1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "zoned.h" 48 #include "tests/btrfs-tests.h" 49 #include "block-group.h" 50 #include "discard.h" 51 #include "qgroup.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 /* 71 * Generally the error codes correspond to their respective errors, but there 72 * are a few special cases. 73 * 74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 75 * instance will return EUCLEAN if any of the blocks are corrupted in 76 * a way that is problematic. We want to reserve EUCLEAN for these 77 * sort of corruptions. 78 * 79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 80 * need to use EROFS for this case. We will have no idea of the 81 * original failure, that will have been reported at the time we tripped 82 * over the error. Each subsequent error that doesn't have any context 83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 84 */ 85 const char * __attribute_const__ btrfs_decode_error(int errno) 86 { 87 char *errstr = "unknown"; 88 89 switch (errno) { 90 case -ENOENT: /* -2 */ 91 errstr = "No such entry"; 92 break; 93 case -EIO: /* -5 */ 94 errstr = "IO failure"; 95 break; 96 case -ENOMEM: /* -12*/ 97 errstr = "Out of memory"; 98 break; 99 case -EEXIST: /* -17 */ 100 errstr = "Object already exists"; 101 break; 102 case -ENOSPC: /* -28 */ 103 errstr = "No space left"; 104 break; 105 case -EROFS: /* -30 */ 106 errstr = "Readonly filesystem"; 107 break; 108 case -EOPNOTSUPP: /* -95 */ 109 errstr = "Operation not supported"; 110 break; 111 case -EUCLEAN: /* -117 */ 112 errstr = "Filesystem corrupted"; 113 break; 114 case -EDQUOT: /* -122 */ 115 errstr = "Quota exceeded"; 116 break; 117 } 118 119 return errstr; 120 } 121 122 /* 123 * __btrfs_handle_fs_error decodes expected errors from the caller and 124 * invokes the appropriate error response. 125 */ 126 __cold 127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 128 unsigned int line, int errno, const char *fmt, ...) 129 { 130 struct super_block *sb = fs_info->sb; 131 #ifdef CONFIG_PRINTK 132 const char *errstr; 133 #endif 134 135 /* 136 * Special case: if the error is EROFS, and we're already 137 * under SB_RDONLY, then it is safe here. 138 */ 139 if (errno == -EROFS && sb_rdonly(sb)) 140 return; 141 142 #ifdef CONFIG_PRINTK 143 errstr = btrfs_decode_error(errno); 144 if (fmt) { 145 struct va_format vaf; 146 va_list args; 147 148 va_start(args, fmt); 149 vaf.fmt = fmt; 150 vaf.va = &args; 151 152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 153 sb->s_id, function, line, errno, errstr, &vaf); 154 va_end(args); 155 } else { 156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 157 sb->s_id, function, line, errno, errstr); 158 } 159 #endif 160 161 /* 162 * Today we only save the error info to memory. Long term we'll 163 * also send it down to the disk 164 */ 165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 166 167 /* Don't go through full error handling during mount */ 168 if (!(sb->s_flags & SB_BORN)) 169 return; 170 171 if (sb_rdonly(sb)) 172 return; 173 174 btrfs_discard_stop(fs_info); 175 176 /* btrfs handle error by forcing the filesystem readonly */ 177 btrfs_set_sb_rdonly(sb); 178 btrfs_info(fs_info, "forced readonly"); 179 /* 180 * Note that a running device replace operation is not canceled here 181 * although there is no way to update the progress. It would add the 182 * risk of a deadlock, therefore the canceling is omitted. The only 183 * penalty is that some I/O remains active until the procedure 184 * completes. The next time when the filesystem is mounted writable 185 * again, the device replace operation continues. 186 */ 187 } 188 189 #ifdef CONFIG_PRINTK 190 static const char * const logtypes[] = { 191 "emergency", 192 "alert", 193 "critical", 194 "error", 195 "warning", 196 "notice", 197 "info", 198 "debug", 199 }; 200 201 202 /* 203 * Use one ratelimit state per log level so that a flood of less important 204 * messages doesn't cause more important ones to be dropped. 205 */ 206 static struct ratelimit_state printk_limits[] = { 207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 215 }; 216 217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 218 { 219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 220 struct va_format vaf; 221 va_list args; 222 int kern_level; 223 const char *type = logtypes[4]; 224 struct ratelimit_state *ratelimit = &printk_limits[4]; 225 226 va_start(args, fmt); 227 228 while ((kern_level = printk_get_level(fmt)) != 0) { 229 size_t size = printk_skip_level(fmt) - fmt; 230 231 if (kern_level >= '0' && kern_level <= '7') { 232 memcpy(lvl, fmt, size); 233 lvl[size] = '\0'; 234 type = logtypes[kern_level - '0']; 235 ratelimit = &printk_limits[kern_level - '0']; 236 } 237 fmt += size; 238 } 239 240 vaf.fmt = fmt; 241 vaf.va = &args; 242 243 if (__ratelimit(ratelimit)) { 244 if (fs_info) 245 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 246 fs_info->sb->s_id, &vaf); 247 else 248 printk("%sBTRFS %s: %pV\n", lvl, type, &vaf); 249 } 250 251 va_end(args); 252 } 253 #endif 254 255 /* 256 * We only mark the transaction aborted and then set the file system read-only. 257 * This will prevent new transactions from starting or trying to join this 258 * one. 259 * 260 * This means that error recovery at the call site is limited to freeing 261 * any local memory allocations and passing the error code up without 262 * further cleanup. The transaction should complete as it normally would 263 * in the call path but will return -EIO. 264 * 265 * We'll complete the cleanup in btrfs_end_transaction and 266 * btrfs_commit_transaction. 267 */ 268 __cold 269 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 270 const char *function, 271 unsigned int line, int errno) 272 { 273 struct btrfs_fs_info *fs_info = trans->fs_info; 274 275 WRITE_ONCE(trans->aborted, errno); 276 /* Nothing used. The other threads that have joined this 277 * transaction may be able to continue. */ 278 if (!trans->dirty && list_empty(&trans->new_bgs)) { 279 const char *errstr; 280 281 errstr = btrfs_decode_error(errno); 282 btrfs_warn(fs_info, 283 "%s:%d: Aborting unused transaction(%s).", 284 function, line, errstr); 285 return; 286 } 287 WRITE_ONCE(trans->transaction->aborted, errno); 288 /* Wake up anybody who may be waiting on this transaction */ 289 wake_up(&fs_info->transaction_wait); 290 wake_up(&fs_info->transaction_blocked_wait); 291 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 292 } 293 /* 294 * __btrfs_panic decodes unexpected, fatal errors from the caller, 295 * issues an alert, and either panics or BUGs, depending on mount options. 296 */ 297 __cold 298 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 299 unsigned int line, int errno, const char *fmt, ...) 300 { 301 char *s_id = "<unknown>"; 302 const char *errstr; 303 struct va_format vaf = { .fmt = fmt }; 304 va_list args; 305 306 if (fs_info) 307 s_id = fs_info->sb->s_id; 308 309 va_start(args, fmt); 310 vaf.va = &args; 311 312 errstr = btrfs_decode_error(errno); 313 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 314 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 315 s_id, function, line, &vaf, errno, errstr); 316 317 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 318 function, line, &vaf, errno, errstr); 319 va_end(args); 320 /* Caller calls BUG() */ 321 } 322 323 static void btrfs_put_super(struct super_block *sb) 324 { 325 close_ctree(btrfs_sb(sb)); 326 } 327 328 enum { 329 Opt_acl, Opt_noacl, 330 Opt_clear_cache, 331 Opt_commit_interval, 332 Opt_compress, 333 Opt_compress_force, 334 Opt_compress_force_type, 335 Opt_compress_type, 336 Opt_degraded, 337 Opt_device, 338 Opt_fatal_errors, 339 Opt_flushoncommit, Opt_noflushoncommit, 340 Opt_max_inline, 341 Opt_barrier, Opt_nobarrier, 342 Opt_datacow, Opt_nodatacow, 343 Opt_datasum, Opt_nodatasum, 344 Opt_defrag, Opt_nodefrag, 345 Opt_discard, Opt_nodiscard, 346 Opt_discard_mode, 347 Opt_norecovery, 348 Opt_ratio, 349 Opt_rescan_uuid_tree, 350 Opt_skip_balance, 351 Opt_space_cache, Opt_no_space_cache, 352 Opt_space_cache_version, 353 Opt_ssd, Opt_nossd, 354 Opt_ssd_spread, Opt_nossd_spread, 355 Opt_subvol, 356 Opt_subvol_empty, 357 Opt_subvolid, 358 Opt_thread_pool, 359 Opt_treelog, Opt_notreelog, 360 Opt_user_subvol_rm_allowed, 361 362 /* Rescue options */ 363 Opt_rescue, 364 Opt_usebackuproot, 365 Opt_nologreplay, 366 Opt_ignorebadroots, 367 Opt_ignoredatacsums, 368 Opt_rescue_all, 369 370 /* Deprecated options */ 371 Opt_recovery, 372 Opt_inode_cache, Opt_noinode_cache, 373 374 /* Debugging options */ 375 Opt_check_integrity, 376 Opt_check_integrity_including_extent_data, 377 Opt_check_integrity_print_mask, 378 Opt_enospc_debug, Opt_noenospc_debug, 379 #ifdef CONFIG_BTRFS_DEBUG 380 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 381 #endif 382 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 383 Opt_ref_verify, 384 #endif 385 Opt_err, 386 }; 387 388 static const match_table_t tokens = { 389 {Opt_acl, "acl"}, 390 {Opt_noacl, "noacl"}, 391 {Opt_clear_cache, "clear_cache"}, 392 {Opt_commit_interval, "commit=%u"}, 393 {Opt_compress, "compress"}, 394 {Opt_compress_type, "compress=%s"}, 395 {Opt_compress_force, "compress-force"}, 396 {Opt_compress_force_type, "compress-force=%s"}, 397 {Opt_degraded, "degraded"}, 398 {Opt_device, "device=%s"}, 399 {Opt_fatal_errors, "fatal_errors=%s"}, 400 {Opt_flushoncommit, "flushoncommit"}, 401 {Opt_noflushoncommit, "noflushoncommit"}, 402 {Opt_inode_cache, "inode_cache"}, 403 {Opt_noinode_cache, "noinode_cache"}, 404 {Opt_max_inline, "max_inline=%s"}, 405 {Opt_barrier, "barrier"}, 406 {Opt_nobarrier, "nobarrier"}, 407 {Opt_datacow, "datacow"}, 408 {Opt_nodatacow, "nodatacow"}, 409 {Opt_datasum, "datasum"}, 410 {Opt_nodatasum, "nodatasum"}, 