1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #include "backref.h" 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/btrfs.h> 67 68 static const struct super_operations btrfs_super_ops; 69 static struct file_system_type btrfs_fs_type; 70 71 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 72 73 const char *btrfs_decode_error(int errno) 74 { 75 char *errstr = "unknown"; 76 77 switch (errno) { 78 case -EIO: 79 errstr = "IO failure"; 80 break; 81 case -ENOMEM: 82 errstr = "Out of memory"; 83 break; 84 case -EROFS: 85 errstr = "Readonly filesystem"; 86 break; 87 case -EEXIST: 88 errstr = "Object already exists"; 89 break; 90 case -ENOSPC: 91 errstr = "No space left"; 92 break; 93 case -ENOENT: 94 errstr = "No such entry"; 95 break; 96 } 97 98 return errstr; 99 } 100 101 /* btrfs handle error by forcing the filesystem readonly */ 102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 103 { 104 struct super_block *sb = fs_info->sb; 105 106 if (sb_rdonly(sb)) 107 return; 108 109 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 110 sb->s_flags |= MS_RDONLY; 111 btrfs_info(fs_info, "forced readonly"); 112 /* 113 * Note that a running device replace operation is not 114 * canceled here although there is no way to update 115 * the progress. It would add the risk of a deadlock, 116 * therefore the canceling is omitted. The only penalty 117 * is that some I/O remains active until the procedure 118 * completes. The next time when the filesystem is 119 * mounted writeable again, the device replace 120 * operation continues. 121 */ 122 } 123 } 124 125 /* 126 * __btrfs_handle_fs_error decodes expected errors from the caller and 127 * invokes the approciate error response. 128 */ 129 __cold 130 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 131 unsigned int line, int errno, const char *fmt, ...) 132 { 133 struct super_block *sb = fs_info->sb; 134 #ifdef CONFIG_PRINTK 135 const char *errstr; 136 #endif 137 138 /* 139 * Special case: if the error is EROFS, and we're already 140 * under MS_RDONLY, then it is safe here. 141 */ 142 if (errno == -EROFS && sb_rdonly(sb)) 143 return; 144 145 #ifdef CONFIG_PRINTK 146 errstr = btrfs_decode_error(errno); 147 if (fmt) { 148 struct va_format vaf; 149 va_list args; 150 151 va_start(args, fmt); 152 vaf.fmt = fmt; 153 vaf.va = &args; 154 155 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 156 sb->s_id, function, line, errno, errstr, &vaf); 157 va_end(args); 158 } else { 159 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 160 sb->s_id, function, line, errno, errstr); 161 } 162 #endif 163 164 /* 165 * Today we only save the error info to memory. Long term we'll 166 * also send it down to the disk 167 */ 168 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 169 170 /* Don't go through full error handling during mount */ 171 if (sb->s_flags & MS_BORN) 172 btrfs_handle_error(fs_info); 173 } 174 175 #ifdef CONFIG_PRINTK 176 static const char * const logtypes[] = { 177 "emergency", 178 "alert", 179 "critical", 180 "error", 181 "warning", 182 "notice", 183 "info", 184 "debug", 185 }; 186 187 188 /* 189 * Use one ratelimit state per log level so that a flood of less important 190 * messages doesn't cause more important ones to be dropped. 191 */ 192 static struct ratelimit_state printk_limits[] = { 193 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 200 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 201 }; 202 203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 204 { 205 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 206 struct va_format vaf; 207 va_list args; 208 int kern_level; 209 const char *type = logtypes[4]; 210 struct ratelimit_state *ratelimit = &printk_limits[4]; 211 212 va_start(args, fmt); 213 214 while ((kern_level = printk_get_level(fmt)) != 0) { 215 size_t size = printk_skip_level(fmt) - fmt; 216 217 if (kern_level >= '0' && kern_level <= '7') { 218 memcpy(lvl, fmt, size); 219 lvl[size] = '\0'; 220 type = logtypes[kern_level - '0']; 221 ratelimit = &printk_limits[kern_level - '0']; 222 } 223 fmt += size; 224 } 225 226 vaf.fmt = fmt; 227 vaf.va = &args; 228 229 if (__ratelimit(ratelimit)) 230 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 231 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 232 233 va_end(args); 234 } 235 #endif 236 237 /* 238 * We only mark the transaction aborted and then set the file system read-only. 239 * This will prevent new transactions from starting or trying to join this 240 * one. 241 * 242 * This means that error recovery at the call site is limited to freeing 243 * any local memory allocations and passing the error code up without 244 * further cleanup. The transaction should complete as it normally would 245 * in the call path but will return -EIO. 246 * 247 * We'll complete the cleanup in btrfs_end_transaction and 248 * btrfs_commit_transaction. 249 */ 250 __cold 251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 252 const char *function, 253 unsigned int line, int errno) 254 { 255 struct btrfs_fs_info *fs_info = trans->fs_info; 256 257 trans->aborted = errno; 258 /* Nothing used. The other threads that have joined this 259 * transaction may be able to continue. */ 260 if (!trans->dirty && list_empty(&trans->new_bgs)) { 261 const char *errstr; 262 263 errstr = btrfs_decode_error(errno); 264 btrfs_warn(fs_info, 265 "%s:%d: Aborting unused transaction(%s).", 266 function, line, errstr); 267 return; 268 } 269 WRITE_ONCE(trans->transaction->aborted, errno); 270 /* Wake up anybody who may be waiting on this transaction */ 271 wake_up(&fs_info->transaction_wait); 272 wake_up(&fs_info->transaction_blocked_wait); 273 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 274 } 275 /* 276 * __btrfs_panic decodes unexpected, fatal errors from the caller, 277 * issues an alert, and either panics or BUGs, depending on mount options. 278 */ 279 __cold 280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 281 unsigned int line, int errno, const char *fmt, ...) 282 { 283 char *s_id = "<unknown>"; 284 const char *errstr; 285 struct va_format vaf = { .fmt = fmt }; 286 va_list args; 287 288 if (fs_info) 289 s_id = fs_info->sb->s_id; 290 291 va_start(args, fmt); 292 vaf.va = &args; 293 294 errstr = btrfs_decode_error(errno); 295 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 296 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 297 s_id, function, line, &vaf, errno, errstr); 298 299 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 300 function, line, &vaf, errno, errstr); 301 va_end(args); 302 /* Caller calls BUG() */ 303 } 304 305 static void btrfs_put_super(struct super_block *sb) 306 { 307 close_ctree(btrfs_sb(sb)); 308 } 309 310 enum { 311 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 312 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 313 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 314 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 315 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 316 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, 317 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, 318 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, 319 Opt_skip_balance, Opt_check_integrity, 320 Opt_check_integrity_including_extent_data, 321 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 322 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 323 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 324 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, 325 Opt_nologreplay, Opt_norecovery, 326 #ifdef CONFIG_BTRFS_DEBUG 327 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 328 #endif 329 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 330 Opt_ref_verify, 331 #endif 332 Opt_err, 333 }; 334 335 static const match_table_t tokens = { 336 {Opt_degraded, "degraded"}, 337 {Opt_subvol, "subvol=%s"}, 338 {Opt_subvolid, "subvolid=%s"}, 339 {Opt_device, "device=%s"}, 340 {Opt_nodatasum, "nodatasum"}, 