1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 69 70 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 71 72 const char *btrfs_decode_error(int errno) 73 { 74 char *errstr = "unknown"; 75 76 switch (errno) { 77 case -EIO: 78 errstr = "IO failure"; 79 break; 80 case -ENOMEM: 81 errstr = "Out of memory"; 82 break; 83 case -EROFS: 84 errstr = "Readonly filesystem"; 85 break; 86 case -EEXIST: 87 errstr = "Object already exists"; 88 break; 89 case -ENOSPC: 90 errstr = "No space left"; 91 break; 92 case -ENOENT: 93 errstr = "No such entry"; 94 break; 95 } 96 97 return errstr; 98 } 99 100 /* btrfs handle error by forcing the filesystem readonly */ 101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 102 { 103 struct super_block *sb = fs_info->sb; 104 105 if (sb->s_flags & MS_RDONLY) 106 return; 107 108 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 109 sb->s_flags |= MS_RDONLY; 110 btrfs_info(fs_info, "forced readonly"); 111 /* 112 * Note that a running device replace operation is not 113 * canceled here although there is no way to update 114 * the progress. It would add the risk of a deadlock, 115 * therefore the canceling is omitted. The only penalty 116 * is that some I/O remains active until the procedure 117 * completes. The next time when the filesystem is 118 * mounted writeable again, the device replace 119 * operation continues. 120 */ 121 } 122 } 123 124 /* 125 * __btrfs_handle_fs_error decodes expected errors from the caller and 126 * invokes the approciate error response. 127 */ 128 __cold 129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 130 unsigned int line, int errno, const char *fmt, ...) 131 { 132 struct super_block *sb = fs_info->sb; 133 #ifdef CONFIG_PRINTK 134 const char *errstr; 135 #endif 136 137 /* 138 * Special case: if the error is EROFS, and we're already 139 * under MS_RDONLY, then it is safe here. 140 */ 141 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 142 return; 143 144 #ifdef CONFIG_PRINTK 145 errstr = btrfs_decode_error(errno); 146 if (fmt) { 147 struct va_format vaf; 148 va_list args; 149 150 va_start(args, fmt); 151 vaf.fmt = fmt; 152 vaf.va = &args; 153 154 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 155 sb->s_id, function, line, errno, errstr, &vaf); 156 va_end(args); 157 } else { 158 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 159 sb->s_id, function, line, errno, errstr); 160 } 161 #endif 162 163 /* 164 * Today we only save the error info to memory. Long term we'll 165 * also send it down to the disk 166 */ 167 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 168 169 /* Don't go through full error handling during mount */ 170 if (sb->s_flags & MS_BORN) 171 btrfs_handle_error(fs_info); 172 } 173 174 #ifdef CONFIG_PRINTK 175 static const char * const logtypes[] = { 176 "emergency", 177 "alert", 178 "critical", 179 "error", 180 "warning", 181 "notice", 182 "info", 183 "debug", 184 }; 185 186 187 /* 188 * Use one ratelimit state per log level so that a flood of less important 189 * messages doesn't cause more important ones to be dropped. 190 */ 191 static struct ratelimit_state printk_limits[] = { 192 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 193 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 200 }; 201 202 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 203 { 204 struct super_block *sb = fs_info->sb; 205 char lvl[4]; 206 struct va_format vaf; 207 va_list args; 208 const char *type = logtypes[4]; 209 int kern_level; 210 struct ratelimit_state *ratelimit; 211 212 va_start(args, fmt); 213 214 kern_level = printk_get_level(fmt); 215 if (kern_level) { 216 size_t size = printk_skip_level(fmt) - fmt; 217 memcpy(lvl, fmt, size); 218 lvl[size] = '\0'; 219 fmt += size; 220 type = logtypes[kern_level - '0']; 221 ratelimit = &printk_limits[kern_level - '0']; 222 } else { 223 *lvl = '\0'; 224 /* Default to debug output */ 225 ratelimit = &printk_limits[7]; 226 } 227 228 vaf.fmt = fmt; 229 vaf.va = &args; 230 231 if (__ratelimit(ratelimit)) 232 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 233 234 va_end(args); 235 } 236 #endif 237 238 /* 239 * We only mark the transaction aborted and then set the file system read-only. 240 * This will prevent new transactions from starting or trying to join this 241 * one. 242 * 243 * This means that error recovery at the call site is limited to freeing 244 * any local memory allocations and passing the error code up without 245 * further cleanup. The transaction should complete as it normally would 246 * in the call path but will return -EIO. 247 * 248 * We'll complete the cleanup in btrfs_end_transaction and 249 * btrfs_commit_transaction. 250 */ 251 __cold 252 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 253 const char *function, 254 unsigned int line, int errno) 255 { 256 struct btrfs_fs_info *fs_info = trans->fs_info; 257 258 trans->aborted = errno; 259 /* Nothing used. The other threads that have joined this 260 * transaction may be able to continue. */ 261 if (!trans->dirty && list_empty(&trans->new_bgs)) { 262 const char *errstr; 263 264 errstr = btrfs_decode_error(errno); 265 btrfs_warn(fs_info, 266 "%s:%d: Aborting unused transaction(%s).", 267 function, line, errstr); 268 return; 269 } 270 ACCESS_ONCE(trans->transaction->aborted) = errno; 271 /* Wake up anybody who may be waiting on this transaction */ 272 wake_up(&fs_info->transaction_wait); 273 wake_up(&fs_info->transaction_blocked_wait); 274 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 275 } 276 /* 277 * __btrfs_panic decodes unexpected, fatal errors from the caller, 278 * issues an alert, and either panics or BUGs, depending on mount options. 279 */ 280 __cold 281 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 282 unsigned int line, int errno, const char *fmt, ...) 283 { 284 char *s_id = "<unknown>"; 285 const char *errstr; 286 struct va_format vaf = { .fmt = fmt }; 287 va_list args; 288 289 if (fs_info) 290 s_id = fs_info->sb->s_id; 291 292 va_start(args, fmt); 293 vaf.va = &args; 294 295 errstr = btrfs_decode_error(errno); 296 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 297 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 298 s_id, function, line, &vaf, errno, errstr); 299 300 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 301 function, line, &vaf, errno, errstr); 302 va_end(args); 303 /* Caller calls BUG() */ 304 } 305 306 static void btrfs_put_super(struct super_block *sb) 307 { 308 close_ctree(btrfs_sb(sb)->tree_root); 309 } 310 311 enum { 312 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 313 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 314 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 315 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 316 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 317 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, 318 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, 319 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, 320 Opt_skip_balance, Opt_check_integrity, 321 Opt_check_integrity_including_extent_data, 322 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 323 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 324 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 325 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, 326 Opt_nologreplay, Opt_norecovery, 327 #ifdef CONFIG_BTRFS_DEBUG 328 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 329 #endif 330 Opt_err, 331 }; 332 333 static const match_table_t tokens = { 334 {Opt_degraded, "degraded"}, 335 {Opt_subvol, "subvol=%s"}, 336 {Opt_subvolid, "subvolid=%s"}, 337 {Opt_device, "device=%s"}, 338 {Opt_nodatasum, "nodatasum"}, 339 {Opt_datasum, "datasum"}, 340 {Opt_nodatacow, "nodatacow"}, 341 {Opt_datacow, "datacow"}, 342 {Opt_nobarrier, "nobarrier"}, 343 {Opt_barrier, "barrier"}, 344 {Opt_max_inline, "max_inline=%s"}, 345 {Opt_alloc_start, "alloc_start=%s"}, 346 {Opt_thread_pool, "thread_pool=%d"}, 347 {Opt_compress, "compress"}, 348 {Opt_compress_type, "compress=%s"}, 349 {Opt_compress_force, "compress-force"}, 350 {Opt_compress_force_type, "compress-force=%s"}, 351 {Opt_ssd, "ssd"}, 352 {Opt_ssd_spread, "ssd_spread"}, 353 {Opt_nossd, "nossd"}, 354 {Opt_acl, "acl"}, 355 {Opt_noacl, "noacl"}, 356 {Opt_notreelog, "notreelog"}, 357 {Opt_treelog, "treelog"}, 358 {Opt_nologreplay, "nologreplay"}, 359 {Opt_norecovery, "norecovery"}, 360 {Opt_flushoncommit, "flushoncommit"}, 361 {Opt_noflushoncommit, "noflushoncommit"}, 362 {Opt_ratio, "metadata_ratio=%d"}, 363 {Opt_discard, "discard"}, 364 {Opt_nodiscard, "nodiscard"}, 365 {Opt_space_cache, "space_cache"}, 366 {Opt_space_cache_version, "space_cache=%s"}, 367 {Opt_clear_cache, "clear_cache"}, 368 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 369 {Opt_enospc_debug, "enospc_debug"}, 370 {Opt_noenospc_debug, "noenospc_debug"}, 371 {Opt_subvolrootid, "subvolrootid=%d"}, 372 {Opt_defrag, "autodefrag"}, 373 {Opt_nodefrag, "noautodefrag"}, 374 {Opt_inode_cache, "inode_cache"}, 375 {Opt_noinode_cache, "noinode_cache"}, 376 {Opt_no_space_cache, "nospace_cache"}, 377 {Opt_recovery, "recovery"}, /* deprecated */ 378 {Opt_usebackuproot, "usebackuproot"}, 379 {Opt_skip_balance, "skip_balance"}, 380 {Opt_check_integrity, "check_int"}, 381 {Opt_check_integrity_including_extent_data, "check_int_data"}, 382 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 383 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 384 {Opt_fatal_errors, "fatal_errors=%s"}, 385 {Opt_commit_interval, "commit=%d"}, 386 #ifdef CONFIG_BTRFS_DEBUG 387 {Opt_fragment_data, "fragment=data"}, 388 {Opt_fragment_metadata, "fragment=metadata"}, 389 {Opt_fragment_all, "fragment=all"}, 390 #endif 391 {Opt_err, NULL}, 392 }; 393 394 /* 395 * Regular mount options parser. Everything that is needed only when 396 * reading in a new superblock is parsed here. 397 * XXX JDM: This needs to be cleaned up for remount. 