411 {Opt_defrag, "autodefrag"}, 412 {Opt_nodefrag, "noautodefrag"}, 413 {Opt_discard, "discard"}, 414 {Opt_discard_mode, "discard=%s"}, 415 {Opt_nodiscard, "nodiscard"}, 416 {Opt_norecovery, "norecovery"}, 417 {Opt_ratio, "metadata_ratio=%u"}, 418 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 419 {Opt_skip_balance, "skip_balance"}, 420 {Opt_space_cache, "space_cache"}, 421 {Opt_no_space_cache, "nospace_cache"}, 422 {Opt_space_cache_version, "space_cache=%s"}, 423 {Opt_ssd, "ssd"}, 424 {Opt_nossd, "nossd"}, 425 {Opt_ssd_spread, "ssd_spread"}, 426 {Opt_nossd_spread, "nossd_spread"}, 427 {Opt_subvol, "subvol=%s"}, 428 {Opt_subvol_empty, "subvol="}, 429 {Opt_subvolid, "subvolid=%s"}, 430 {Opt_thread_pool, "thread_pool=%u"}, 431 {Opt_treelog, "treelog"}, 432 {Opt_notreelog, "notreelog"}, 433 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 434 435 /* Rescue options */ 436 {Opt_rescue, "rescue=%s"}, 437 /* Deprecated, with alias rescue=nologreplay */ 438 {Opt_nologreplay, "nologreplay"}, 439 /* Deprecated, with alias rescue=usebackuproot */ 440 {Opt_usebackuproot, "usebackuproot"}, 441 442 /* Deprecated options */ 443 {Opt_recovery, "recovery"}, 444 445 /* Debugging options */ 446 {Opt_check_integrity, "check_int"}, 447 {Opt_check_integrity_including_extent_data, "check_int_data"}, 448 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 449 {Opt_enospc_debug, "enospc_debug"}, 450 {Opt_noenospc_debug, "noenospc_debug"}, 451 #ifdef CONFIG_BTRFS_DEBUG 452 {Opt_fragment_data, "fragment=data"}, 453 {Opt_fragment_metadata, "fragment=metadata"}, 454 {Opt_fragment_all, "fragment=all"}, 455 #endif 456 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 457 {Opt_ref_verify, "ref_verify"}, 458 #endif 459 {Opt_err, NULL}, 460 }; 461 462 static const match_table_t rescue_tokens = { 463 {Opt_usebackuproot, "usebackuproot"}, 464 {Opt_nologreplay, "nologreplay"}, 465 {Opt_ignorebadroots, "ignorebadroots"}, 466 {Opt_ignorebadroots, "ibadroots"}, 467 {Opt_ignoredatacsums, "ignoredatacsums"}, 468 {Opt_ignoredatacsums, "idatacsums"}, 469 {Opt_rescue_all, "all"}, 470 {Opt_err, NULL}, 471 }; 472 473 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt, 474 const char *opt_name) 475 { 476 if (fs_info->mount_opt & opt) { 477 btrfs_err(fs_info, "%s must be used with ro mount option", 478 opt_name); 479 return true; 480 } 481 return false; 482 } 483 484 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 485 { 486 char *opts; 487 char *orig; 488 char *p; 489 substring_t args[MAX_OPT_ARGS]; 490 int ret = 0; 491 492 opts = kstrdup(options, GFP_KERNEL); 493 if (!opts) 494 return -ENOMEM; 495 orig = opts; 496 497 while ((p = strsep(&opts, ":")) != NULL) { 498 int token; 499 500 if (!*p) 501 continue; 502 token = match_token(p, rescue_tokens, args); 503 switch (token){ 504 case Opt_usebackuproot: 505 btrfs_info(info, 506 "trying to use backup root at mount time"); 507 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 508 break; 509 case Opt_nologreplay: 510 btrfs_set_and_info(info, NOLOGREPLAY, 511 "disabling log replay at mount time"); 512 break; 513 case Opt_ignorebadroots: 514 btrfs_set_and_info(info, IGNOREBADROOTS, 515 "ignoring bad roots"); 516 break; 517 case Opt_ignoredatacsums: 518 btrfs_set_and_info(info, IGNOREDATACSUMS, 519 "ignoring data csums"); 520 break; 521 case Opt_rescue_all: 522 btrfs_info(info, "enabling all of the rescue options"); 523 btrfs_set_and_info(info, IGNOREDATACSUMS, 524 "ignoring data csums"); 525 btrfs_set_and_info(info, IGNOREBADROOTS, 526 "ignoring bad roots"); 527 btrfs_set_and_info(info, NOLOGREPLAY, 528 "disabling log replay at mount time"); 529 break; 530 case Opt_err: 531 btrfs_info(info, "unrecognized rescue option '%s'", p); 532 ret = -EINVAL; 533 goto out; 534 default: 535 break; 536 } 537 538 } 539 out: 540 kfree(orig); 541 return ret; 542 } 543 544 /* 545 * Regular mount options parser. Everything that is needed only when 546 * reading in a new superblock is parsed here. 547 * XXX JDM: This needs to be cleaned up for remount. 548 */ 549 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 550 unsigned long new_flags) 551 { 552 substring_t args[MAX_OPT_ARGS]; 553 char *p, *num; 554 int intarg; 555 int ret = 0; 556 char *compress_type; 557 bool compress_force = false; 558 enum btrfs_compression_type saved_compress_type; 559 int saved_compress_level; 560 bool saved_compress_force; 561 int no_compress = 0; 562 563 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 564 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 565 else if (btrfs_free_space_cache_v1_active(info)) { 566 if (btrfs_is_zoned(info)) { 567 btrfs_info(info, 568 "zoned: clearing existing space cache"); 569 btrfs_set_super_cache_generation(info->super_copy, 0); 570 } else { 571 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 572 } 573 } 574 575 /* 576 * Even the options are empty, we still need to do extra check 577 * against new flags 578 */ 579 if (!options) 580 goto check; 581 582 while ((p = strsep(&options, ",")) != NULL) { 583 int token; 584 if (!*p) 585 continue; 586 587 token = match_token(p, tokens, args); 588 switch (token) { 589 case Opt_degraded: 590 btrfs_info(info, "allowing degraded mounts"); 591 btrfs_set_opt(info->mount_opt, DEGRADED); 592 break; 593 case Opt_subvol: 594 case Opt_subvol_empty: 595 case Opt_subvolid: 596 case Opt_device: 597 /* 598 * These are parsed by btrfs_parse_subvol_options or 599 * btrfs_parse_device_options and can be ignored here. 600 */ 601 break; 602 case Opt_nodatasum: 603 btrfs_set_and_info(info, NODATASUM, 604 "setting nodatasum"); 605 break; 606 case Opt_datasum: 607 if (btrfs_test_opt(info, NODATASUM)) { 608 if (btrfs_test_opt(info, NODATACOW)) 609 btrfs_info(info, 610 "setting datasum, datacow enabled"); 611 else 612 btrfs_info(info, "setting datasum"); 613 } 614 btrfs_clear_opt(info->mount_opt, NODATACOW); 615 btrfs_clear_opt(info->mount_opt, NODATASUM); 616 break; 617 case Opt_nodatacow: 618 if (!btrfs_test_opt(info, NODATACOW)) { 619 if (!btrfs_test_opt(info, COMPRESS) || 620 !btrfs_test_opt(info, FORCE_COMPRESS)) { 621 btrfs_info(info, 622 "setting nodatacow, compression disabled"); 623 } else { 624 btrfs_info(info, "setting nodatacow"); 625 } 626 } 627 btrfs_clear_opt(info->mount_opt, COMPRESS); 628 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 629 btrfs_set_opt(info->mount_opt, NODATACOW); 630 btrfs_set_opt(info->mount_opt, NODATASUM); 631 break; 632 case Opt_datacow: 633 btrfs_clear_and_info(info, NODATACOW, 634 "setting datacow"); 635 break; 636 case Opt_compress_force: 637 case Opt_compress_force_type: 638 compress_force = true; 639 fallthrough; 640 case Opt_compress: 641 case Opt_compress_type: 642 saved_compress_type = btrfs_test_opt(info, 643 COMPRESS) ? 644 info->compress_type : BTRFS_COMPRESS_NONE; 645 saved_compress_force = 646 btrfs_test_opt(info, FORCE_COMPRESS); 647 saved_compress_level = info->compress_level; 648 if (token == Opt_compress || 649 token == Opt_compress_force || 650 strncmp(args[0].from, "zlib", 4) == 0) { 651 compress_type = "zlib"; 652 653 info->compress_type = BTRFS_COMPRESS_ZLIB; 654 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 655 /* 656 * args[0] contains uninitialized data since 657 * for these tokens we don't expect any 658 * parameter. 659 */ 660 if (token != Opt_compress && 661 token != Opt_compress_force) 662 info->compress_level = 663 btrfs_compress_str2level( 664 BTRFS_COMPRESS_ZLIB, 665 args[0].from + 4); 666 btrfs_set_opt(info->mount_opt, COMPRESS); 667 btrfs_clear_opt(info->mount_opt, NODATACOW); 668 btrfs_clear_opt(info->mount_opt, NODATASUM); 669 no_compress = 0; 670 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 671 compress_type = "lzo"; 672 info->compress_type = BTRFS_COMPRESS_LZO; 673 info->compress_level = 0; 674 btrfs_set_opt(info->mount_opt, COMPRESS); 675 btrfs_clear_opt(info->mount_opt, NODATACOW); 676 btrfs_clear_opt(info->mount_opt, NODATASUM); 677 btrfs_set_fs_incompat(info, COMPRESS_LZO); 678 no_compress = 0; 679 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 680 compress_type = "zstd"; 681 info->compress_type = BTRFS_COMPRESS_ZSTD; 682 info->compress_level = 683 btrfs_compress_str2level( 684 BTRFS_COMPRESS_ZSTD, 685 args[0].from + 4); 686 btrfs_set_opt(info->mount_opt, COMPRESS); 687 btrfs_clear_opt(info->mount_opt, NODATACOW); 688 btrfs_clear_opt(info->mount_opt, NODATASUM); 689 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 690 no_compress = 0; 691 } else if (strncmp(args[0].from, "no", 2) == 0) { 692 compress_type = "no"; 693 info->compress_level = 0; 694 info->compress_type = 0; 695 btrfs_clear_opt(info->mount_opt, COMPRESS); 696 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 697 compress_force = false; 698 no_compress++; 699 } else { 700 ret = -EINVAL; 701 goto out; 702 } 703 704 if (compress_force) { 705 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 706 } else { 707 /* 708 * If we remount from compress-force=xxx to 709 * compress=xxx, we need clear FORCE_COMPRESS 710 * flag, otherwise, there is no way for users 711 * to disable forcible compression separately. 