341 {Opt_datasum, "datasum"}, 342 {Opt_nodatacow, "nodatacow"}, 343 {Opt_datacow, "datacow"}, 344 {Opt_nobarrier, "nobarrier"}, 345 {Opt_barrier, "barrier"}, 346 {Opt_max_inline, "max_inline=%s"}, 347 {Opt_alloc_start, "alloc_start=%s"}, 348 {Opt_thread_pool, "thread_pool=%d"}, 349 {Opt_compress, "compress"}, 350 {Opt_compress_type, "compress=%s"}, 351 {Opt_compress_force, "compress-force"}, 352 {Opt_compress_force_type, "compress-force=%s"}, 353 {Opt_ssd, "ssd"}, 354 {Opt_ssd_spread, "ssd_spread"}, 355 {Opt_nossd, "nossd"}, 356 {Opt_acl, "acl"}, 357 {Opt_noacl, "noacl"}, 358 {Opt_notreelog, "notreelog"}, 359 {Opt_treelog, "treelog"}, 360 {Opt_nologreplay, "nologreplay"}, 361 {Opt_norecovery, "norecovery"}, 362 {Opt_flushoncommit, "flushoncommit"}, 363 {Opt_noflushoncommit, "noflushoncommit"}, 364 {Opt_ratio, "metadata_ratio=%d"}, 365 {Opt_discard, "discard"}, 366 {Opt_nodiscard, "nodiscard"}, 367 {Opt_space_cache, "space_cache"}, 368 {Opt_space_cache_version, "space_cache=%s"}, 369 {Opt_clear_cache, "clear_cache"}, 370 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 371 {Opt_enospc_debug, "enospc_debug"}, 372 {Opt_noenospc_debug, "noenospc_debug"}, 373 {Opt_subvolrootid, "subvolrootid=%d"}, 374 {Opt_defrag, "autodefrag"}, 375 {Opt_nodefrag, "noautodefrag"}, 376 {Opt_inode_cache, "inode_cache"}, 377 {Opt_noinode_cache, "noinode_cache"}, 378 {Opt_no_space_cache, "nospace_cache"}, 379 {Opt_recovery, "recovery"}, /* deprecated */ 380 {Opt_usebackuproot, "usebackuproot"}, 381 {Opt_skip_balance, "skip_balance"}, 382 {Opt_check_integrity, "check_int"}, 383 {Opt_check_integrity_including_extent_data, "check_int_data"}, 384 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 385 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 386 {Opt_fatal_errors, "fatal_errors=%s"}, 387 {Opt_commit_interval, "commit=%d"}, 388 #ifdef CONFIG_BTRFS_DEBUG 389 {Opt_fragment_data, "fragment=data"}, 390 {Opt_fragment_metadata, "fragment=metadata"}, 391 {Opt_fragment_all, "fragment=all"}, 392 #endif 393 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 394 {Opt_ref_verify, "ref_verify"}, 395 #endif 396 {Opt_err, NULL}, 397 }; 398 399 /* 400 * Regular mount options parser. Everything that is needed only when 401 * reading in a new superblock is parsed here. 402 * XXX JDM: This needs to be cleaned up for remount. 403 */ 404 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 405 unsigned long new_flags) 406 { 407 substring_t args[MAX_OPT_ARGS]; 408 char *p, *num, *orig = NULL; 409 u64 cache_gen; 410 int intarg; 411 int ret = 0; 412 char *compress_type; 413 bool compress_force = false; 414 enum btrfs_compression_type saved_compress_type; 415 bool saved_compress_force; 416 int no_compress = 0; 417 418 cache_gen = btrfs_super_cache_generation(info->super_copy); 419 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 420 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 421 else if (cache_gen) 422 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 423 424 /* 425 * Even the options are empty, we still need to do extra check 426 * against new flags 427 */ 428 if (!options) 429 goto check; 430 431 /* 432 * strsep changes the string, duplicate it because parse_options 433 * gets called twice 434 */ 435 options = kstrdup(options, GFP_KERNEL); 436 if (!options) 437 return -ENOMEM; 438 439 orig = options; 440 441 while ((p = strsep(&options, ",")) != NULL) { 442 int token; 443 if (!