1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "xattr.h" 52 #include "volumes.h" 53 #include "export.h" 54 #include "compression.h" 55 #include "rcu-string.h" 56 #include "dev-replace.h" 57 #include "free-space-cache.h" 58 #include "backref.h" 59 #include "tests/btrfs-tests.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/btrfs.h> 63 64 static const struct super_operations btrfs_super_ops; 65 static struct file_system_type btrfs_fs_type; 66 67 static const char *btrfs_decode_error(int errno) 68 { 69 char *errstr = "unknown"; 70 71 switch (errno) { 72 case -EIO: 73 errstr = "IO failure"; 74 break; 75 case -ENOMEM: 76 errstr = "Out of memory"; 77 break; 78 case -EROFS: 79 errstr = "Readonly filesystem"; 80 break; 81 case -EEXIST: 82 errstr = "Object already exists"; 83 break; 84 case -ENOSPC: 85 errstr = "No space left"; 86 break; 87 case -ENOENT: 88 errstr = "No such entry"; 89 break; 90 } 91 92 return errstr; 93 } 94 95 static void save_error_info(struct btrfs_fs_info *fs_info) 96 { 97 /* 98 * today we only save the error info into ram. Long term we'll 99 * also send it down to the disk 100 */ 101 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 102 } 103 104 /* btrfs handle error by forcing the filesystem readonly */ 105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 106 { 107 struct super_block *sb = fs_info->sb; 108 109 if (sb->s_flags & MS_RDONLY) 110 return; 111 112 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 113 sb->s_flags |= MS_RDONLY; 114 btrfs_info(fs_info, "forced readonly"); 115 /* 116 * Note that a running device replace operation is not 117 * canceled here although there is no way to update 118 * the progress. It would add the risk of a deadlock, 119 * therefore the canceling is ommited. The only penalty 120 * is that some I/O remains active until the procedure 121 * completes. The next time when the filesystem is 122 * mounted writeable again, the device replace 123 * operation continues. 124 */ 125 } 126 } 127 128 #ifdef CONFIG_PRINTK 129 /* 130 * __btrfs_std_error decodes expected errors from the caller and 131 * invokes the approciate error response. 132 */ 133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 134 unsigned int line, int errno, const char *fmt, ...) 135 { 136 struct super_block *sb = fs_info->sb; 137 const char *errstr; 138 139 /* 140 * Special case: if the error is EROFS, and we're already 141 * under MS_RDONLY, then it is safe here. 142 */ 143 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 144 return; 145 146 errstr = btrfs_decode_error(errno); 147 if (fmt) { 148 struct va_format vaf; 149 va_list args; 150 151 va_start(args, fmt); 152 vaf.fmt = fmt; 153 vaf.va = &args; 154 155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n", 156 sb->s_id, function, line, errno, errstr, &vaf); 157 va_end(args); 158 } else { 159 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n", 160 sb->s_id, function, line, errno, errstr); 161 } 162 163 /* Don't go through full error handling during mount */ 164 save_error_info(fs_info); 165 if (sb->s_flags & MS_BORN) 166 btrfs_handle_error(fs_info); 167 } 168 169 static const char * const logtypes[] = { 170 "emergency", 171 "alert", 172 "critical", 173 "error", 174 "warning", 175 "notice", 176 "info", 177 "debug", 178 }; 179 180 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 181 { 182 struct super_block *sb = fs_info->sb; 183 char lvl[4]; 184 struct va_format vaf; 185 va_list args; 186 const char *type = logtypes[4]; 187 int kern_level; 188 189 va_start(args, fmt); 190 191 kern_level = printk_get_level(fmt); 192 if (kern_level) { 193 size_t size = printk_skip_level(fmt) - fmt; 194 memcpy(lvl, fmt, size); 195 lvl[size] = '\0'; 196 fmt += size; 197 type = logtypes[kern_level - '0']; 198 } else 199 *lvl = '\0'; 200 201 vaf.fmt = fmt; 202 vaf.va = &args; 203 204 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 205 206 va_end(args); 207 } 208 209 #else 210 211 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 212 unsigned int line, int errno, const char *fmt, ...) 213 { 214 struct super_block *sb = fs_info->sb; 215 216 /* 217 * Special case: if the error is EROFS, and we're already 218 * under MS_RDONLY, then it is safe here. 219 */ 220 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 221 return; 222 223 /* Don't go through full error handling during mount */ 224 if (sb->s_flags & MS_BORN) { 225 save_error_info(fs_info); 226 btrfs_handle_error(fs_info); 227 } 228 } 229 #endif 230 231 /* 232 * We only mark the transaction aborted and then set the file system read-only. 233 * This will prevent new transactions from starting or trying to join this 234 * one. 235 * 236 * This means that error recovery at the call site is limited to freeing 237 * any local memory allocations and passing the error code up without 238 * further cleanup. The transaction should complete as it normally would 239 * in the call path but will return -EIO. 240 * 241 * We'll complete the cleanup in btrfs_end_transaction and 242 * btrfs_commit_transaction. 243 */ 244 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 245 struct btrfs_root *root, const char *function, 246 unsigned int line, int errno) 247 { 248 /* 249 * Report first abort since mount 250 */ 251 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, 252 &root->fs_info->fs_state)) { 253 WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n", 254 errno); 255 } 256 trans->aborted = errno; 257 /* Nothing used. The other threads that have joined this 258 * transaction may be able to continue. */ 259 if (!trans->blocks_used) { 260 const char *errstr; 261 262 errstr = btrfs_decode_error(errno); 263 btrfs_warn(root->fs_info, 264 "%s:%d: Aborting unused transaction(%s).", 265 function, line, errstr); 266 return; 267 } 268 ACCESS_ONCE(trans->transaction->aborted) = errno; 269 /* Wake up anybody who may be waiting on this transaction */ 270 wake_up(&root->fs_info->transaction_wait); 271 wake_up(&root->fs_info->transaction_blocked_wait); 272 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 273 } 274 /* 275 * __btrfs_panic decodes unexpected, fatal errors from the caller, 276 * issues an alert, and either panics or BUGs, depending on mount options. 277 */ 278 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 279 unsigned int line, int errno, const char *fmt, ...) 