712 */ 713 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 714 } 715 if (no_compress == 1) { 716 btrfs_info(info, "use no compression"); 717 } else if ((info->compress_type != saved_compress_type) || 718 (compress_force != saved_compress_force) || 719 (info->compress_level != saved_compress_level)) { 720 btrfs_info(info, "%s %s compression, level %d", 721 (compress_force) ? "force" : "use", 722 compress_type, info->compress_level); 723 } 724 compress_force = false; 725 break; 726 case Opt_ssd: 727 btrfs_set_and_info(info, SSD, 728 "enabling ssd optimizations"); 729 btrfs_clear_opt(info->mount_opt, NOSSD); 730 break; 731 case Opt_ssd_spread: 732 btrfs_set_and_info(info, SSD, 733 "enabling ssd optimizations"); 734 btrfs_set_and_info(info, SSD_SPREAD, 735 "using spread ssd allocation scheme"); 736 btrfs_clear_opt(info->mount_opt, NOSSD); 737 break; 738 case Opt_nossd: 739 btrfs_set_opt(info->mount_opt, NOSSD); 740 btrfs_clear_and_info(info, SSD, 741 "not using ssd optimizations"); 742 fallthrough; 743 case Opt_nossd_spread: 744 btrfs_clear_and_info(info, SSD_SPREAD, 745 "not using spread ssd allocation scheme"); 746 break; 747 case Opt_barrier: 748 btrfs_clear_and_info(info, NOBARRIER, 749 "turning on barriers"); 750 break; 751 case Opt_nobarrier: 752 btrfs_set_and_info(info, NOBARRIER, 753 "turning off barriers"); 754 break; 755 case Opt_thread_pool: 756 ret = match_int(&args[0], &intarg); 757 if (ret) { 758 goto out; 759 } else if (intarg == 0) { 760 ret = -EINVAL; 761 goto out; 762 } 763 info->thread_pool_size = intarg; 764 break; 765 case Opt_max_inline: 766 num = match_strdup(&args[0]); 767 if (num) { 768 info->max_inline = memparse(num, NULL); 769 kfree(num); 770 771 if (info->max_inline) { 772 info->max_inline = min_t(u64, 773 info->max_inline, 774 info->sectorsize); 775 } 776 btrfs_info(info, "max_inline at %llu", 777 info->max_inline); 778 } else { 779 ret = -ENOMEM; 780 goto out; 781 } 782 break; 783 case Opt_acl: 784 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 785 info->sb->s_flags |= SB_POSIXACL; 786 break; 787 #else 788 btrfs_err(info, "support for ACL not compiled in!"); 789 ret = -EINVAL; 790 goto out; 791 #endif 792 case Opt_noacl: 793 info->sb->s_flags &= ~SB_POSIXACL; 794 break; 795 case Opt_notreelog: 796 btrfs_set_and_info(info, NOTREELOG, 797 "disabling tree log"); 798 break; 799 case Opt_treelog: 800 btrfs_clear_and_info(info, NOTREELOG, 801 "enabling tree log"); 802 break; 803 case Opt_norecovery: 804 case Opt_nologreplay: 805 btrfs_warn(info, 806 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 807 btrfs_set_and_info(info, NOLOGREPLAY, 808 "disabling log replay at mount time"); 809 break; 810 case Opt_flushoncommit: 811 btrfs_set_and_info(info, FLUSHONCOMMIT, 812 "turning on flush-on-commit"); 813 break; 814 case Opt_noflushoncommit: 815 btrfs_clear_and_info(info, FLUSHONCOMMIT, 816 "turning off flush-on-commit"); 817 break; 818 case Opt_ratio: 819 ret = match_int(&args[0], &intarg); 820 if (ret) 821 goto out; 822 info->metadata_ratio = intarg; 823 btrfs_info(info, "metadata ratio %u", 824 info->metadata_ratio); 825 break; 826 case Opt_discard: 827 case Opt_discard_mode: 828 if (token == Opt_discard || 829 strcmp(args[0].from, "sync") == 0) { 830 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 831 btrfs_set_and_info(info, DISCARD_SYNC, 832 "turning on sync discard"); 833 } else if (strcmp(args[0].from, "async") == 0) { 834 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 835 btrfs_set_and_info(info, DISCARD_ASYNC, 836 "turning on async discard"); 837 } else { 838 ret = -EINVAL; 839 goto out; 840 } 841 break; 842 case Opt_nodiscard: 843 btrfs_clear_and_info(info, DISCARD_SYNC, 844 "turning off discard"); 845 btrfs_clear_and_info(info, DISCARD_ASYNC, 846 "turning off async discard"); 847 break; 848 case Opt_space_cache: 849 case Opt_space_cache_version: 850 if (token == Opt_space_cache || 851 strcmp(args[0].from, "v1") == 0) { 852 btrfs_clear_opt(info->mount_opt, 853 FREE_SPACE_TREE); 854 btrfs_set_and_info(info, SPACE_CACHE, 855 "enabling disk space caching"); 856 } else if (strcmp(args[0].from, "v2") == 0) { 857 btrfs_clear_opt(info->mount_opt, 858 SPACE_CACHE); 859 btrfs_set_and_info(info, FREE_SPACE_TREE, 860 "enabling free space tree"); 861 } else { 862 ret = -EINVAL; 863 goto out; 864 } 865 break; 866 case Opt_rescan_uuid_tree: 867 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 868 break; 869 case Opt_no_space_cache: 870 if (btrfs_test_opt(info, SPACE_CACHE)) { 871 btrfs_clear_and_info(info, SPACE_CACHE, 872 "disabling disk space caching"); 873 } 874 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 875 btrfs_clear_and_info(info, FREE_SPACE_TREE, 876 "disabling free space tree"); 877 } 878 break; 879 case Opt_inode_cache: 880 case Opt_noinode_cache: 881 btrfs_warn(info, 882 "the 'inode_cache' option is deprecated and has no effect since 5.11"); 883 break; 884 case Opt_clear_cache: 885 btrfs_set_and_info(info, CLEAR_CACHE, 886 "force clearing of disk cache"); 887 break; 888 case Opt_user_subvol_rm_allowed: 889 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 890 break; 891 case Opt_enospc_debug: 892 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 893 break; 894 case Opt_noenospc_debug: 895 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 896 break; 897 case Opt_defrag: 898 btrfs_set_and_info(info, AUTO_DEFRAG, 899 "enabling auto defrag"); 900 break; 901 case Opt_nodefrag: 902 btrfs_clear_and_info(info, AUTO_DEFRAG, 903 "disabling auto defrag"); 904 break; 905 case Opt_recovery: 906 case Opt_usebackuproot: 907 btrfs_warn(info, 908 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 909 token == Opt_recovery ? "recovery" : 910 "usebackuproot"); 911 btrfs_info(info, 912 "trying to use backup root at mount time"); 913 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 914 break; 915 case Opt_skip_balance: 916 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 917 break; 918 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 919 case Opt_check_integrity_including_extent_data: 920 btrfs_info(info, 921 "enabling check integrity including extent data"); 922 btrfs_set_opt(info->mount_opt, 923 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 924 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 925 break; 926 case Opt_check_integrity: 927 btrfs_info(info, "enabling check integrity"); 928 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 929 break; 930 case Opt_check_integrity_print_mask: 931 ret = match_int(&args[0], &intarg); 932 if (ret) 933 goto out; 934 info->check_integrity_print_mask = intarg; 935 btrfs_info(info, "check_integrity_print_mask 0x%x", 936 info->check_integrity_print_mask); 937 break; 938 #else 939 case Opt_check_integrity_including_extent_data: 940 case Opt_check_integrity: 941 case Opt_check_integrity_print_mask: 942 btrfs_err(info, 943 "support for check_integrity* not compiled in!"); 944 ret = -EINVAL; 945 goto out; 946 #endif 947 case Opt_fatal_errors: 948 if (strcmp(args[0].from, "panic") == 0) 949 btrfs_set_opt(info->mount_opt, 950 PANIC_ON_FATAL_ERROR); 951 else if (strcmp(args[0].from, "bug") == 0) 952 btrfs_clear_opt(info->mount_opt, 953 PANIC_ON_FATAL_ERROR); 954 else { 955 ret = -EINVAL; 956 goto out; 957 } 958 break; 959 case Opt_commit_interval: 960 intarg = 0; 961 ret = match_int(&args[0], &intarg); 962 if (ret) 963 goto out; 964 if (intarg == 0) { 965 btrfs_info(info, 966 "using default commit interval %us", 967 BTRFS_DEFAULT_COMMIT_INTERVAL); 968 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 969 } else if (intarg > 300) { 970 btrfs_warn(info, "excessive commit interval %d", 971 intarg); 972 } 973 info->commit_interval = intarg; 974 break; 975 case Opt_rescue: 976 ret = parse_rescue_options(info, args[0].from); 977 if (ret < 0) 978 goto out; 979 break; 980 #ifdef CONFIG_BTRFS_DEBUG 981 case Opt_fragment_all: 982 btrfs_info(info, "fragmenting all space"); 983 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 984 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 985 break; 986 case Opt_fragment_metadata: 987 btrfs_info(info, "fragmenting metadata"); 988 btrfs_set_opt(info->mount_opt, 989 FRAGMENT_METADATA); 990 break; 991 case Opt_fragment_data: 992 btrfs_info(info, "fragmenting data"); 993 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 994 break; 995 #endif 996 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 997 case Opt_ref_verify: 998 btrfs_info(info, "doing ref verification"); 999 btrfs_set_opt(info->mount_opt, REF_VERIFY); 1000 break; 1001 #endif 1002 case Opt_err: 1003 btrfs_err(info, "unrecognized mount option '%s'", p); 1004 ret = -EINVAL; 1005 goto out; 1006 default: 1007 break; 1008 } 1009 } 1010 check: 1011 /* We're read-only, don't have to check. */ 1012 if (new_flags & SB_RDONLY) 1013 goto out; 1014 1015 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 1016 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 1017 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")) 1018 ret = -EINVAL; 1019 out: 1020 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 1021 !btrfs_test_opt(info, FREE_SPACE_TREE) && 1022 !btrfs_test_opt(info, CLEAR_CACHE)) { 1023 btrfs_err(info, "cannot disable free space tree"); 1024 ret = -EINVAL; 1025 1026 } 1027 if (!ret) 1028 ret = btrfs_check_mountopts_zoned(info); 1029 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 1030 btrfs_info(info, "disk space caching is enabled"); 1031 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 1032 btrfs_info(info, "using free space tree"); 1033 return ret; 1034 } 1035 1036 /* 1037 * Parse mount options that are required early in the mount process. 1038 * 1039 * All other options will be parsed on much later in the mount process and 1040 * only when we need to allocate a new super block. 1041 */ 1042 static int btrfs_parse_device_options(const char *options, fmode_t flags, 1043 void *holder) 1044 { 1045 substring_t args[MAX_OPT_ARGS]; 1046 char *device_name, *opts, *orig, *p; 1047 struct btrfs_device *device = NULL; 1048 int error = 0; 1049 1050 lockdep_assert_held(&uuid_mutex); 1051 1052 if (!options) 1053 return 0; 1054 1055 /* 1056 * strsep changes the string, duplicate it because btrfs_parse_options 1057 * gets called later 1058 */ 1059 opts = kstrdup(options, GFP_KERNEL); 1060 if (!opts) 1061 return -ENOMEM; 1062 orig = opts; 1063 1064 while ((p = strsep(&opts, ",")) != NULL) { 1065 int token; 1066 1067 if (!