398 */ 399 int btrfs_parse_options(struct btrfs_root *root, char *options, 400 unsigned long new_flags) 401 { 402 struct btrfs_fs_info *info = root->fs_info; 403 substring_t args[MAX_OPT_ARGS]; 404 char *p, *num, *orig = NULL; 405 u64 cache_gen; 406 int intarg; 407 int ret = 0; 408 char *compress_type; 409 bool compress_force = false; 410 enum btrfs_compression_type saved_compress_type; 411 bool saved_compress_force; 412 int no_compress = 0; 413 414 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 415 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE)) 416 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 417 else if (cache_gen) 418 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 419 420 /* 421 * Even the options are empty, we still need to do extra check 422 * against new flags 423 */ 424 if (!options) 425 goto check; 426 427 /* 428 * strsep changes the string, duplicate it because parse_options 429 * gets called twice 430 */ 431 options = kstrdup(options, GFP_NOFS); 432 if (!options) 433 return -ENOMEM; 434 435 orig = options; 436 437 while ((p = strsep(&options, ",")) != NULL) { 438 int token; 439 if (!*p) 440 continue; 441 442 token = match_token(p, tokens, args); 443 switch (token) { 444 case Opt_degraded: 445 btrfs_info(root->fs_info, "allowing degraded mounts"); 446 btrfs_set_opt(info->mount_opt, DEGRADED); 447 break; 448 case Opt_subvol: 449 case Opt_subvolid: 450 case Opt_subvolrootid: 451 case Opt_device: 452 /* 453 * These are parsed by btrfs_parse_early_options 454 * and can be happily ignored here. 455 */ 456 break; 457 case Opt_nodatasum: 458 btrfs_set_and_info(info, NODATASUM, 459 "setting nodatasum"); 460 break; 461 case Opt_datasum: 462 if (btrfs_test_opt(info, NODATASUM)) { 463 if (btrfs_test_opt(info, NODATACOW)) 464 btrfs_info(root->fs_info, 465 "setting datasum, datacow enabled"); 466 else 467 btrfs_info(root->fs_info, 468 "setting datasum"); 469 } 470 btrfs_clear_opt(info->mount_opt, NODATACOW); 471 btrfs_clear_opt(info->mount_opt, NODATASUM); 472 break; 473 case Opt_nodatacow: 474 if (!btrfs_test_opt(info, NODATACOW)) { 475 if (!btrfs_test_opt(info, COMPRESS) || 476 !btrfs_test_opt(info, FORCE_COMPRESS)) { 477 btrfs_info(root->fs_info, 478 "setting nodatacow, compression disabled"); 479 } else { 480 btrfs_info(root->fs_info, 481 "setting nodatacow"); 482 } 483 } 484 btrfs_clear_opt(info->mount_opt, COMPRESS); 485 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 486 btrfs_set_opt(info->mount_opt, NODATACOW); 487 btrfs_set_opt(info->mount_opt, NODATASUM); 488 break; 489 case Opt_datacow: 490 btrfs_clear_and_info(info, NODATACOW, 491 "setting datacow"); 492 break; 493 case Opt_compress_force: 494 case Opt_compress_force_type: 495 compress_force = true; 496 /* Fallthrough */ 497 case Opt_compress: 498 case Opt_compress_type: 499 saved_compress_type = btrfs_test_opt(info, 500 COMPRESS) ? 501 info->compress_type : BTRFS_COMPRESS_NONE; 502 saved_compress_force = 503 btrfs_test_opt(info, FORCE_COMPRESS); 504 if (token == Opt_compress || 505 token == Opt_compress_force || 506 strcmp(args[0].from, "zlib") == 0) { 507 compress_type = "zlib"; 508 info->compress_type = BTRFS_COMPRESS_ZLIB; 509 btrfs_set_opt(info->mount_opt, COMPRESS); 510 btrfs_clear_opt(info->mount_opt, NODATACOW); 511 btrfs_clear_opt(info->mount_opt, NODATASUM); 512 no_compress = 0; 513 } else if (strcmp(args[0].from, "lzo") == 0) { 514 compress_type = "lzo"; 515 info->compress_type = BTRFS_COMPRESS_LZO; 516 btrfs_set_opt(info->mount_opt, COMPRESS); 517 btrfs_clear_opt(info->mount_opt, NODATACOW); 518 btrfs_clear_opt(info->mount_opt, NODATASUM); 519 btrfs_set_fs_incompat(info, COMPRESS_LZO); 520 no_compress = 0; 521 } else if (strncmp(args[0].from, "no", 2) == 0) { 522 compress_type = "no"; 523 btrfs_clear_opt(info->mount_opt, COMPRESS); 524 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 525 compress_force = false; 526 no_compress++; 527 } else { 528 ret = -EINVAL; 529 goto out; 530 } 531 532 if (compress_force) { 533 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 534 } else { 535 /* 536 * If we remount from compress-force=xxx to 537 * compress=xxx, we need clear FORCE_COMPRESS 538 * flag, otherwise, there is no way for users 539 * to disable forcible compression separately. 540 */ 541 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 542 } 543 if ((btrfs_test_opt(info, COMPRESS) && 544 (info->compress_type != saved_compress_type || 545 compress_force != saved_compress_force)) || 546 (!btrfs_test_opt(info, COMPRESS) && 547 no_compress == 1)) { 548 btrfs_info(root->fs_info, 549 "%s %s compression", 550 (compress_force) ? "force" : "use", 551 compress_type); 552 } 553 compress_force = false; 554 break; 555 case Opt_ssd: 556 btrfs_set_and_info(info, SSD, 557 "use ssd allocation scheme"); 558 break; 559 case Opt_ssd_spread: 560 btrfs_set_and_info(info, SSD_SPREAD, 561 "use spread ssd allocation scheme"); 562 btrfs_set_opt(info->mount_opt, SSD); 563 break; 564 case Opt_nossd: 565 btrfs_set_and_info(info, NOSSD, 566 "not using ssd allocation scheme"); 567 btrfs_clear_opt(info->mount_opt, SSD); 568 break; 569 case Opt_barrier: 570 btrfs_clear_and_info(info, NOBARRIER, 571 "turning on barriers"); 572 break; 573 case Opt_nobarrier: 574 btrfs_set_and_info(info, NOBARRIER, 575 "turning off barriers"); 576 break; 577 case Opt_thread_pool: 578 ret = match_int(&args[0], &intarg); 579 if (ret) { 580 goto out; 581 } else if (intarg > 0) { 582 info->thread_pool_size = intarg; 583 } else { 584 ret = -EINVAL; 585 goto out; 586 } 587 break; 588 case Opt_max_inline: 589 num = match_strdup(&args[0]); 590 if (num) { 591 info->max_inline = memparse(num, NULL); 592 kfree(num); 593 594 if (info->max_inline) { 595 info->max_inline = min_t(u64, 596 info->max_inline, 597 root->sectorsize); 598 } 599 btrfs_info(root->fs_info, "max_inline at %llu", 600 info->max_inline); 601 } else { 602 ret = -ENOMEM; 603 goto out; 604 } 605 break; 606 case Opt_alloc_start: 607 num = match_strdup(&args[0]); 608 if (num) { 609 mutex_lock(&info->chunk_mutex); 610 info->alloc_start = memparse(num, NULL); 611 mutex_unlock(&info->chunk_mutex); 612 kfree(num); 613 btrfs_info(root->fs_info, 614 "allocations start at %llu", 615 info->alloc_start); 616 } else { 617 ret = -ENOMEM; 618 goto out; 619 } 620 break; 621 case Opt_acl: 622 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 623 root->fs_info->sb->s_flags |= MS_POSIXACL; 624 break; 625 #else 626 btrfs_err(root->fs_info, 627 "support for ACL not compiled in!"); 628 ret = -EINVAL; 629 goto out; 630 #endif 631 case Opt_noacl: 632 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 633 break; 634 case Opt_notreelog: 635 btrfs_set_and_info(info, NOTREELOG, 636 "disabling tree log"); 637 break; 638 case Opt_treelog: 639 btrfs_clear_and_info(info, NOTREELOG, 640 "enabling tree log"); 641 break; 642 case Opt_norecovery: 643 case Opt_nologreplay: 644 btrfs_set_and_info(info, NOLOGREPLAY, 645 "disabling log replay at mount time"); 646 break; 647 case Opt_flushoncommit: 648 btrfs_set_and_info(info, FLUSHONCOMMIT, 649 "turning on flush-on-commit"); 650 break; 651 case Opt_noflushoncommit: 652 btrfs_clear_and_info(info, FLUSHONCOMMIT, 653 "turning off flush-on-commit"); 654 break; 655 case Opt_ratio: 656 ret = match_int(&args[0], &intarg); 657 if (ret) { 658 goto out; 659 } else if (intarg >= 0) { 660 info->metadata_ratio = intarg; 661 btrfs_info(root->fs_info, "metadata ratio %d", 662 info->metadata_ratio); 663 } else { 664 ret = -EINVAL; 665 goto