*p) 444 continue; 445 446 token = match_token(p, tokens, args); 447 switch (token) { 448 case Opt_degraded: 449 btrfs_info(info, "allowing degraded mounts"); 450 btrfs_set_opt(info->mount_opt, DEGRADED); 451 break; 452 case Opt_subvol: 453 case Opt_subvolid: 454 case Opt_subvolrootid: 455 case Opt_device: 456 /* 457 * These are parsed by btrfs_parse_early_options 458 * and can be happily ignored here. 459 */ 460 break; 461 case Opt_nodatasum: 462 btrfs_set_and_info(info, NODATASUM, 463 "setting nodatasum"); 464 break; 465 case Opt_datasum: 466 if (btrfs_test_opt(info, NODATASUM)) { 467 if (btrfs_test_opt(info, NODATACOW)) 468 btrfs_info(info, 469 "setting datasum, datacow enabled"); 470 else 471 btrfs_info(info, "setting datasum"); 472 } 473 btrfs_clear_opt(info->mount_opt, NODATACOW); 474 btrfs_clear_opt(info->mount_opt, NODATASUM); 475 break; 476 case Opt_nodatacow: 477 if (!btrfs_test_opt(info, NODATACOW)) { 478 if (!btrfs_test_opt(info, COMPRESS) || 479 !btrfs_test_opt(info, FORCE_COMPRESS)) { 480 btrfs_info(info, 481 "setting nodatacow, compression disabled"); 482 } else { 483 btrfs_info(info, "setting nodatacow"); 484 } 485 } 486 btrfs_clear_opt(info->mount_opt, COMPRESS); 487 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 488 btrfs_set_opt(info->mount_opt, NODATACOW); 489 btrfs_set_opt(info->mount_opt, NODATASUM); 490 break; 491 case Opt_datacow: 492 btrfs_clear_and_info(info, NODATACOW, 493 "setting datacow"); 494 break; 495 case Opt_compress_force: 496 case Opt_compress_force_type: 497 compress_force = true; 498 /* Fallthrough */ 499 case Opt_compress: 500 case Opt_compress_type: 501 saved_compress_type = btrfs_test_opt(info, 502 COMPRESS) ? 503 info->compress_type : BTRFS_COMPRESS_NONE; 504 saved_compress_force = 505 btrfs_test_opt(info, FORCE_COMPRESS); 506 if (token == Opt_compress || 507 token == Opt_compress_force || 508 strncmp(args[0].from, "zlib", 4) == 0) { 509 compress_type = "zlib"; 510 info->compress_type = BTRFS_COMPRESS_ZLIB; 511 info->compress_level = 512 btrfs_compress_str2level(args[0].from); 513 btrfs_set_opt(info->mount_opt, COMPRESS); 514 btrfs_clear_opt(info->mount_opt, NODATACOW); 515 btrfs_clear_opt(info->mount_opt, NODATASUM); 516 no_compress = 0; 517 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 518 compress_type = "lzo"; 519 info->compress_type = BTRFS_COMPRESS_LZO; 520 btrfs_set_opt(info->mount_opt, COMPRESS); 521 btrfs_clear_opt(info->mount_opt, NODATACOW); 522 btrfs_clear_opt(info->mount_opt, NODATASUM); 523 btrfs_set_fs_incompat(info, COMPRESS_LZO); 524 no_compress = 0; 525 } else if (strcmp(args[0].from, "zstd") == 0) { 526 compress_type = "zstd"; 527 info->compress_type = BTRFS_COMPRESS_ZSTD; 528 btrfs_set_opt(info->mount_opt, COMPRESS); 529 btrfs_clear_opt(info->mount_opt, NODATACOW); 530 btrfs_clear_opt(info->mount_opt, NODATASUM); 531 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 532 no_compress = 0; 533 } else if (strncmp(args[0].from, "no", 2) == 0) { 534 compress_type = "no"; 535 btrfs_clear_opt(info->mount_opt, COMPRESS); 536 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 537 compress_force = false; 538 no_compress++; 539 } else { 540 ret = -EINVAL; 541 goto out; 542 } 543 544 if (compress_force) { 545 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 546 } else { 547 /* 548 * If we remount from compress-force=xxx to 549 * compress=xxx, we need clear FORCE_COMPRESS 550 * flag, otherwise, there is no way for users 551 * to disable forcible compression separately. 552 */ 553 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 554 } 555 if ((btrfs_test_opt(info, COMPRESS) && 556 (info->compress_type != saved_compress_type || 557 compress_force != saved_compress_force)) || 558 (!btrfs_test_opt(info, COMPRESS) && 559 no_compress == 1)) { 560 btrfs_info(info, "%s %s compression, level %d", 561 (compress_force) ? "force" : "use", 562 compress_type, info->compress_level); 563 } 564 compress_force = false; 565 break; 566 case Opt_ssd: 567 btrfs_set_and_info(info, SSD, 568 "enabling ssd optimizations"); 569 btrfs_clear_opt(info->mount_opt, NOSSD); 570 break; 571 case Opt_ssd_spread: 572 btrfs_set_and_info(info, SSD, 573 "enabling ssd optimizations"); 574 btrfs_set_and_info(info, SSD_SPREAD, 575 "using spread ssd allocation scheme"); 576 btrfs_clear_opt(info->mount_opt, NOSSD); 577 break; 578 case Opt_nossd: 579 btrfs_set_opt(info->mount_opt, NOSSD); 580 btrfs_clear_and_info(info, SSD, 581 "not using ssd optimizations"); 582 