xref: /openbmc/linux/fs/btrfs/super.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67 
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69 
70 /*
71  * Generally the error codes correspond to their respective errors, but there
72  * are a few special cases.
73  *
74  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
75  *          instance will return EUCLEAN if any of the blocks are corrupted in
76  *          a way that is problematic.  We want to reserve EUCLEAN for these
77  *          sort of corruptions.
78  *
79  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80  *        need to use EROFS for this case.  We will have no idea of the
81  *        original failure, that will have been reported at the time we tripped
82  *        over the error.  Each subsequent error that doesn't have any context
83  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84  */
85 const char * __attribute_const__ btrfs_decode_error(int errno)
86 {
87 	char *errstr = "unknown";
88 
89 	switch (errno) {
90 	case -ENOENT:		/* -2 */
91 		errstr = "No such entry";
92 		break;
93 	case -EIO:		/* -5 */
94 		errstr = "IO failure";
95 		break;
96 	case -ENOMEM:		/* -12*/
97 		errstr = "Out of memory";
98 		break;
99 	case -EEXIST:		/* -17 */
100 		errstr = "Object already exists";
101 		break;
102 	case -ENOSPC:		/* -28 */
103 		errstr = "No space left";
104 		break;
105 	case -EROFS:		/* -30 */
106 		errstr = "Readonly filesystem";
107 		break;
108 	case -EOPNOTSUPP:	/* -95 */
109 		errstr = "Operation not supported";
110 		break;
111 	case -EUCLEAN:		/* -117 */
112 		errstr = "Filesystem corrupted";
113 		break;
114 	case -EDQUOT:		/* -122 */
115 		errstr = "Quota exceeded";
116 		break;
117 	}
118 
119 	return errstr;
120 }
121 
122 /*
123  * __btrfs_handle_fs_error decodes expected errors from the caller and
124  * invokes the appropriate error response.
125  */
126 __cold
127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128 		       unsigned int line, int errno, const char *fmt, ...)
129 {
130 	struct super_block *sb = fs_info->sb;
131 #ifdef CONFIG_PRINTK
132 	const char *errstr;
133 #endif
134 
135 	/*
136 	 * Special case: if the error is EROFS, and we're already
137 	 * under SB_RDONLY, then it is safe here.
138 	 */
139 	if (errno == -EROFS && sb_rdonly(sb))
140   		return;
141 
142 #ifdef CONFIG_PRINTK
143 	errstr = btrfs_decode_error(errno);
144 	if (fmt) {
145 		struct va_format vaf;
146 		va_list args;
147 
148 		va_start(args, fmt);
149 		vaf.fmt = fmt;
150 		vaf.va = &args;
151 
152 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153 			sb->s_id, function, line, errno, errstr, &vaf);
154 		va_end(args);
155 	} else {
156 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157 			sb->s_id, function, line, errno, errstr);
158 	}
159 #endif
160 
161 	/*
162 	 * Today we only save the error info to memory.  Long term we'll
163 	 * also send it down to the disk
164 	 */
165 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166 
167 	/* Don't go through full error handling during mount */
168 	if (!(sb->s_flags & SB_BORN))
169 		return;
170 
171 	if (sb_rdonly(sb))
172 		return;
173 
174 	btrfs_discard_stop(fs_info);
175 
176 	/* btrfs handle error by forcing the filesystem readonly */
177 	btrfs_set_sb_rdonly(sb);
178 	btrfs_info(fs_info, "forced readonly");
179 	/*
180 	 * Note that a running device replace operation is not canceled here
181 	 * although there is no way to update the progress. It would add the
182 	 * risk of a deadlock, therefore the canceling is omitted. The only
183 	 * penalty is that some I/O remains active until the procedure
184 	 * completes. The next time when the filesystem is mounted writable
185 	 * again, the device replace operation continues.
186 	 */
187 }
188 
189 #ifdef CONFIG_PRINTK
190 static const char * const logtypes[] = {
191 	"emergency",
192 	"alert",
193 	"critical",
194 	"error",
195 	"warning",
196 	"notice",
197 	"info",
198 	"debug",
199 };
200 
201 
202 /*
203  * Use one ratelimit state per log level so that a flood of less important
204  * messages doesn't cause more important ones to be dropped.
205  */
206 static struct ratelimit_state printk_limits[] = {
207 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215 };
216 
217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218 {
219 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220 	struct va_format vaf;
221 	va_list args;
222 	int kern_level;
223 	const char *type = logtypes[4];
224 	struct ratelimit_state *ratelimit = &printk_limits[4];
225 
226 	va_start(args, fmt);
227 
228 	while ((kern_level = printk_get_level(fmt)) != 0) {
229 		size_t size = printk_skip_level(fmt) - fmt;
230 
231 		if (kern_level >= '0' && kern_level <= '7') {
232 			memcpy(lvl, fmt,  size);
233 			lvl[size] = '\0';
234 			type = logtypes[kern_level - '0'];
235 			ratelimit = &printk_limits[kern_level - '0'];
236 		}
237 		fmt += size;
238 	}
239 
240 	vaf.fmt = fmt;
241 	vaf.va = &args;
242 
243 	if (__ratelimit(ratelimit)) {
244 		if (fs_info)
245 			printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
246 				fs_info->sb->s_id, &vaf);
247 		else
248 			printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
249 	}
250 
251 	va_end(args);
252 }
253 #endif
254 
255 /*
256  * We only mark the transaction aborted and then set the file system read-only.
257  * This will prevent new transactions from starting or trying to join this
258  * one.
259  *
260  * This means that error recovery at the call site is limited to freeing
261  * any local memory allocations and passing the error code up without
262  * further cleanup. The transaction should complete as it normally would
263  * in the call path but will return -EIO.
264  *
265  * We'll complete the cleanup in btrfs_end_transaction and
266  * btrfs_commit_transaction.
267  */
268 __cold
269 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
270 			       const char *function,
271 			       unsigned int line, int errno)
272 {
273 	struct btrfs_fs_info *fs_info = trans->fs_info;
274 
275 	WRITE_ONCE(trans->aborted, errno);
276 	/* Nothing used. The other threads that have joined this
277 	 * transaction may be able to continue. */
278 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
279 		const char *errstr;
280 
281 		errstr = btrfs_decode_error(errno);
282 		btrfs_warn(fs_info,
283 		           "%s:%d: Aborting unused transaction(%s).",
284 		           function, line, errstr);
285 		return;
286 	}
287 	WRITE_ONCE(trans->transaction->aborted, errno);
288 	/* Wake up anybody who may be waiting on this transaction */
289 	wake_up(&fs_info->transaction_wait);
290 	wake_up(&fs_info->transaction_blocked_wait);
291 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
292 }
293 /*
294  * __btrfs_panic decodes unexpected, fatal errors from the caller,
295  * issues an alert, and either panics or BUGs, depending on mount options.
296  */
297 __cold
298 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
299 		   unsigned int line, int errno, const char *fmt, ...)
300 {
301 	char *s_id = "<unknown>";
302 	const char *errstr;
303 	struct va_format vaf = { .fmt = fmt };
304 	va_list args;
305 
306 	if (fs_info)
307 		s_id = fs_info->sb->s_id;
308 
309 	va_start(args, fmt);
310 	vaf.va = &args;
311 
312 	errstr = btrfs_decode_error(errno);
313 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
314 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
315 			s_id, function, line, &vaf, errno, errstr);
316 
317 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
318 		   function, line, &vaf, errno, errstr);
319 	va_end(args);
320 	/* Caller calls BUG() */
321 }
322 
323 static void btrfs_put_super(struct super_block *sb)
324 {
325 	close_ctree(btrfs_sb(sb));
326 }
327 
328 enum {
329 	Opt_acl, Opt_noacl,
330 	Opt_clear_cache,
331 	Opt_commit_interval,
332 	Opt_compress,
333 	Opt_compress_force,
334 	Opt_compress_force_type,
335 	Opt_compress_type,
336 	Opt_degraded,
337 	Opt_device,
338 	Opt_fatal_errors,
339 	Opt_flushoncommit, Opt_noflushoncommit,
340 	Opt_max_inline,
341 	Opt_barrier, Opt_nobarrier,
342 	Opt_datacow, Opt_nodatacow,
343 	Opt_datasum, Opt_nodatasum,
344 	Opt_defrag, Opt_nodefrag,
345 	Opt_discard, Opt_nodiscard,
346 	Opt_discard_mode,
347 	Opt_norecovery,
348 	Opt_ratio,
349 	Opt_rescan_uuid_tree,
350 	Opt_skip_balance,
351 	Opt_space_cache, Opt_no_space_cache,
352 	Opt_space_cache_version,
353 	Opt_ssd, Opt_nossd,
354 	Opt_ssd_spread, Opt_nossd_spread,
355 	Opt_subvol,
356 	Opt_subvol_empty,
357 	Opt_subvolid,
358 	Opt_thread_pool,
359 	Opt_treelog, Opt_notreelog,
360 	Opt_user_subvol_rm_allowed,
361 
362 	/* Rescue options */
363 	Opt_rescue,
364 	Opt_usebackuproot,
365 	Opt_nologreplay,
366 	Opt_ignorebadroots,
367 	Opt_ignoredatacsums,
368 	Opt_rescue_all,
369 
370 	/* Deprecated options */
371 	Opt_recovery,
372 	Opt_inode_cache, Opt_noinode_cache,
373 
374 	/* Debugging options */
375 	Opt_check_integrity,
376 	Opt_check_integrity_including_extent_data,
377 	Opt_check_integrity_print_mask,
378 	Opt_enospc_debug, Opt_noenospc_debug,
379 #ifdef CONFIG_BTRFS_DEBUG
380 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
381 #endif
382 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
383 	Opt_ref_verify,
384 #endif
385 	Opt_err,
386 };
387 
388 static const match_table_t tokens = {
389 	{Opt_acl, "acl"},
390 	{Opt_noacl, "noacl"},
391 	{Opt_clear_cache, "clear_cache"},
392 	{Opt_commit_interval, "commit=%u"},
393 	{Opt_compress, "compress"},
394 	{Opt_compress_type, "compress=%s"},
395 	{Opt_compress_force, "compress-force"},
396 	{Opt_compress_force_type, "compress-force=%s"},
397 	{Opt_degraded, "degraded"},
398 	{Opt_device, "device=%s"},
399 	{Opt_fatal_errors, "fatal_errors=%s"},
400 	{Opt_flushoncommit, "flushoncommit"},
401 	{Opt_noflushoncommit, "noflushoncommit"},
402 	{Opt_inode_cache, "inode_cache"},
403 	{Opt_noinode_cache, "noinode_cache"},
404 	{Opt_max_inline, "max_inline=%s"},
405 	{Opt_barrier, "barrier"},
406 	{Opt_nobarrier, "nobarrier"},