out; 666 } 667 break; 668 case Opt_discard: 669 btrfs_set_and_info(info, DISCARD, 670 "turning on discard"); 671 break; 672 case Opt_nodiscard: 673 btrfs_clear_and_info(info, DISCARD, 674 "turning off discard"); 675 break; 676 case Opt_space_cache: 677 case Opt_space_cache_version: 678 if (token == Opt_space_cache || 679 strcmp(args[0].from, "v1") == 0) { 680 btrfs_clear_opt(root->fs_info->mount_opt, 681 FREE_SPACE_TREE); 682 btrfs_set_and_info(info, SPACE_CACHE, 683 "enabling disk space caching"); 684 } else if (strcmp(args[0].from, "v2") == 0) { 685 btrfs_clear_opt(root->fs_info->mount_opt, 686 SPACE_CACHE); 687 btrfs_set_and_info(info, 688 FREE_SPACE_TREE, 689 "enabling free space tree"); 690 } else { 691 ret = -EINVAL; 692 goto out; 693 } 694 break; 695 case Opt_rescan_uuid_tree: 696 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 697 break; 698 case Opt_no_space_cache: 699 if (btrfs_test_opt(info, SPACE_CACHE)) { 700 btrfs_clear_and_info(info, 701 SPACE_CACHE, 702 "disabling disk space caching"); 703 } 704 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 705 btrfs_clear_and_info(info, 706 FREE_SPACE_TREE, 707 "disabling free space tree"); 708 } 709 break; 710 case Opt_inode_cache: 711 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 712 "enabling inode map caching"); 713 break; 714 case Opt_noinode_cache: 715 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 716 "disabling inode map caching"); 717 break; 718 case Opt_clear_cache: 719 btrfs_set_and_info(info, CLEAR_CACHE, 720 "force clearing of disk cache"); 721 break; 722 case Opt_user_subvol_rm_allowed: 723 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 724 break; 725 case Opt_enospc_debug: 726 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 727 break; 728 case Opt_noenospc_debug: 729 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 730 break; 731 case Opt_defrag: 732 btrfs_set_and_info(info, AUTO_DEFRAG, 733 "enabling auto defrag"); 734 break; 735 case Opt_nodefrag: 736 btrfs_clear_and_info(info, AUTO_DEFRAG, 737 "disabling auto defrag"); 738 break; 739 case Opt_recovery: 740 btrfs_warn(root->fs_info, 741 "'recovery' is deprecated, use 'usebackuproot' instead"); 742 case Opt_usebackuproot: 743 btrfs_info(root->fs_info, 744 "trying to use backup root at mount time"); 745 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 746 break; 747 case Opt_skip_balance: 748 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 749 break; 750 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 751 case Opt_check_integrity_including_extent_data: 752 btrfs_info(root->fs_info, 753 "enabling check integrity including extent data"); 754 btrfs_set_opt(info->mount_opt, 755 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 756 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 757 break; 758 case Opt_check_integrity: 759 btrfs_info(root->fs_info, "enabling check integrity"); 760 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 761 break; 762 case Opt_check_integrity_print_mask: 763 ret = match_int(&args[0], &intarg); 764 if (ret) { 765 goto out; 766 } else if (intarg >= 0) { 767 info->check_integrity_print_mask = intarg; 768 btrfs_info(root->fs_info, 769 "check_integrity_print_mask 0x%x", 770 info->check_integrity_print_mask); 771 } else { 772 ret = -EINVAL; 773 goto out; 774 } 775 break; 776 #else 777 case Opt_check_integrity_including_extent_data: 778 case Opt_check_integrity: 779 case Opt_check_integrity_print_mask: 780 btrfs_err(root->fs_info, 781 "support for check_integrity* not compiled in!"); 782 ret = -EINVAL; 783 goto out; 784 #endif 785 case Opt_fatal_errors: 786 if (strcmp(args[0].from, "panic") == 0) 787 btrfs_set_opt(info->mount_opt, 788 PANIC_ON_FATAL_ERROR); 789 else if (strcmp(args[0].from, "bug") == 0) 790 btrfs_clear_opt(info->mount_opt, 791 PANIC_ON_FATAL_ERROR); 792 else { 793 ret = -EINVAL; 794 goto out; 795 } 796 break; 797 case Opt_commit_interval: 798 intarg = 0; 799 ret = match_int(&args[0], &intarg); 800 if (ret < 0) { 801 btrfs_err(root->fs_info, 802 "invalid commit interval"); 803 ret = -EINVAL; 804 goto out; 805 } 806 if (intarg > 0) { 807 if (intarg > 300) { 808 btrfs_warn(root->fs_info, 809 "excessive commit interval %d", 810 intarg); 811 } 812 info->commit_interval = intarg; 813 } else { 814 btrfs_info(root->fs_info, 815 "using default commit interval %ds", 816 BTRFS_DEFAULT_COMMIT_INTERVAL); 817 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 818 } 819 break; 820 #ifdef CONFIG_BTRFS_DEBUG 821 case Opt_fragment_all: 822 btrfs_info(root->fs_info, "fragmenting all space"); 823 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 824 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 825 break; 826 case Opt_fragment_metadata: 827 btrfs_info(root->fs_info, "fragmenting metadata"); 828 btrfs_set_opt(info->mount_opt, 829 FRAGMENT_METADATA); 830 break; 831 case Opt_fragment_data: 832 btrfs_info(root->fs_info, "fragmenting data"); 833 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 834 break; 835 #endif 836 case Opt_err: 837 btrfs_info(root->fs_info, 838 "unrecognized mount option '%s'", p); 839 ret = -EINVAL; 840 goto out; 841 default: 842 break; 843 } 844 } 845 check: 846 /* 847 * Extra check for current option against current flag 848 */ 849 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) { 850 btrfs_err(root->fs_info, 851 "nologreplay must be used with ro mount option"); 852 ret = -EINVAL; 853 } 854 out: 855 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) && 856 !btrfs_test_opt(info, FREE_SPACE_TREE) && 857 !btrfs_test_opt(info, CLEAR_CACHE)) { 858 btrfs_err(root->fs_info, "cannot disable free space tree"); 859 ret = -EINVAL; 860 861 } 862 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 863 btrfs_info(root->fs_info, "disk space caching is enabled"); 864 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 865 btrfs_info(root->fs_info, "using free space tree"); 866 kfree(orig); 867 return ret; 868 } 869 870 /* 871 * Parse mount options that are required early in the mount process. 872 * 873 * All other options will be parsed on much later in the mount process and 874 * only when we need to allocate a new super block. 875 */ 876 static int btrfs_parse_early_options(const char *options, fmode_t flags, 877 void *holder, char **subvol_name, u64 *subvol_objectid, 878 struct btrfs_fs_devices **fs_devices) 879 { 880 substring_t args[MAX_OPT_ARGS]; 881 char *device_name, *opts, *orig, *p; 882 char *num = NULL; 883 int error = 0; 884 885 if (!options) 886 return 0; 887 888 /* 889 * strsep changes the string, duplicate it because parse_options 890 * gets called twice 891 */ 892 opts = kstrdup(options, GFP_KERNEL); 893 if (!opts) 894 return -ENOMEM; 895 orig = opts; 896 897 while ((p = strsep(&opts, ",")) != NULL) { 898 int token; 899 if (!*p) 900 continue; 901 902 token = match_token(p, tokens, args); 903 switch (token) { 904 case Opt_subvol: 905 kfree(*subvol_name); 906 *subvol_name = match_strdup(&args[0]); 907 if (!*subvol_name) { 908 error = -ENOMEM; 909 goto out; 910 } 911 break; 912 case Opt_subvolid: 913 num = match_strdup(&args[0]); 914 if (num) { 915 *subvol_objectid = memparse(num, NULL); 916 kfree(num); 917 /* we want the original fs_tree */ 918 if (!*subvol_objectid) 919 *subvol_objectid = 920 BTRFS_FS_TREE_OBJECTID; 921 } else { 922 error = -EINVAL; 923 goto out; 924 } 925 break; 926 case Opt_subvolrootid: 927 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 928 break; 929 case Opt_device: 930 device_name = match_strdup(&args[0]); 931 if (!device_name) { 932 error = -ENOMEM; 933 goto out; 934 } 935 error = btrfs_scan_one_device(device_name, 936 flags, holder, fs_devices); 937 kfree(device_name); 938 if (error) 939 goto out; 940 break; 941 default: 942 break; 943 } 944 } 945 946 out: 947 kfree(orig); 948 return error; 949 } 950 951 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 952 u64 subvol_objectid) 953 { 954 struct btrfs_root *root = fs_info->tree_root; 955 struct btrfs_root *fs_root; 956 struct btrfs_root_ref *root_ref; 957 struct btrfs_inode_ref *inode_ref; 958 struct btrfs_key key; 959 struct btrfs_path *path = NULL; 960 char *name = NULL, *ptr; 961 u64 dirid; 962 int len; 963 int ret; 964 965 path = btrfs_alloc_path(); 966 if (!path) { 967 ret = -ENOMEM; 968 goto err; 969 } 970 path->leave_spinning = 1; 971 972 name = kmalloc(PATH_MAX, GFP_NOFS); 973 if (!name) { 974 ret = -ENOMEM; 975 goto err; 976 } 977 ptr = name + PATH_MAX - 1; 978 ptr[0] = '\0'; 979 980 /* 981 * Walk up the subvolume trees in the tree of tree roots by root 982 * backrefs until we hit the top-level subvolume. 