280 { 281 char *s_id = "<unknown>"; 282 const char *errstr; 283 struct va_format vaf = { .fmt = fmt }; 284 va_list args; 285 286 if (fs_info) 287 s_id = fs_info->sb->s_id; 288 289 va_start(args, fmt); 290 vaf.va = &args; 291 292 errstr = btrfs_decode_error(errno); 293 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 294 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 295 s_id, function, line, &vaf, errno, errstr); 296 297 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 298 s_id, function, line, &vaf, errno, errstr); 299 va_end(args); 300 /* Caller calls BUG() */ 301 } 302 303 static void btrfs_put_super(struct super_block *sb) 304 { 305 (void)close_ctree(btrfs_sb(sb)->tree_root); 306 /* FIXME: need to fix VFS to return error? */ 307 /* AV: return it _where_? ->put_super() can be triggered by any number 308 * of async events, up to and including delivery of SIGKILL to the 309 * last process that kept it busy. Or segfault in the aforementioned 310 * process... Whom would you report that to? 311 */ 312 } 313 314 enum { 315 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 316 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 317 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 318 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 319 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 320 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 321 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 322 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 323 Opt_check_integrity, Opt_check_integrity_including_extent_data, 324 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 325 Opt_commit_interval, 326 Opt_err, 327 }; 328 329 static match_table_t tokens = { 330 {Opt_degraded, "degraded"}, 331 {Opt_subvol, "subvol=%s"}, 332 {Opt_subvolid, "subvolid=%s"}, 333 {Opt_device, "device=%s"}, 334 {Opt_nodatasum, "nodatasum"}, 335 {Opt_nodatacow, "nodatacow"}, 336 {Opt_nobarrier, "nobarrier"}, 337 {Opt_max_inline, "max_inline=%s"}, 338 {Opt_alloc_start, "alloc_start=%s"}, 339 {Opt_thread_pool, "thread_pool=%d"}, 340 {Opt_compress, "compress"}, 341 {Opt_compress_type, "compress=%s"}, 342 {Opt_compress_force, "compress-force"}, 343 {Opt_compress_force_type, "compress-force=%s"}, 344 {Opt_ssd, "ssd"}, 345 {Opt_ssd_spread, "ssd_spread"}, 346 {Opt_nossd, "nossd"}, 347 {Opt_noacl, "noacl"}, 348 {Opt_notreelog, "notreelog"}, 349 {Opt_flushoncommit, "flushoncommit"}, 350 {Opt_ratio, "metadata_ratio=%d"}, 351 {Opt_discard, "discard"}, 352 {Opt_space_cache, "space_cache"}, 353 {Opt_clear_cache, "clear_cache"}, 354 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 355 {Opt_enospc_debug, "enospc_debug"}, 356 {Opt_subvolrootid, "subvolrootid=%d"}, 357 {Opt_defrag, "autodefrag"}, 358 {Opt_inode_cache, "inode_cache"}, 359 {Opt_no_space_cache, "nospace_cache"}, 360 {Opt_recovery, "recovery"}, 361 {Opt_skip_balance, "skip_balance"}, 362 {Opt_check_integrity, "check_int"}, 363 {Opt_check_integrity_including_extent_data, "check_int_data"}, 364 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 365 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 366 {Opt_fatal_errors, "fatal_errors=%s"}, 367 {Opt_commit_interval, "commit=%d"}, 368 {Opt_err, NULL}, 369 }; 370 371 /* 372 * Regular mount options parser. Everything that is needed only when 373 * reading in a new superblock is parsed here. 374 * XXX JDM: This needs to be cleaned up for remount. 375 */ 376 int btrfs_parse_options(struct btrfs_root *root, char *options) 377 { 378 struct btrfs_fs_info *info = root->fs_info; 379 substring_t args[MAX_OPT_ARGS]; 380 char *p, *num, *orig = NULL; 381 u64 cache_gen; 382 int intarg; 383 int ret = 0; 384 char *compress_type; 385 bool compress_force = false; 386 387 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 388 if (cache_gen) 389 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 390 391 if (!options) 392 goto out; 393 394 /* 395 * strsep changes the string, duplicate it because parse_options 396 * gets called twice 397 */ 398 options = kstrdup(options, GFP_NOFS); 399 if (!options) 400 return -ENOMEM; 401 402 orig = options; 403 404 while ((p = strsep(&options, ",")) != NULL) { 405 int token; 406 if (!*p) 407 continue; 408 409 token = match_token(p, tokens, args); 410 switch (token) { 411 case Opt_degraded: 412 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 413 btrfs_set_opt(info->mount_opt, DEGRADED); 414 break; 415 case Opt_subvol: 416 case Opt_subvolid: 417 case Opt_subvolrootid: 418 case Opt_device: 419 /* 420 * These are parsed by btrfs_parse_early_options 421 * and can be happily ignored here. 422 */ 423 break; 424 case Opt_nodatasum: 425 printk(KERN_INFO "btrfs: setting nodatasum\n"); 426 btrfs_set_opt(info->mount_opt, NODATASUM); 427 break; 428 case Opt_nodatacow: 429 if (!btrfs_test_opt(root, COMPRESS) || 430 !btrfs_test_opt(root, FORCE_COMPRESS)) { 431 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n"); 432 } else { 433 printk(KERN_INFO "btrfs: setting nodatacow\n"); 434 } 435 btrfs_clear_opt(info->mount_opt, COMPRESS); 436 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 437 btrfs_set_opt(info->mount_opt, NODATACOW); 438 btrfs_set_opt(info->mount_opt, NODATASUM); 439 break; 440 case Opt_compress_force: 441 case Opt_compress_force_type: 442 compress_force = true; 443 /* Fallthrough */ 444 case Opt_compress: 445 case Opt_compress_type: 446 if (token == Opt_compress || 447 token == Opt_compress_force || 448 strcmp(args[0].from, "zlib") == 0) { 449 compress_type = "zlib"; 450 info->compress_type = BTRFS_COMPRESS_ZLIB; 451 btrfs_set_opt(info->mount_opt, COMPRESS); 452 btrfs_clear_opt(info->mount_opt, NODATACOW); 453 btrfs_clear_opt(info->mount_opt, NODATASUM); 454 } else if (strcmp(args[0].from, "lzo") == 0) { 455 compress_type = "lzo"; 456 info->compress_type = BTRFS_COMPRESS_LZO; 457 btrfs_set_opt(info->mount_opt, COMPRESS); 458 btrfs_clear_opt(info->mount_opt, NODATACOW); 459 btrfs_clear_opt(info->mount_opt, NODATASUM); 460 btrfs_set_fs_incompat(info, COMPRESS_LZO); 461 } else if (strncmp(args[0].from, "no", 2) == 0) { 462 compress_type = "no"; 463 btrfs_clear_opt(info->mount_opt, COMPRESS); 464 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 465 compress_force = false; 466 } else { 467 ret = -EINVAL; 468 goto out; 469 } 470 471 if (compress_force) { 472 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 473 pr_info("btrfs: force %s compression\n", 474 compress_type); 475 } else if (btrfs_test_opt(root, COMPRESS)) { 476 pr_info("btrfs: use %s compression\n", 477 compress_type); 478 } 479 break; 480 case Opt_ssd: 481 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 482 btrfs_set_opt(info->mount_opt, SSD); 483 break; 484 case Opt_ssd_spread: 485 printk(KERN_INFO "btrfs: use spread ssd " 486 "allocation scheme\n"); 487 btrfs_set_opt(info->mount_opt, SSD); 488 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 489 break; 490 case Opt_nossd: 491 printk(KERN_INFO "btrfs: not using ssd allocation " 492 "scheme\n"); 493 btrfs_set_opt(info->mount_opt, NOSSD); 494 btrfs_clear_opt(info->mount_opt, SSD); 495 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 