407 	{Opt_datacow, "datacow"},
408 	{Opt_nodatacow, "nodatacow"},
409 	{Opt_datasum, "datasum"},
410 	{Opt_nodatasum, "nodatasum"},
411 	{Opt_defrag, "autodefrag"},
412 	{Opt_nodefrag, "noautodefrag"},
413 	{Opt_discard, "discard"},
414 	{Opt_discard_mode, "discard=%s"},
415 	{Opt_nodiscard, "nodiscard"},
416 	{Opt_norecovery, "norecovery"},
417 	{Opt_ratio, "metadata_ratio=%u"},
418 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
419 	{Opt_skip_balance, "skip_balance"},
420 	{Opt_space_cache, "space_cache"},
421 	{Opt_no_space_cache, "nospace_cache"},
422 	{Opt_space_cache_version, "space_cache=%s"},
423 	{Opt_ssd, "ssd"},
424 	{Opt_nossd, "nossd"},
425 	{Opt_ssd_spread, "ssd_spread"},
426 	{Opt_nossd_spread, "nossd_spread"},
427 	{Opt_subvol, "subvol=%s"},
428 	{Opt_subvol_empty, "subvol="},
429 	{Opt_subvolid, "subvolid=%s"},
430 	{Opt_thread_pool, "thread_pool=%u"},
431 	{Opt_treelog, "treelog"},
432 	{Opt_notreelog, "notreelog"},
433 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
434 
435 	/* Rescue options */
436 	{Opt_rescue, "rescue=%s"},
437 	/* Deprecated, with alias rescue=nologreplay */
438 	{Opt_nologreplay, "nologreplay"},
439 	/* Deprecated, with alias rescue=usebackuproot */
440 	{Opt_usebackuproot, "usebackuproot"},
441 
442 	/* Deprecated options */
443 	{Opt_recovery, "recovery"},
444 
445 	/* Debugging options */
446 	{Opt_check_integrity, "check_int"},
447 	{Opt_check_integrity_including_extent_data, "check_int_data"},
448 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
449 	{Opt_enospc_debug, "enospc_debug"},
450 	{Opt_noenospc_debug, "noenospc_debug"},
451 #ifdef CONFIG_BTRFS_DEBUG
452 	{Opt_fragment_data, "fragment=data"},
453 	{Opt_fragment_metadata, "fragment=metadata"},
454 	{Opt_fragment_all, "fragment=all"},
455 #endif
456 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
457 	{Opt_ref_verify, "ref_verify"},
458 #endif
459 	{Opt_err, NULL},
460 };
461 
462 static const match_table_t rescue_tokens = {
463 	{Opt_usebackuproot, "usebackuproot"},
464 	{Opt_nologreplay, "nologreplay"},
465 	{Opt_ignorebadroots, "ignorebadroots"},
466 	{Opt_ignorebadroots, "ibadroots"},
467 	{Opt_ignoredatacsums, "ignoredatacsums"},
468 	{Opt_ignoredatacsums, "idatacsums"},
469 	{Opt_rescue_all, "all"},
470 	{Opt_err, NULL},
471 };
472 
473 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
474 			    const char *opt_name)
475 {
476 	if (fs_info->mount_opt & opt) {
477 		btrfs_err(fs_info, "%s must be used with ro mount option",
478 			  opt_name);
479 		return true;
480 	}
481 	return false;
482 }
483 
484 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
485 {
486 	char *opts;
487 	char *orig;
488 	char *p;
489 	substring_t args[MAX_OPT_ARGS];
490 	int ret = 0;
491 
492 	opts = kstrdup(options, GFP_KERNEL);
493 	if (!opts)
494 		return -ENOMEM;
495 	orig = opts;
496 
497 	while ((p = strsep(&opts, ":")) != NULL) {
498 		int token;
499 
500 		if (!*p)
501 			continue;
502 		token = match_token(p, rescue_tokens, args);
503 		switch (token){
504 		case Opt_usebackuproot:
505 			btrfs_info(info,
506 				   "trying to use backup root at mount time");
507 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
508 			break;
509 		case Opt_nologreplay:
510 			btrfs_set_and_info(info, NOLOGREPLAY,
511 					   "disabling log replay at mount time");
512 			break;
513 		case Opt_ignorebadroots:
514 			btrfs_set_and_info(info, IGNOREBADROOTS,
515 					   "ignoring bad roots");
516 			break;
517 		case Opt_ignoredatacsums:
518 			btrfs_set_and_info(info, IGNOREDATACSUMS,
519 					   "ignoring data csums");
520 			break;
521 		case Opt_rescue_all:
522 			btrfs_info(info, "enabling all of the rescue options");
523 			btrfs_set_and_info(info, IGNOREDATACSUMS,
524 					   "ignoring data csums");
525 			btrfs_set_and_info(info, IGNOREBADROOTS,
526 					   "ignoring bad roots");
527 			btrfs_set_and_info(info, NOLOGREPLAY,
528 					   "disabling log replay at mount time");
529 			break;
530 		case Opt_err:
531 			btrfs_info(info, "unrecognized rescue option '%s'", p);
532 			ret = -EINVAL;
533 			goto out;
534 		default:
535 			break;
536 		}
537 
538 	}
539 out:
540 	kfree(orig);
541 	return ret;
542 }
543 
544 /*
545  * Regular mount options parser.  Everything that is needed only when
546  * reading in a new superblock is parsed here.
547  * XXX JDM: This needs to be cleaned up for remount.
548  */
549 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
550 			unsigned long new_flags)
551 {
552 	substring_t args[MAX_OPT_ARGS];
553 	char *p, *num;
554 	int intarg;
555 	int ret = 0;
556 	char *compress_type;
557 	bool compress_force = false;
558 	enum btrfs_compression_type saved_compress_type;
559 	int saved_compress_level;
560 	bool saved_compress_force;
561 	int no_compress = 0;
562 
563 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
564 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
565 	else if (btrfs_free_space_cache_v1_active(info)) {
566 		if (btrfs_is_zoned(info)) {
567 			btrfs_info(info,
568 			"zoned: clearing existing space cache");
569 			btrfs_set_super_cache_generation(info->super_copy, 0);
570 		} else {
571 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
572 		}
573 	}
574 
575 	/*
576 	 * Even the options are empty, we still need to do extra check
577 	 * against new flags
578 	 */
579 	if (!options)
580 		goto check;
581 
582 	while ((p = strsep(&options, ",")) != NULL) {
583 		int token;
584 		if (!*p)
585 			continue;
586 
587 		token = match_token(p, tokens, args);
588 		switch (token) {
589 		case Opt_degraded:
590 			btrfs_info(info, "allowing degraded mounts");
591 			btrfs_set_opt(info->mount_opt, DEGRADED);
592 			break;
593 		case Opt_subvol:
594 		case Opt_subvol_empty:
595 		case Opt_subvolid:
596 		case Opt_device:
597 			/*
598 			 * These are parsed by btrfs_parse_subvol_options or
599 			 * btrfs_parse_device_options and can be ignored here.
600 			 */
601 			break;
602 		case Opt_nodatasum:
603 			btrfs_set_and_info(info, NODATASUM,
604 					   "setting nodatasum");
605 			break;
606 		case Opt_datasum:
607 			if (btrfs_test_opt(info, NODATASUM)) {
608 				if (btrfs_test_opt(info, NODATACOW))
609 					btrfs_info(info,
610 						   "setting datasum, datacow enabled");
611 				else
612 					btrfs_info(info, "setting datasum");
613 			}
614 			btrfs_clear_opt(info->mount_opt, NODATACOW);
615 			btrfs_clear_opt(info->mount_opt, NODATASUM);
616 			break;
617 		case Opt_nodatacow:
618 			if (!btrfs_test_opt(info, NODATACOW)) {
619 				if (!btrfs_test_opt(info, COMPRESS) ||
620 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
621 					btrfs_info(info,
622 						   "setting nodatacow, compression disabled");
623 				} else {
624 					btrfs_info(info, "setting nodatacow");
625 				}
626 			}
627 			btrfs_clear_opt(info->mount_opt, COMPRESS);
628 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
629 			btrfs_set_opt(info->mount_opt, NODATACOW);
630 			btrfs_set_opt(info->mount_opt, NODATASUM);
631 			break;
632 		case Opt_datacow:
633 			btrfs_clear_and_info(info, NODATACOW,
634 					     "setting datacow");
635 			break;
636 		case Opt_compress_force:
637 		case Opt_compress_force_type:
638 			compress_force = true;
639 			fallthrough;
640 		case Opt_compress:
641 		case Opt_compress_type:
642 			saved_compress_type = btrfs_test_opt(info,
643 							     COMPRESS) ?
644 				info->compress_type : BTRFS_COMPRESS_NONE;
645 			saved_compress_force =
646 				btrfs_test_opt(info, FORCE_COMPRESS);
647 			saved_compress_level = info->compress_level;
648 			if (token == Opt_compress ||
649 			    token == Opt_compress_force ||
650 			    strncmp(args[0].from, "zlib", 4) == 0) {
651 				compress_type = "zlib";
652 
653 				info->compress_type = BTRFS_COMPRESS_ZLIB;
654 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
655 				/*
656 				 * args[0] contains uninitialized data since
657 				 * for these tokens we don't expect any
658 				 * parameter.
659 				 */
660 				if (token != Opt_compress &&
661 				    token != Opt_compress_force)
662 					info->compress_level =
663 					  btrfs_compress_str2level(
664 							BTRFS_COMPRESS_ZLIB,
665 							args[0].from + 4);
666 				btrfs_set_opt(info->mount_opt, COMPRESS);
667 				btrfs_clear_opt(info->mount_opt, NODATACOW);
668 				btrfs_clear_opt(info->mount_opt, NODATASUM);
669 				no_compress = 0;
670 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
671 				compress_type = "lzo";
672 				info->compress_type = BTRFS_COMPRESS_LZO;
673 				info->compress_level = 0;
674 				btrfs_set_opt(info->mount_opt, COMPRESS);
675 				btrfs_clear_opt(info->mount_opt, NODATACOW);
676 				btrfs_clear_opt(info->mount_opt, NODATASUM);
677 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
678 				no_compress = 0;
679 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
680 				compress_type = "zstd";
681 				info->compress_type = BTRFS_COMPRESS_ZSTD;
682 				info->compress_level =
683 					btrfs_compress_str2level(
684 							 BTRFS_COMPRESS_ZSTD,
685 							 args[0].from + 4);
686 				btrfs_set_opt(info->mount_opt, COMPRESS);
687 				btrfs_clear_opt(info->mount_opt, NODATACOW);
688 				btrfs_clear_opt(info->mount_opt, NODATASUM);
689 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
690 				no_compress = 0;
691 			} else if (strncmp(args[0].from, "no", 2) == 0) {
692 				compress_type = "no";
693 				info->compress_level = 0;
694 				info->compress_type = 0;
695 				btrfs_clear_opt(info->mount_opt, COMPRESS);
696 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
697 				compress_force = false;
698 				no_compress++;
699 			} else {
700 				ret = -EINVAL;
701 				goto out;
702 			}
703 
704 			if (compress_force) {
705 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
706 			} else {
707 				/*
708 				 * If we remount from compress-force=xxx to
709 				 * compress=xxx, we need clear FORCE_COMPRESS
710 				 * flag, otherwise, there is no way for users
711 				 * to disable forcible compression separately.