983 */ 984 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 985 key.objectid = subvol_objectid; 986 key.type = BTRFS_ROOT_BACKREF_KEY; 987 key.offset = (u64)-1; 988 989 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 990 if (ret < 0) { 991 goto err; 992 } else if (ret > 0) { 993 ret = btrfs_previous_item(root, path, subvol_objectid, 994 BTRFS_ROOT_BACKREF_KEY); 995 if (ret < 0) { 996 goto err; 997 } else if (ret > 0) { 998 ret = -ENOENT; 999 goto err; 1000 } 1001 } 1002 1003 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1004 subvol_objectid = key.offset; 1005 1006 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1007 struct btrfs_root_ref); 1008 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1009 ptr -= len + 1; 1010 if (ptr < name) { 1011 ret = -ENAMETOOLONG; 1012 goto err; 1013 } 1014 read_extent_buffer(path->nodes[0], ptr + 1, 1015 (unsigned long)(root_ref + 1), len); 1016 ptr[0] = '/'; 1017 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1018 btrfs_release_path(path); 1019 1020 key.objectid = subvol_objectid; 1021 key.type = BTRFS_ROOT_ITEM_KEY; 1022 key.offset = (u64)-1; 1023 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1024 if (IS_ERR(fs_root)) { 1025 ret = PTR_ERR(fs_root); 1026 goto err; 1027 } 1028 1029 /* 1030 * Walk up the filesystem tree by inode refs until we hit the 1031 * root directory. 1032 */ 1033 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1034 key.objectid = dirid; 1035 key.type = BTRFS_INODE_REF_KEY; 1036 key.offset = (u64)-1; 1037 1038 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1039 if (ret < 0) { 1040 goto err; 1041 } else if (ret > 0) { 1042 ret = btrfs_previous_item(fs_root, path, dirid, 1043 BTRFS_INODE_REF_KEY); 1044 if (ret < 0) { 1045 goto err; 1046 } else if (ret > 0) { 1047 ret = -ENOENT; 1048 goto err; 1049 } 1050 } 1051 1052 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1053 dirid = key.offset; 1054 1055 inode_ref = btrfs_item_ptr(path->nodes[0], 1056 path->slots[0], 1057 struct btrfs_inode_ref); 1058 len = btrfs_inode_ref_name_len(path->nodes[0], 1059 inode_ref); 1060 ptr -= len + 1; 1061 if (ptr < name) { 1062 ret = -ENAMETOOLONG; 1063 goto err; 1064 } 1065 read_extent_buffer(path->nodes[0], ptr + 1, 1066 (unsigned long)(inode_ref + 1), len); 1067 ptr[0] = '/'; 1068 btrfs_release_path(path); 1069 } 1070 } 1071 1072 btrfs_free_path(path); 1073 if (ptr == name + PATH_MAX - 1) { 1074 name[0] = '/'; 1075 name[1] = '\0'; 1076 } else { 1077 memmove(name, ptr, name + PATH_MAX - ptr); 1078 } 1079 return name; 1080 1081 err: 1082 btrfs_free_path(path); 1083 kfree(name); 1084 return ERR_PTR(ret); 1085 } 1086 1087 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1088 { 1089 struct btrfs_root *root = fs_info->tree_root; 1090 struct btrfs_dir_item *di; 1091 struct btrfs_path *path; 1092 struct btrfs_key location; 1093 u64 dir_id; 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 path->leave_spinning = 1; 1099 1100 /* 1101 * Find the "default" dir item which points to the root item that we 1102 * will mount by default if we haven't been given a specific subvolume 1103 * to mount. 1104 */ 1105 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1106 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1107 if (IS_ERR(di)) { 1108 btrfs_free_path(path); 1109 return PTR_ERR(di); 1110 } 1111 if (!di) { 1112 /* 1113 * Ok the default dir item isn't there. This is weird since 1114 * it's always been there, but don't freak out, just try and 1115 * mount the top-level subvolume. 1116 */ 1117 btrfs_free_path(path); 1118 *objectid = BTRFS_FS_TREE_OBJECTID; 1119 return 0; 1120 } 1121 1122 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1123 btrfs_free_path(path); 1124 *objectid = location.objectid; 1125 return 0; 1126 } 1127 1128 static int btrfs_fill_super(struct super_block *sb, 1129 struct btrfs_fs_devices *fs_devices, 1130 void *data, int silent) 1131 { 1132 struct inode *inode; 1133 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1134 struct btrfs_key key; 1135 int err; 1136 1137 sb->s_maxbytes = MAX_LFS_FILESIZE; 1138 sb->s_magic = BTRFS_SUPER_MAGIC; 1139 sb->s_op = &btrfs_super_ops; 1140 sb->s_d_op = &btrfs_dentry_operations; 1141 sb->s_export_op = &btrfs_export_ops; 1142 sb->s_xattr = btrfs_xattr_handlers; 1143 sb->s_time_gran = 1; 1144 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1145 sb->s_flags |= MS_POSIXACL; 1146 #endif 1147 sb->s_flags |= MS_I_VERSION; 1148 sb->s_iflags |= SB_I_CGROUPWB; 1149 err = open_ctree(sb, fs_devices, (char *)data); 1150 if (err) { 1151 btrfs_err(fs_info, "open_ctree failed"); 1152 return err; 1153 } 1154 1155 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1156 key.type = BTRFS_INODE_ITEM_KEY; 1157 key.offset = 0; 1158 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1159 if (IS_ERR(inode)) { 1160 err = PTR_ERR(inode); 1161 goto fail_close; 1162 } 1163 1164 sb->s_root = d_make_root(inode); 1165 if (!sb->s_root) { 1166 err = -ENOMEM; 1167 goto fail_close; 1168 } 1169 1170 save_mount_options(sb, data); 1171 cleancache_init_fs(sb); 1172 sb->s_flags |= MS_ACTIVE; 1173 return 0; 1174 1175 fail_close: 1176 close_ctree(fs_info->tree_root); 1177 return err; 1178 } 1179 1180 int btrfs_sync_fs(struct super_block *sb, int wait) 1181 { 1182 struct btrfs_trans_handle *trans; 1183 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1184 struct btrfs_root *root = fs_info->tree_root; 1185 1186 trace_btrfs_sync_fs(fs_info, wait); 1187 1188 if (!wait) { 1189 filemap_flush(fs_info->btree_inode->i_mapping); 1190 return 0; 1191 } 1192 1193 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1194 1195 trans = btrfs_attach_transaction_barrier(root); 1196 if (IS_ERR(trans)) { 1197 /* no transaction, don't bother */ 1198 if (PTR_ERR(trans) == -ENOENT) { 1199 /* 1200 * Exit unless we have some pending changes 1201 * that need to go through commit 1202 */ 1203 if (fs_info->pending_changes == 0) 1204 return 0; 1205 /* 1206 * A non-blocking test if the fs is frozen. We must not 1207 * start a new transaction here otherwise a deadlock 1208 * happens. The pending operations are delayed to the 1209 * next commit after thawing. 1210 */ 1211 if (__sb_start_write(sb, SB_FREEZE_WRITE, false)) 1212 __sb_end_write(sb, SB_FREEZE_WRITE); 1213 else 1214 return 0; 1215 trans = btrfs_start_transaction(root, 0); 1216 } 1217 if (IS_ERR(trans)) 1218 return PTR_ERR(trans); 1219 } 1220 return btrfs_commit_transaction(trans, root); 1221 } 1222 1223 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1224 { 1225 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1226 struct btrfs_root *root = info->tree_root; 1227 char *compress_type; 1228 1229 if (btrfs_test_opt(info, DEGRADED)) 1230 seq_puts(seq, ",degraded"); 1231 if (btrfs_test_opt(info, NODATASUM)) 1232 seq_puts(seq, ",nodatasum"); 1233 if (btrfs_test_opt(info, NODATACOW)) 1234 seq_puts(seq, ",nodatacow"); 1235 if (btrfs_test_opt(info, NOBARRIER)) 1236 seq_puts(seq, ",nobarrier"); 1237 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1238 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1239 if (info->alloc_start != 0) 1240 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1241 if (info->thread_pool_size != min_t(unsigned long, 1242 num_online_cpus() + 2, 8)) 1243 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1244 if (btrfs_test_opt(info, COMPRESS)) { 1245 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1246 compress_type = "zlib"; 1247 else 1248 compress_type = "lzo"; 1249 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1250 seq_printf(seq, ",compress-force=%s", compress_type); 1251 else 1252 seq_printf(seq, ",compress=%s", compress_type); 1253 } 1254 if (btrfs_test_opt(info, NOSSD)) 1255 seq_puts(seq, ",nossd"); 1256 if (btrfs_test_opt(info, SSD_SPREAD)) 1257 seq_puts(seq, ",ssd_spread"); 1258 else if (btrfs_test_opt(info, SSD)) 1259 seq_puts(seq, ",ssd"); 1260 if (btrfs_test_opt(info, NOTREELOG)) 1261 seq_puts(seq, ",notreelog"); 1262 if (btrfs_test_opt(info, NOLOGREPLAY)) 1263 seq_puts(seq, ",nologreplay"); 1264 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1265 seq_puts(seq, ",flushoncommit"); 1266 if (btrfs_test_opt(info, DISCARD)) 1267 seq_puts(seq, ",discard"); 1268 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 1269 seq_puts(seq, ",noacl"); 1270 if (btrfs_test_opt(info, SPACE_CACHE)) 1271 seq_puts(seq, ",space_cache"); 1272 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1273 seq_puts(seq, ",space_cache=v2"); 1274 else 1275 seq_puts(seq, ",nospace_cache"); 1276 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1277 seq_puts(seq, ",rescan_uuid_tree"); 1278 if (btrfs_test_opt(info, CLEAR_CACHE)) 1279 seq_puts(seq, ",clear_cache"); 1280 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1281 seq_puts(seq, ",user_subvol_rm_allowed"); 