*p) 1068 continue; 1069 1070 token = match_token(p, tokens, args); 1071 if (token == Opt_device) { 1072 device_name = match_strdup(&args[0]); 1073 if (!device_name) { 1074 error = -ENOMEM; 1075 goto out; 1076 } 1077 device = btrfs_scan_one_device(device_name, flags, 1078 holder); 1079 kfree(device_name); 1080 if (IS_ERR(device)) { 1081 error = PTR_ERR(device); 1082 goto out; 1083 } 1084 } 1085 } 1086 1087 out: 1088 kfree(orig); 1089 return error; 1090 } 1091 1092 /* 1093 * Parse mount options that are related to subvolume id 1094 * 1095 * The value is later passed to mount_subvol() 1096 */ 1097 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1098 u64 *subvol_objectid) 1099 { 1100 substring_t args[MAX_OPT_ARGS]; 1101 char *opts, *orig, *p; 1102 int error = 0; 1103 u64 subvolid; 1104 1105 if (!options) 1106 return 0; 1107 1108 /* 1109 * strsep changes the string, duplicate it because 1110 * btrfs_parse_device_options gets called later 1111 */ 1112 opts = kstrdup(options, GFP_KERNEL); 1113 if (!opts) 1114 return -ENOMEM; 1115 orig = opts; 1116 1117 while ((p = strsep(&opts, ",")) != NULL) { 1118 int token; 1119 if (!*p) 1120 continue; 1121 1122 token = match_token(p, tokens, args); 1123 switch (token) { 1124 case Opt_subvol: 1125 kfree(*subvol_name); 1126 *subvol_name = match_strdup(&args[0]); 1127 if (!*subvol_name) { 1128 error = -ENOMEM; 1129 goto out; 1130 } 1131 break; 1132 case Opt_subvolid: 1133 error = match_u64(&args[0], &subvolid); 1134 if (error) 1135 goto out; 1136 1137 /* we want the original fs_tree */ 1138 if (subvolid == 0) 1139 subvolid = BTRFS_FS_TREE_OBJECTID; 1140 1141 *subvol_objectid = subvolid; 1142 break; 1143 default: 1144 break; 1145 } 1146 } 1147 1148 out: 1149 kfree(orig); 1150 return error; 1151 } 1152 1153 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1154 u64 subvol_objectid) 1155 { 1156 struct btrfs_root *root = fs_info->tree_root; 1157 struct btrfs_root *fs_root = NULL; 1158 struct btrfs_root_ref *root_ref; 1159 struct btrfs_inode_ref *inode_ref; 1160 struct btrfs_key key; 1161 struct btrfs_path *path = NULL; 1162 char *name = NULL, *ptr; 1163 u64 dirid; 1164 int len; 1165 int ret; 1166 1167 path = btrfs_alloc_path(); 1168 if (!path) { 1169 ret = -ENOMEM; 1170 goto err; 1171 } 1172 1173 name = kmalloc(PATH_MAX, GFP_KERNEL); 1174 if (!name) { 1175 ret = -ENOMEM; 1176 goto err; 1177 } 1178 ptr = name + PATH_MAX - 1; 1179 ptr[0] = '\0'; 1180 1181 /* 1182 * Walk up the subvolume trees in the tree of tree roots by root 1183 * backrefs until we hit the top-level subvolume. 1184 */ 1185 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1186 key.objectid = subvol_objectid; 1187 key.type = BTRFS_ROOT_BACKREF_KEY; 1188 key.offset = (u64)-1; 1189 1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1191 if (ret < 0) { 1192 goto err; 1193 } else if (ret > 0) { 1194 ret = btrfs_previous_item(root, path, subvol_objectid, 1195 BTRFS_ROOT_BACKREF_KEY); 1196 if (ret < 0) { 1197 goto err; 1198 } else if (ret > 0) { 1199 ret = -ENOENT; 1200 goto err; 1201 } 1202 } 1203 1204 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1205 subvol_objectid = key.offset; 1206 1207 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1208 struct btrfs_root_ref); 1209 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1210 ptr -= len + 1; 1211 if (ptr < name) { 1212 ret = -ENAMETOOLONG; 1213 goto err; 1214 } 1215 read_extent_buffer(path->nodes[0], ptr + 1, 1216 (unsigned long)(root_ref + 1), len); 1217 ptr[0] = '/'; 1218 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1219 btrfs_release_path(path); 1220 1221 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1222 if (IS_ERR(fs_root)) { 1223 ret = PTR_ERR(fs_root); 1224 fs_root = NULL; 1225 goto err; 1226 } 1227 1228 /* 1229 * Walk up the filesystem tree by inode refs until we hit the 1230 * root directory. 1231 */ 1232 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1233 key.objectid = dirid; 1234 key.type = BTRFS_INODE_REF_KEY; 1235 key.offset = (u64)-1; 1236 1237 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1238 if (ret < 0) { 1239 goto err; 1240 } else if (ret > 0) { 1241 ret = btrfs_previous_item(fs_root, path, dirid, 1242 BTRFS_INODE_REF_KEY); 1243 if (ret < 0) { 1244 goto err; 1245 } else if (ret > 0) { 1246 ret = -ENOENT; 1247 goto err; 1248 } 1249 } 1250 1251 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1252 dirid = key.offset; 1253 1254 inode_ref = btrfs_item_ptr(path->nodes[0], 1255 path->slots[0], 1256 struct btrfs_inode_ref); 1257 len = btrfs_inode_ref_name_len(path->nodes[0], 1258 inode_ref); 1259 ptr -= len + 1; 1260 if (ptr < name) { 1261 ret = -ENAMETOOLONG; 1262 goto err; 1263 } 1264 read_extent_buffer(path->nodes[0], ptr + 1, 1265 (unsigned long)(inode_ref + 1), len); 1266 ptr[0] = '/'; 1267 btrfs_release_path(path); 1268 } 1269 btrfs_put_root(fs_root); 1270 fs_root = NULL; 1271 } 1272 1273 btrfs_free_path(path); 1274 if (ptr == name + PATH_MAX - 1) { 1275 name[0] = '/'; 1276 name[1] = '\0'; 1277 } else { 1278 memmove(name, ptr, name + PATH_MAX - ptr); 1279 } 1280 return name; 1281 1282 err: 1283 btrfs_put_root(fs_root); 1284 btrfs_free_path(path); 1285 kfree(name); 1286 return ERR_PTR(ret); 1287 } 1288 1289 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1290 { 1291 struct btrfs_root *root = fs_info->tree_root; 1292 struct btrfs_dir_item *di; 1293 struct btrfs_path *path; 1294 struct btrfs_key location; 1295 u64 dir_id; 1296 1297 path = btrfs_alloc_path(); 1298 if (!path) 1299 return -ENOMEM; 1300 1301 /* 1302 * Find the "default" dir item which points to the root item that we 1303 * will mount by default if we haven't been given a specific subvolume 1304 * to mount. 1305 */ 1306 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1307 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1308 if (IS_ERR(di)) { 1309 btrfs_free_path(path); 1310 return PTR_ERR(di); 1311 } 1312 if (!di) { 1313 /* 1314 * Ok the default dir item isn't there. This is weird since 1315 * it's always been there, but don't freak out, just try and 1316 * mount the top-level subvolume. 1317 */ 1318 btrfs_free_path(path); 1319 *objectid = BTRFS_FS_TREE_OBJECTID; 1320 return 0; 1321 } 1322 1323 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1324 btrfs_free_path(path); 1325 *objectid = location.objectid; 1326 return 0; 1327 } 1328 1329 static int btrfs_fill_super(struct super_block *sb, 1330 struct btrfs_fs_devices *fs_devices, 1331 void *data) 1332 { 1333 struct inode *inode; 1334 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1335 int err; 1336 1337 sb->s_maxbytes = MAX_LFS_FILESIZE; 1338 sb->s_magic = BTRFS_SUPER_MAGIC; 1339 sb->s_op = &btrfs_super_ops; 1340 sb->s_d_op = &btrfs_dentry_operations; 1341 sb->s_export_op = &btrfs_export_ops; 1342 sb->s_xattr = btrfs_xattr_handlers; 1343 sb->s_time_gran = 1; 1344 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1345 sb->s_flags |= SB_POSIXACL; 1346 #endif 1347 sb->s_flags |= SB_I_VERSION; 1348 sb->s_iflags |= SB_I_CGROUPWB; 1349 1350 err = super_setup_bdi(sb); 1351 if (err) { 1352 btrfs_err(fs_info, "super_setup_bdi failed"); 1353 return err; 1354 } 1355 1356 err = open_ctree(sb, fs_devices, (char *)data); 1357 if (err) { 1358 btrfs_err(fs_info, "open_ctree failed"); 1359 return err; 1360 } 1361 1362 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1363 if (IS_ERR(inode)) { 1364 err = PTR_ERR(inode); 1365 goto fail_close; 1366 } 1367 1368 sb->s_root = d_make_root(inode); 1369 if (!sb->s_root) { 1370 err = -ENOMEM; 1371 goto fail_close; 1372 } 1373 1374 cleancache_init_fs(sb); 1375 sb->s_flags |= SB_ACTIVE; 1376 return 0; 1377 1378 fail_close: 1379 close_ctree(fs_info); 1380 return err; 1381 } 1382 1383 int btrfs_sync_fs(struct super_block *sb, int wait) 1384 { 1385 struct btrfs_trans_handle *trans; 1386 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1387 struct btrfs_root *root = fs_info->tree_root; 1388 1389 trace_btrfs_sync_fs(fs_info, wait); 1390 1391 if (!wait) { 1392 filemap_flush(fs_info->btree_inode->i_mapping); 1393 return 0; 1394 } 1395 1396 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1397 1398 trans = btrfs_attach_transaction_barrier(root); 1399 if (IS_ERR(trans)) { 1400 /* no transaction, don't bother */ 1401 if (PTR_ERR(trans) == -ENOENT) { 1402 /* 1403 * Exit unless we have some pending changes 1404 * that need to go through commit 1405 */ 1406 if (fs_info->pending_changes == 0) 1407 return 0; 1408 /* 1409 * A non-blocking test if the fs is frozen. We must not 1410 * start a new transaction here otherwise a deadlock 1411 * happens. The pending operations are delayed to the 1412 * next commit after thawing. 