712 				 */
713 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
714 			}
715 			if (no_compress == 1) {
716 				btrfs_info(info, "use no compression");
717 			} else if ((info->compress_type != saved_compress_type) ||
718 				   (compress_force != saved_compress_force) ||
719 				   (info->compress_level != saved_compress_level)) {
720 				btrfs_info(info, "%s %s compression, level %d",
721 					   (compress_force) ? "force" : "use",
722 					   compress_type, info->compress_level);
723 			}
724 			compress_force = false;
725 			break;
726 		case Opt_ssd:
727 			btrfs_set_and_info(info, SSD,
728 					   "enabling ssd optimizations");
729 			btrfs_clear_opt(info->mount_opt, NOSSD);
730 			break;
731 		case Opt_ssd_spread:
732 			btrfs_set_and_info(info, SSD,
733 					   "enabling ssd optimizations");
734 			btrfs_set_and_info(info, SSD_SPREAD,
735 					   "using spread ssd allocation scheme");
736 			btrfs_clear_opt(info->mount_opt, NOSSD);
737 			break;
738 		case Opt_nossd:
739 			btrfs_set_opt(info->mount_opt, NOSSD);
740 			btrfs_clear_and_info(info, SSD,
741 					     "not using ssd optimizations");
742 			fallthrough;
743 		case Opt_nossd_spread:
744 			btrfs_clear_and_info(info, SSD_SPREAD,
745 					     "not using spread ssd allocation scheme");
746 			break;
747 		case Opt_barrier:
748 			btrfs_clear_and_info(info, NOBARRIER,
749 					     "turning on barriers");
750 			break;
751 		case Opt_nobarrier:
752 			btrfs_set_and_info(info, NOBARRIER,
753 					   "turning off barriers");
754 			break;
755 		case Opt_thread_pool:
756 			ret = match_int(&args[0], &intarg);
757 			if (ret) {
758 				goto out;
759 			} else if (intarg == 0) {
760 				ret = -EINVAL;
761 				goto out;
762 			}
763 			info->thread_pool_size = intarg;
764 			break;
765 		case Opt_max_inline:
766 			num = match_strdup(&args[0]);
767 			if (num) {
768 				info->max_inline = memparse(num, NULL);
769 				kfree(num);
770 
771 				if (info->max_inline) {
772 					info->max_inline = min_t(u64,
773 						info->max_inline,
774 						info->sectorsize);
775 				}
776 				btrfs_info(info, "max_inline at %llu",
777 					   info->max_inline);
778 			} else {
779 				ret = -ENOMEM;
780 				goto out;
781 			}
782 			break;
783 		case Opt_acl:
784 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
785 			info->sb->s_flags |= SB_POSIXACL;
786 			break;
787 #else
788 			btrfs_err(info, "support for ACL not compiled in!");
789 			ret = -EINVAL;
790 			goto out;
791 #endif
792 		case Opt_noacl:
793 			info->sb->s_flags &= ~SB_POSIXACL;
794 			break;
795 		case Opt_notreelog:
796 			btrfs_set_and_info(info, NOTREELOG,
797 					   "disabling tree log");
798 			break;
799 		case Opt_treelog:
800 			btrfs_clear_and_info(info, NOTREELOG,
801 					     "enabling tree log");
802 			break;
803 		case Opt_norecovery:
804 		case Opt_nologreplay:
805 			btrfs_warn(info,
806 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
807 			btrfs_set_and_info(info, NOLOGREPLAY,
808 					   "disabling log replay at mount time");
809 			break;
810 		case Opt_flushoncommit:
811 			btrfs_set_and_info(info, FLUSHONCOMMIT,
812 					   "turning on flush-on-commit");
813 			break;
814 		case Opt_noflushoncommit:
815 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
816 					     "turning off flush-on-commit");
817 			break;
818 		case Opt_ratio:
819 			ret = match_int(&args[0], &intarg);
820 			if (ret)
821 				goto out;
822 			info->metadata_ratio = intarg;
823 			btrfs_info(info, "metadata ratio %u",
824 				   info->metadata_ratio);
825 			break;
826 		case Opt_discard:
827 		case Opt_discard_mode:
828 			if (token == Opt_discard ||
829 			    strcmp(args[0].from, "sync") == 0) {
830 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
831 				btrfs_set_and_info(info, DISCARD_SYNC,
832 						   "turning on sync discard");
833 			} else if (strcmp(args[0].from, "async") == 0) {
834 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
835 				btrfs_set_and_info(info, DISCARD_ASYNC,
836 						   "turning on async discard");
837 			} else {
838 				ret = -EINVAL;
839 				goto out;
840 			}
841 			break;
842 		case Opt_nodiscard:
843 			btrfs_clear_and_info(info, DISCARD_SYNC,
844 					     "turning off discard");
845 			btrfs_clear_and_info(info, DISCARD_ASYNC,
846 					     "turning off async discard");
847 			break;
848 		case Opt_space_cache:
849 		case Opt_space_cache_version:
850 			if (token == Opt_space_cache ||
851 			    strcmp(args[0].from, "v1") == 0) {
852 				btrfs_clear_opt(info->mount_opt,
853 						FREE_SPACE_TREE);
854 				btrfs_set_and_info(info, SPACE_CACHE,
855 					   "enabling disk space caching");
856 			} else if (strcmp(args[0].from, "v2") == 0) {
857 				btrfs_clear_opt(info->mount_opt,
858 						SPACE_CACHE);
859 				btrfs_set_and_info(info, FREE_SPACE_TREE,
860 						   "enabling free space tree");
861 			} else {
862 				ret = -EINVAL;
863 				goto out;
864 			}
865 			break;
866 		case Opt_rescan_uuid_tree:
867 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
868 			break;
869 		case Opt_no_space_cache:
870 			if (btrfs_test_opt(info, SPACE_CACHE)) {
871 				btrfs_clear_and_info(info, SPACE_CACHE,
872 					     "disabling disk space caching");
873 			}
874 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
875 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
876 					     "disabling free space tree");
877 			}
878 			break;
879 		case Opt_inode_cache:
880 		case Opt_noinode_cache:
881 			btrfs_warn(info,
882 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
883 			break;
884 		case Opt_clear_cache:
885 			btrfs_set_and_info(info, CLEAR_CACHE,
886 					   "force clearing of disk cache");
887 			break;
888 		case Opt_user_subvol_rm_allowed:
889 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
890 			break;
891 		case Opt_enospc_debug:
892 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
893 			break;
894 		case Opt_noenospc_debug:
895 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
896 			break;
897 		case Opt_defrag:
898 			btrfs_set_and_info(info, AUTO_DEFRAG,
899 					   "enabling auto defrag");
900 			break;
901 		case Opt_nodefrag:
902 			btrfs_clear_and_info(info, AUTO_DEFRAG,
903 					     "disabling auto defrag");
904 			break;
905 		case Opt_recovery:
906 		case Opt_usebackuproot:
907 			btrfs_warn(info,
908 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
909 				   token == Opt_recovery ? "recovery" :
910 				   "usebackuproot");
911 			btrfs_info(info,
912 				   "trying to use backup root at mount time");
913 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
914 			break;
915 		case Opt_skip_balance:
916 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
917 			break;
918 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
919 		case Opt_check_integrity_including_extent_data:
920 			btrfs_info(info,
921 				   "enabling check integrity including extent data");
922 			btrfs_set_opt(info->mount_opt,
923 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
924 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
925 			break;
926 		case Opt_check_integrity:
927 			btrfs_info(info, "enabling check integrity");
928 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
929 			break;
930 		case Opt_check_integrity_print_mask:
931 			ret = match_int(&args[0], &intarg);
932 			if (ret)
933 				goto out;
934 			info->check_integrity_print_mask = intarg;
935 			btrfs_info(info, "check_integrity_print_mask 0x%x",
936 				   info->check_integrity_print_mask);
937 			break;
938 #else
939 		case Opt_check_integrity_including_extent_data:
940 		case Opt_check_integrity:
941 		case Opt_check_integrity_print_mask:
942 			btrfs_err(info,
943 				  "support for check_integrity* not compiled in!");
944 			ret = -EINVAL;
945 			goto out;
946 #endif
947 		case Opt_fatal_errors:
948 			if (strcmp(args[0].from, "panic") == 0)
949 				btrfs_set_opt(info->mount_opt,
950 					      PANIC_ON_FATAL_ERROR);
951 			else if (strcmp(args[0].from, "bug") == 0)
952 				btrfs_clear_opt(info->mount_opt,
953 					      PANIC_ON_FATAL_ERROR);
954 			else {
955 				ret = -EINVAL;
956 				goto out;
957 			}
958 			break;
959 		case Opt_commit_interval:
960 			intarg = 0;
961 			ret = match_int(&args[0], &intarg);
962 			if (ret)
963 				goto out;
964 			if (intarg == 0) {
965 				btrfs_info(info,
966 					   "using default commit interval %us",
967 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
968 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
969 			} else if (intarg > 300) {
970 				btrfs_warn(info, "excessive commit interval %d",
971 					   intarg);
972 			}
973 			info->commit_interval = intarg;
974 			break;
975 		case Opt_rescue:
976 			ret = parse_rescue_options(info, args[0].from);
977 			if (ret < 0)
978 				goto out;
979 			break;
980 #ifdef CONFIG_BTRFS_DEBUG
981 		case Opt_fragment_all:
982 			btrfs_info(info, "fragmenting all space");
983 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
984 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
985 			break;
986 		case Opt_fragment_metadata:
987 			btrfs_info(info, "fragmenting metadata");
988 			btrfs_set_opt(info->mount_opt,
989 				      FRAGMENT_METADATA);
990 			break;
991 		case Opt_fragment_data:
992 			btrfs_info(info, "fragmenting data");
993 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
994 			break;
995 #endif
996 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
997 		case Opt_ref_verify:
998 			btrfs_info(info, "doing ref verification");
999 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1000 			break;
1001 #endif
1002 		case Opt_err:
1003 			btrfs_err(info, "unrecognized mount option '%s'", p);
1004 			ret = -EINVAL;
1005 			goto out;
1006 		default:
1007 			break;
1008 		}
1009 	}
1010 check:
1011 	/* We're read-only, don't have to check. */
1012 	if (new_flags & SB_RDONLY)
1013 		goto out;
1014 
1015 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1016 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1017 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1018 		ret = -EINVAL;
1019 out:
1020 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1021 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1022 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1023 		btrfs_err(info, "cannot disable free space tree");
1024 		ret = -EINVAL;
1025 
1026 	}
1027 	if (!ret)
1028 		ret = btrfs_check_mountopts_zoned(info);
1029 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1030 		btrfs_info(info, "disk space caching is enabled");
1031 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1032 		btrfs_info(info, "using free space tree");
1033 	return ret;
1034 }
1035 
1036 /*
1037  * Parse mount options that are required early in the mount process.