496 break; 497 case Opt_nobarrier: 498 printk(KERN_INFO "btrfs: turning off barriers\n"); 499 btrfs_set_opt(info->mount_opt, NOBARRIER); 500 break; 501 case Opt_thread_pool: 502 ret = match_int(&args[0], &intarg); 503 if (ret) { 504 goto out; 505 } else if (intarg > 0) { 506 info->thread_pool_size = intarg; 507 } else { 508 ret = -EINVAL; 509 goto out; 510 } 511 break; 512 case Opt_max_inline: 513 num = match_strdup(&args[0]); 514 if (num) { 515 info->max_inline = memparse(num, NULL); 516 kfree(num); 517 518 if (info->max_inline) { 519 info->max_inline = max_t(u64, 520 info->max_inline, 521 root->sectorsize); 522 } 523 printk(KERN_INFO "btrfs: max_inline at %llu\n", 524 info->max_inline); 525 } else { 526 ret = -ENOMEM; 527 goto out; 528 } 529 break; 530 case Opt_alloc_start: 531 num = match_strdup(&args[0]); 532 if (num) { 533 mutex_lock(&info->chunk_mutex); 534 info->alloc_start = memparse(num, NULL); 535 mutex_unlock(&info->chunk_mutex); 536 kfree(num); 537 printk(KERN_INFO 538 "btrfs: allocations start at %llu\n", 539 info->alloc_start); 540 } else { 541 ret = -ENOMEM; 542 goto out; 543 } 544 break; 545 case Opt_noacl: 546 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 547 break; 548 case Opt_notreelog: 549 printk(KERN_INFO "btrfs: disabling tree log\n"); 550 btrfs_set_opt(info->mount_opt, NOTREELOG); 551 break; 552 case Opt_flushoncommit: 553 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 554 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 555 break; 556 case Opt_ratio: 557 ret = match_int(&args[0], &intarg); 558 if (ret) { 559 goto out; 560 } else if (intarg >= 0) { 561 info->metadata_ratio = intarg; 562 printk(KERN_INFO "btrfs: metadata ratio %d\n", 563 info->metadata_ratio); 564 } else { 565 ret = -EINVAL; 566 goto out; 567 } 568 break; 569 case Opt_discard: 570 btrfs_set_opt(info->mount_opt, DISCARD); 571 break; 572 case Opt_space_cache: 573 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 574 break; 575 case Opt_rescan_uuid_tree: 576 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 577 break; 578 case Opt_no_space_cache: 579 printk(KERN_INFO "btrfs: disabling disk space caching\n"); 580 btrfs_clear_opt(info->mount_opt, SPACE_CACHE); 581 break; 582 case Opt_inode_cache: 583 printk(KERN_INFO "btrfs: enabling inode map caching\n"); 584 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); 585 break; 586 case Opt_clear_cache: 587 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 588 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 589 break; 590 case Opt_user_subvol_rm_allowed: 591 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 592 break; 593 case Opt_enospc_debug: 594 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 595 break; 596 case Opt_defrag: 597 printk(KERN_INFO "btrfs: enabling auto defrag\n"); 598 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); 599 break; 600 case Opt_recovery: 601 printk(KERN_INFO "btrfs: enabling auto recovery\n"); 602 btrfs_set_opt(info->mount_opt, RECOVERY); 603 break; 604 case Opt_skip_balance: 605 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 606 break; 607 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 608 case Opt_check_integrity_including_extent_data: 609 printk(KERN_INFO "btrfs: enabling check integrity" 610 " including extent data\n"); 611 btrfs_set_opt(info->mount_opt, 612 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 613 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 614 break; 615 case Opt_check_integrity: 616 printk(KERN_INFO "btrfs: enabling check integrity\n"); 617 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 618 break; 619 case Opt_check_integrity_print_mask: 620 ret = match_int(&args[0], &intarg); 621 if (ret) { 622 goto out; 623 } else if (intarg >= 0) { 624 info->check_integrity_print_mask = intarg; 625 printk(KERN_INFO "btrfs:" 626 " check_integrity_print_mask 0x%x\n", 627 info->check_integrity_print_mask); 628 } else { 629 ret = -EINVAL; 630 goto out; 631 } 632 break; 633 #else 634 case Opt_check_integrity_including_extent_data: 635 case Opt_check_integrity: 636 case Opt_check_integrity_print_mask: 637 printk(KERN_ERR "btrfs: support for check_integrity*" 638 " not compiled in!\n"); 639 ret = -EINVAL; 640 goto out; 641 #endif 642 case Opt_fatal_errors: 643 if (strcmp(args[0].from, "panic") == 0) 644 btrfs_set_opt(info->mount_opt, 645 PANIC_ON_FATAL_ERROR); 646 else if (strcmp(args[0].from, "bug") == 0) 647 btrfs_clear_opt(info->mount_opt, 648 PANIC_ON_FATAL_ERROR); 649 else { 650 ret = -EINVAL; 651 goto out; 652 } 653 break; 654 case Opt_commit_interval: 655 intarg = 0; 656 ret = match_int(&args[0], &intarg); 657 if (ret < 0) { 658 printk(KERN_ERR 659 "btrfs: invalid commit interval\n"); 660 ret = -EINVAL; 661 goto out; 662 } 663 if (intarg > 0) { 664 if (intarg > 300) { 665 printk(KERN_WARNING 666 "btrfs: excessive commit interval %d\n", 667 intarg); 668 } 669 info->commit_interval = intarg; 670 } else { 671 printk(KERN_INFO 672 "btrfs: using default commit interval %ds\n", 673 BTRFS_DEFAULT_COMMIT_INTERVAL); 674 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 675 } 676 break; 677 case Opt_err: 678 printk(KERN_INFO "btrfs: unrecognized mount option " 679 "'%s'\n", p); 680 ret = -EINVAL; 681 goto out; 682 default: 683 break; 684 } 685 } 686 out: 687 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 688 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 689 kfree(orig); 690 return ret; 691 } 692 693 /* 694 * Parse mount options that are required early in the mount process. 695 * 696 * All other options will be parsed on much later in the mount process and 697 * only when we need to allocate a new super block. 698 */ 699 static int btrfs_parse_early_options(const char *options, fmode_t flags, 700 void *holder, char **subvol_name, u64 *subvol_objectid, 701 struct btrfs_fs_devices **fs_devices) 702 { 703 substring_t args[MAX_OPT_ARGS]; 704 char *device_name, *opts, *orig, *p; 705 char *num = NULL; 706 int error = 0; 707 708 if (!options) 709 return 0; 710 711 /* 712 * strsep changes the string, duplicate it because parse_options 713 * gets called twice 714 */ 715 opts = kstrdup(options, GFP_KERNEL); 716 if (!opts) 717 return -ENOMEM; 718 orig = opts; 719 720 while ((p = strsep(&opts, ",")) != NULL) { 721 int token; 722 if (!*p) 723 continue; 724 725 token = match_token(p, tokens, args); 726 switch (token) { 727 case Opt_subvol: 728 kfree(*subvol_name); 729 *subvol_name = match_strdup(&args[0]); 730 if (!*subvol_name) { 731 error = -ENOMEM; 732 goto out; 733 } 734 break; 735 case Opt_subvolid: 736 num = match_strdup(&args[0]); 737 if (num) { 738 *subvol_objectid = memparse(num, NULL); 739 kfree(num); 740 /* we want the original fs_tree */ 741 if (!