1282 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1283 seq_puts(seq, ",enospc_debug"); 1284 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1285 seq_puts(seq, ",autodefrag"); 1286 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1287 seq_puts(seq, ",inode_cache"); 1288 if (btrfs_test_opt(info, SKIP_BALANCE)) 1289 seq_puts(seq, ",skip_balance"); 1290 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1291 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1292 seq_puts(seq, ",check_int_data"); 1293 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1294 seq_puts(seq, ",check_int"); 1295 if (info->check_integrity_print_mask) 1296 seq_printf(seq, ",check_int_print_mask=%d", 1297 info->check_integrity_print_mask); 1298 #endif 1299 if (info->metadata_ratio) 1300 seq_printf(seq, ",metadata_ratio=%d", 1301 info->metadata_ratio); 1302 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1303 seq_puts(seq, ",fatal_errors=panic"); 1304 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1305 seq_printf(seq, ",commit=%d", info->commit_interval); 1306 #ifdef CONFIG_BTRFS_DEBUG 1307 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1308 seq_puts(seq, ",fragment=data"); 1309 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1310 seq_puts(seq, ",fragment=metadata"); 1311 #endif 1312 seq_printf(seq, ",subvolid=%llu", 1313 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1314 seq_puts(seq, ",subvol="); 1315 seq_dentry(seq, dentry, " \t\n\\"); 1316 return 0; 1317 } 1318 1319 static int btrfs_test_super(struct super_block *s, void *data) 1320 { 1321 struct btrfs_fs_info *p = data; 1322 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1323 1324 return fs_info->fs_devices == p->fs_devices; 1325 } 1326 1327 static int btrfs_set_super(struct super_block *s, void *data) 1328 { 1329 int err = set_anon_super(s, data); 1330 if (!err) 1331 s->s_fs_info = data; 1332 return err; 1333 } 1334 1335 /* 1336 * subvolumes are identified by ino 256 1337 */ 1338 static inline int is_subvolume_inode(struct inode *inode) 1339 { 1340 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1341 return 1; 1342 return 0; 1343 } 1344 1345 /* 1346 * This will add subvolid=0 to the argument string while removing any subvol= 1347 * and subvolid= arguments to make sure we get the top-level root for path 1348 * walking to the subvol we want. 1349 */ 1350 static char *setup_root_args(char *args) 1351 { 1352 char *buf, *dst, *sep; 1353 1354 if (!args) 1355 return kstrdup("subvolid=0", GFP_NOFS); 1356 1357 /* The worst case is that we add ",subvolid=0" to the end. */ 1358 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS); 1359 if (!buf) 1360 return NULL; 1361 1362 while (1) { 1363 sep = strchrnul(args, ','); 1364 if (!strstarts(args, "subvol=") && 1365 !strstarts(args, "subvolid=")) { 1366 memcpy(dst, args, sep - args); 1367 dst += sep - args; 1368 *dst++ = ','; 1369 } 1370 if (*sep) 1371 args = sep + 1; 1372 else 1373 break; 1374 } 1375 strcpy(dst, "subvolid=0"); 1376 1377 return buf; 1378 } 1379 1380 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1381 int flags, const char *device_name, 1382 char *data) 1383 { 1384 struct dentry *root; 1385 struct vfsmount *mnt = NULL; 1386 char *newargs; 1387 int ret; 1388 1389 newargs = setup_root_args(data); 1390 if (!newargs) { 1391 root = ERR_PTR(-ENOMEM); 1392 goto out; 1393 } 1394 1395 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); 1396 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { 1397 if (flags & MS_RDONLY) { 1398 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, 1399 device_name, newargs); 1400 } else { 1401 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, 1402 device_name, newargs); 1403 if (IS_ERR(mnt)) { 1404 root = ERR_CAST(mnt); 1405 mnt = NULL; 1406 goto out; 1407 } 1408 1409 down_write(&mnt->mnt_sb->s_umount); 1410 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1411 up_write(&mnt->mnt_sb->s_umount); 1412 if (ret < 0) { 1413 root = ERR_PTR(ret); 1414 goto out; 1415 } 1416 } 1417 } 1418 if (IS_ERR(mnt)) { 1419 root = ERR_CAST(mnt); 1420 mnt = NULL; 1421 goto out; 1422 } 1423 1424 if (!subvol_name) { 1425 if (!subvol_objectid) { 1426 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1427 &subvol_objectid); 1428 if (ret) { 1429 root = ERR_PTR(ret); 1430 goto out; 1431 } 1432 } 1433 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1434 subvol_objectid); 1435 if (IS_ERR(subvol_name)) { 1436 root = ERR_CAST(subvol_name); 1437 subvol_name = NULL; 1438 goto out; 1439 } 1440 1441 } 1442 1443 root = mount_subtree(mnt, subvol_name); 1444 /* mount_subtree() drops our reference on the vfsmount. */ 1445 mnt = NULL; 1446 1447 if (!IS_ERR(root)) { 1448 struct super_block *s = root->d_sb; 1449 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1450 struct inode *root_inode = d_inode(root); 1451 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1452 1453 ret = 0; 1454 if (!is_subvolume_inode(root_inode)) { 1455 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1456 subvol_name); 1457 ret = -EINVAL; 1458 } 1459 if (subvol_objectid && root_objectid != subvol_objectid) { 1460 /* 1461 * This will also catch a race condition where a 1462 * subvolume which was passed by ID is renamed and 1463 * another subvolume is renamed over the old location. 1464 */ 1465 btrfs_err(fs_info, 1466 "subvol '%s' does not match subvolid %llu", 1467 subvol_name, subvol_objectid); 1468 ret = -EINVAL; 1469 } 1470 if (ret) { 1471 dput(root); 1472 root = ERR_PTR(ret); 1473 deactivate_locked_super(s); 1474 } 1475 } 1476 1477 out: 1478 mntput(mnt); 1479 kfree(newargs); 1480 kfree(subvol_name); 1481 return root; 1482 } 1483 1484 static int parse_security_options(char *orig_opts, 1485 struct security_mnt_opts *sec_opts) 1486 { 1487 char *secdata = NULL; 1488 int ret = 0; 1489 1490 secdata = alloc_secdata(); 1491 if (!secdata) 1492 return -ENOMEM; 1493 ret = security_sb_copy_data(orig_opts, secdata); 1494 if (ret) { 1495 free_secdata(secdata); 1496 return ret; 1497 } 1498 ret = security_sb_parse_opts_str(secdata, sec_opts); 1499 free_secdata(secdata); 1500 return ret; 1501 } 1502 1503 static int setup_security_options(struct btrfs_fs_info *fs_info, 1504 struct super_block *sb, 1505 struct security_mnt_opts *sec_opts) 1506 { 1507 int ret = 0; 1508 1509 /* 1510 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1511 * is valid. 1512 */ 1513 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1514 if (ret) 1515 return ret; 1516 1517 #ifdef CONFIG_SECURITY 1518 if (!fs_info->security_opts.num_mnt_opts) { 1519 /* first time security setup, copy sec_opts to fs_info */ 1520 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1521 } else { 1522 /* 1523 * Since SELinux (the only one supporting security_mnt_opts) 1524 * does NOT support changing context during remount/mount of 1525 * the same sb, this must be the same or part of the same 1526 * security options, just free it. 1527 */ 1528 security_free_mnt_opts(sec_opts); 1529 } 1530 #endif 1531 return ret; 1532 } 1533 1534 /* 1535 * Find a superblock for the given device / mount point. 1536 * 1537 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1538 * for multiple device setup. Make sure to keep it in sync. 1539 */ 1540 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1541 const char *device_name, void *data) 1542 { 1543 struct block_device *bdev = NULL; 1544 struct super_block *s; 1545 struct btrfs_fs_devices *fs_devices = NULL; 1546 struct btrfs_fs_info *fs_info = NULL; 1547 struct security_mnt_opts new_sec_opts; 1548 fmode_t mode = FMODE_READ; 1549 char *subvol_name = NULL; 1550 u64 subvol_objectid = 0; 1551 int error = 0; 1552 1553 if (!(flags & MS_RDONLY)) 1554 mode |= FMODE_WRITE; 1555 1556 error = btrfs_parse_early_options(data, mode, fs_type, 1557 &subvol_name, &subvol_objectid, 1558 &fs_devices); 1559 if (error) { 1560 kfree(subvol_name); 1561 return ERR_PTR(error); 1562 } 1563 1564 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1565 /* mount_subvol() will free subvol_name. */ 1566 return mount_subvol(subvol_name, subvol_objectid, flags, 1567 device_name, data); 1568 } 1569 1570 security_init_mnt_opts(&new_sec_opts); 1571 if (data) { 1572 error = parse_security_options(data, &new_sec_opts); 1573 if (error) 1574 return ERR_PTR(error); 1575 } 1576 1577 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1578 if (error) 1579 goto error_sec_opts; 1580 1581 /* 1582 * Setup a dummy root and fs_info for test/set super. This is because 1583 * we don't actually fill this stuff out until open_ctree, but we need 1584 * it for searching for existing supers, so this lets us do that and 1585 * then open_ctree will properly initialize everything later. 