1413 */ 1414 if (sb_start_write_trylock(sb)) 1415 sb_end_write(sb); 1416 else 1417 return 0; 1418 trans = btrfs_start_transaction(root, 0); 1419 } 1420 if (IS_ERR(trans)) 1421 return PTR_ERR(trans); 1422 } 1423 return btrfs_commit_transaction(trans); 1424 } 1425 1426 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1427 { 1428 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1429 *printed = true; 1430 } 1431 1432 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1433 { 1434 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1435 const char *compress_type; 1436 const char *subvol_name; 1437 bool printed = false; 1438 1439 if (btrfs_test_opt(info, DEGRADED)) 1440 seq_puts(seq, ",degraded"); 1441 if (btrfs_test_opt(info, NODATASUM)) 1442 seq_puts(seq, ",nodatasum"); 1443 if (btrfs_test_opt(info, NODATACOW)) 1444 seq_puts(seq, ",nodatacow"); 1445 if (btrfs_test_opt(info, NOBARRIER)) 1446 seq_puts(seq, ",nobarrier"); 1447 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1448 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1449 if (info->thread_pool_size != min_t(unsigned long, 1450 num_online_cpus() + 2, 8)) 1451 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1452 if (btrfs_test_opt(info, COMPRESS)) { 1453 compress_type = btrfs_compress_type2str(info->compress_type); 1454 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1455 seq_printf(seq, ",compress-force=%s", compress_type); 1456 else 1457 seq_printf(seq, ",compress=%s", compress_type); 1458 if (info->compress_level) 1459 seq_printf(seq, ":%d", info->compress_level); 1460 } 1461 if (btrfs_test_opt(info, NOSSD)) 1462 seq_puts(seq, ",nossd"); 1463 if (btrfs_test_opt(info, SSD_SPREAD)) 1464 seq_puts(seq, ",ssd_spread"); 1465 else if (btrfs_test_opt(info, SSD)) 1466 seq_puts(seq, ",ssd"); 1467 if (btrfs_test_opt(info, NOTREELOG)) 1468 seq_puts(seq, ",notreelog"); 1469 if (btrfs_test_opt(info, NOLOGREPLAY)) 1470 print_rescue_option(seq, "nologreplay", &printed); 1471 if (btrfs_test_opt(info, USEBACKUPROOT)) 1472 print_rescue_option(seq, "usebackuproot", &printed); 1473 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1474 print_rescue_option(seq, "ignorebadroots", &printed); 1475 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1476 print_rescue_option(seq, "ignoredatacsums", &printed); 1477 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1478 seq_puts(seq, ",flushoncommit"); 1479 if (btrfs_test_opt(info, DISCARD_SYNC)) 1480 seq_puts(seq, ",discard"); 1481 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1482 seq_puts(seq, ",discard=async"); 1483 if (!(info->sb->s_flags & SB_POSIXACL)) 1484 seq_puts(seq, ",noacl"); 1485 if (btrfs_free_space_cache_v1_active(info)) 1486 seq_puts(seq, ",space_cache"); 1487 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1488 seq_puts(seq, ",space_cache=v2"); 1489 else 1490 seq_puts(seq, ",nospace_cache"); 1491 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1492 seq_puts(seq, ",rescan_uuid_tree"); 1493 if (btrfs_test_opt(info, CLEAR_CACHE)) 1494 seq_puts(seq, ",clear_cache"); 1495 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1496 seq_puts(seq, ",user_subvol_rm_allowed"); 1497 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1498 seq_puts(seq, ",enospc_debug"); 1499 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1500 seq_puts(seq, ",autodefrag"); 1501 if (btrfs_test_opt(info, SKIP_BALANCE)) 1502 seq_puts(seq, ",skip_balance"); 1503 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1504 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1505 seq_puts(seq, ",check_int_data"); 1506 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1507 seq_puts(seq, ",check_int"); 1508 if (info->check_integrity_print_mask) 1509 seq_printf(seq, ",check_int_print_mask=%d", 1510 info->check_integrity_print_mask); 1511 #endif 1512 if (info->metadata_ratio) 1513 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1514 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1515 seq_puts(seq, ",fatal_errors=panic"); 1516 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1517 seq_printf(seq, ",commit=%u", info->commit_interval); 1518 #ifdef CONFIG_BTRFS_DEBUG 1519 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1520 seq_puts(seq, ",fragment=data"); 1521 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1522 seq_puts(seq, ",fragment=metadata"); 1523 #endif 1524 if (btrfs_test_opt(info, REF_VERIFY)) 1525 seq_puts(seq, ",ref_verify"); 1526 seq_printf(seq, ",subvolid=%llu", 1527 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1528 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1529 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1530 if (!IS_ERR(subvol_name)) { 1531 seq_puts(seq, ",subvol="); 1532 seq_escape(seq, subvol_name, " \t\n\\"); 1533 kfree(subvol_name); 1534 } 1535 return 0; 1536 } 1537 1538 static int btrfs_test_super(struct super_block *s, void *data) 1539 { 1540 struct btrfs_fs_info *p = data; 1541 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1542 1543 return fs_info->fs_devices == p->fs_devices; 1544 } 1545 1546 static int btrfs_set_super(struct super_block *s, void *data) 1547 { 1548 int err = set_anon_super(s, data); 1549 if (!err) 1550 s->s_fs_info = data; 1551 return err; 1552 } 1553 1554 /* 1555 * subvolumes are identified by ino 256 1556 */ 1557 static inline int is_subvolume_inode(struct inode *inode) 1558 { 1559 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1560 return 1; 1561 return 0; 1562 } 1563 1564 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1565 struct vfsmount *mnt) 1566 { 1567 struct dentry *root; 1568 int ret; 1569 1570 if (!subvol_name) { 1571 if (!subvol_objectid) { 1572 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1573 &subvol_objectid); 1574 if (ret) { 1575 root = ERR_PTR(ret); 1576 goto out; 1577 } 1578 } 1579 subvol_name = btrfs_get_subvol_name_from_objectid( 1580 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1581 if (IS_ERR(subvol_name)) { 1582 root = ERR_CAST(subvol_name); 1583 subvol_name = NULL; 1584 goto out; 1585 } 1586 1587 } 1588 1589 root = mount_subtree(mnt, subvol_name); 1590 /* mount_subtree() drops our reference on the vfsmount. */ 1591 mnt = NULL; 1592 1593 if (!IS_ERR(root)) { 1594 struct super_block *s = root->d_sb; 1595 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1596 struct inode *root_inode = d_inode(root); 1597 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1598 1599 ret = 0; 1600 if (!is_subvolume_inode(root_inode)) { 1601 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1602 subvol_name); 1603 ret = -EINVAL; 1604 } 1605 if (subvol_objectid && root_objectid != subvol_objectid) { 1606 /* 1607 * This will also catch a race condition where a 1608 * subvolume which was passed by ID is renamed and 1609 * another subvolume is renamed over the old location. 1610 */ 1611 btrfs_err(fs_info, 1612 "subvol '%s' does not match subvolid %llu", 1613 subvol_name, subvol_objectid); 1614 ret = -EINVAL; 1615 } 1616 if (ret) { 1617 dput(root); 1618 root = ERR_PTR(ret); 1619 deactivate_locked_super(s); 1620 } 1621 } 1622 1623 out: 1624 mntput(mnt); 1625 kfree(subvol_name); 1626 return root; 1627 } 1628 1629 /* 1630 * Find a superblock for the given device / mount point. 1631 * 1632 * Note: This is based on mount_bdev from fs/super.c with a few additions 1633 * for multiple device setup. Make sure to keep it in sync. 1634 */ 1635 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1636 int flags, const char *device_name, void *data) 1637 { 1638 struct block_device *bdev = NULL; 1639 struct super_block *s; 1640 struct btrfs_device *device = NULL; 1641 struct btrfs_fs_devices *fs_devices = NULL; 1642 struct btrfs_fs_info *fs_info = NULL; 1643 void *new_sec_opts = NULL; 1644 fmode_t mode = FMODE_READ; 1645 int error = 0; 1646 1647 if (!(flags & SB_RDONLY)) 1648 mode |= FMODE_WRITE; 1649 1650 if (data) { 1651 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1652 if (error) 1653 return ERR_PTR(error); 1654 } 1655 1656 /* 1657 * Setup a dummy root and fs_info for test/set super. This is because 1658 * we don't actually fill this stuff out until open_ctree, but we need 1659 * then open_ctree will properly initialize the file system specific 1660 * settings later. btrfs_init_fs_info initializes the static elements 1661 * of the fs_info (locks and such) to make cleanup easier if we find a 1662 * superblock with our given fs_devices later on at sget() time. 1663 */ 1664 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1665 if (!fs_info) { 1666 error = -ENOMEM; 1667 goto error_sec_opts; 1668 } 1669 btrfs_init_fs_info(fs_info); 1670 1671 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1672 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1673 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1674 error = -ENOMEM; 1675 goto error_fs_info; 1676 } 1677 1678 mutex_lock(&uuid_mutex); 1679 error = btrfs_parse_device_options(data, mode, fs_type); 1680 if (error) { 1681 mutex_unlock(&uuid_mutex); 1682 goto error_fs_info; 1683 } 1684 1685 device = btrfs_scan_one_device(device_name, mode, fs_type); 1686 if (IS_ERR(device)) { 1687 mutex_unlock(&uuid_mutex); 1688 error = PTR_ERR(device); 1689 goto error_fs_info; 1690 } 1691 1692 fs_devices = device->fs_devices; 1693 fs_info->fs_devices = fs_devices; 1694 1695 error = btrfs_open_devices(fs_devices, mode, fs_type); 1696 mutex_unlock(&uuid_mutex); 1697 if (error) 1698 goto error_fs_info; 1699 1700 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1701 error = -EACCES; 1702 goto error_close_devices; 1703 } 1704 1705 bdev = fs_devices->latest_bdev; 1706 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1707 fs_info); 1708 if (IS_ERR(s)) { 1709 error = PTR_ERR(s); 1710 goto error_close_devices; 1711 } 1712 1713 if (s->s_root) { 1714 btrfs_close_devices(fs_devices); 1715 btrfs_free_fs_info(fs_info); 1716 if ((flags ^ s->s_flags) & SB_RDONLY) 1717 error = -EBUSY; 1718 } else { 1719 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1720 btrfs_sb(s)->bdev_holder = fs_type; 1721 if (!strstr(crc32c_impl(), "generic")) 1722 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1723 error = btrfs_fill_super(s, fs_devices, data); 1724 } 1725 if (!error) 1726 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1727 security_free_mnt_opts(&new_sec_opts); 1728 if (error) { 1729 deactivate_locked_super(s); 1730 return ERR_PTR(error); 1731 } 1732 1733 return dget(s->s_root); 1734 1735 error_close_devices: 1736 btrfs_close_devices(fs_devices); 1737 error_fs_info: 1738 btrfs_free_fs_info(fs_info); 1739 error_sec_opts: 1740 security_free_mnt_opts(&new_sec_opts); 1741 return ERR_PTR(error); 1742 } 1743 1744 /* 1745 * Mount function which is called by VFS layer. 