btrfs_clear_and_info(info, SSD_SPREAD, 583 "not using spread ssd allocation scheme"); 584 break; 585 case Opt_barrier: 586 btrfs_clear_and_info(info, NOBARRIER, 587 "turning on barriers"); 588 break; 589 case Opt_nobarrier: 590 btrfs_set_and_info(info, NOBARRIER, 591 "turning off barriers"); 592 break; 593 case Opt_thread_pool: 594 ret = match_int(&args[0], &intarg); 595 if (ret) { 596 goto out; 597 } else if (intarg > 0) { 598 info->thread_pool_size = intarg; 599 } else { 600 ret = -EINVAL; 601 goto out; 602 } 603 break; 604 case Opt_max_inline: 605 num = match_strdup(&args[0]); 606 if (num) { 607 info->max_inline = memparse(num, NULL); 608 kfree(num); 609 610 if (info->max_inline) { 611 info->max_inline = min_t(u64, 612 info->max_inline, 613 info->sectorsize); 614 } 615 btrfs_info(info, "max_inline at %llu", 616 info->max_inline); 617 } else { 618 ret = -ENOMEM; 619 goto out; 620 } 621 break; 622 case Opt_alloc_start: 623 btrfs_info(info, 624 "option alloc_start is obsolete, ignored"); 625 break; 626 case Opt_acl: 627 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 628 info->sb->s_flags |= MS_POSIXACL; 629 break; 630 #else 631 btrfs_err(info, "support for ACL not compiled in!"); 632 ret = -EINVAL; 633 goto out; 634 #endif 635 case Opt_noacl: 636 info->sb->s_flags &= ~MS_POSIXACL; 637 break; 638 case Opt_notreelog: 639 btrfs_set_and_info(info, NOTREELOG, 640 "disabling tree log"); 641 break; 642 case Opt_treelog: 643 btrfs_clear_and_info(info, NOTREELOG, 644 "enabling tree log"); 645 break; 646 case Opt_norecovery: 647 case Opt_nologreplay: 648 btrfs_set_and_info(info, NOLOGREPLAY, 649 "disabling log replay at mount time"); 650 break; 651 case Opt_flushoncommit: 652 btrfs_set_and_info(info, FLUSHONCOMMIT, 653 "turning on flush-on-commit"); 654 break; 655 case Opt_noflushoncommit: 656 btrfs_clear_and_info(info, FLUSHONCOMMIT, 657 "turning off flush-on-commit"); 658 break; 659 case Opt_ratio: 660 ret = match_int(&args[0], &intarg); 661 if (ret) { 662 goto out; 663 } else if (intarg >= 0) { 664 info->metadata_ratio = intarg; 665 btrfs_info(info, "metadata ratio %d", 666 info->metadata_ratio); 667 } else { 668 ret = -EINVAL; 669 goto out; 670 } 671 break; 672 case Opt_discard: 673 btrfs_set_and_info(info, DISCARD, 674 "turning on discard"); 675 break; 676 case Opt_nodiscard: 677 btrfs_clear_and_info(info, DISCARD, 678 "turning off discard"); 679 break; 680 case Opt_space_cache: 681 case Opt_space_cache_version: 682 if (token == Opt_space_cache || 683 strcmp(args[0].from, "v1") == 0) { 684 btrfs_clear_opt(info->mount_opt, 685 FREE_SPACE_TREE); 686 btrfs_set_and_info(info, SPACE_CACHE, 687 "enabling disk space caching"); 688 } else if (strcmp(args[0].from, "v2") == 0) { 689 btrfs_clear_opt(info->mount_opt, 690 SPACE_CACHE); 691 btrfs_set_and_info(info, FREE_SPACE_TREE, 692 "enabling free space tree"); 693 } else { 694 ret = -EINVAL; 695 goto out; 696 } 697 break; 698 case Opt_rescan_uuid_tree: 699 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 700 break; 701 case Opt_no_space_cache: 702 if (btrfs_test_opt(info, SPACE_CACHE)) { 703 btrfs_clear_and_info(info, SPACE_CACHE, 704 "disabling disk space caching"); 705 } 706 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 707 btrfs_clear_and_info(info, FREE_SPACE_TREE, 708 "disabling free space tree"); 709 } 710 break; 711 case Opt_inode_cache: 712 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 713 "enabling inode map caching"); 714 break; 715 case Opt_noinode_cache: 716 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 717 "disabling inode map caching"); 718 break; 719 case Opt_clear_cache: 720 btrfs_set_and_info(info, CLEAR_CACHE, 721 "force clearing of disk cache"); 722 break; 723 case Opt_user_subvol_rm_allowed: 724 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 725 break; 726 case Opt_enospc_debug: 727 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 728 break; 729 case Opt_noenospc_debug: 730 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 