*subvol_objectid) 742 *subvol_objectid = 743 BTRFS_FS_TREE_OBJECTID; 744 } else { 745 error = -EINVAL; 746 goto out; 747 } 748 break; 749 case Opt_subvolrootid: 750 printk(KERN_WARNING 751 "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n"); 752 break; 753 case Opt_device: 754 device_name = match_strdup(&args[0]); 755 if (!device_name) { 756 error = -ENOMEM; 757 goto out; 758 } 759 error = btrfs_scan_one_device(device_name, 760 flags, holder, fs_devices); 761 kfree(device_name); 762 if (error) 763 goto out; 764 break; 765 default: 766 break; 767 } 768 } 769 770 out: 771 kfree(orig); 772 return error; 773 } 774 775 static struct dentry *get_default_root(struct super_block *sb, 776 u64 subvol_objectid) 777 { 778 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 779 struct btrfs_root *root = fs_info->tree_root; 780 struct btrfs_root *new_root; 781 struct btrfs_dir_item *di; 782 struct btrfs_path *path; 783 struct btrfs_key location; 784 struct inode *inode; 785 u64 dir_id; 786 int new = 0; 787 788 /* 789 * We have a specific subvol we want to mount, just setup location and 790 * go look up the root. 791 */ 792 if (subvol_objectid) { 793 location.objectid = subvol_objectid; 794 location.type = BTRFS_ROOT_ITEM_KEY; 795 location.offset = (u64)-1; 796 goto find_root; 797 } 798 799 path = btrfs_alloc_path(); 800 if (!path) 801 return ERR_PTR(-ENOMEM); 802 path->leave_spinning = 1; 803 804 /* 805 * Find the "default" dir item which points to the root item that we 806 * will mount by default if we haven't been given a specific subvolume 807 * to mount. 808 */ 809 dir_id = btrfs_super_root_dir(fs_info->super_copy); 810 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 811 if (IS_ERR(di)) { 812 btrfs_free_path(path); 813 return ERR_CAST(di); 814 } 815 if (!di) { 816 /* 817 * Ok the default dir item isn't there. This is weird since 818 * it's always been there, but don't freak out, just try and 819 * mount to root most subvolume. 820 */ 821 btrfs_free_path(path); 822 dir_id = BTRFS_FIRST_FREE_OBJECTID; 823 new_root = fs_info->fs_root; 824 goto setup_root; 825 } 826 827 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 828 btrfs_free_path(path); 829 830 find_root: 831 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 832 if (IS_ERR(new_root)) 833 return ERR_CAST(new_root); 834 835 dir_id = btrfs_root_dirid(&new_root->root_item); 836 setup_root: 837 location.objectid = dir_id; 838 location.type = BTRFS_INODE_ITEM_KEY; 839 location.offset = 0; 840 841 inode = btrfs_iget(sb, &location, new_root, &new); 842 if (IS_ERR(inode)) 843 return ERR_CAST(inode); 844 845 /* 846 * If we're just mounting the root most subvol put the inode and return 847 * a reference to the dentry. We will have already gotten a reference 848 * to the inode in btrfs_fill_super so we're good to go. 849 */ 850 if (!new && sb->s_root->d_inode == inode) { 851 iput(inode); 852 return dget(sb->s_root); 853 } 854 855 return d_obtain_alias(inode); 856 } 857 858 static int btrfs_fill_super(struct super_block *sb, 859 struct btrfs_fs_devices *fs_devices, 860 void *data, int silent) 861 { 862 struct inode *inode; 863 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 864 struct btrfs_key key; 865 int err; 866 867 sb->s_maxbytes = MAX_LFS_FILESIZE; 868 sb->s_magic = BTRFS_SUPER_MAGIC; 869 sb->s_op = &btrfs_super_ops; 870 sb->s_d_op = &btrfs_dentry_operations; 871 sb->s_export_op = &btrfs_export_ops; 872 sb->s_xattr = btrfs_xattr_handlers; 873 sb->s_time_gran = 1; 874 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 875 sb->s_flags |= MS_POSIXACL; 876 #endif 877 sb->s_flags |= MS_I_VERSION; 878 err = open_ctree(sb, fs_devices, (char *)data); 879 if (err) { 880 printk("btrfs: open_ctree failed\n"); 881 return err; 882 } 883 884 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 885 key.type = BTRFS_INODE_ITEM_KEY; 886 key.offset = 0; 887 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 888 if (IS_ERR(inode)) { 889 err = PTR_ERR(inode); 890 goto fail_close; 891 } 892 893 sb->s_root = d_make_root(inode); 894 if (!sb->s_root) { 895 err = -ENOMEM; 896 goto fail_close; 897 } 898 899 save_mount_options(sb, data); 900 cleancache_init_fs(sb); 901 sb->s_flags |= MS_ACTIVE; 902 return 0; 903 904 fail_close: 905 close_ctree(fs_info->tree_root); 906 return err; 907 } 908 909 int btrfs_sync_fs(struct super_block *sb, int wait) 910 { 911 struct btrfs_trans_handle *trans; 912 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 913 struct btrfs_root *root = fs_info->tree_root; 914 915 trace_btrfs_sync_fs(wait); 916 917 if (!wait) { 918 filemap_flush(fs_info->btree_inode->i_mapping); 919 return 0; 920 } 921 922 btrfs_wait_ordered_roots(fs_info, -1); 923 924 trans = btrfs_attach_transaction_barrier(root); 925 if (IS_ERR(trans)) { 926 /* no transaction, don't bother */ 927 if (PTR_ERR(trans) == -ENOENT) 928 return 0; 929 return PTR_ERR(trans); 930 } 931 return btrfs_commit_transaction(trans, root); 932 } 933 934 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 935 { 936 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 937 struct btrfs_root *root = info->tree_root; 938 char *compress_type; 939 940 if (btrfs_test_opt(root, DEGRADED)) 941 seq_puts(seq, ",degraded"); 942 if (btrfs_test_opt(root, NODATASUM)) 943 seq_puts(seq, ",nodatasum"); 944 if (btrfs_test_opt(root, NODATACOW)) 945 seq_puts(seq, ",nodatacow"); 946 if (btrfs_test_opt(root, NOBARRIER)) 947 seq_puts(seq, ",nobarrier"); 948 if (info->max_inline != 8192 * 1024) 949 seq_printf(seq, ",max_inline=%llu", info->max_inline); 950 if (info->alloc_start != 0) 951 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 952 if (info->thread_pool_size != min_t(unsigned long, 953 num_online_cpus() + 2, 8)) 954 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 955 if (btrfs_test_opt(root, COMPRESS)) { 956 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 957 compress_type = "zlib"; 958 else 959 compress_type = "lzo"; 960 if (btrfs_test_opt(root, FORCE_COMPRESS)) 961 seq_printf(seq, ",compress-force=%s", compress_type); 962 else 963 seq_printf(seq, ",compress=%s", compress_type); 964 } 965 if (btrfs_test_opt(root, NOSSD)) 966 seq_puts(seq, ",nossd"); 967 if (btrfs_test_opt(root, SSD_SPREAD)) 968 seq_puts(seq, ",ssd_spread"); 969 else if (btrfs_test_opt(root, SSD)) 970 seq_puts(seq, ",ssd"); 971 if (btrfs_test_opt(root, NOTREELOG)) 972 seq_puts(seq, ",notreelog"); 973 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 974 seq_puts(seq, ",flushoncommit"); 975 if (btrfs_test_opt(root, DISCARD)) 976 seq_puts(seq, ",discard"); 977 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 978 seq_puts(seq, ",noacl"); 979 if (btrfs_test_opt(root, SPACE_CACHE)) 980 