1791 #endif 1792 "\n"); 1793 } 1794 1795 static int btrfs_run_sanity_tests(void) 1796 { 1797 int ret; 1798 1799 ret = btrfs_init_test_fs(); 1800 if (ret) 1801 return ret; 1802 1803 ret = btrfs_test_free_space_cache(); 1804 if (ret) 1805 goto out; 1806 ret = btrfs_test_extent_buffer_operations(); 1807 if (ret) 1808 goto out; 1809 ret = btrfs_test_extent_io(); 1810 if (ret) 1811 goto out; 1812 ret = btrfs_test_inodes(); 1813 out: 1814 btrfs_destroy_test_fs(); 1815 return ret; 1816 } 1817 1818 static int __init init_btrfs_fs(void) 1819 { 1820 int err; 1821 1822 err = btrfs_init_sysfs(); 1823 if (err) 1824 return err; 1825 1826 btrfs_init_compress(); 1827 1828 err = btrfs_init_cachep(); 1829 if (err) 1830 goto free_compress; 1831 1832 err = extent_io_init(); 1833 if (err) 1834 goto free_cachep; 1835 1836 err = extent_map_init(); 1837 if (err) 1838 goto free_extent_io; 1839 1840 err = ordered_data_init(); 1841 if (err) 1842 goto free_extent_map; 1843 1844 err = btrfs_delayed_inode_init(); 1845 if (err) 1846 goto free_ordered_data; 1847 1848 err = btrfs_auto_defrag_init(); 1849 if (err) 1850 goto free_delayed_inode; 1851 1852 err = btrfs_delayed_ref_init(); 1853 if (err) 1854 goto free_auto_defrag; 1855 1856 err = btrfs_prelim_ref_init(); 1857 if (err) 1858 goto free_prelim_ref; 1859 1860 err = btrfs_interface_init(); 1861 if (err) 1862 goto free_delayed_ref; 1863 1864 btrfs_init_lockdep(); 1865 1866 btrfs_print_info(); 1867 1868 err = btrfs_run_sanity_tests(); 1869 if (err) 1870 goto unregister_ioctl; 1871 1872 err = register_filesystem(&btrfs_fs_type); 1873 if (err) 1874 goto unregister_ioctl; 1875 1876 return 0; 1877 1878 unregister_ioctl: 1879 btrfs_interface_exit(); 1880 free_prelim_ref: 1881 btrfs_prelim_ref_exit(); 1882 free_delayed_ref: 1883 btrfs_delayed_ref_exit(); 1884 free_auto_defrag: 1885 btrfs_auto_defrag_exit(); 1886 free_delayed_inode: 1887 btrfs_delayed_inode_exit(); 1888 free_ordered_data: 1889 ordered_data_exit(); 1890 free_extent_map: 1891 extent_map_exit(); 1892 free_extent_io: 1893 extent_io_exit(); 1894 free_cachep: 1895 btrfs_destroy_cachep(); 1896 free_compress: 1897 btrfs_exit_compress(); 1898 btrfs_exit_sysfs(); 1899 return err; 1900 } 1901 1902 static void __exit exit_btrfs_fs(void) 1903 { 1904 btrfs_destroy_cachep(); 1905 btrfs_delayed_ref_exit(); 1906 btrfs_auto_defrag_exit(); 1907 btrfs_delayed_inode_exit(); 1908 btrfs_prelim_ref_exit(); 1909 ordered_data_exit(); 1910 extent_map_exit(); 1911 extent_io_exit(); 1912 btrfs_interface_exit(); 1913 unregister_filesystem(&btrfs_fs_type); 1914 btrfs_exit_sysfs(); 1915 btrfs_cleanup_fs_uuids(); 1916 btrfs_exit_compress(); 1917 } 1918 1919 module_init(init_btrfs_fs) 1920 module_exit(exit_btrfs_fs) 1921 1922 MODULE_LICENSE("GPL"); 1923