731 break; 732 case Opt_defrag: 733 btrfs_set_and_info(info, AUTO_DEFRAG, 734 "enabling auto defrag"); 735 break; 736 case Opt_nodefrag: 737 btrfs_clear_and_info(info, AUTO_DEFRAG, 738 "disabling auto defrag"); 739 break; 740 case Opt_recovery: 741 btrfs_warn(info, 742 "'recovery' is deprecated, use 'usebackuproot' instead"); 743 case Opt_usebackuproot: 744 btrfs_info(info, 745 "trying to use backup root at mount time"); 746 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 747 break; 748 case Opt_skip_balance: 749 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 750 break; 751 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 752 case Opt_check_integrity_including_extent_data: 753 btrfs_info(info, 754 "enabling check integrity including extent data"); 755 btrfs_set_opt(info->mount_opt, 756 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 757 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 758 break; 759 case Opt_check_integrity: 760 btrfs_info(info, "enabling check integrity"); 761 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 762 break; 763 case Opt_check_integrity_print_mask: 764 ret = match_int(&args[0], &intarg); 765 if (ret) { 766 goto out; 767 } else if (intarg >= 0) { 768 info->check_integrity_print_mask = intarg; 769 btrfs_info(info, 770 "check_integrity_print_mask 0x%x", 771 info->check_integrity_print_mask); 772 } else { 773 ret = -EINVAL; 774 goto out; 775 } 776 break; 777 #else 778 case Opt_check_integrity_including_extent_data: 779 case Opt_check_integrity: 780 case Opt_check_integrity_print_mask: 781 btrfs_err(info, 782 "support for check_integrity* not compiled in!"); 783 ret = -EINVAL; 784 goto out; 785 #endif 786 case Opt_fatal_errors: 787 if (strcmp(args[0].from, "panic") == 0) 788 btrfs_set_opt(info->mount_opt, 789 PANIC_ON_FATAL_ERROR); 790 else if (strcmp(args[0].from, "bug") == 0) 791 btrfs_clear_opt(info->mount_opt, 792 PANIC_ON_FATAL_ERROR); 793 else { 794 ret = -EINVAL; 795 goto out; 796 } 797 break; 798 case Opt_commit_interval: 799 intarg = 0; 800 ret = match_int(&args[0], &intarg); 801 if (ret < 0) { 802 btrfs_err(info, "invalid commit interval"); 803 ret = -EINVAL; 804 goto out; 805 } 806 if (intarg > 0) { 807 if (intarg > 300) { 808 btrfs_warn(info, 809 "excessive commit interval %d", 810 intarg); 811 } 812 info->commit_interval = intarg; 813 } else { 814 btrfs_info(info, 815 "using default commit interval %ds", 816 BTRFS_DEFAULT_COMMIT_INTERVAL); 817 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 818 } 819 break; 820 #ifdef CONFIG_BTRFS_DEBUG 821 case Opt_fragment_all: 822 btrfs_info(info, "fragmenting all space"); 823 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 824 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 825 break; 826 case Opt_fragment_metadata: 827 btrfs_info(info, "fragmenting metadata"); 828 btrfs_set_opt(info->mount_opt, 829 FRAGMENT_METADATA); 830 break; 831 case Opt_fragment_data: 832 btrfs_info(info, "fragmenting data"); 833 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 834 break; 835 #endif 836 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 837 case Opt_ref_verify: 838 btrfs_info(info, "doing ref verification"); 839 btrfs_set_opt(info->mount_opt, REF_VERIFY); 840 break; 841 #endif 842 case Opt_err: 843 btrfs_info(info, "unrecognized mount option '%s'", p); 844 ret = -EINVAL; 845 goto out; 846 default: 847 break; 848 } 849 } 850 check: 851 /* 852 * Extra check for current option against current flag 853 */ 854 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) { 855 btrfs_err(info, 856 "nologreplay must be used with ro mount option"); 857 ret = -EINVAL; 858 } 859 out: 860 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 861 !btrfs_test_opt(info, FREE_SPACE_TREE) && 862 !btrfs_test_opt(info, CLEAR_CACHE)) { 863 btrfs_err(info, "cannot disable free space tree"); 864 ret = -EINVAL; 865 866 } 867 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 868 btrfs_info(info, "disk space caching is enabled"); 869 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 870 btrfs_info(info, "using free space tree"); 871 kfree(orig); 872 return ret; 873 } 874 875 /* 876 * Parse mount options that are required early in the mount process. 