1586 */ 1587 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1588 if (!fs_info) { 1589 error = -ENOMEM; 1590 goto error_sec_opts; 1591 } 1592 1593 fs_info->fs_devices = fs_devices; 1594 1595 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1596 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1597 security_init_mnt_opts(&fs_info->security_opts); 1598 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1599 error = -ENOMEM; 1600 goto error_fs_info; 1601 } 1602 1603 error = btrfs_open_devices(fs_devices, mode, fs_type); 1604 if (error) 1605 goto error_fs_info; 1606 1607 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1608 error = -EACCES; 1609 goto error_close_devices; 1610 } 1611 1612 bdev = fs_devices->latest_bdev; 1613 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1614 fs_info); 1615 if (IS_ERR(s)) { 1616 error = PTR_ERR(s); 1617 goto error_close_devices; 1618 } 1619 1620 if (s->s_root) { 1621 btrfs_close_devices(fs_devices); 1622 free_fs_info(fs_info); 1623 if ((flags ^ s->s_flags) & MS_RDONLY) 1624 error = -EBUSY; 1625 } else { 1626 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1627 btrfs_sb(s)->bdev_holder = fs_type; 1628 error = btrfs_fill_super(s, fs_devices, data, 1629 flags & MS_SILENT ? 1 : 0); 1630 } 1631 if (error) { 1632 deactivate_locked_super(s); 1633 goto error_sec_opts; 1634 } 1635 1636 fs_info = btrfs_sb(s); 1637 error = setup_security_options(fs_info, s, &new_sec_opts); 1638 if (error) { 1639 deactivate_locked_super(s); 1640 goto error_sec_opts; 1641 } 1642 1643 return dget(s->s_root); 1644 1645 error_close_devices: 1646 btrfs_close_devices(fs_devices); 1647 error_fs_info: 1648 free_fs_info(fs_info); 1649 error_sec_opts: 1650 security_free_mnt_opts(&new_sec_opts); 1651 return ERR_PTR(error); 1652 } 1653 1654 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1655 int new_pool_size, int old_pool_size) 1656 { 1657 if (new_pool_size == old_pool_size) 1658 return; 1659 1660 fs_info->thread_pool_size = new_pool_size; 1661 1662 btrfs_info(fs_info, "resize thread pool %d -> %d", 1663 old_pool_size, new_pool_size); 1664 1665 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1666 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1667 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1668 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1669 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1670 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1671 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1672 new_pool_size); 1673 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1674 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1675 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1676 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1677 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1678 new_pool_size); 1679 } 1680 1681 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1682 { 1683 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1684 } 1685 1686 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1687 unsigned long old_opts, int flags) 1688 { 1689 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1690 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1691 (flags & MS_RDONLY))) { 1692 /* wait for any defraggers to finish */ 1693 wait_event(fs_info->transaction_wait, 1694 (atomic_read(&fs_info->defrag_running) == 0)); 1695 if (flags & MS_RDONLY) 1696 sync_filesystem(fs_info->sb); 1697 } 1698 } 1699 1700 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1701 unsigned long old_opts) 1702 { 1703 /* 1704 * We need to cleanup all defragable inodes if the autodefragment is 1705 * close or the filesystem is read only. 1706 */ 1707 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1708 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1709 (fs_info->sb->s_flags & MS_RDONLY))) { 1710 btrfs_cleanup_defrag_inodes(fs_info); 1711 } 1712 1713 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1714 } 1715 1716 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1717 { 1718 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1719 struct btrfs_root *root = fs_info->tree_root; 1720 unsigned old_flags = sb->s_flags; 1721 unsigned long old_opts = fs_info->mount_opt; 1722 unsigned long old_compress_type = fs_info->compress_type; 1723 u64 old_max_inline = fs_info->max_inline; 1724 u64 old_alloc_start = fs_info->alloc_start; 1725 int old_thread_pool_size = fs_info->thread_pool_size; 1726 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1727 int ret; 1728 1729 sync_filesystem(sb); 1730 btrfs_remount_prepare(fs_info); 1731 1732 if (data) { 1733 struct security_mnt_opts new_sec_opts; 1734 1735 security_init_mnt_opts(&new_sec_opts); 1736 ret = parse_security_options(data, &new_sec_opts); 1737 if (ret) 1738 goto restore; 1739 ret = setup_security_options(fs_info, sb, 1740 &new_sec_opts); 1741 if (ret) { 1742 security_free_mnt_opts(&new_sec_opts); 1743 goto restore; 1744 } 1745 } 1746 1747 ret = btrfs_parse_options(root, data, *flags); 1748 if (ret) { 1749 ret = -EINVAL; 1750 goto restore; 1751 } 1752 1753 btrfs_remount_begin(fs_info, old_opts, *flags); 1754 btrfs_resize_thread_pool(fs_info, 1755 fs_info->thread_pool_size, old_thread_pool_size); 1756 1757 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1758 goto out; 1759 1760 if (*flags & MS_RDONLY) { 1761 /* 1762 * this also happens on 'umount -rf' or on shutdown, when 1763 * the filesystem is busy. 1764 */ 1765 cancel_work_sync(&fs_info->async_reclaim_work); 1766 1767 /* wait for the uuid_scan task to finish */ 1768 down(&fs_info->uuid_tree_rescan_sem); 1769 /* avoid complains from lockdep et al. */ 1770 up(&fs_info->uuid_tree_rescan_sem); 1771 1772 sb->s_flags |= MS_RDONLY; 1773 1774 /* 1775 * Setting MS_RDONLY will put the cleaner thread to 1776 * sleep at the next loop if it's already active. 1777 * If it's already asleep, we'll leave unused block 1778 * groups on disk until we're mounted read-write again 1779 * unless we clean them up here. 1780 */ 1781 btrfs_delete_unused_bgs(fs_info); 1782 1783 btrfs_dev_replace_suspend_for_unmount(fs_info); 1784 btrfs_scrub_cancel(fs_info); 1785 btrfs_pause_balance(fs_info); 1786 1787 ret = btrfs_commit_super(root); 1788 if (ret) 1789 goto restore; 1790 } else { 1791 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1792 btrfs_err(fs_info, 1793 "Remounting read-write after error is not allowed"); 1794 ret = -EINVAL; 1795 goto restore; 1796 } 1797 if (fs_info->fs_devices->rw_devices == 0) { 1798 ret = -EACCES; 1799 goto restore; 1800 } 1801 1802 if (fs_info->fs_devices->missing_devices > 1803 fs_info->num_tolerated_disk_barrier_failures && 1804 !(*flags & MS_RDONLY)) { 1805 btrfs_warn(fs_info, 1806 "too many missing devices, writeable remount is not allowed"); 1807 ret = -EACCES; 1808 goto restore; 1809 } 1810 1811 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1812 ret = -EINVAL; 1813 goto restore; 1814 } 1815 1816 ret = btrfs_cleanup_fs_roots(fs_info); 1817 if (ret) 1818 goto restore; 1819 1820 /* recover relocation */ 1821 mutex_lock(&fs_info->cleaner_mutex); 1822 ret = btrfs_recover_relocation(root); 1823 mutex_unlock(&fs_info->cleaner_mutex); 1824 if (ret) 1825 goto restore; 1826 1827 ret = btrfs_resume_balance_async(fs_info); 1828 if (ret) 1829 goto restore; 1830 1831 ret = btrfs_resume_dev_replace_async(fs_info); 1832 if (ret) { 1833 btrfs_warn(fs_info, "failed to resume dev_replace"); 1834 goto restore; 1835 } 1836 1837 if (!fs_info->uuid_root) { 1838 btrfs_info(fs_info, "creating UUID tree"); 1839 ret = btrfs_create_uuid_tree(fs_info); 1840 if (ret) { 1841 btrfs_warn(fs_info, 1842 "failed to create the UUID tree %d", 1843 ret); 1844 goto restore; 1845 } 1846 } 1847 sb->s_flags &= ~MS_RDONLY; 1848 1849 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1850 } 1851 out: 1852 wake_up_process(fs_info->transaction_kthread); 1853 btrfs_remount_cleanup(fs_info, old_opts); 1854 return 0; 1855 1856 restore: 1857 /* We've hit an error - don't reset MS_RDONLY */ 1858 if (sb->s_flags & MS_RDONLY) 1859 old_flags |= MS_RDONLY; 1860 sb->s_flags = old_flags; 1861 fs_info->mount_opt = old_opts; 1862 fs_info->compress_type = old_compress_type; 1863 fs_info->max_inline = old_max_inline; 1864 mutex_lock(&fs_info->chunk_mutex); 1865 fs_info->alloc_start = old_alloc_start; 1866 mutex_unlock(&fs_info->chunk_mutex); 1867 btrfs_resize_thread_pool(fs_info, 1868 old_thread_pool_size, fs_info->thread_pool_size); 1869 fs_info->metadata_ratio = old_metadata_ratio; 1870 btrfs_remount_cleanup(fs_info, old_opts); 1871 return ret; 1872 } 1873 1874 /* Used to sort the devices by max_avail(descending sort) */ 1875 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1876 const void *dev_info2) 1877 { 1878 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1879 ((struct btrfs_device_info *)dev_info2)->max_avail) 1880 return -1; 1881 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1882 ((struct btrfs_device_info *)dev_info2)->max_avail) 1883 return 1; 1884 else 1885 return 0; 1886 } 1887 1888 /* 1889 * sort the devices by max_avail, in which max free extent size of each device 1890 * is stored.