1746 * 1747 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1748 * which needs vfsmount* of device's root (/). This means device's root has to 1749 * be mounted internally in any case. 1750 * 1751 * Operation flow: 1752 * 1. Parse subvol id related options for later use in mount_subvol(). 1753 * 1754 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1755 * 1756 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1757 * first place. In order to avoid calling btrfs_mount() again, we use 1758 * different file_system_type which is not registered to VFS by 1759 * register_filesystem() (btrfs_root_fs_type). As a result, 1760 * btrfs_mount_root() is called. The return value will be used by 1761 * mount_subtree() in mount_subvol(). 1762 * 1763 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1764 * "btrfs subvolume set-default", mount_subvol() is called always. 1765 */ 1766 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1767 const char *device_name, void *data) 1768 { 1769 struct vfsmount *mnt_root; 1770 struct dentry *root; 1771 char *subvol_name = NULL; 1772 u64 subvol_objectid = 0; 1773 int error = 0; 1774 1775 error = btrfs_parse_subvol_options(data, &subvol_name, 1776 &subvol_objectid); 1777 if (error) { 1778 kfree(subvol_name); 1779 return ERR_PTR(error); 1780 } 1781 1782 /* mount device's root (/) */ 1783 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1784 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1785 if (flags & SB_RDONLY) { 1786 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1787 flags & ~SB_RDONLY, device_name, data); 1788 } else { 1789 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1790 flags | SB_RDONLY, device_name, data); 1791 if (IS_ERR(mnt_root)) { 1792 root = ERR_CAST(mnt_root); 1793 kfree(subvol_name); 1794 goto out; 1795 } 1796 1797 down_write(&mnt_root->mnt_sb->s_umount); 1798 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1799 up_write(&mnt_root->mnt_sb->s_umount); 1800 if (error < 0) { 1801 root = ERR_PTR(error); 1802 mntput(mnt_root); 1803 kfree(subvol_name); 1804 goto out; 1805 } 1806 } 1807 } 1808 if (IS_ERR(mnt_root)) { 1809 root = ERR_CAST(mnt_root); 1810 kfree(subvol_name); 1811 goto out; 1812 } 1813 1814 /* mount_subvol() will free subvol_name and mnt_root */ 1815 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1816 1817 out: 1818 return root; 1819 } 1820 1821 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1822 u32 new_pool_size, u32 old_pool_size) 1823 { 1824 if (new_pool_size == old_pool_size) 1825 return; 1826 1827 fs_info->thread_pool_size = new_pool_size; 1828 1829 btrfs_info(fs_info, "resize thread pool %d -> %d", 1830 old_pool_size, new_pool_size); 1831 1832 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1833 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1834 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1835 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1836 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1837 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1838 new_pool_size); 1839 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1840 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1841 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1842 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1843 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1844 new_pool_size); 1845 } 1846 1847 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1848 unsigned long old_opts, int flags) 1849 { 1850 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1851 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1852 (flags & SB_RDONLY))) { 1853 /* wait for any defraggers to finish */ 1854 wait_event(fs_info->transaction_wait, 1855 (atomic_read(&fs_info->defrag_running) == 0)); 1856 if (flags & SB_RDONLY) 1857 sync_filesystem(fs_info->sb); 1858 } 1859 } 1860 1861 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1862 unsigned long old_opts) 1863 { 1864 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1865 1866 /* 1867 * We need to cleanup all defragable inodes if the autodefragment is 1868 * close or the filesystem is read only. 1869 */ 1870 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1871 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1872 btrfs_cleanup_defrag_inodes(fs_info); 1873 } 1874 1875 /* If we toggled discard async */ 1876 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1877 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1878 btrfs_discard_resume(fs_info); 1879 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1880 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1881 btrfs_discard_cleanup(fs_info); 1882 1883 /* If we toggled space cache */ 1884 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1885 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1886 } 1887 1888 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1889 { 1890 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1891 unsigned old_flags = sb->s_flags; 1892 unsigned long old_opts = fs_info->mount_opt; 1893 unsigned long old_compress_type = fs_info->compress_type; 1894 u64 old_max_inline = fs_info->max_inline; 1895 u32 old_thread_pool_size = fs_info->thread_pool_size; 1896 u32 old_metadata_ratio = fs_info->metadata_ratio; 1897 int ret; 1898 1899 sync_filesystem(sb); 1900 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1901 1902 if (data) { 1903 void *new_sec_opts = NULL; 1904 1905 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1906 if (!ret) 1907 ret = security_sb_remount(sb, new_sec_opts); 1908 security_free_mnt_opts(&new_sec_opts); 1909 if (ret) 1910 goto restore; 1911 } 1912 1913 ret = btrfs_parse_options(fs_info, data, *flags); 1914 if (ret) 1915 goto restore; 1916 1917 btrfs_remount_begin(fs_info, old_opts, *flags); 1918 btrfs_resize_thread_pool(fs_info, 1919 fs_info->thread_pool_size, old_thread_pool_size); 1920 1921 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1922 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1923 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) { 1924 btrfs_warn(fs_info, 1925 "remount supports changing free space tree only from ro to rw"); 1926 /* Make sure free space cache options match the state on disk */ 1927 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1928 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1929 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1930 } 1931 if (btrfs_free_space_cache_v1_active(fs_info)) { 1932 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1933 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1934 } 1935 } 1936 1937 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1938 goto out; 1939 1940 if (*flags & SB_RDONLY) { 1941 /* 1942 * this also happens on 'umount -rf' or on shutdown, when 1943 * the filesystem is busy. 1944 */ 1945 cancel_work_sync(&fs_info->async_reclaim_work); 1946 cancel_work_sync(&fs_info->async_data_reclaim_work); 1947 1948 btrfs_discard_cleanup(fs_info); 1949 1950 /* wait for the uuid_scan task to finish */ 1951 down(&fs_info->uuid_tree_rescan_sem); 1952 /* avoid complains from lockdep et al. */ 1953 up(&fs_info->uuid_tree_rescan_sem); 1954 1955 btrfs_set_sb_rdonly(sb); 1956 1957 /* 1958 * Setting SB_RDONLY will put the cleaner thread to 1959 * sleep at the next loop if it's already active. 1960 * If it's already asleep, we'll leave unused block 1961 * groups on disk until we're mounted read-write again 1962 * unless we clean them up here. 1963 */ 1964 btrfs_delete_unused_bgs(fs_info); 1965 1966 /* 1967 * The cleaner task could be already running before we set the 1968 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). 1969 * We must make sure that after we finish the remount, i.e. after 1970 * we call btrfs_commit_super(), the cleaner can no longer start 1971 * a transaction - either because it was dropping a dead root, 1972 * running delayed iputs or deleting an unused block group (the 1973 * cleaner picked a block group from the list of unused block 1974 * groups before we were able to in the previous call to 1975 * btrfs_delete_unused_bgs()). 1976 */ 1977 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, 1978 TASK_UNINTERRUPTIBLE); 1979 1980 /* 1981 * We've set the superblock to RO mode, so we might have made 1982 * the cleaner task sleep without running all pending delayed 1983 * iputs. Go through all the delayed iputs here, so that if an 1984 * unmount happens without remounting RW we don't end up at 1985 * finishing close_ctree() with a non-empty list of delayed 1986 * iputs. 1987 */ 1988 btrfs_run_delayed_iputs(fs_info); 1989 1990 btrfs_dev_replace_suspend_for_unmount(fs_info); 1991 btrfs_scrub_cancel(fs_info); 1992 btrfs_pause_balance(fs_info); 1993 1994 /* 1995 * Pause the qgroup rescan worker if it is running. We don't want 1996 * it to be still running after we are in RO mode, as after that, 1997 * by the time we unmount, it might have left a transaction open, 1998 * so we would leak the transaction and/or crash. 1999 */ 2000 btrfs_qgroup_wait_for_completion(fs_info, false); 2001 2002 ret = btrfs_commit_super(fs_info); 2003 if (ret) 2004 goto restore; 2005 } else { 2006 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2007 btrfs_err(fs_info, 2008 "Remounting read-write after error is not allowed"); 2009 ret = -EINVAL; 2010 goto restore; 2011 } 2012 if (fs_info->fs_devices->rw_devices == 0) { 2013 ret = -EACCES; 2014 goto restore; 2015 } 2016 2017 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 2018 btrfs_warn(fs_info, 2019 "too many missing devices, writable remount is not allowed"); 2020 ret = -EACCES; 2021 goto restore; 2022 } 2023 2024 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 2025 btrfs_warn(fs_info, 2026 "mount required to replay tree-log, cannot remount read-write"); 2027 ret = -EINVAL; 2028 goto restore; 2029 } 2030 if (fs_info->sectorsize < PAGE_SIZE) { 2031 btrfs_warn(fs_info, 2032 "read-write mount is not yet allowed for sectorsize %u page size %lu", 2033 fs_info->sectorsize, PAGE_SIZE); 2034 ret = -EINVAL; 2035 goto restore; 2036 } 2037 2038 /* 2039 * NOTE: when remounting with a change that does writes, don't 2040 * put it anywhere above this point, as we are not sure to be 2041 * safe to write until we pass the above checks. 