seq_puts(seq, ",space_cache"); 981 else 982 seq_puts(seq, ",nospace_cache"); 983 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 984 seq_puts(seq, ",rescan_uuid_tree"); 985 if (btrfs_test_opt(root, CLEAR_CACHE)) 986 seq_puts(seq, ",clear_cache"); 987 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 988 seq_puts(seq, ",user_subvol_rm_allowed"); 989 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 990 seq_puts(seq, ",enospc_debug"); 991 if (btrfs_test_opt(root, AUTO_DEFRAG)) 992 seq_puts(seq, ",autodefrag"); 993 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 994 seq_puts(seq, ",inode_cache"); 995 if (btrfs_test_opt(root, SKIP_BALANCE)) 996 seq_puts(seq, ",skip_balance"); 997 if (btrfs_test_opt(root, RECOVERY)) 998 seq_puts(seq, ",recovery"); 999 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1000 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1001 seq_puts(seq, ",check_int_data"); 1002 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1003 seq_puts(seq, ",check_int"); 1004 if (info->check_integrity_print_mask) 1005 seq_printf(seq, ",check_int_print_mask=%d", 1006 info->check_integrity_print_mask); 1007 #endif 1008 if (info->metadata_ratio) 1009 seq_printf(seq, ",metadata_ratio=%d", 1010 info->metadata_ratio); 1011 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1012 seq_puts(seq, ",fatal_errors=panic"); 1013 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1014 seq_printf(seq, ",commit=%d", info->commit_interval); 1015 return 0; 1016 } 1017 1018 static int btrfs_test_super(struct super_block *s, void *data) 1019 { 1020 struct btrfs_fs_info *p = data; 1021 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1022 1023 return fs_info->fs_devices == p->fs_devices; 1024 } 1025 1026 static int btrfs_set_super(struct super_block *s, void *data) 1027 { 1028 int err = set_anon_super(s, data); 1029 if (!err) 1030 s->s_fs_info = data; 1031 return err; 1032 } 1033 1034 /* 1035 * subvolumes are identified by ino 256 1036 */ 1037 static inline int is_subvolume_inode(struct inode *inode) 1038 { 1039 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1040 return 1; 1041 return 0; 1042 } 1043 1044 /* 1045 * This will strip out the subvol=%s argument for an argument string and add 1046 * subvolid=0 to make sure we get the actual tree root for path walking to the 1047 * subvol we want. 1048 */ 1049 static char *setup_root_args(char *args) 1050 { 1051 unsigned len = strlen(args) + 2 + 1; 1052 char *src, *dst, *buf; 1053 1054 /* 1055 * We need the same args as before, but with this substitution: 1056 * s!subvol=[^,]+!subvolid=0! 1057 * 1058 * Since the replacement string is up to 2 bytes longer than the 1059 * original, allocate strlen(args) + 2 + 1 bytes. 1060 */ 1061 1062 src = strstr(args, "subvol="); 1063 /* This shouldn't happen, but just in case.. */ 1064 if (!src) 1065 return NULL; 1066 1067 buf = dst = kmalloc(len, GFP_NOFS); 1068 if (!buf) 1069 return NULL; 1070 1071 /* 1072 * If the subvol= arg is not at the start of the string, 1073 * copy whatever precedes it into buf. 1074 */ 1075 if (src != args) { 1076 *src++ = '\0'; 1077 strcpy(buf, args); 1078 dst += strlen(args); 1079 } 1080 1081 strcpy(dst, "subvolid=0"); 1082 dst += strlen("subvolid=0"); 1083 1084 /* 1085 * If there is a "," after the original subvol=... string, 1086 * copy that suffix into our buffer. Otherwise, we're done. 1087 */ 1088 src = strchr(src, ','); 1089 if (src) 1090 strcpy(dst, src); 1091 1092 return buf; 1093 } 1094 1095 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1096 const char *device_name, char *data) 1097 { 1098 struct dentry *root; 1099 struct vfsmount *mnt; 1100 char *newargs; 1101 1102 newargs = setup_root_args(data); 1103 if (!newargs) 1104 return ERR_PTR(-ENOMEM); 1105 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1106 newargs); 1107 kfree(newargs); 1108 if (IS_ERR(mnt)) 1109 return ERR_CAST(mnt); 1110 1111 root = mount_subtree(mnt, subvol_name); 1112 1113 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1114 struct super_block *s = root->d_sb; 1115 dput(root); 1116 root = ERR_PTR(-EINVAL); 1117 deactivate_locked_super(s); 1118 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", 1119 subvol_name); 1120 } 1121 1122 return root; 1123 } 1124 1125 /* 1126 * Find a superblock for the given device / mount point. 1127 * 1128 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1129 * for multiple device setup. Make sure to keep it in sync. 1130 */ 1131 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1132 const char *device_name, void *data) 1133 { 1134 struct block_device *bdev = NULL; 1135 struct super_block *s; 1136 struct dentry *root; 1137 struct btrfs_fs_devices *fs_devices = NULL; 1138 struct btrfs_fs_info *fs_info = NULL; 1139 fmode_t mode = FMODE_READ; 1140 char *subvol_name = NULL; 1141 u64 subvol_objectid = 0; 1142 int error = 0; 1143 1144 if (!(flags & MS_RDONLY)) 1145 mode |= FMODE_WRITE; 1146 1147 error = btrfs_parse_early_options(data, mode, fs_type, 1148 &subvol_name, &subvol_objectid, 1149 &fs_devices); 1150 if (error) { 1151 kfree(subvol_name); 1152 return ERR_PTR(error); 1153 } 1154 1155 if (subvol_name) { 1156 root = mount_subvol(subvol_name, flags, device_name, data); 1157 kfree(subvol_name); 1158 return root; 1159 } 1160 1161 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1162 if (error) 1163 return ERR_PTR(error); 1164 1165 /* 1166 * Setup a dummy root and fs_info for test/set super. This is because 1167 * we don't actually fill this stuff out until open_ctree, but we need 1168 * it for searching for existing supers, so this lets us do that and 1169 * then open_ctree will properly initialize everything later. 1170 */ 1171 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1172 if (!fs_info) 1173 return ERR_PTR(-ENOMEM); 1174 1175 fs_info->fs_devices = fs_devices; 1176 1177 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1178 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1179 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1180 error = -ENOMEM; 1181 goto error_fs_info; 1182 } 1183 1184 error = btrfs_open_devices(fs_devices, mode, fs_type); 1185 if (error) 1186 goto error_fs_info; 1187 1188 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1189 error = -EACCES; 1190 goto error_close_devices; 1191 } 1192 1193 bdev = fs_devices->latest_bdev; 1194 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1195 fs_info); 1196 if (IS_ERR(s)) { 1197 error = PTR_ERR(s); 1198 goto error_close_devices; 1199 } 1200 1201 if (s->s_root) { 1202 btrfs_close_devices(fs_devices); 1203 free_fs_info(fs_info); 1204 if ((flags ^ s->s_flags) & MS_RDONLY) 1205 error = -EBUSY; 1206 } else { 1207 char b[BDEVNAME_SIZE]; 1208 1209 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1210 btrfs_sb(s)->bdev_holder = fs_type; 1211 error = btrfs_fill_super(s, fs_devices, data, 1212 flags & MS_SILENT ? 