877 * 878 * All other options will be parsed on much later in the mount process and 879 * only when we need to allocate a new super block. 880 */ 881 static int btrfs_parse_early_options(const char *options, fmode_t flags, 882 void *holder, char **subvol_name, u64 *subvol_objectid, 883 struct btrfs_fs_devices **fs_devices) 884 { 885 substring_t args[MAX_OPT_ARGS]; 886 char *device_name, *opts, *orig, *p; 887 char *num = NULL; 888 int error = 0; 889 890 if (!options) 891 return 0; 892 893 /* 894 * strsep changes the string, duplicate it because parse_options 895 * gets called twice 896 */ 897 opts = kstrdup(options, GFP_KERNEL); 898 if (!opts) 899 return -ENOMEM; 900 orig = opts; 901 902 while ((p = strsep(&opts, ",")) != NULL) { 903 int token; 904 if (!*p) 905 continue; 906 907 token = match_token(p, tokens, args); 908 switch (token) { 909 case Opt_subvol: 910 kfree(*subvol_name); 911 *subvol_name = match_strdup(&args[0]); 912 if (!*subvol_name) { 913 error = -ENOMEM; 914 goto out; 915 } 916 break; 917 case Opt_subvolid: 918 num = match_strdup(&args[0]); 919 if (num) { 920 *subvol_objectid = memparse(num, NULL); 921 kfree(num); 922 /* we want the original fs_tree */ 923 if (!*subvol_objectid) 924 *subvol_objectid = 925 BTRFS_FS_TREE_OBJECTID; 926 } else { 927 error = -EINVAL; 928 goto out; 929 } 930 break; 931 case Opt_subvolrootid: 932 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 933 break; 934 case Opt_device: 935 device_name = match_strdup(&args[0]); 936 if (!device_name) { 937 error = -ENOMEM; 938 goto out; 939 } 940 error = btrfs_scan_one_device(device_name, 941 flags, holder, fs_devices); 942 kfree(device_name); 943 if (error) 944 goto out; 945 break; 946 default: 947 break; 948 } 949 } 950 951 out: 952 kfree(orig); 953 return error; 954 } 955 956 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 957 u64 subvol_objectid) 958 { 959 struct btrfs_root *root = fs_info->tree_root; 960 struct btrfs_root *fs_root; 961 struct btrfs_root_ref *root_ref; 962 struct btrfs_inode_ref *inode_ref; 963 struct btrfs_key key; 964 struct btrfs_path *path = NULL; 965 char *name = NULL, *ptr; 966 u64 dirid; 967 int len; 968 int ret; 969 970 path = btrfs_alloc_path(); 971 if (!path) { 972 ret = -ENOMEM; 973 goto err; 974 } 975 path->leave_spinning = 1; 976 977 name = kmalloc(PATH_MAX, GFP_KERNEL); 978 if (!name) { 979 ret = -ENOMEM; 980 goto err; 981 } 982 ptr = name + PATH_MAX - 1; 983 ptr[0] = '\0'; 984 985 /* 986 * Walk up the subvolume trees in the tree of tree roots by root 987 * backrefs until we hit the top-level subvolume. 988 */ 989 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 990 key.objectid = subvol_objectid; 991 key.type = BTRFS_ROOT_BACKREF_KEY; 992 key.offset = (u64)-1; 993 994 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 995 if (ret < 0) { 996 goto err; 997 } else if (ret > 0) { 998 ret = btrfs_previous_item(root, path, subvol_objectid, 999 BTRFS_ROOT_BACKREF_KEY); 1000 if (ret < 0) { 1001 goto err; 1002 } else if (ret > 0) { 1003 ret = -ENOENT; 1004 goto err; 1005 } 1006 } 1007 1008 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1009 subvol_objectid = key.offset; 1010 1011 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1012 struct btrfs_root_ref); 1013 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1014 ptr -= len + 1; 1015 if (ptr < name) { 1016 ret = -ENAMETOOLONG; 1017 goto err; 1018 } 1019 read_extent_buffer(path->nodes[0], ptr + 1, 1020 (unsigned long)(root_ref + 1), len); 1021 ptr[0] = '/'; 1022 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1023 btrfs_release_path(path); 1024 1025 key.objectid = subvol_objectid; 1026 key.type = BTRFS_ROOT_ITEM_KEY; 1027 key.offset = (u64)-1; 1028 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1029 if (IS_ERR(fs_root)) { 1030 ret = PTR_ERR(fs_root); 1031 goto err; 1032 } 1033 1034 /* 1035 * Walk up the filesystem tree by inode refs until we hit the 1036 * root directory. 