1038  *
1039  * All other options will be parsed on much later in the mount process and
1040  * only when we need to allocate a new super block.
1041  */
1042 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1043 				      void *holder)
1044 {
1045 	substring_t args[MAX_OPT_ARGS];
1046 	char *device_name, *opts, *orig, *p;
1047 	struct btrfs_device *device = NULL;
1048 	int error = 0;
1049 
1050 	lockdep_assert_held(&uuid_mutex);
1051 
1052 	if (!options)
1053 		return 0;
1054 
1055 	/*
1056 	 * strsep changes the string, duplicate it because btrfs_parse_options
1057 	 * gets called later
1058 	 */
1059 	opts = kstrdup(options, GFP_KERNEL);
1060 	if (!opts)
1061 		return -ENOMEM;
1062 	orig = opts;
1063 
1064 	while ((p = strsep(&opts, ",")) != NULL) {
1065 		int token;
1066 
1067 		if (!*p)
1068 			continue;
1069 
1070 		token = match_token(p, tokens, args);
1071 		if (token == Opt_device) {
1072 			device_name = match_strdup(&args[0]);
1073 			if (!device_name) {
1074 				error = -ENOMEM;
1075 				goto out;
1076 			}
1077 			device = btrfs_scan_one_device(device_name, flags,
1078 					holder);
1079 			kfree(device_name);
1080 			if (IS_ERR(device)) {
1081 				error = PTR_ERR(device);
1082 				goto out;
1083 			}
1084 		}
1085 	}
1086 
1087 out:
1088 	kfree(orig);
1089 	return error;
1090 }
1091 
1092 /*
1093  * Parse mount options that are related to subvolume id
1094  *
1095  * The value is later passed to mount_subvol()
1096  */
1097 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1098 		u64 *subvol_objectid)
1099 {
1100 	substring_t args[MAX_OPT_ARGS];
1101 	char *opts, *orig, *p;
1102 	int error = 0;
1103 	u64 subvolid;
1104 
1105 	if (!options)
1106 		return 0;
1107 
1108 	/*
1109 	 * strsep changes the string, duplicate it because
1110 	 * btrfs_parse_device_options gets called later
1111 	 */
1112 	opts = kstrdup(options, GFP_KERNEL);
1113 	if (!opts)
1114 		return -ENOMEM;
1115 	orig = opts;
1116 
1117 	while ((p = strsep(&opts, ",")) != NULL) {
1118 		int token;
1119 		if (!*p)
1120 			continue;
1121 
1122 		token = match_token(p, tokens, args);
1123 		switch (token) {
1124 		case Opt_subvol:
1125 			kfree(*subvol_name);
1126 			*subvol_name = match_strdup(&args[0]);
1127 			if (!*subvol_name) {
1128 				error = -ENOMEM;
1129 				goto out;
1130 			}
1131 			break;
1132 		case Opt_subvolid:
1133 			error = match_u64(&args[0], &subvolid);
1134 			if (error)
1135 				goto out;
1136 
1137 			/* we want the original fs_tree */
1138 			if (subvolid == 0)
1139 				subvolid = BTRFS_FS_TREE_OBJECTID;
1140 
1141 			*subvol_objectid = subvolid;
1142 			break;
1143 		default:
1144 			break;
1145 		}
1146 	}
1147 
1148 out:
1149 	kfree(orig);
1150 	return error;
1151 }
1152 
1153 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1154 					  u64 subvol_objectid)
1155 {
1156 	struct btrfs_root *root = fs_info->tree_root;
1157 	struct btrfs_root *fs_root = NULL;
1158 	struct btrfs_root_ref *root_ref;
1159 	struct btrfs_inode_ref *inode_ref;
1160 	struct btrfs_key key;
1161 	struct btrfs_path *path = NULL;
1162 	char *name = NULL, *ptr;
1163 	u64 dirid;
1164 	int len;
1165 	int ret;
1166 
1167 	path = btrfs_alloc_path();
1168 	if (!path) {
1169 		ret = -ENOMEM;
1170 		goto err;
1171 	}
1172 
1173 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1174 	if (!name) {
1175 		ret = -ENOMEM;
1176 		goto err;
1177 	}
1178 	ptr = name + PATH_MAX - 1;
1179 	ptr[0] = '\0';
1180 
1181 	/*
1182 	 * Walk up the subvolume trees in the tree of tree roots by root
1183 	 * backrefs until we hit the top-level subvolume.
1184 	 */
1185 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1186 		key.objectid = subvol_objectid;
1187 		key.type = BTRFS_ROOT_BACKREF_KEY;
1188 		key.offset = (u64)-1;
1189 
1190 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 		if (ret < 0) {
1192 			goto err;
1193 		} else if (ret > 0) {
1194 			ret = btrfs_previous_item(root, path, subvol_objectid,
1195 						  BTRFS_ROOT_BACKREF_KEY);
1196 			if (ret < 0) {
1197 				goto err;
1198 			} else if (ret > 0) {
1199 				ret = -ENOENT;
1200 				goto err;
1201 			}
1202 		}
1203 
1204 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1205 		subvol_objectid = key.offset;
1206 
1207 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1208 					  struct btrfs_root_ref);
1209 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1210 		ptr -= len + 1;
1211 		if (ptr < name) {
1212 			ret = -ENAMETOOLONG;
1213 			goto err;
1214 		}
1215 		read_extent_buffer(path->nodes[0], ptr + 1,
1216 				   (unsigned long)(root_ref + 1), len);
1217 		ptr[0] = '/';
1218 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1219 		btrfs_release_path(path);
1220 
1221 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1222 		if (IS_ERR(fs_root)) {
1223 			ret = PTR_ERR(fs_root);
1224 			fs_root = NULL;
1225 			goto err;
1226 		}
1227 
1228 		/*
1229 		 * Walk up the filesystem tree by inode refs until we hit the
1230 		 * root directory.
1231 		 */
1232 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1233 			key.objectid = dirid;
1234 			key.type = BTRFS_INODE_REF_KEY;
1235 			key.offset = (u64)-1;
1236 
1237 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1238 			if (ret < 0) {
1239 				goto err;
1240 			} else if (ret > 0) {
1241 				ret = btrfs_previous_item(fs_root, path, dirid,
1242 							  BTRFS_INODE_REF_KEY);
1243 				if (ret < 0) {
1244 					goto err;
1245 				} else if (ret > 0) {
1246 					ret = -ENOENT;
1247 					goto err;
1248 				}
1249 			}
1250 
1251 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1252 			dirid = key.offset;
1253 
1254 			inode_ref = btrfs_item_ptr(path->nodes[0],
1255 						   path->slots[0],
1256 						   struct btrfs_inode_ref);
1257 			len = btrfs_inode_ref_name_len(path->nodes[0],
1258 						       inode_ref);
1259 			ptr -= len + 1;
1260 			if (ptr < name) {
1261 				ret = -ENAMETOOLONG;
1262 				goto err;
1263 			}
1264 			read_extent_buffer(path->nodes[0], ptr + 1,
1265 					   (unsigned long)(inode_ref + 1), len);
1266 			ptr[0] = '/';
1267 			btrfs_release_path(path);
1268 		}
1269 		btrfs_put_root(fs_root);
1270 		fs_root = NULL;
1271 	}
1272 
1273 	btrfs_free_path(path);
1274 	if (ptr == name + PATH_MAX - 1) {
1275 		name[0] = '/';
1276 		name[1] = '\0';
1277 	} else {
1278 		memmove(name, ptr, name + PATH_MAX - ptr);
1279 	}
1280 	return name;
1281 
1282 err:
1283 	btrfs_put_root(fs_root);
1284 	btrfs_free_path(path);
1285 	kfree(name);
1286 	return ERR_PTR(ret);
1287 }
1288 
1289 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1290 {
1291 	struct btrfs_root *root = fs_info->tree_root;
1292 	struct btrfs_dir_item *di;
1293 	struct btrfs_path *path;
1294 	struct btrfs_key location;
1295 	u64 dir_id;
1296 
1297 	path = btrfs_alloc_path();
1298 	if (!path)
1299 		return -ENOMEM;
1300 
1301 	/*
1302 	 * Find the "default" dir item which points to the root item that we
1303 	 * will mount by default if we haven't been given a specific subvolume
1304 	 * to mount.
1305 	 */
1306 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1307 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1308 	if (IS_ERR(di)) {
1309 		btrfs_free_path(path);
1310 		return PTR_ERR(di);
1311 	}
1312 	if (!di) {
1313 		/*
1314 		 * Ok the default dir item isn't there.  This is weird since
1315 		 * it's always been there, but don't freak out, just try and
1316 		 * mount the top-level subvolume.
1317 		 */
1318 		btrfs_free_path(path);
1319 		*objectid = BTRFS_FS_TREE_OBJECTID;
1320 		return 0;
1321 	}
1322 
1323 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1324 	btrfs_free_path(path);
1325 	*objectid = location.objectid;
1326 	return 0;
1327 }
1328 
1329 static int btrfs_fill_super(struct super_block *sb,
1330 			    struct btrfs_fs_devices *fs_devices,
1331 			    void *data)
1332 {
1333 	struct inode *inode;
1334 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1335 	int err;
1336 
1337 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1338 	sb->s_magic = BTRFS_SUPER_MAGIC;
1339 	sb->s_op = &btrfs_super_ops;
1340 	sb->s_d_op = &btrfs_dentry_operations;
1341 	sb->s_export_op = &btrfs_export_ops;
1342 	sb->s_xattr = btrfs_xattr_handlers;
1343 	sb->s_time_gran = 1;
1344 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1345 	sb->s_flags |= SB_POSIXACL;
1346 #endif
1347 	sb->s_flags |= SB_I_VERSION;
1348 	sb->s_iflags |= SB_I_CGROUPWB;
1349 
1350 	err = super_setup_bdi(sb);
1351 	if (err) {
1352 		btrfs_err(fs_info, "super_setup_bdi failed");
1353 		return err;
1354 	}
1355 
1356 	err = open_ctree(sb, fs_devices, (char *)data);
1357 	if (err) {
1358 		btrfs_err(fs_info, "open_ctree failed");
1359 		return err;
1360 	}
1361 
1362 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1363 	if (IS_ERR(inode)) {
1364 		err = PTR_ERR(inode);
1365 		goto fail_close;
1366 	}
1367 
1368 	sb->s_root = d_make_root(inode);
1369 	if (!sb->s_root) {
1370 		err = -ENOMEM;
1371 		goto fail_close;
1372 	}
1373 
1374 	cleancache_init_fs(sb);
1375 	sb->s_flags |= SB_ACTIVE;
1376 	return 0;
1377 
1378 fail_close:
1379 	close_ctree(fs_info);
1380 	return err;
1381 }
1382 
1383 int btrfs_sync_fs(struct super_block *sb, int wait)
1384 {
1385 	struct btrfs_trans_handle *trans;
1386 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1387 	struct btrfs_root *root = fs_info->tree_root;
1388 
1389 	trace_btrfs_sync_fs(fs_info, wait);
1390 
1391 	if (!wait) {
1392 		filemap_flush(fs_info->btree_inode->i_mapping);
1393 		return 0;
1394 	}
1395 
1396 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1397 
1398 	trans = btrfs_attach_transaction_barrier(root);
1399 	if (IS_ERR(trans)) {
1400 		/* no transaction, don't bother */
1401 		if (PTR_ERR(trans) == -ENOENT) {
1402 			/*
1403 			 * Exit unless we have some pending changes
1404 			 * that need to go through commit
1405 			 */
1406 			if (fs_info->pending_changes == 0)
1407 				return 0;
1408 			/*
1409 			 * A non-blocking test if the fs is frozen. We must not
1410 			 * start a new transaction here otherwise a deadlock
1411 			 * happens. The pending operations are delayed to the
1412 			 * next commit after thawing.