1 : 0); 1213 } 1214 1215 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1216 if (IS_ERR(root)) 1217 deactivate_locked_super(s); 1218 1219 return root; 1220 1221 error_close_devices: 1222 btrfs_close_devices(fs_devices); 1223 error_fs_info: 1224 free_fs_info(fs_info); 1225 return ERR_PTR(error); 1226 } 1227 1228 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit) 1229 { 1230 spin_lock_irq(&workers->lock); 1231 workers->max_workers = new_limit; 1232 spin_unlock_irq(&workers->lock); 1233 } 1234 1235 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1236 int new_pool_size, int old_pool_size) 1237 { 1238 if (new_pool_size == old_pool_size) 1239 return; 1240 1241 fs_info->thread_pool_size = new_pool_size; 1242 1243 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n", 1244 old_pool_size, new_pool_size); 1245 1246 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size); 1247 btrfs_set_max_workers(&fs_info->workers, new_pool_size); 1248 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size); 1249 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size); 1250 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size); 1251 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size); 1252 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size); 1253 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size); 1254 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size); 1255 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size); 1256 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size); 1257 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size); 1258 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size); 1259 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers, 1260 new_pool_size); 1261 } 1262 1263 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1264 { 1265 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1266 } 1267 1268 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1269 unsigned long old_opts, int flags) 1270 { 1271 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1272 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1273 (flags & MS_RDONLY))) { 1274 /* wait for any defraggers to finish */ 1275 wait_event(fs_info->transaction_wait, 1276 (atomic_read(&fs_info->defrag_running) == 0)); 1277 if (flags & MS_RDONLY) 1278 sync_filesystem(fs_info->sb); 1279 } 1280 } 1281 1282 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1283 unsigned long old_opts) 1284 { 1285 /* 1286 * We need cleanup all defragable inodes if the autodefragment is 1287 * close or the fs is R/O. 1288 */ 1289 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1290 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1291 (fs_info->sb->s_flags & MS_RDONLY))) { 1292 btrfs_cleanup_defrag_inodes(fs_info); 1293 } 1294 1295 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1296 } 1297 1298 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1299 { 1300 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1301 struct btrfs_root *root = fs_info->tree_root; 1302 unsigned old_flags = sb->s_flags; 1303 unsigned long old_opts = fs_info->mount_opt; 1304 unsigned long old_compress_type = fs_info->compress_type; 1305 u64 old_max_inline = fs_info->max_inline; 1306 u64 old_alloc_start = fs_info->alloc_start; 1307 int old_thread_pool_size = fs_info->thread_pool_size; 1308 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1309 int ret; 1310 1311 btrfs_remount_prepare(fs_info); 1312 1313 ret = btrfs_parse_options(root, data); 1314 if (ret) { 1315 ret = -EINVAL; 1316 goto restore; 1317 } 1318 1319 btrfs_remount_begin(fs_info, old_opts, *flags); 1320 btrfs_resize_thread_pool(fs_info, 1321 fs_info->thread_pool_size, old_thread_pool_size); 1322 1323 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1324 goto out; 1325 1326 if (*flags & MS_RDONLY) { 1327 /* 1328 * this also happens on 'umount -rf' or on shutdown, when 1329 * the filesystem is busy. 1330 */ 1331 1332 /* wait for the uuid_scan task to finish */ 1333 down(&fs_info->uuid_tree_rescan_sem); 1334 /* avoid complains from lockdep et al. */ 1335 up(&fs_info->uuid_tree_rescan_sem); 1336 1337 sb->s_flags |= MS_RDONLY; 1338 1339 btrfs_dev_replace_suspend_for_unmount(fs_info); 1340 btrfs_scrub_cancel(fs_info); 1341 btrfs_pause_balance(fs_info); 1342 1343 ret = btrfs_commit_super(root); 1344 if (ret) 1345 goto restore; 1346 } else { 1347 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1348 btrfs_err(fs_info, 1349 "Remounting read-write after error is not allowed\n"); 1350 ret = -EINVAL; 1351 goto restore; 1352 } 1353 if (fs_info->fs_devices->rw_devices == 0) { 1354 ret = -EACCES; 1355 goto restore; 1356 } 1357 1358 if (fs_info->fs_devices->missing_devices > 1359 fs_info->num_tolerated_disk_barrier_failures && 1360 !(*flags & MS_RDONLY)) { 1361 printk(KERN_WARNING 1362 "Btrfs: too many missing devices, writeable remount is not allowed\n"); 1363 ret = -EACCES; 1364 goto restore; 1365 } 1366 1367 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1368 ret = -EINVAL; 1369 goto restore; 1370 } 1371 1372 ret = btrfs_cleanup_fs_roots(fs_info); 1373 if (ret) 1374 goto restore; 1375 1376 /* recover relocation */ 1377 ret = btrfs_recover_relocation(root); 1378 if (ret) 1379 goto restore; 1380 1381 ret = btrfs_resume_balance_async(fs_info); 1382 if (ret) 1383 goto restore; 1384 1385 ret = btrfs_resume_dev_replace_async(fs_info); 1386 if (ret) { 1387 pr_warn("btrfs: failed to resume dev_replace\n"); 1388 goto restore; 1389 } 1390 1391 if (!fs_info->uuid_root) { 1392 pr_info("btrfs: creating UUID tree\n"); 1393 ret = btrfs_create_uuid_tree(fs_info); 1394 if (ret) { 1395 pr_warn("btrfs: failed to create the uuid tree" 1396 "%d\n", ret); 1397 goto restore; 1398 } 1399 } 1400 sb->s_flags &= ~MS_RDONLY; 1401 } 1402 out: 1403 btrfs_remount_cleanup(fs_info, old_opts); 1404 return 0; 1405 1406 restore: 1407 /* We've hit an error - don't reset MS_RDONLY */ 1408 if (sb->s_flags & MS_RDONLY) 1409 old_flags |= MS_RDONLY; 1410 sb->s_flags = old_flags; 1411 fs_info->mount_opt = old_opts; 1412 fs_info->compress_type = old_compress_type; 1413 fs_info->max_inline = old_max_inline; 1414 mutex_lock(&fs_info->chunk_mutex); 1415 fs_info->alloc_start = old_alloc_start; 1416 mutex_unlock(&fs_info->chunk_mutex); 1417 btrfs_resize_thread_pool(fs_info, 1418 old_thread_pool_size, fs_info->thread_pool_size); 1419 fs_info->metadata_ratio = old_metadata_ratio; 1420 btrfs_remount_cleanup(fs_info, old_opts); 1421 return ret; 1422 } 1423 1424 /* Used to sort the devices by max_avail(descending sort) */ 1425 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1426 const void *dev_info2) 1427 { 1428 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1429 ((struct btrfs_device_info *)dev_info2)->max_avail) 1430 return -1; 1431 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1432 ((struct btrfs_device_info *)dev_info2)->max_avail) 1433 return 1; 1434 else 1435 return 0; 1436 } 1437 1438 /* 1439 * sort the devices by max_avail, in which max free extent size of each device 1440 * is stored.