2042 */ 2043 ret = btrfs_start_pre_rw_mount(fs_info); 2044 if (ret) 2045 goto restore; 2046 2047 btrfs_clear_sb_rdonly(sb); 2048 2049 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 2050 } 2051 out: 2052 /* 2053 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 2054 * since the absence of the flag means it can be toggled off by remount. 2055 */ 2056 *flags |= SB_I_VERSION; 2057 2058 wake_up_process(fs_info->transaction_kthread); 2059 btrfs_remount_cleanup(fs_info, old_opts); 2060 btrfs_clear_oneshot_options(fs_info); 2061 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2062 2063 return 0; 2064 2065 restore: 2066 /* We've hit an error - don't reset SB_RDONLY */ 2067 if (sb_rdonly(sb)) 2068 old_flags |= SB_RDONLY; 2069 if (!(old_flags & SB_RDONLY)) 2070 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2071 sb->s_flags = old_flags; 2072 fs_info->mount_opt = old_opts; 2073 fs_info->compress_type = old_compress_type; 2074 fs_info->max_inline = old_max_inline; 2075 btrfs_resize_thread_pool(fs_info, 2076 old_thread_pool_size, fs_info->thread_pool_size); 2077 fs_info->metadata_ratio = old_metadata_ratio; 2078 btrfs_remount_cleanup(fs_info, old_opts); 2079 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2080 2081 return ret; 2082 } 2083 2084 /* Used to sort the devices by max_avail(descending sort) */ 2085 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 2086 const void *dev_info2) 2087 { 2088 if (((struct btrfs_device_info *)dev_info1)->max_avail > 2089 ((struct btrfs_device_info *)dev_info2)->max_avail) 2090 return -1; 2091 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 2092 ((struct btrfs_device_info *)dev_info2)->max_avail) 2093 return 1; 2094 else 2095 return 0; 2096 } 2097 2098 /* 2099 * sort the devices by max_avail, in which max free extent size of each device 2100 * is stored.(Descending Sort) 2101 */ 2102 static inline void btrfs_descending_sort_devices( 2103 struct btrfs_device_info *devices, 2104 size_t nr_devices) 2105 { 2106 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2107 btrfs_cmp_device_free_bytes, NULL); 2108 } 2109 2110 /* 2111 * The helper to calc the free space on the devices that can be used to store 2112 * file data. 2113 */ 2114 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2115 u64 *free_bytes) 2116 { 2117 struct btrfs_device_info *devices_info; 2118 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2119 struct btrfs_device *device; 2120 u64 type; 2121 u64 avail_space; 2122 u64 min_stripe_size; 2123 int num_stripes = 1; 2124 int i = 0, nr_devices; 2125 const struct btrfs_raid_attr *rattr; 2126 2127 /* 2128 * We aren't under the device list lock, so this is racy-ish, but good 2129 * enough for our purposes. 2130 */ 2131 nr_devices = fs_info->fs_devices->open_devices; 2132 if (!nr_devices) { 2133 smp_mb(); 2134 nr_devices = fs_info->fs_devices->open_devices; 2135 ASSERT(nr_devices); 2136 if (!nr_devices) { 2137 *free_bytes = 0; 2138 return 0; 2139 } 2140 } 2141 2142 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2143 GFP_KERNEL); 2144 if (!devices_info) 2145 return -ENOMEM; 2146 2147 /* calc min stripe number for data space allocation */ 2148 type = btrfs_data_alloc_profile(fs_info); 2149 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2150 2151 if (type & BTRFS_BLOCK_GROUP_RAID0) 2152 num_stripes = nr_devices; 2153 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2154 num_stripes = 2; 2155 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2156 num_stripes = 3; 2157 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2158 num_stripes = 4; 2159 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2160 num_stripes = 4; 2161 2162 /* Adjust for more than 1 stripe per device */ 2163 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2164 2165 rcu_read_lock(); 2166 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2167 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2168 &device->dev_state) || 2169 !device->bdev || 2170 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2171 continue; 2172 2173 if (i >= nr_devices) 2174 break; 2175 2176 avail_space = device->total_bytes - device->bytes_used; 2177 2178 /* align with stripe_len */ 2179 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2180 2181 /* 2182 * In order to avoid overwriting the superblock on the drive, 2183 * btrfs starts at an offset of at least 1MB when doing chunk 2184 * allocation. 2185 * 2186 * This ensures we have at least min_stripe_size free space 2187 * after excluding 1MB. 2188 */ 2189 if (avail_space <= SZ_1M + min_stripe_size) 2190 continue; 2191 2192 avail_space -= SZ_1M; 2193 2194 devices_info[i].dev = device; 2195 devices_info[i].max_avail = avail_space; 2196 2197 i++; 2198 } 2199 rcu_read_unlock(); 2200 2201 nr_devices = i; 2202 2203 btrfs_descending_sort_devices(devices_info, nr_devices); 2204 2205 i = nr_devices - 1; 2206 avail_space = 0; 2207 while (nr_devices >= rattr->devs_min) { 2208 num_stripes = min(num_stripes, nr_devices); 2209 2210 if (devices_info[i].max_avail >= min_stripe_size) { 2211 int j; 2212 u64 alloc_size; 2213 2214 avail_space += devices_info[i].max_avail * num_stripes; 2215 alloc_size = devices_info[i].max_avail; 2216 for (j = i + 1 - num_stripes; j <= i; j++) 2217 devices_info[j].max_avail -= alloc_size; 2218 } 2219 i--; 2220 nr_devices--; 2221 } 2222 2223 kfree(devices_info); 2224 *free_bytes = avail_space; 2225 return 0; 2226 } 2227 2228 /* 2229 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2230 * 2231 * If there's a redundant raid level at DATA block groups, use the respective 2232 * multiplier to scale the sizes. 2233 * 2234 * Unused device space usage is based on simulating the chunk allocator 2235 * algorithm that respects the device sizes and order of allocations. This is 2236 * a close approximation of the actual use but there are other factors that may 2237 * change the result (like a new metadata chunk). 2238 * 2239 * If metadata is exhausted, f_bavail will be 0. 2240 */ 2241 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2242 { 2243 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2244 struct btrfs_super_block *disk_super = fs_info->super_copy; 2245 struct btrfs_space_info *found; 2246 u64 total_used = 0; 2247 u64 total_free_data = 0; 2248 u64 total_free_meta = 0; 2249 u32 bits = fs_info->sectorsize_bits; 2250 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2251 unsigned factor = 1; 2252 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2253 int ret; 2254 u64 thresh = 0; 2255 int mixed = 0; 2256 2257 list_for_each_entry(found, &fs_info->space_info, list) { 2258 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2259 int i; 2260 2261 total_free_data += found->disk_total - found->disk_used; 2262 total_free_data -= 2263 btrfs_account_ro_block_groups_free_space(found); 2264 2265 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2266 if (!list_empty(&found->block_groups[i])) 2267 factor = btrfs_bg_type_to_factor( 2268 btrfs_raid_array[i].bg_flag); 2269 } 2270 } 2271 2272 /* 2273 * Metadata in mixed block goup profiles are accounted in data 2274 */ 2275 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2276 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2277 mixed = 1; 2278 else 2279 total_free_meta += found->disk_total - 2280 found->disk_used; 2281 } 2282 2283 total_used += found->disk_used; 2284 } 2285 2286 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2287 buf->f_blocks >>= bits; 2288 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2289 2290 /* Account global block reserve as used, it's in logical size already */ 2291 spin_lock(&block_rsv->lock); 2292 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2293 if (buf->f_bfree >= block_rsv->size >> bits) 2294 buf->f_bfree -= block_rsv->size >> bits; 2295 else 2296 buf->f_bfree = 0; 2297 spin_unlock(&block_rsv->lock); 2298 2299 buf->f_bavail = div_u64(total_free_data, factor); 2300 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2301 if (ret) 2302 return ret; 2303 buf->f_bavail += div_u64(total_free_data, factor); 2304 buf->f_bavail = buf->f_bavail >> bits; 2305 2306 /* 2307 * We calculate the remaining metadata space minus global reserve. If 2308 * this is (supposedly) smaller than zero, there's no space. But this 2309 * does not hold in practice, the exhausted state happens where's still 2310 * some positive delta. So we apply some guesswork and compare the 2311 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2312 * 2313 * We probably cannot calculate the exact threshold value because this 2314 * depends on the internal reservations requested by various 2315 * operations, so some operations that consume a few metadata will 2316 * succeed even if the Avail is zero. But this is better than the other 2317 * way around. 2318 */ 2319 thresh = SZ_4M; 2320 2321 /* 2322 * We only want to claim there's no available space if we can no longer 2323 * allocate chunks for our metadata profile and our global reserve will 2324 * not fit in the free metadata space. If we aren't ->full then we 2325 * still can allocate chunks and thus are fine using the currently 2326 * calculated f_bavail. 