1413 			 */
1414 			if (sb_start_write_trylock(sb))
1415 				sb_end_write(sb);
1416 			else
1417 				return 0;
1418 			trans = btrfs_start_transaction(root, 0);
1419 		}
1420 		if (IS_ERR(trans))
1421 			return PTR_ERR(trans);
1422 	}
1423 	return btrfs_commit_transaction(trans);
1424 }
1425 
1426 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1427 {
1428 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1429 	*printed = true;
1430 }
1431 
1432 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1433 {
1434 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1435 	const char *compress_type;
1436 	const char *subvol_name;
1437 	bool printed = false;
1438 
1439 	if (btrfs_test_opt(info, DEGRADED))
1440 		seq_puts(seq, ",degraded");
1441 	if (btrfs_test_opt(info, NODATASUM))
1442 		seq_puts(seq, ",nodatasum");
1443 	if (btrfs_test_opt(info, NODATACOW))
1444 		seq_puts(seq, ",nodatacow");
1445 	if (btrfs_test_opt(info, NOBARRIER))
1446 		seq_puts(seq, ",nobarrier");
1447 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1448 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1449 	if (info->thread_pool_size !=  min_t(unsigned long,
1450 					     num_online_cpus() + 2, 8))
1451 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1452 	if (btrfs_test_opt(info, COMPRESS)) {
1453 		compress_type = btrfs_compress_type2str(info->compress_type);
1454 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1455 			seq_printf(seq, ",compress-force=%s", compress_type);
1456 		else
1457 			seq_printf(seq, ",compress=%s", compress_type);
1458 		if (info->compress_level)
1459 			seq_printf(seq, ":%d", info->compress_level);
1460 	}
1461 	if (btrfs_test_opt(info, NOSSD))
1462 		seq_puts(seq, ",nossd");
1463 	if (btrfs_test_opt(info, SSD_SPREAD))
1464 		seq_puts(seq, ",ssd_spread");
1465 	else if (btrfs_test_opt(info, SSD))
1466 		seq_puts(seq, ",ssd");
1467 	if (btrfs_test_opt(info, NOTREELOG))
1468 		seq_puts(seq, ",notreelog");
1469 	if (btrfs_test_opt(info, NOLOGREPLAY))
1470 		print_rescue_option(seq, "nologreplay", &printed);
1471 	if (btrfs_test_opt(info, USEBACKUPROOT))
1472 		print_rescue_option(seq, "usebackuproot", &printed);
1473 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1474 		print_rescue_option(seq, "ignorebadroots", &printed);
1475 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1476 		print_rescue_option(seq, "ignoredatacsums", &printed);
1477 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1478 		seq_puts(seq, ",flushoncommit");
1479 	if (btrfs_test_opt(info, DISCARD_SYNC))
1480 		seq_puts(seq, ",discard");
1481 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1482 		seq_puts(seq, ",discard=async");
1483 	if (!(info->sb->s_flags & SB_POSIXACL))
1484 		seq_puts(seq, ",noacl");
1485 	if (btrfs_free_space_cache_v1_active(info))
1486 		seq_puts(seq, ",space_cache");
1487 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1488 		seq_puts(seq, ",space_cache=v2");
1489 	else
1490 		seq_puts(seq, ",nospace_cache");
1491 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1492 		seq_puts(seq, ",rescan_uuid_tree");
1493 	if (btrfs_test_opt(info, CLEAR_CACHE))
1494 		seq_puts(seq, ",clear_cache");
1495 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1496 		seq_puts(seq, ",user_subvol_rm_allowed");
1497 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1498 		seq_puts(seq, ",enospc_debug");
1499 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1500 		seq_puts(seq, ",autodefrag");
1501 	if (btrfs_test_opt(info, SKIP_BALANCE))
1502 		seq_puts(seq, ",skip_balance");
1503 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1504 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1505 		seq_puts(seq, ",check_int_data");
1506 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1507 		seq_puts(seq, ",check_int");
1508 	if (info->check_integrity_print_mask)
1509 		seq_printf(seq, ",check_int_print_mask=%d",
1510 				info->check_integrity_print_mask);
1511 #endif
1512 	if (info->metadata_ratio)
1513 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1514 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1515 		seq_puts(seq, ",fatal_errors=panic");
1516 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1517 		seq_printf(seq, ",commit=%u", info->commit_interval);
1518 #ifdef CONFIG_BTRFS_DEBUG
1519 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1520 		seq_puts(seq, ",fragment=data");
1521 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1522 		seq_puts(seq, ",fragment=metadata");
1523 #endif
1524 	if (btrfs_test_opt(info, REF_VERIFY))
1525 		seq_puts(seq, ",ref_verify");
1526 	seq_printf(seq, ",subvolid=%llu",
1527 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1528 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1529 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1530 	if (!IS_ERR(subvol_name)) {
1531 		seq_puts(seq, ",subvol=");
1532 		seq_escape(seq, subvol_name, " \t\n\\");
1533 		kfree(subvol_name);
1534 	}
1535 	return 0;
1536 }
1537 
1538 static int btrfs_test_super(struct super_block *s, void *data)
1539 {
1540 	struct btrfs_fs_info *p = data;
1541 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1542 
1543 	return fs_info->fs_devices == p->fs_devices;
1544 }
1545 
1546 static int btrfs_set_super(struct super_block *s, void *data)
1547 {
1548 	int err = set_anon_super(s, data);
1549 	if (!err)
1550 		s->s_fs_info = data;
1551 	return err;
1552 }
1553 
1554 /*
1555  * subvolumes are identified by ino 256
1556  */
1557 static inline int is_subvolume_inode(struct inode *inode)
1558 {
1559 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1560 		return 1;
1561 	return 0;
1562 }
1563 
1564 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1565 				   struct vfsmount *mnt)
1566 {
1567 	struct dentry *root;
1568 	int ret;
1569 
1570 	if (!subvol_name) {
1571 		if (!subvol_objectid) {
1572 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1573 							  &subvol_objectid);
1574 			if (ret) {
1575 				root = ERR_PTR(ret);
1576 				goto out;
1577 			}
1578 		}
1579 		subvol_name = btrfs_get_subvol_name_from_objectid(
1580 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1581 		if (IS_ERR(subvol_name)) {
1582 			root = ERR_CAST(subvol_name);
1583 			subvol_name = NULL;
1584 			goto out;
1585 		}
1586 
1587 	}
1588 
1589 	root = mount_subtree(mnt, subvol_name);
1590 	/* mount_subtree() drops our reference on the vfsmount. */
1591 	mnt = NULL;
1592 
1593 	if (!IS_ERR(root)) {
1594 		struct super_block *s = root->d_sb;
1595 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1596 		struct inode *root_inode = d_inode(root);
1597 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1598 
1599 		ret = 0;
1600 		if (!is_subvolume_inode(root_inode)) {
1601 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1602 			       subvol_name);
1603 			ret = -EINVAL;
1604 		}
1605 		if (subvol_objectid && root_objectid != subvol_objectid) {
1606 			/*
1607 			 * This will also catch a race condition where a
1608 			 * subvolume which was passed by ID is renamed and
1609 			 * another subvolume is renamed over the old location.
1610 			 */
1611 			btrfs_err(fs_info,
1612 				  "subvol '%s' does not match subvolid %llu",
1613 				  subvol_name, subvol_objectid);
1614 			ret = -EINVAL;
1615 		}
1616 		if (ret) {
1617 			dput(root);
1618 			root = ERR_PTR(ret);
1619 			deactivate_locked_super(s);
1620 		}
1621 	}
1622 
1623 out:
1624 	mntput(mnt);
1625 	kfree(subvol_name);
1626 	return root;
1627 }
1628 
1629 /*
1630  * Find a superblock for the given device / mount point.
1631  *
1632  * Note: This is based on mount_bdev from fs/super.c with a few additions
1633  *       for multiple device setup.  Make sure to keep it in sync.
1634  */
1635 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1636 		int flags, const char *device_name, void *data)
1637 {
1638 	struct block_device *bdev = NULL;
1639 	struct super_block *s;
1640 	struct btrfs_device *device = NULL;
1641 	struct btrfs_fs_devices *fs_devices = NULL;
1642 	struct btrfs_fs_info *fs_info = NULL;
1643 	void *new_sec_opts = NULL;
1644 	fmode_t mode = FMODE_READ;
1645 	int error = 0;
1646 
1647 	if (!(flags & SB_RDONLY))
1648 		mode |= FMODE_WRITE;
1649 
1650 	if (data) {
1651 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1652 		if (error)
1653 			return ERR_PTR(error);
1654 	}
1655 
1656 	/*
1657 	 * Setup a dummy root and fs_info for test/set super.  This is because
1658 	 * we don't actually fill this stuff out until open_ctree, but we need
1659 	 * then open_ctree will properly initialize the file system specific
1660 	 * settings later.  btrfs_init_fs_info initializes the static elements
1661 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1662 	 * superblock with our given fs_devices later on at sget() time.