(Descending Sort) 1441 */ 1442 static inline void btrfs_descending_sort_devices( 1443 struct btrfs_device_info *devices, 1444 size_t nr_devices) 1445 { 1446 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1447 btrfs_cmp_device_free_bytes, NULL); 1448 } 1449 1450 /* 1451 * The helper to calc the free space on the devices that can be used to store 1452 * file data. 1453 */ 1454 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1455 { 1456 struct btrfs_fs_info *fs_info = root->fs_info; 1457 struct btrfs_device_info *devices_info; 1458 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1459 struct btrfs_device *device; 1460 u64 skip_space; 1461 u64 type; 1462 u64 avail_space; 1463 u64 used_space; 1464 u64 min_stripe_size; 1465 int min_stripes = 1, num_stripes = 1; 1466 int i = 0, nr_devices; 1467 int ret; 1468 1469 nr_devices = fs_info->fs_devices->open_devices; 1470 BUG_ON(!nr_devices); 1471 1472 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1473 GFP_NOFS); 1474 if (!devices_info) 1475 return -ENOMEM; 1476 1477 /* calc min stripe number for data space alloction */ 1478 type = btrfs_get_alloc_profile(root, 1); 1479 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1480 min_stripes = 2; 1481 num_stripes = nr_devices; 1482 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1483 min_stripes = 2; 1484 num_stripes = 2; 1485 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1486 min_stripes = 4; 1487 num_stripes = 4; 1488 } 1489 1490 if (type & BTRFS_BLOCK_GROUP_DUP) 1491 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1492 else 1493 min_stripe_size = BTRFS_STRIPE_LEN; 1494 1495 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1496 if (!device->in_fs_metadata || !device->bdev || 1497 device->is_tgtdev_for_dev_replace) 1498 continue; 1499 1500 avail_space = device->total_bytes - device->bytes_used; 1501 1502 /* align with stripe_len */ 1503 do_div(avail_space, BTRFS_STRIPE_LEN); 1504 avail_space *= BTRFS_STRIPE_LEN; 1505 1506 /* 1507 * In order to avoid overwritting the superblock on the drive, 1508 * btrfs starts at an offset of at least 1MB when doing chunk 1509 * allocation. 1510 */ 1511 skip_space = 1024 * 1024; 1512 1513 /* user can set the offset in fs_info->alloc_start. */ 1514 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1515 device->total_bytes) 1516 skip_space = max(fs_info->alloc_start, skip_space); 1517 1518 /* 1519 * btrfs can not use the free space in [0, skip_space - 1], 1520 * we must subtract it from the total. In order to implement 1521 * it, we account the used space in this range first. 1522 */ 1523 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1524 &used_space); 1525 if (ret) { 1526 kfree(devices_info); 1527 return ret; 1528 } 1529 1530 /* calc the free space in [0, skip_space - 1] */ 1531 skip_space -= used_space; 1532 1533 /* 1534 * we can use the free space in [0, skip_space - 1], subtract 1535 * it from the total. 1536 */ 1537 if (avail_space && avail_space >= skip_space) 1538 avail_space -= skip_space; 1539 else 1540 avail_space = 0; 1541 1542 if (avail_space < min_stripe_size) 1543 continue; 1544 1545 devices_info[i].dev = device; 1546 devices_info[i].max_avail = avail_space; 1547 1548 i++; 1549 } 1550 1551 nr_devices = i; 1552 1553 btrfs_descending_sort_devices(devices_info, nr_devices); 1554 1555 i = nr_devices - 1; 1556 avail_space = 0; 1557 while (nr_devices >= min_stripes) { 1558 if (num_stripes > nr_devices) 1559 num_stripes = nr_devices; 1560 1561 if (devices_info[i].max_avail >= min_stripe_size) { 1562 int j; 1563 u64 alloc_size; 1564 1565 avail_space += devices_info[i].max_avail * num_stripes; 1566 alloc_size = devices_info[i].max_avail; 1567 for (j = i + 1 - num_stripes; j <= i; j++) 1568 devices_info[j].max_avail -= alloc_size; 1569 } 1570 i--; 1571 nr_devices--; 1572 } 1573 1574 kfree(devices_info); 1575 *free_bytes = avail_space; 1576 return 0; 1577 } 1578 1579 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1580 { 1581 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1582 struct btrfs_super_block *disk_super = fs_info->super_copy; 1583 struct list_head *head = &fs_info->space_info; 1584 struct btrfs_space_info *found; 1585 u64 total_used = 0; 1586 u64 total_free_data = 0; 1587 int bits = dentry->d_sb->s_blocksize_bits; 1588 __be32 *fsid = (__be32 *)fs_info->fsid; 1589 int ret; 1590 1591 /* holding chunk_muext to avoid allocating new chunks */ 1592 mutex_lock(&fs_info->chunk_mutex); 1593 rcu_read_lock(); 1594 list_for_each_entry_rcu(found, head, list) { 1595 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1596 total_free_data += found->disk_total - found->disk_used; 1597 total_free_data -= 1598 btrfs_account_ro_block_groups_free_space(found); 1599 } 1600 1601 total_used += found->disk_used; 1602 } 1603 rcu_read_unlock(); 1604 1605 buf->f_namelen = BTRFS_NAME_LEN; 1606 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1607 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1608 buf->f_bsize = dentry->d_sb->s_blocksize; 1609 buf->f_type = BTRFS_SUPER_MAGIC; 1610 buf->f_bavail = total_free_data; 1611 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1612 if (ret) { 1613 mutex_unlock(&fs_info->chunk_mutex); 1614 return ret; 1615 } 1616 buf->f_bavail += total_free_data; 1617 buf->f_bavail = buf->f_bavail >> bits; 1618 mutex_unlock(&fs_info->chunk_mutex); 1619 1620 /* We treat it as constant endianness (it doesn't matter _which_) 1621 because we want the fsid to come out the same whether mounted 1622 on a big-endian or little-endian host */ 1623 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1624 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1625 /* Mask in the root object ID too, to disambiguate subvols */ 1626 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1627 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1628 1629 return 0; 1630 } 1631 1632 static void btrfs_kill_super(struct super_block *sb) 1633 { 1634 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1635 kill_anon_super(sb); 1636 free_fs_info(fs_info); 1637 } 1638 1639 static struct file_system_type btrfs_fs_type = { 1640 .owner = THIS_MODULE, 1641 .name = "btrfs", 1642 .mount = btrfs_mount, 1643 .kill_sb = btrfs_kill_super, 1644 .fs_flags = FS_REQUIRES_DEV, 1645 }; 1646 MODULE_ALIAS_FS("btrfs"); 1647 1648 /* 1649 * used by btrfsctl to scan devices when no FS is mounted 1650 */ 1651 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1652 unsigned long arg) 1653 { 1654 struct btrfs_ioctl_vol_args *vol; 1655 struct btrfs_fs_devices *fs_devices; 1656 int ret = -ENOTTY; 1657 1658 if (!capable(CAP_SYS_ADMIN)) 1659 return -EPERM; 1660 1661 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1662 if (IS_ERR(vol)) 1663 return PTR_ERR(vol); 1664 1665 switch (cmd) { 1666 case BTRFS_IOC_SCAN_DEV: 1667 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1668 &btrfs_fs_type, &fs_devices); 1669 break; 1670 case BTRFS_IOC_DEVICES_READY: 1671 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1672 &btrfs_fs_type, &fs_devices); 1673 if (ret) 1674 break; 1675 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1676 break; 1677 } 1678 1679 kfree(vol); 1680 return ret; 1681 } 1682 1683 static int btrfs_freeze(struct super_block *sb) 1684 { 1685 struct btrfs_trans_handle *trans; 1686 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1687 1688 trans = btrfs_attach_transaction_barrier(root); 1689 if (IS_ERR(trans)) { 1690 /* no transaction, don't bother */ 1691 if (PTR_ERR(trans) == -ENOENT) 1692 return 0; 1693 return PTR_ERR(trans); 1694 } 1695 return btrfs_commit_transaction(trans, root); 1696 } 1697 1698 static int btrfs_unfreeze(struct super_block *sb) 1699 { 1700 return 0; 1701 } 1702 1703 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1704 { 1705 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1706 struct btrfs_fs_devices *cur_devices; 1707 struct btrfs_device *dev, *first_dev = NULL; 1708 struct list_head *head; 1709 struct rcu_string *name; 1710 1711 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1712 cur_devices = fs_info->fs_devices; 1713 while (cur_devices) { 1714 head = &cur_devices->devices; 1715 list_for_each_entry(dev, head, dev_list) { 1716 if (dev->missing) 1717 continue; 1718 if (!first_dev || dev->devid < first_dev->devid) 1719 first_dev = dev; 1720 } 1721 cur_devices = cur_devices->seed; 1722 } 1723 1724 if (first_dev) { 1725 rcu_read_lock(); 1726 name = rcu_dereference(first_dev->name); 1727 seq_escape(m, name->str, " \t\n\\"); 1728 rcu_read_unlock(); 1729 } else { 1730 WARN_ON(1); 1731 } 1732 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1733 return 0; 1734 } 1735 1736 static const struct super_operations btrfs_super_ops = { 1737 .drop_inode = btrfs_drop_inode, 1738 .evict_inode = btrfs_evict_inode, 1739 .put_super = btrfs_put_super, 1740 .sync_fs = btrfs_sync_fs, 1741 .show_options = btrfs_show_options, 1742 .show_devname = btrfs_show_devname, 1743 .write_inode = btrfs_write_inode, 1744 .alloc_inode = btrfs_alloc_inode, 1745 .destroy_inode = btrfs_destroy_inode, 1746 .statfs = btrfs_statfs, 1747 .remount_fs = btrfs_remount, 1748 .freeze_fs = btrfs_freeze, 1749 .unfreeze_fs = btrfs_unfreeze, 1750 }; 1751 1752 static const struct file_operations btrfs_ctl_fops = { 1753 .unlocked_ioctl = btrfs_control_ioctl, 1754 .compat_ioctl = btrfs_control_ioctl, 1755 .owner = THIS_MODULE, 1756 .llseek = noop_llseek, 1757 }; 1758 1759 static struct miscdevice btrfs_misc = { 1760 .minor = BTRFS_MINOR, 1761 .name = "btrfs-control", 1762 .fops = &btrfs_ctl_fops 1763 }; 1764 1765 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1766 MODULE_ALIAS("devname:btrfs-control"); 1767 1768 static int btrfs_interface_init(void) 1769 { 1770 return misc_register(&btrfs_misc); 1771 } 1772 1773 static void btrfs_interface_exit(void) 1774 { 1775 if (misc_deregister(&btrfs_misc) < 0) 1776 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n"); 1777 } 1778 1779 static void btrfs_print_info(void) 1780 { 1781 printk(KERN_INFO "Btrfs loaded" 1782 #ifdef CONFIG_BTRFS_DEBUG 1783 ", debug=on" 1784 #endif 1785 #ifdef CONFIG_BTRFS_ASSERT 1786 ", assert=on" 1787 #endif 1788 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1789 ", integrity-checker=on" 1790 #endif 1791 "\n"); 1792 } 1793 1794 static int btrfs_run_sanity_tests(void) 1795 { 1796 int ret; 1797 1798 ret = btrfs_init_test_fs(); 1799 if (ret) 1800 return ret; 1801 1802 ret = btrfs_test_free_space_cache(); 1803 if (ret) 1804 goto out; 1805 ret = btrfs_test_extent_buffer_operations(); 1806 if (ret) 1807 goto out; 1808 ret = btrfs_test_extent_io(); 1809 if (ret) 1810 goto out; 1811 ret = btrfs_test_inodes(); 1812 out: 1813 btrfs_destroy_test_fs(); 1814 return ret; 1815 } 1816 1817 static int __init init_btrfs_fs(void) 1818 { 1819 int err; 1820 1821 err = btrfs_init_sysfs(); 1822 if (err) 1823 return err; 1824 1825 btrfs_init_compress(); 1826 1827 err = btrfs_init_cachep(); 1828 if (err) 1829 goto free_compress; 1830 1831 err = extent_io_init(); 1832 if (err) 1833 goto free_cachep; 1834 1835 err = extent_map_init(); 1836 if (err) 1837 goto free_extent_io; 1838 1839 err = ordered_data_init(); 1840 if (err) 1841 goto free_extent_map; 1842 1843 err = btrfs_delayed_inode_init(); 1844 if (err) 1845 goto free_ordered_data; 1846 1847 err = btrfs_auto_defrag_init(); 1848 if (err) 1849 goto free_delayed_inode; 1850 1851 err = btrfs_delayed_ref_init(); 1852 if (err) 1853 goto free_auto_defrag; 1854 1855 err = btrfs_prelim_ref_init(); 1856 if (err) 1857 goto free_prelim_ref; 1858 1859 err = btrfs_interface_init(); 1860 if (err) 1861 goto free_delayed_ref; 1862 1863 btrfs_init_lockdep(); 1864 1865 btrfs_print_info(); 1866 1867 err = btrfs_run_sanity_tests(); 1868 if (err) 1869 goto unregister_ioctl; 1870 1871 err = register_filesystem(&btrfs_fs_type); 1872 if (err) 1873 goto unregister_ioctl; 1874 1875 return 0; 1876 1877 unregister_ioctl: 1878 btrfs_interface_exit(); 1879 free_prelim_ref: 1880 btrfs_prelim_ref_exit(); 1881 free_delayed_ref: 1882 btrfs_delayed_ref_exit(); 1883 free_auto_defrag: 1884 btrfs_auto_defrag_exit(); 1885 free_delayed_inode: 1886 btrfs_delayed_inode_exit(); 1887 free_ordered_data: 1888 ordered_data_exit(); 1889 free_extent_map: 1890 extent_map_exit(); 1891 free_extent_io: 1892 extent_io_exit(); 1893 free_cachep: 1894 btrfs_destroy_cachep(); 1895 free_compress: 1896 btrfs_exit_compress(); 1897 btrfs_exit_sysfs(); 1898 return err; 1899 } 1900 1901 static void __exit exit_btrfs_fs(void) 1902 { 1903 btrfs_destroy_cachep(); 1904 btrfs_delayed_ref_exit(); 1905 btrfs_auto_defrag_exit(); 1906 btrfs_delayed_inode_exit(); 1907 btrfs_prelim_ref_exit(); 1908 ordered_data_exit(); 1909 extent_map_exit(); 1910 extent_io_exit(); 1911 btrfs_interface_exit(); 1912 unregister_filesystem(&btrfs_fs_type); 1913 btrfs_exit_sysfs(); 1914 btrfs_cleanup_fs_uuids(); 1915 btrfs_exit_compress(); 1916 } 1917 1918 module_init(init_btrfs_fs) 1919 module_exit(exit_btrfs_fs) 1920 1921 MODULE_LICENSE("GPL"); 1922