2327 */ 2328 if (!mixed && block_rsv->space_info->full && 2329 total_free_meta - thresh < block_rsv->size) 2330 buf->f_bavail = 0; 2331 2332 buf->f_type = BTRFS_SUPER_MAGIC; 2333 buf->f_bsize = dentry->d_sb->s_blocksize; 2334 buf->f_namelen = BTRFS_NAME_LEN; 2335 2336 /* We treat it as constant endianness (it doesn't matter _which_) 2337 because we want the fsid to come out the same whether mounted 2338 on a big-endian or little-endian host */ 2339 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2340 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2341 /* Mask in the root object ID too, to disambiguate subvols */ 2342 buf->f_fsid.val[0] ^= 2343 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2344 buf->f_fsid.val[1] ^= 2345 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2346 2347 return 0; 2348 } 2349 2350 static void btrfs_kill_super(struct super_block *sb) 2351 { 2352 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2353 kill_anon_super(sb); 2354 btrfs_free_fs_info(fs_info); 2355 } 2356 2357 static struct file_system_type btrfs_fs_type = { 2358 .owner = THIS_MODULE, 2359 .name = "btrfs", 2360 .mount = btrfs_mount, 2361 .kill_sb = btrfs_kill_super, 2362 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2363 }; 2364 2365 static struct file_system_type btrfs_root_fs_type = { 2366 .owner = THIS_MODULE, 2367 .name = "btrfs", 2368 .mount = btrfs_mount_root, 2369 .kill_sb = btrfs_kill_super, 2370 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2371 }; 2372 2373 MODULE_ALIAS_FS("btrfs"); 2374 2375 static int btrfs_control_open(struct inode *inode, struct file *file) 2376 { 2377 /* 2378 * The control file's private_data is used to hold the 2379 * transaction when it is started and is used to keep 2380 * track of whether a transaction is already in progress. 2381 */ 2382 file->private_data = NULL; 2383 return 0; 2384 } 2385 2386 /* 2387 * Used by /dev/btrfs-control for devices ioctls. 2388 */ 2389 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2390 unsigned long arg) 2391 { 2392 struct btrfs_ioctl_vol_args *vol; 2393 struct btrfs_device *device = NULL; 2394 int ret = -ENOTTY; 2395 2396 if (!capable(CAP_SYS_ADMIN)) 2397 return -EPERM; 2398 2399 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2400 if (IS_ERR(vol)) 2401 return PTR_ERR(vol); 2402 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2403 2404 switch (cmd) { 2405 case BTRFS_IOC_SCAN_DEV: 2406 mutex_lock(&uuid_mutex); 2407 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2408 &btrfs_root_fs_type); 2409 ret = PTR_ERR_OR_ZERO(device); 2410 mutex_unlock(&uuid_mutex); 2411 break; 2412 case BTRFS_IOC_FORGET_DEV: 2413 ret = btrfs_forget_devices(vol->name); 2414 break; 2415 case BTRFS_IOC_DEVICES_READY: 2416 mutex_lock(&uuid_mutex); 2417 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2418 &btrfs_root_fs_type); 2419 if (IS_ERR(device)) { 2420 mutex_unlock(&uuid_mutex); 2421 ret = PTR_ERR(device); 2422 break; 2423 } 2424 ret = !(device->fs_devices->num_devices == 2425 device->fs_devices->total_devices); 2426 mutex_unlock(&uuid_mutex); 2427 break; 2428 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2429 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2430 break; 2431 } 2432 2433 kfree(vol); 2434 return ret; 2435 } 2436 2437 static int btrfs_freeze(struct super_block *sb) 2438 { 2439 struct btrfs_trans_handle *trans; 2440 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2441 struct btrfs_root *root = fs_info->tree_root; 2442 2443 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2444 /* 2445 * We don't need a barrier here, we'll wait for any transaction that 2446 * could be in progress on other threads (and do delayed iputs that 2447 * we want to avoid on a frozen filesystem), or do the commit 2448 * ourselves. 2449 */ 2450 trans = btrfs_attach_transaction_barrier(root); 2451 if (IS_ERR(trans)) { 2452 /* no transaction, don't bother */ 2453 if (PTR_ERR(trans) == -ENOENT) 2454 return 0; 2455 return PTR_ERR(trans); 2456 } 2457 return btrfs_commit_transaction(trans); 2458 } 2459 2460 static int btrfs_unfreeze(struct super_block *sb) 2461 { 2462 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2463 2464 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2465 return 0; 2466 } 2467 2468 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2469 { 2470 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2471 struct btrfs_device *dev, *first_dev = NULL; 2472 2473 /* 2474 * Lightweight locking of the devices. We should not need 2475 * device_list_mutex here as we only read the device data and the list 2476 * is protected by RCU. Even if a device is deleted during the list 2477 * traversals, we'll get valid data, the freeing callback will wait at 2478 * least until the rcu_read_unlock. 2479 */ 2480 rcu_read_lock(); 2481 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) { 2482 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2483 continue; 2484 if (!dev->name) 2485 continue; 2486 if (!first_dev || dev->devid < first_dev->devid) 2487 first_dev = dev; 2488 } 2489 2490 if (first_dev) 2491 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2492 else 2493 WARN_ON(1); 2494 rcu_read_unlock(); 2495 return 0; 2496 } 2497 2498 static const struct super_operations btrfs_super_ops = { 2499 .drop_inode = btrfs_drop_inode, 2500 .evict_inode = btrfs_evict_inode, 2501 .put_super = btrfs_put_super, 2502 .sync_fs = btrfs_sync_fs, 2503 .show_options = btrfs_show_options, 2504 .show_devname = btrfs_show_devname, 2505 .alloc_inode = btrfs_alloc_inode, 2506 .destroy_inode = btrfs_destroy_inode, 2507 .free_inode = btrfs_free_inode, 2508 .statfs = btrfs_statfs, 2509 .remount_fs = btrfs_remount, 2510 .freeze_fs = btrfs_freeze, 2511 .unfreeze_fs = btrfs_unfreeze, 2512 }; 2513 2514 static const struct file_operations btrfs_ctl_fops = { 2515 .open = btrfs_control_open, 2516 .unlocked_ioctl = btrfs_control_ioctl, 2517 .compat_ioctl = compat_ptr_ioctl, 2518 .owner = THIS_MODULE, 2519 .llseek = noop_llseek, 2520 }; 2521 2522 static struct miscdevice btrfs_misc = { 2523 .minor = BTRFS_MINOR, 2524 .name = "btrfs-control", 2525 .fops = &btrfs_ctl_fops 2526 }; 2527 2528 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2529 MODULE_ALIAS("devname:btrfs-control"); 2530 2531 static int __init btrfs_interface_init(void) 2532 { 2533 return misc_register(&btrfs_misc); 2534 } 2535 2536 static __cold void btrfs_interface_exit(void) 2537 { 2538 misc_deregister(&btrfs_misc); 2539 } 2540 2541 static void __init btrfs_print_mod_info(void) 2542 { 2543 static const char options[] = "" 2544 #ifdef CONFIG_BTRFS_DEBUG 2545 ", debug=on" 2546 #endif 2547 #ifdef CONFIG_BTRFS_ASSERT 2548 ", assert=on" 2549 #endif 2550 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2551 ", integrity-checker=on" 2552 #endif 2553 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2554 ", ref-verify=on" 2555 #endif 2556 #ifdef CONFIG_BLK_DEV_ZONED 2557 ", zoned=yes" 2558 #else 2559 ", zoned=no" 2560 #endif 2561 ; 2562 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2563 } 2564 2565 static int __init init_btrfs_fs(void) 2566 { 2567 int err; 2568 2569 btrfs_props_init(); 2570 2571 err = btrfs_init_sysfs(); 2572 if (err) 2573 return err; 2574 2575 btrfs_init_compress(); 2576 2577 err = btrfs_init_cachep(); 2578 if (err) 2579 goto free_compress; 2580 2581 err = extent_io_init(); 2582 if (err) 2583 goto free_cachep; 2584 2585 err = extent_state_cache_init(); 2586 if (err) 2587 goto free_extent_io; 2588 2589 err = extent_map_init(); 2590 if (err) 2591 goto free_extent_state_cache; 2592 2593 err = ordered_data_init(); 2594 if (err) 2595 goto free_extent_map; 2596 2597 err = btrfs_delayed_inode_init(); 2598 if (err) 2599 goto free_ordered_data; 2600 2601 err = btrfs_auto_defrag_init(); 2602 if (err) 2603 goto free_delayed_inode; 2604 2605 err = btrfs_delayed_ref_init(); 2606 if (err) 2607 goto free_auto_defrag; 2608 2609 err = btrfs_prelim_ref_init(); 2610 if (err) 2611 goto free_delayed_ref; 2612 2613 err = btrfs_end_io_wq_init(); 2614 if (err) 2615 goto free_prelim_ref; 2616 2617 err = btrfs_interface_init(); 2618 if (err) 2619 goto free_end_io_wq; 2620 2621 btrfs_print_mod_info(); 2622 2623 err = btrfs_run_sanity_tests(); 2624 if (err) 2625 goto unregister_ioctl; 2626 2627 err = register_filesystem(&btrfs_fs_type); 2628 if (err) 2629 goto unregister_ioctl; 2630 2631 return 0; 2632 2633 unregister_ioctl: 2634 btrfs_interface_exit(); 2635 free_end_io_wq: 2636 btrfs_end_io_wq_exit(); 2637 free_prelim_ref: 2638 btrfs_prelim_ref_exit(); 2639 free_delayed_ref: 2640 btrfs_delayed_ref_exit(); 2641 free_auto_defrag: 2642 btrfs_auto_defrag_exit(); 2643 free_delayed_inode: 2644 btrfs_delayed_inode_exit(); 2645 free_ordered_data: 2646 ordered_data_exit(); 2647 free_extent_map: 2648 extent_map_exit(); 2649 free_extent_state_cache: 2650 extent_state_cache_exit(); 2651 free_extent_io: 2652 extent_io_exit(); 2653 free_cachep: 2654 btrfs_destroy_cachep(); 2655 free_compress: 2656 btrfs_exit_compress(); 2657 btrfs_exit_sysfs(); 2658 2659 return err; 2660 } 2661 2662 static void __exit exit_btrfs_fs(void) 2663 { 2664 btrfs_destroy_cachep(); 2665 btrfs_delayed_ref_exit(); 2666 btrfs_auto_defrag_exit(); 2667 btrfs_delayed_inode_exit(); 2668 btrfs_prelim_ref_exit(); 2669 ordered_data_exit(); 2670 extent_map_exit(); 2671 extent_state_cache_exit(); 2672 extent_io_exit(); 2673 btrfs_interface_exit(); 2674 btrfs_end_io_wq_exit(); 2675 unregister_filesystem(&btrfs_fs_type); 2676 btrfs_exit_sysfs(); 2677 btrfs_cleanup_fs_uuids(); 2678 btrfs_exit_compress(); 2679 } 2680 2681 late_initcall(init_btrfs_fs); 2682 module_exit(exit_btrfs_fs) 2683 2684 MODULE_LICENSE("GPL"); 2685 MODULE_SOFTDEP("pre: crc32c"); 2686 MODULE_SOFTDEP("pre: xxhash64"); 2687 MODULE_SOFTDEP("pre: sha256"); 2688 MODULE_SOFTDEP("pre: blake2b-256"); 2689