1663 	 */
1664 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1665 	if (!fs_info) {
1666 		error = -ENOMEM;
1667 		goto error_sec_opts;
1668 	}
1669 	btrfs_init_fs_info(fs_info);
1670 
1671 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1672 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1673 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1674 		error = -ENOMEM;
1675 		goto error_fs_info;
1676 	}
1677 
1678 	mutex_lock(&uuid_mutex);
1679 	error = btrfs_parse_device_options(data, mode, fs_type);
1680 	if (error) {
1681 		mutex_unlock(&uuid_mutex);
1682 		goto error_fs_info;
1683 	}
1684 
1685 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1686 	if (IS_ERR(device)) {
1687 		mutex_unlock(&uuid_mutex);
1688 		error = PTR_ERR(device);
1689 		goto error_fs_info;
1690 	}
1691 
1692 	fs_devices = device->fs_devices;
1693 	fs_info->fs_devices = fs_devices;
1694 
1695 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1696 	mutex_unlock(&uuid_mutex);
1697 	if (error)
1698 		goto error_fs_info;
1699 
1700 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1701 		error = -EACCES;
1702 		goto error_close_devices;
1703 	}
1704 
1705 	bdev = fs_devices->latest_bdev;
1706 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1707 		 fs_info);
1708 	if (IS_ERR(s)) {
1709 		error = PTR_ERR(s);
1710 		goto error_close_devices;
1711 	}
1712 
1713 	if (s->s_root) {
1714 		btrfs_close_devices(fs_devices);
1715 		btrfs_free_fs_info(fs_info);
1716 		if ((flags ^ s->s_flags) & SB_RDONLY)
1717 			error = -EBUSY;
1718 	} else {
1719 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1720 		btrfs_sb(s)->bdev_holder = fs_type;
1721 		if (!strstr(crc32c_impl(), "generic"))
1722 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1723 		error = btrfs_fill_super(s, fs_devices, data);
1724 	}
1725 	if (!error)
1726 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1727 	security_free_mnt_opts(&new_sec_opts);
1728 	if (error) {
1729 		deactivate_locked_super(s);
1730 		return ERR_PTR(error);
1731 	}
1732 
1733 	return dget(s->s_root);
1734 
1735 error_close_devices:
1736 	btrfs_close_devices(fs_devices);
1737 error_fs_info:
1738 	btrfs_free_fs_info(fs_info);
1739 error_sec_opts:
1740 	security_free_mnt_opts(&new_sec_opts);
1741 	return ERR_PTR(error);
1742 }
1743 
1744 /*
1745  * Mount function which is called by VFS layer.
1746  *
1747  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1748  * which needs vfsmount* of device's root (/).  This means device's root has to
1749  * be mounted internally in any case.
1750  *
1751  * Operation flow:
1752  *   1. Parse subvol id related options for later use in mount_subvol().
1753  *
1754  *   2. Mount device's root (/) by calling vfs_kern_mount().
1755  *
1756  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1757  *      first place. In order to avoid calling btrfs_mount() again, we use
1758  *      different file_system_type which is not registered to VFS by
1759  *      register_filesystem() (btrfs_root_fs_type). As a result,
1760  *      btrfs_mount_root() is called. The return value will be used by
1761  *      mount_subtree() in mount_subvol().
1762  *
1763  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1764  *      "btrfs subvolume set-default", mount_subvol() is called always.
1765  */
1766 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1767 		const char *device_name, void *data)
1768 {
1769 	struct vfsmount *mnt_root;
1770 	struct dentry *root;
1771 	char *subvol_name = NULL;
1772 	u64 subvol_objectid = 0;
1773 	int error = 0;
1774 
1775 	error = btrfs_parse_subvol_options(data, &subvol_name,
1776 					&subvol_objectid);
1777 	if (error) {
1778 		kfree(subvol_name);
1779 		return ERR_PTR(error);
1780 	}
1781 
1782 	/* mount device's root (/) */
1783 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1784 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1785 		if (flags & SB_RDONLY) {
1786 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1787 				flags & ~SB_RDONLY, device_name, data);
1788 		} else {
1789 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1790 				flags | SB_RDONLY, device_name, data);
1791 			if (IS_ERR(mnt_root)) {
1792 				root = ERR_CAST(mnt_root);
1793 				kfree(subvol_name);
1794 				goto out;
1795 			}
1796 
1797 			down_write(&mnt_root->mnt_sb->s_umount);
1798 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1799 			up_write(&mnt_root->mnt_sb->s_umount);
1800 			if (error < 0) {
1801 				root = ERR_PTR(error);
1802 				mntput(mnt_root);
1803 				kfree(subvol_name);
1804 				goto out;
1805 			}
1806 		}
1807 	}
1808 	if (IS_ERR(mnt_root)) {
1809 		root = ERR_CAST(mnt_root);
1810 		kfree(subvol_name);
1811 		goto out;
1812 	}
1813 
1814 	/* mount_subvol() will free subvol_name and mnt_root */
1815 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1816 
1817 out:
1818 	return root;
1819 }
1820 
1821 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1822 				     u32 new_pool_size, u32 old_pool_size)
1823 {
1824 	if (new_pool_size == old_pool_size)
1825 		return;
1826 
1827 	fs_info->thread_pool_size = new_pool_size;
1828 
1829 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1830 	       old_pool_size, new_pool_size);
1831 
1832 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1833 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1834 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1835 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1836 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1837 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1838 				new_pool_size);
1839 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1840 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1841 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1842 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1843 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1844 				new_pool_size);
1845 }
1846 
1847 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1848 				       unsigned long old_opts, int flags)
1849 {
1850 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1851 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1852 	     (flags & SB_RDONLY))) {
1853 		/* wait for any defraggers to finish */
1854 		wait_event(fs_info->transaction_wait,
1855 			   (atomic_read(&fs_info->defrag_running) == 0));
1856 		if (flags & SB_RDONLY)
1857 			sync_filesystem(fs_info->sb);
1858 	}
1859 }
1860 
1861 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1862 					 unsigned long old_opts)
1863 {
1864 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1865 
1866 	/*
1867 	 * We need to cleanup all defragable inodes if the autodefragment is
1868 	 * close or the filesystem is read only.
1869 	 */
1870 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1871 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1872 		btrfs_cleanup_defrag_inodes(fs_info);
1873 	}
1874 
1875 	/* If we toggled discard async */
1876 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1877 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1878 		btrfs_discard_resume(fs_info);
1879 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1880 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1881 		btrfs_discard_cleanup(fs_info);
1882 
1883 	/* If we toggled space cache */
1884 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1885 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1886 }
1887 
1888 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1889 {
1890 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1891 	unsigned old_flags = sb->s_flags;
1892 	unsigned long old_opts = fs_info->mount_opt;
1893 	unsigned long old_compress_type = fs_info->compress_type;
1894 	u64 old_max_inline = fs_info->max_inline;
1895 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1896 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1897 	int ret;
1898 
1899 	sync_filesystem(sb);
1900 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1901 
1902 	if (data) {
1903 		void *new_sec_opts = NULL;
1904 
1905 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1906 		if (!ret)
1907 			ret = security_sb_remount(sb, new_sec_opts);
1908 		security_free_mnt_opts(&new_sec_opts);
1909 		if (ret)
1910 			goto restore;
1911 	}
1912 
1913 	ret = btrfs_parse_options(fs_info, data, *flags);
1914 	if (ret)
1915 		goto restore;
1916 
1917 	btrfs_remount_begin(fs_info, old_opts, *flags);
1918 	btrfs_resize_thread_pool(fs_info,
1919 		fs_info->thread_pool_size, old_thread_pool_size);
1920 
1921 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1922 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1923 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1924 		btrfs_warn(fs_info,
1925 		"remount supports changing free space tree only from ro to rw");
1926 		/* Make sure free space cache options match the state on disk */
1927 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1928 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1929 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1930 		}
1931 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1932 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1933 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1934 		}
1935 	}
1936 
1937 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1938 		goto out;
1939 
1940 	if (*flags & SB_RDONLY) {
1941 		/*
1942 		 * this also happens on 'umount -rf' or on shutdown, when
1943 		 * the filesystem is busy.
1944 		 */
1945 		cancel_work_sync(&fs_info->async_reclaim_work);
1946 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1947 
1948 		btrfs_discard_cleanup(fs_info);
1949 
1950 		/* wait for the uuid_scan task to finish */
1951 		down(&fs_info->uuid_tree_rescan_sem);
1952 		/* avoid complains from lockdep et al. */
1953 		up(&fs_info->uuid_tree_rescan_sem);
1954 
1955 		btrfs_set_sb_rdonly(sb);
1956 
1957 		/*
1958 		 * Setting SB_RDONLY will put the cleaner thread to
1959 		 * sleep at the next loop if it's already active.
1960 		 * If it's already asleep, we'll leave unused block
1961 		 * groups on disk until we're mounted read-write again
1962 		 * unless we clean them up here.
1963 		 */
1964 		btrfs_delete_unused_bgs(fs_info);
1965 
1966 		/*
1967 		 * The cleaner task could be already running before we set the
1968 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1969 		 * We must make sure that after we finish the remount, i.e. after
1970 		 * we call btrfs_commit_super(), the cleaner can no longer start
1971 		 * a transaction - either because it was dropping a dead root,
1972 		 * running delayed iputs or deleting an unused block group (the
1973 		 * cleaner picked a block group from the list of unused block
1974 		 * groups before we were able to in the previous call to
1975 		 * btrfs_delete_unused_bgs()).
1976 		 */
1977 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1978 			    TASK_UNINTERRUPTIBLE);
1979 
1980 		/*
1981 		 * We've set the superblock to RO mode, so we might have made
1982 		 * the cleaner task sleep without running all pending delayed
1983 		 * iputs. Go through all the delayed iputs here, so that if an
1984 		 * unmount happens without remounting RW we don't end up at
1985 		 * finishing close_ctree() with a non-empty list of delayed
1986 		 * iputs.
1987 		 */
1988 		btrfs_run_delayed_iputs(fs_info);
1989 
1990 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1991 		btrfs_scrub_cancel(fs_info);
1992 		btrfs_pause_balance(fs_info);
1993 
1994 		/*
1995 		 * Pause the qgroup rescan worker if it is running. We don't want
1996 		 * it to be still running after we are in RO mode, as after that,
1997 		 * by the time we unmount, it might have left a transaction open,
1998 		 * so we would leak the transaction and/or crash.
1999 		 */
2000 		btrfs_qgroup_wait_for_completion(fs_info, false);
2001 
2002 		ret = btrfs_commit_super(fs_info);
2003 		if (ret)
2004 			goto restore;
2005 	} else {
2006 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2007 			btrfs_err(fs_info,
2008 				"Remounting read-write after error is not allowed");
2009 			ret = -EINVAL;
2010 			goto restore;
2011 		}
2012 		if (fs_info->fs_devices->rw_devices == 0) {
2013 			ret = -EACCES;
2014 			goto restore;
2015 		}
2016 
2017 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2018 			btrfs_warn(fs_info,
2019 		"too many missing devices, writable remount is not allowed");
2020 			ret = -EACCES;
2021 			goto restore;
2022 		}
2023 
2024 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2025 			btrfs_warn(fs_info,
2026 		"mount required to replay tree-log, cannot remount read-write");
2027 			ret = -EINVAL;
2028 			goto restore;
2029 		}
2030 		if (fs_info->sectorsize < PAGE_SIZE) {
2031 			btrfs_warn(fs_info,
2032 	"read-write mount is not yet allowed for sectorsize %u page size %lu",
2033 				   fs_info->sectorsize, PAGE_SIZE);
2034 			ret = -EINVAL;
2035 			goto restore;
2036 		}
2037 
2038 		/*
2039 		 * NOTE: when remounting with a change that does writes, don't
2040 		 * put it anywhere above this point, as we are not sure to be
2041 		 * safe to write until we pass the above checks.