(Descending Sort) 1891 */ 1892 static inline void btrfs_descending_sort_devices( 1893 struct btrfs_device_info *devices, 1894 size_t nr_devices) 1895 { 1896 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1897 btrfs_cmp_device_free_bytes, NULL); 1898 } 1899 1900 /* 1901 * The helper to calc the free space on the devices that can be used to store 1902 * file data. 1903 */ 1904 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1905 { 1906 struct btrfs_fs_info *fs_info = root->fs_info; 1907 struct btrfs_device_info *devices_info; 1908 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1909 struct btrfs_device *device; 1910 u64 skip_space; 1911 u64 type; 1912 u64 avail_space; 1913 u64 used_space; 1914 u64 min_stripe_size; 1915 int min_stripes = 1, num_stripes = 1; 1916 int i = 0, nr_devices; 1917 int ret; 1918 1919 /* 1920 * We aren't under the device list lock, so this is racy-ish, but good 1921 * enough for our purposes. 1922 */ 1923 nr_devices = fs_info->fs_devices->open_devices; 1924 if (!nr_devices) { 1925 smp_mb(); 1926 nr_devices = fs_info->fs_devices->open_devices; 1927 ASSERT(nr_devices); 1928 if (!nr_devices) { 1929 *free_bytes = 0; 1930 return 0; 1931 } 1932 } 1933 1934 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1935 GFP_NOFS); 1936 if (!devices_info) 1937 return -ENOMEM; 1938 1939 /* calc min stripe number for data space allocation */ 1940 type = btrfs_get_alloc_profile(root, 1); 1941 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1942 min_stripes = 2; 1943 num_stripes = nr_devices; 1944 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1945 min_stripes = 2; 1946 num_stripes = 2; 1947 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1948 min_stripes = 4; 1949 num_stripes = 4; 1950 } 1951 1952 if (type & BTRFS_BLOCK_GROUP_DUP) 1953 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1954 else 1955 min_stripe_size = BTRFS_STRIPE_LEN; 1956 1957 if (fs_info->alloc_start) 1958 mutex_lock(&fs_devices->device_list_mutex); 1959 rcu_read_lock(); 1960 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1961 if (!device->in_fs_metadata || !device->bdev || 1962 device->is_tgtdev_for_dev_replace) 1963 continue; 1964 1965 if (i >= nr_devices) 1966 break; 1967 1968 avail_space = device->total_bytes - device->bytes_used; 1969 1970 /* align with stripe_len */ 1971 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1972 avail_space *= BTRFS_STRIPE_LEN; 1973 1974 /* 1975 * In order to avoid overwriting the superblock on the drive, 1976 * btrfs starts at an offset of at least 1MB when doing chunk 1977 * allocation. 1978 */ 1979 skip_space = SZ_1M; 1980 1981 /* user can set the offset in fs_info->alloc_start. */ 1982 if (fs_info->alloc_start && 1983 fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1984 device->total_bytes) { 1985 rcu_read_unlock(); 1986 skip_space = max(fs_info->alloc_start, skip_space); 1987 1988 /* 1989 * btrfs can not use the free space in 1990 * [0, skip_space - 1], we must subtract it from the 1991 * total. In order to implement it, we account the used 1992 * space in this range first. 1993 */ 1994 ret = btrfs_account_dev_extents_size(device, 0, 1995 skip_space - 1, 1996 &used_space); 1997 if (ret) { 1998 kfree(devices_info); 1999 mutex_unlock(&fs_devices->device_list_mutex); 2000 return ret; 2001 } 2002 2003 rcu_read_lock(); 2004 2005 /* calc the free space in [0, skip_space - 1] */ 2006 skip_space -= used_space; 2007 } 2008 2009 /* 2010 * we can use the free space in [0, skip_space - 1], subtract 2011 * it from the total. 2012 */ 2013 if (avail_space && avail_space >= skip_space) 2014 avail_space -= skip_space; 2015 else 2016 avail_space = 0; 2017 2018 if (avail_space < min_stripe_size) 2019 continue; 2020 2021 devices_info[i].dev = device; 2022 devices_info[i].max_avail = avail_space; 2023 2024 i++; 2025 } 2026 rcu_read_unlock(); 2027 if (fs_info->alloc_start) 2028 mutex_unlock(&fs_devices->device_list_mutex); 2029 2030 nr_devices = i; 2031 2032 btrfs_descending_sort_devices(devices_info, nr_devices); 2033 2034 i = nr_devices - 1; 2035 avail_space = 0; 2036 while (nr_devices >= min_stripes) { 2037 if (num_stripes > nr_devices) 2038 num_stripes = nr_devices; 2039 2040 if (devices_info[i].max_avail >= min_stripe_size) { 2041 int j; 2042 u64 alloc_size; 2043 2044 avail_space += devices_info[i].max_avail * num_stripes; 2045 alloc_size = devices_info[i].max_avail; 2046 for (j = i + 1 - num_stripes; j <= i; j++) 2047 devices_info[j].max_avail -= alloc_size; 2048 } 2049 i--; 2050 nr_devices--; 2051 } 2052 2053 kfree(devices_info); 2054 *free_bytes = avail_space; 2055 return 0; 2056 } 2057 2058 /* 2059 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2060 * 2061 * If there's a redundant raid level at DATA block groups, use the respective 2062 * multiplier to scale the sizes. 2063 * 2064 * Unused device space usage is based on simulating the chunk allocator 2065 * algorithm that respects the device sizes, order of allocations and the 2066 * 'alloc_start' value, this is a close approximation of the actual use but 2067 * there are other factors that may change the result (like a new metadata 2068 * chunk). 2069 * 2070 * If metadata is exhausted, f_bavail will be 0. 2071 */ 2072 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2073 { 2074 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2075 struct btrfs_super_block *disk_super = fs_info->super_copy; 2076 struct list_head *head = &fs_info->space_info; 2077 struct btrfs_space_info *found; 2078 u64 total_used = 0; 2079 u64 total_free_data = 0; 2080 u64 total_free_meta = 0; 2081 int bits = dentry->d_sb->s_blocksize_bits; 2082 __be32 *fsid = (__be32 *)fs_info->fsid; 2083 unsigned factor = 1; 2084 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2085 int ret; 2086 u64 thresh = 0; 2087 int mixed = 0; 2088 2089 /* 2090 * holding chunk_mutex to avoid allocating new chunks, holding 2091 * device_list_mutex to avoid the device being removed 2092 */ 2093 rcu_read_lock(); 2094 list_for_each_entry_rcu(found, head, list) { 2095 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2096 int i; 2097 2098 total_free_data += found->disk_total - found->disk_used; 2099 total_free_data -= 2100 btrfs_account_ro_block_groups_free_space(found); 2101 2102 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2103 if (!list_empty(&found->block_groups[i])) { 2104 switch (i) { 2105 case BTRFS_RAID_DUP: 2106 case BTRFS_RAID_RAID1: 2107 case BTRFS_RAID_RAID10: 2108 factor = 2; 2109 } 2110 } 2111 } 2112 } 2113 2114 /* 2115 * Metadata in mixed block goup profiles are accounted in data 2116 */ 2117 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2118 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2119 mixed = 1; 2120 else 2121 total_free_meta += found->disk_total - 2122 found->disk_used; 2123 } 2124 2125 total_used += found->disk_used; 2126 } 2127 2128 rcu_read_unlock(); 2129 2130 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2131 buf->f_blocks >>= bits; 2132 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2133 2134 /* Account global block reserve as used, it's in logical size already */ 2135 spin_lock(&block_rsv->lock); 2136 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2137 if (buf->f_bfree >= block_rsv->size >> bits) 2138 buf->f_bfree -= block_rsv->size >> bits; 2139 else 2140 buf->f_bfree = 0; 2141 spin_unlock(&block_rsv->lock); 2142 2143 buf->f_bavail = div_u64(total_free_data, factor); 2144 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 2145 if (ret) 2146 return ret; 2147 buf->f_bavail += div_u64(total_free_data, factor); 2148 buf->f_bavail = buf->f_bavail >> bits; 2149 2150 /* 2151 * We calculate the remaining metadata space minus global reserve. If 2152 * this is (supposedly) smaller than zero, there's no space. But this 2153 * does not hold in practice, the exhausted state happens where's still 2154 * some positive delta. So we apply some guesswork and compare the 2155 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2156 * 2157 * We probably cannot calculate the exact threshold value because this 2158 * depends on the internal reservations requested by various 2159 * operations, so some operations that consume a few metadata will 2160 * succeed even if the Avail is zero. But this is better than the other 2161 * way around. 