2042 		 */
2043 		ret = btrfs_start_pre_rw_mount(fs_info);
2044 		if (ret)
2045 			goto restore;
2046 
2047 		btrfs_clear_sb_rdonly(sb);
2048 
2049 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2050 	}
2051 out:
2052 	/*
2053 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2054 	 * since the absence of the flag means it can be toggled off by remount.
2055 	 */
2056 	*flags |= SB_I_VERSION;
2057 
2058 	wake_up_process(fs_info->transaction_kthread);
2059 	btrfs_remount_cleanup(fs_info, old_opts);
2060 	btrfs_clear_oneshot_options(fs_info);
2061 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2062 
2063 	return 0;
2064 
2065 restore:
2066 	/* We've hit an error - don't reset SB_RDONLY */
2067 	if (sb_rdonly(sb))
2068 		old_flags |= SB_RDONLY;
2069 	if (!(old_flags & SB_RDONLY))
2070 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2071 	sb->s_flags = old_flags;
2072 	fs_info->mount_opt = old_opts;
2073 	fs_info->compress_type = old_compress_type;
2074 	fs_info->max_inline = old_max_inline;
2075 	btrfs_resize_thread_pool(fs_info,
2076 		old_thread_pool_size, fs_info->thread_pool_size);
2077 	fs_info->metadata_ratio = old_metadata_ratio;
2078 	btrfs_remount_cleanup(fs_info, old_opts);
2079 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2080 
2081 	return ret;
2082 }
2083 
2084 /* Used to sort the devices by max_avail(descending sort) */
2085 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
2086 				       const void *dev_info2)
2087 {
2088 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
2089 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
2090 		return -1;
2091 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2092 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2093 		return 1;
2094 	else
2095 	return 0;
2096 }
2097 
2098 /*
2099  * sort the devices by max_avail, in which max free extent size of each device
2100  * is stored.(Descending Sort)
2101  */
2102 static inline void btrfs_descending_sort_devices(
2103 					struct btrfs_device_info *devices,
2104 					size_t nr_devices)
2105 {
2106 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2107 	     btrfs_cmp_device_free_bytes, NULL);
2108 }
2109 
2110 /*
2111  * The helper to calc the free space on the devices that can be used to store
2112  * file data.
2113  */
2114 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2115 					      u64 *free_bytes)
2116 {
2117 	struct btrfs_device_info *devices_info;
2118 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2119 	struct btrfs_device *device;
2120 	u64 type;
2121 	u64 avail_space;
2122 	u64 min_stripe_size;
2123 	int num_stripes = 1;
2124 	int i = 0, nr_devices;
2125 	const struct btrfs_raid_attr *rattr;
2126 
2127 	/*
2128 	 * We aren't under the device list lock, so this is racy-ish, but good
2129 	 * enough for our purposes.
2130 	 */
2131 	nr_devices = fs_info->fs_devices->open_devices;
2132 	if (!nr_devices) {
2133 		smp_mb();
2134 		nr_devices = fs_info->fs_devices->open_devices;
2135 		ASSERT(nr_devices);
2136 		if (!nr_devices) {
2137 			*free_bytes = 0;
2138 			return 0;
2139 		}
2140 	}
2141 
2142 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2143 			       GFP_KERNEL);
2144 	if (!devices_info)
2145 		return -ENOMEM;
2146 
2147 	/* calc min stripe number for data space allocation */
2148 	type = btrfs_data_alloc_profile(fs_info);
2149 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2150 
2151 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2152 		num_stripes = nr_devices;
2153 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2154 		num_stripes = 2;
2155 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2156 		num_stripes = 3;
2157 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2158 		num_stripes = 4;
2159 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2160 		num_stripes = 4;
2161 
2162 	/* Adjust for more than 1 stripe per device */
2163 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2164 
2165 	rcu_read_lock();
2166 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2167 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2168 						&device->dev_state) ||
2169 		    !device->bdev ||
2170 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2171 			continue;
2172 
2173 		if (i >= nr_devices)
2174 			break;
2175 
2176 		avail_space = device->total_bytes - device->bytes_used;
2177 
2178 		/* align with stripe_len */
2179 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2180 
2181 		/*
2182 		 * In order to avoid overwriting the superblock on the drive,
2183 		 * btrfs starts at an offset of at least 1MB when doing chunk
2184 		 * allocation.
2185 		 *
2186 		 * This ensures we have at least min_stripe_size free space
2187 		 * after excluding 1MB.
2188 		 */
2189 		if (avail_space <= SZ_1M + min_stripe_size)
2190 			continue;
2191 
2192 		avail_space -= SZ_1M;
2193 
2194 		devices_info[i].dev = device;
2195 		devices_info[i].max_avail = avail_space;
2196 
2197 		i++;
2198 	}
2199 	rcu_read_unlock();
2200 
2201 	nr_devices = i;
2202 
2203 	btrfs_descending_sort_devices(devices_info, nr_devices);
2204 
2205 	i = nr_devices - 1;
2206 	avail_space = 0;
2207 	while (nr_devices >= rattr->devs_min) {
2208 		num_stripes = min(num_stripes, nr_devices);
2209 
2210 		if (devices_info[i].max_avail >= min_stripe_size) {
2211 			int j;
2212 			u64 alloc_size;
2213 
2214 			avail_space += devices_info[i].max_avail * num_stripes;
2215 			alloc_size = devices_info[i].max_avail;
2216 			for (j = i + 1 - num_stripes; j <= i; j++)
2217 				devices_info[j].max_avail -= alloc_size;
2218 		}
2219 		i--;
2220 		nr_devices--;
2221 	}
2222 
2223 	kfree(devices_info);
2224 	*free_bytes = avail_space;
2225 	return 0;
2226 }
2227 
2228 /*
2229  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2230  *
2231  * If there's a redundant raid level at DATA block groups, use the respective
2232  * multiplier to scale the sizes.
2233  *
2234  * Unused device space usage is based on simulating the chunk allocator
2235  * algorithm that respects the device sizes and order of allocations.  This is
2236  * a close approximation of the actual use but there are other factors that may
2237  * change the result (like a new metadata chunk).
2238  *
2239  * If metadata is exhausted, f_bavail will be 0.
2240  */
2241 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2242 {
2243 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2244 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2245 	struct btrfs_space_info *found;
2246 	u64 total_used = 0;
2247 	u64 total_free_data = 0;
2248 	u64 total_free_meta = 0;
2249 	u32 bits = fs_info->sectorsize_bits;
2250 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2251 	unsigned factor = 1;
2252 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2253 	int ret;
2254 	u64 thresh = 0;
2255 	int mixed = 0;
2256 
2257 	list_for_each_entry(found, &fs_info->space_info, list) {
2258 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2259 			int i;
2260 
2261 			total_free_data += found->disk_total - found->disk_used;
2262 			total_free_data -=
2263 				btrfs_account_ro_block_groups_free_space(found);
2264 
2265 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2266 				if (!list_empty(&found->block_groups[i]))
2267 					factor = btrfs_bg_type_to_factor(
2268 						btrfs_raid_array[i].bg_flag);
2269 			}
2270 		}
2271 
2272 		/*
2273 		 * Metadata in mixed block goup profiles are accounted in data
2274 		 */
2275 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2276 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2277 				mixed = 1;
2278 			else
2279 				total_free_meta += found->disk_total -
2280 					found->disk_used;
2281 		}
2282 
2283 		total_used += found->disk_used;
2284 	}
2285 
2286 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2287 	buf->f_blocks >>= bits;
2288 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2289 
2290 	/* Account global block reserve as used, it's in logical size already */
2291 	spin_lock(&block_rsv->lock);
2292 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2293 	if (buf->f_bfree >= block_rsv->size >> bits)
2294 		buf->f_bfree -= block_rsv->size >> bits;
2295 	else
2296 		buf->f_bfree = 0;
2297 	spin_unlock(&block_rsv->lock);
2298 
2299 	buf->f_bavail = div_u64(total_free_data, factor);
2300 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2301 	if (ret)
2302 		return ret;
2303 	buf->f_bavail += div_u64(total_free_data, factor);
2304 	buf->f_bavail = buf->f_bavail >> bits;
2305 
2306 	/*
2307 	 * We calculate the remaining metadata space minus global reserve. If
2308 	 * this is (supposedly) smaller than zero, there's no space. But this
2309 	 * does not hold in practice, the exhausted state happens where's still
2310 	 * some positive delta. So we apply some guesswork and compare the
2311 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2312 	 *
2313 	 * We probably cannot calculate the exact threshold value because this
2314 	 * depends on the internal reservations requested by various
2315 	 * operations, so some operations that consume a few metadata will
2316 	 * succeed even if the Avail is zero. But this is better than the other
2317 	 * way around.
2318 	 */
2319 	thresh = SZ_4M;
2320 
2321 	/*
2322 	 * We only want to claim there's no available space if we can no longer
2323 	 * allocate chunks for our metadata profile and our global reserve will
2324 	 * not fit in the free metadata space.  If we aren't ->full then we
2325 	 * still can allocate chunks and thus are fine using the currently
2326 	 * calculated f_bavail.
2327 	 */
2328 	if (!mixed && block_rsv->space_info->full &&
2329 	    total_free_meta - thresh < block_rsv->size)
2330 		buf->f_bavail = 0;
2331 
2332 	buf->f_type = BTRFS_SUPER_MAGIC;
2333 	buf->f_bsize = dentry->d_sb->s_blocksize;
2334 	buf->f_namelen = BTRFS_NAME_LEN;
2335 
2336 	/* We treat it as constant endianness (it doesn't matter _which_)
2337 	   because we want the fsid to come out the same whether mounted
2338 	   on a big-endian or little-endian host */
2339 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2340 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2341 	/* Mask in the root object ID too, to disambiguate subvols */
2342 	buf->f_fsid.val[0] ^=
2343 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2344 	buf->f_fsid.val[1] ^=
2345 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2346 
2347 	return 0;
2348 }
2349 
2350 static void btrfs_kill_super(struct super_block *sb)
2351 {
2352 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2353 	kill_anon_super(sb);
2354 	btrfs_free_fs_info(fs_info);
2355 }
2356 
2357 static struct file_system_type btrfs_fs_type = {
2358 	.owner		= THIS_MODULE,
2359 	.name		= "btrfs",
2360 	.mount		= btrfs_mount,
2361 	.kill_sb	= btrfs_kill_super,
2362 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2363 };
2364 
2365 static struct file_system_type btrfs_root_fs_type = {
2366 	.owner		= THIS_MODULE,
2367 	.name		= "btrfs",
2368 	.mount		= btrfs_mount_root,
2369 	.kill_sb	= btrfs_kill_super,
2370 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2371 };
2372 
2373 MODULE_ALIAS_FS("btrfs");
2374 
2375 static int btrfs_control_open(struct inode *inode, struct file *file)
2376 {
2377 	/*
2378 	 * The control file's private_data is used to hold the
2379 	 * transaction when it is started and is used to keep
2380 	 * track of whether a transaction is already in progress.
2381 	 */
2382 	file->private_data = NULL;
2383 	return 0;
2384 }
2385 
2386 /*
2387  * Used by /dev/btrfs-control for devices ioctls.
2388  */
2389 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2390 				unsigned long arg)
2391 {
2392 	struct btrfs_ioctl_vol_args *vol;
2393 	struct btrfs_device *device = NULL;
2394 	int ret = -ENOTTY;
2395 
2396 	if (!capable(CAP_SYS_ADMIN))
2397 		return -EPERM;
2398 
2399 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2400 	if (IS_ERR(vol))
2401 		return PTR_ERR(vol);
2402 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2403 
2404 	switch (cmd) {
2405 	case BTRFS_IOC_SCAN_DEV:
2406 		mutex_lock(&uuid_mutex);
2407 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2408 					       &btrfs_root_fs_type);
2409 		ret = PTR_ERR_OR_ZERO(device);
2410 		mutex_unlock(&uuid_mutex);
2411 		break;
2412 	case BTRFS_IOC_FORGET_DEV:
2413 		ret = btrfs_forget_devices(vol->name);
2414 		break;
2415 	case BTRFS_IOC_DEVICES_READY:
2416 		mutex_lock(&uuid_mutex);
2417 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2418 					       &btrfs_root_fs_type);
2419 		if (IS_ERR(device)) {
2420 			mutex_unlock(&uuid_mutex);
2421 			ret = PTR_ERR(device);
2422 			break;
2423 		}
2424 		ret = !(device->fs_devices->num_devices ==
2425 			device->fs_devices->total_devices);
2426 		mutex_unlock(&uuid_mutex);
2427 		break;
2428 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2429 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2430 		break;
2431 	}
2432 
2433 	kfree(vol);
2434 	return ret;
2435 }
2436 
2437 static int btrfs_freeze(struct super_block *sb)
2438 {
2439 	struct btrfs_trans_handle *trans;
2440 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2441 	struct btrfs_root *root = fs_info->tree_root;
2442 
2443 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2444 	/*
2445 	 * We don't need a barrier here, we'll wait for any transaction that
2446 	 * could be in progress on other threads (and do delayed iputs that
2447 	 * we want to avoid on a frozen filesystem), or do the commit
2448 	 * ourselves.
2449 	 */
2450 	trans = btrfs_attach_transaction_barrier(root);
2451 	if (IS_ERR(trans)) {
2452 		/* no transaction, don't bother */
2453 		if (PTR_ERR(trans) == -ENOENT)
2454 			return 0;
2455 		return PTR_ERR(trans);
2456 	}
2457 	return btrfs_commit_transaction(trans);
2458 }
2459 
2460 static int btrfs_unfreeze(struct super_block *sb)
2461 {
2462 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2463 
2464 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2465 	return 0;
2466 }
2467 
2468 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2469 {
2470 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2471 	struct btrfs_device *dev, *first_dev = NULL;
2472 
2473 	/*
2474 	 * Lightweight locking of the devices. We should not need
2475 	 * device_list_mutex here as we only read the device data and the list
2476 	 * is protected by RCU.  Even if a device is deleted during the list
2477 	 * traversals, we'll get valid data, the freeing callback will wait at
2478 	 * least until the rcu_read_unlock.
2479 	 */
2480 	rcu_read_lock();
2481 	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2482 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2483 			continue;
2484 		if (!dev->name)
2485 			continue;
2486 		if (!first_dev || dev->devid < first_dev->devid)
2487 			first_dev = dev;
2488 	}
2489 
2490 	if (first_dev)
2491 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2492 	else
2493 		WARN_ON(1);
2494 	rcu_read_unlock();
2495 	return 0;
2496 }
2497 
2498 static const struct super_operations btrfs_super_ops = {
2499 	.drop_inode	= btrfs_drop_inode,
2500 	.evict_inode	= btrfs_evict_inode,
2501 	.put_super	= btrfs_put_super,
2502 	.sync_fs	= btrfs_sync_fs,
2503 	.show_options	= btrfs_show_options,
2504 	.show_devname	= btrfs_show_devname,
2505 	.alloc_inode	= btrfs_alloc_inode,
2506 	.destroy_inode	= btrfs_destroy_inode,
2507 	.free_inode	= btrfs_free_inode,
2508 	.statfs		= btrfs_statfs,
2509 	.remount_fs	= btrfs_remount,
2510 	.freeze_fs	= btrfs_freeze,
2511 	.unfreeze_fs	= btrfs_unfreeze,
2512 };
2513 
2514 static const struct file_operations btrfs_ctl_fops = {
2515 	.open = btrfs_control_open,
2516 	.unlocked_ioctl	 = btrfs_control_ioctl,
2517 	.compat_ioctl = compat_ptr_ioctl,
2518 	.owner	 = THIS_MODULE,
2519 	.llseek = noop_llseek,
2520 };
2521 
2522 static struct miscdevice btrfs_misc = {
2523 	.minor		= BTRFS_MINOR,
2524 	.name		= "btrfs-control",
2525 	.fops		= &btrfs_ctl_fops
2526 };
2527 
2528 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2529 MODULE_ALIAS("devname:btrfs-control");
2530 
2531 static int __init btrfs_interface_init(void)
2532 {
2533 	return misc_register(&btrfs_misc);
2534 }
2535 
2536 static __cold void btrfs_interface_exit(void)
2537 {
2538 	misc_deregister(&btrfs_misc);
2539 }
2540 
2541 static void __init btrfs_print_mod_info(void)
2542 {
2543 	static const char options[] = ""
2544 #ifdef CONFIG_BTRFS_DEBUG
2545 			", debug=on"
2546 #endif
2547 #ifdef CONFIG_BTRFS_ASSERT
2548 			", assert=on"
2549 #endif
2550 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2551 			", integrity-checker=on"
2552 #endif
2553 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2554 			", ref-verify=on"
2555 #endif
2556 #ifdef CONFIG_BLK_DEV_ZONED
2557 			", zoned=yes"
2558 #else
2559 			", zoned=no"
2560 #endif
2561 			;
2562 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2563 }
2564 
2565 static int __init init_btrfs_fs(void)
2566 {
2567 	int err;
2568 
2569 	btrfs_props_init();
2570 
2571 	err = btrfs_init_sysfs();
2572 	if (err)
2573 		return err;
2574 
2575 	btrfs_init_compress();
2576 
2577 	err = btrfs_init_cachep();
2578 	if (err)
2579 		goto free_compress;
2580 
2581 	err = extent_io_init();
2582 	if (err)
2583 		goto free_cachep;
2584 
2585 	err = extent_state_cache_init();
2586 	if (err)
2587 		goto free_extent_io;
2588 
2589 	err = extent_map_init();
2590 	if (err)
2591 		goto free_extent_state_cache;
2592 
2593 	err = ordered_data_init();
2594 	if (err)
2595 		goto free_extent_map;
2596 
2597 	err = btrfs_delayed_inode_init();
2598 	if (err)
2599 		goto free_ordered_data;
2600 
2601 	err = btrfs_auto_defrag_init();
2602 	if (err)
2603 		goto free_delayed_inode;
2604 
2605 	err = btrfs_delayed_ref_init();
2606 	if (err)
2607 		goto free_auto_defrag;
2608 
2609 	err = btrfs_prelim_ref_init();
2610 	if (err)
2611 		goto free_delayed_ref;
2612 
2613 	err = btrfs_end_io_wq_init();
2614 	if (err)
2615 		goto free_prelim_ref;
2616 
2617 	err = btrfs_interface_init();
2618 	if (err)
2619 		goto free_end_io_wq;
2620 
2621 	btrfs_print_mod_info();
2622 
2623 	err = btrfs_run_sanity_tests();
2624 	if (err)
2625 		goto unregister_ioctl;
2626 
2627 	err = register_filesystem(&btrfs_fs_type);
2628 	if (err)
2629 		goto unregister_ioctl;
2630 
2631 	return 0;
2632 
2633 unregister_ioctl:
2634 	btrfs_interface_exit();
2635 free_end_io_wq:
2636 	btrfs_end_io_wq_exit();
2637 free_prelim_ref:
2638 	btrfs_prelim_ref_exit();
2639 free_delayed_ref:
2640 	btrfs_delayed_ref_exit();
2641 free_auto_defrag:
2642 	btrfs_auto_defrag_exit();
2643 free_delayed_inode:
2644 	btrfs_delayed_inode_exit();
2645 free_ordered_data:
2646 	ordered_data_exit();
2647 free_extent_map:
2648 	extent_map_exit();
2649 free_extent_state_cache:
2650 	extent_state_cache_exit();
2651 free_extent_io:
2652 	extent_io_exit();
2653 free_cachep:
2654 	btrfs_destroy_cachep();
2655 free_compress:
2656 	btrfs_exit_compress();
2657 	btrfs_exit_sysfs();
2658 
2659 	return err;
2660 }
2661 
2662 static void __exit exit_btrfs_fs(void)
2663 {
2664 	btrfs_destroy_cachep();
2665 	btrfs_delayed_ref_exit();
2666 	btrfs_auto_defrag_exit();
2667 	btrfs_delayed_inode_exit();
2668 	btrfs_prelim_ref_exit();
2669 	ordered_data_exit();
2670 	extent_map_exit();
2671 	extent_state_cache_exit();
2672 	extent_io_exit();
2673 	btrfs_interface_exit();
2674 	btrfs_end_io_wq_exit();
2675 	unregister_filesystem(&btrfs_fs_type);
2676 	btrfs_exit_sysfs();
2677 	btrfs_cleanup_fs_uuids();
2678 	btrfs_exit_compress();
2679 }
2680 
2681 late_initcall(init_btrfs_fs);
2682 module_exit(exit_btrfs_fs)
2683 
2684 MODULE_LICENSE("GPL");
2685 MODULE_SOFTDEP("pre: crc32c");
2686 MODULE_SOFTDEP("pre: xxhash64");
2687 MODULE_SOFTDEP("pre: sha256");
2688 MODULE_SOFTDEP("pre: blake2b-256");
2689