2162 */ 2163 thresh = 4 * 1024 * 1024; 2164 2165 if (!mixed && total_free_meta - thresh < block_rsv->size) 2166 buf->f_bavail = 0; 2167 2168 buf->f_type = BTRFS_SUPER_MAGIC; 2169 buf->f_bsize = dentry->d_sb->s_blocksize; 2170 buf->f_namelen = BTRFS_NAME_LEN; 2171 2172 /* We treat it as constant endianness (it doesn't matter _which_) 2173 because we want the fsid to come out the same whether mounted 2174 on a big-endian or little-endian host */ 2175 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2176 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2177 /* Mask in the root object ID too, to disambiguate subvols */ 2178 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2179 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2180 2181 return 0; 2182 } 2183 2184 static void btrfs_kill_super(struct super_block *sb) 2185 { 2186 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2187 kill_anon_super(sb); 2188 free_fs_info(fs_info); 2189 } 2190 2191 static struct file_system_type btrfs_fs_type = { 2192 .owner = THIS_MODULE, 2193 .name = "btrfs", 2194 .mount = btrfs_mount, 2195 .kill_sb = btrfs_kill_super, 2196 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2197 }; 2198 MODULE_ALIAS_FS("btrfs"); 2199 2200 static int btrfs_control_open(struct inode *inode, struct file *file) 2201 { 2202 /* 2203 * The control file's private_data is used to hold the 2204 * transaction when it is started and is used to keep 2205 * track of whether a transaction is already in progress. 2206 */ 2207 file->private_data = NULL; 2208 return 0; 2209 } 2210 2211 /* 2212 * used by btrfsctl to scan devices when no FS is mounted 2213 */ 2214 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2215 unsigned long arg) 2216 { 2217 struct btrfs_ioctl_vol_args *vol; 2218 struct btrfs_fs_devices *fs_devices; 2219 int ret = -ENOTTY; 2220 2221 if (!capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2223 2224 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2225 if (IS_ERR(vol)) 2226 return PTR_ERR(vol); 2227 2228 switch (cmd) { 2229 case BTRFS_IOC_SCAN_DEV: 2230 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2231 &btrfs_fs_type, &fs_devices); 2232 break; 2233 case BTRFS_IOC_DEVICES_READY: 2234 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2235 &btrfs_fs_type, &fs_devices); 2236 if (ret) 2237 break; 2238 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2239 break; 2240 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2241 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2242 break; 2243 } 2244 2245 kfree(vol); 2246 return ret; 2247 } 2248 2249 static int btrfs_freeze(struct super_block *sb) 2250 { 2251 struct btrfs_trans_handle *trans; 2252 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 2253 2254 root->fs_info->fs_frozen = 1; 2255 /* 2256 * We don't need a barrier here, we'll wait for any transaction that 2257 * could be in progress on other threads (and do delayed iputs that 2258 * we want to avoid on a frozen filesystem), or do the commit 2259 * ourselves. 2260 */ 2261 trans = btrfs_attach_transaction_barrier(root); 2262 if (IS_ERR(trans)) { 2263 /* no transaction, don't bother */ 2264 if (PTR_ERR(trans) == -ENOENT) 2265 return 0; 2266 return PTR_ERR(trans); 2267 } 2268 return btrfs_commit_transaction(trans, root); 2269 } 2270 2271 static int btrfs_unfreeze(struct super_block *sb) 2272 { 2273 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 2274 2275 root->fs_info->fs_frozen = 0; 2276 return 0; 2277 } 2278 2279 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2280 { 2281 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2282 struct btrfs_fs_devices *cur_devices; 2283 struct btrfs_device *dev, *first_dev = NULL; 2284 struct list_head *head; 2285 struct rcu_string *name; 2286 2287 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2288 cur_devices = fs_info->fs_devices; 2289 while (cur_devices) { 2290 head = &cur_devices->devices; 2291 list_for_each_entry(dev, head, dev_list) { 2292 if (dev->missing) 2293 continue; 2294 if (!dev->name) 2295 continue; 2296 if (!first_dev || dev->devid < first_dev->devid) 2297 first_dev = dev; 2298 } 2299 cur_devices = cur_devices->seed; 2300 } 2301 2302 if (first_dev) { 2303 rcu_read_lock(); 2304 name = rcu_dereference(first_dev->name); 2305 seq_escape(m, name->str, " \t\n\\"); 2306 rcu_read_unlock(); 2307 } else { 2308 WARN_ON(1); 2309 } 2310 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2311 return 0; 2312 } 2313 2314 static const struct super_operations btrfs_super_ops = { 2315 .drop_inode = btrfs_drop_inode, 2316 .evict_inode = btrfs_evict_inode, 2317 .put_super = btrfs_put_super, 2318 .sync_fs = btrfs_sync_fs, 2319 .show_options = btrfs_show_options, 2320 .show_devname = btrfs_show_devname, 2321 .write_inode = btrfs_write_inode, 2322 .alloc_inode = btrfs_alloc_inode, 2323 .destroy_inode = btrfs_destroy_inode, 2324 .statfs = btrfs_statfs, 2325 .remount_fs = btrfs_remount, 2326 .freeze_fs = btrfs_freeze, 2327 .unfreeze_fs = btrfs_unfreeze, 2328 }; 2329 2330 static const struct file_operations btrfs_ctl_fops = { 2331 .open = btrfs_control_open, 2332 .unlocked_ioctl = btrfs_control_ioctl, 2333 .compat_ioctl = btrfs_control_ioctl, 2334 .owner = THIS_MODULE, 2335 .llseek = noop_llseek, 2336 }; 2337 2338 static struct miscdevice btrfs_misc = { 2339 .minor = BTRFS_MINOR, 2340 .name = "btrfs-control", 2341 .fops = &btrfs_ctl_fops 2342 }; 2343 2344 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2345 MODULE_ALIAS("devname:btrfs-control"); 2346 2347 static int btrfs_interface_init(void) 2348 { 2349 return misc_register(&btrfs_misc); 2350 } 2351 2352 static void btrfs_interface_exit(void) 2353 { 2354 misc_deregister(&btrfs_misc); 2355 } 2356 2357 static void btrfs_print_mod_info(void) 2358 { 2359 pr_info("Btrfs loaded, crc32c=%s" 2360 #ifdef CONFIG_BTRFS_DEBUG 2361 ", debug=on" 2362 #endif 2363 #ifdef CONFIG_BTRFS_ASSERT 2364 ", assert=on" 2365 #endif 2366 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2367 ", integrity-checker=on" 2368 #endif 2369 "\n", 2370 btrfs_crc32c_impl()); 2371 } 2372 2373 static int __init init_btrfs_fs(void) 2374 { 2375 int err; 2376 2377 err = btrfs_hash_init(); 2378 if (err) 2379 return err; 2380 2381 btrfs_props_init(); 2382 2383 err = btrfs_init_sysfs(); 2384 if (err) 2385 goto free_hash; 2386 2387 btrfs_init_compress(); 2388 2389 err = btrfs_init_cachep(); 2390 if (err) 2391 goto free_compress; 2392 2393 err = extent_io_init(); 2394 if (err) 2395 goto free_cachep; 2396 2397 err = extent_map_init(); 2398 if (err) 2399 goto free_extent_io; 2400 2401 err = ordered_data_init(); 2402 if (err) 2403 goto free_extent_map; 2404 2405 err = btrfs_delayed_inode_init(); 2406 if (err) 2407 goto free_ordered_data; 2408 2409 err = btrfs_auto_defrag_init(); 2410 if (err) 2411 goto free_delayed_inode; 2412 2413 err = btrfs_delayed_ref_init(); 2414 if (err) 2415 goto free_auto_defrag; 2416 2417 err = btrfs_prelim_ref_init(); 2418 if (err) 2419 goto free_delayed_ref; 2420 2421 err = btrfs_end_io_wq_init(); 2422 if (err) 2423 goto free_prelim_ref; 2424 2425 err = btrfs_interface_init(); 2426 if (err) 2427 goto free_end_io_wq; 2428 2429 btrfs_init_lockdep(); 2430 2431 btrfs_print_mod_info(); 2432 2433 err = btrfs_run_sanity_tests(); 2434 if (err) 2435 goto unregister_ioctl; 2436 2437 err = register_filesystem(&btrfs_fs_type); 2438 if (err) 2439 goto unregister_ioctl; 2440 2441 return 0; 2442 2443 unregister_ioctl: 2444 btrfs_interface_exit(); 2445 free_end_io_wq: 2446 btrfs_end_io_wq_exit(); 2447 free_prelim_ref: 2448 btrfs_prelim_ref_exit(); 2449 free_delayed_ref: 2450 btrfs_delayed_ref_exit(); 2451 free_auto_defrag: 2452 btrfs_auto_defrag_exit(); 2453 free_delayed_inode: 2454 btrfs_delayed_inode_exit(); 2455 free_ordered_data: 2456 ordered_data_exit(); 2457 free_extent_map: 2458 extent_map_exit(); 2459 free_extent_io: 2460 extent_io_exit(); 2461 free_cachep: 2462 btrfs_destroy_cachep(); 2463 free_compress: 2464 btrfs_exit_compress(); 2465 btrfs_exit_sysfs(); 2466 free_hash: 2467 btrfs_hash_exit(); 2468 return err; 2469 } 2470 2471 static void __exit exit_btrfs_fs(void) 2472 { 2473 btrfs_destroy_cachep(); 2474 btrfs_delayed_ref_exit(); 2475 btrfs_auto_defrag_exit(); 2476 btrfs_delayed_inode_exit(); 2477 btrfs_prelim_ref_exit(); 2478 ordered_data_exit(); 2479 extent_map_exit(); 2480 extent_io_exit(); 2481 btrfs_interface_exit(); 2482 btrfs_end_io_wq_exit(); 2483 unregister_filesystem(&btrfs_fs_type); 2484 btrfs_exit_sysfs(); 2485 btrfs_cleanup_fs_uuids(); 2486 btrfs_exit_compress(); 2487 btrfs_hash_exit(); 2488 } 2489 2490 late_initcall(init_btrfs_fs); 2491 module_exit(exit_btrfs_fs) 2492 2493 MODULE_LICENSE("GPL"); 2494