1037 */ 1038 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1039 key.objectid = dirid; 1040 key.type = BTRFS_INODE_REF_KEY; 1041 key.offset = (u64)-1; 1042 1043 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1044 if (ret < 0) { 1045 goto err; 1046 } else if (ret > 0) { 1047 ret = btrfs_previous_item(fs_root, path, dirid, 1048 BTRFS_INODE_REF_KEY); 1049 if (ret < 0) { 1050 goto err; 1051 } else if (ret > 0) { 1052 ret = -ENOENT; 1053 goto err; 1054 } 1055 } 1056 1057 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1058 dirid = key.offset; 1059 1060 inode_ref = btrfs_item_ptr(path->nodes[0], 1061 path->slots[0], 1062 struct btrfs_inode_ref); 1063 len = btrfs_inode_ref_name_len(path->nodes[0], 1064 inode_ref); 1065 ptr -= len + 1; 1066 if (ptr < name) { 1067 ret = -ENAMETOOLONG; 1068 goto err; 1069 } 1070 read_extent_buffer(path->nodes[0], ptr + 1, 1071 (unsigned long)(inode_ref + 1), len); 1072 ptr[0] = '/'; 1073 btrfs_release_path(path); 1074 } 1075 } 1076 1077 btrfs_free_path(path); 1078 if (ptr == name + PATH_MAX - 1) { 1079 name[0] = '/'; 1080 name[1] = '\0'; 1081 } else { 1082 memmove(name, ptr, name + PATH_MAX - ptr); 1083 } 1084 return name; 1085 1086 err: 1087 btrfs_free_path(path); 1088 kfree(name); 1089 return ERR_PTR(ret); 1090 } 1091 1092 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1093 { 1094 struct btrfs_root *root = fs_info->tree_root; 1095 struct btrfs_dir_item *di; 1096 struct btrfs_path *path; 1097 struct btrfs_key location; 1098 u64 dir_id; 1099 1100 path = btrfs_alloc_path(); 1101 if (!path) 1102 return -ENOMEM; 1103 path->leave_spinning = 1; 1104 1105 /* 1106 * Find the "default" dir item which points to the root item that we 1107 * will mount by default if we haven't been given a specific subvolume 1108 * to mount. 1109 */ 1110 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1111 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1112 if (IS_ERR(di)) { 1113 btrfs_free_path(path); 1114 return PTR_ERR(di); 1115 } 1116 if (!di) { 1117 /* 1118 * Ok the default dir item isn't there. This is weird since 1119 * it's always been there, but don't freak out, just try and 1120 * mount the top-level subvolume. 1121 */ 1122 btrfs_free_path(path); 1123 *objectid = BTRFS_FS_TREE_OBJECTID; 1124 return 0; 1125 } 1126 1127 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1128 btrfs_free_path(path); 1129 *objectid = location.objectid; 1130 return 0; 1131 } 1132 1133 static int btrfs_fill_super(struct super_block *sb, 1134 struct btrfs_fs_devices *fs_devices, 1135 void *data) 1136 { 1137 struct inode *inode; 1138 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1139 struct btrfs_key key; 1140 int err; 1141 1142 sb->s_maxbytes = MAX_LFS_FILESIZE; 1143 sb->s_magic = BTRFS_SUPER_MAGIC; 1144 sb->s_op = &btrfs_super_ops; 1145 sb->s_d_op = &btrfs_dentry_operations; 1146 sb->s_export_op = &btrfs_export_ops; 1147 sb->s_xattr = btrfs_xattr_handlers; 1148 sb->s_time_gran = 1; 1149 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1150 sb->s_flags |= MS_POSIXACL; 1151 #endif 1152 sb->s_flags |= SB_I_VERSION; 1153 sb->s_iflags |= SB_I_CGROUPWB; 1154 1155 err = super_setup_bdi(sb); 1156 if (err) { 1157 btrfs_err(fs_info, "super_setup_bdi failed"); 1158 return err; 1159 } 1160 1161 err = open_ctree(sb, fs_devices, (char *)data); 1162 if (err) { 1163 btrfs_err(fs_info, "open_ctree failed"); 1164 return err; 1165 } 1166 1167 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1168 key.type = BTRFS_INODE_ITEM_KEY; 1169 key.offset = 0; 1170 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1171 if (IS_ERR(inode)) { 1172 err = PTR_ERR(inode); 1173 goto fail_close; 1174 } 1175 1176 sb->s_root = d_make_root(inode); 1177 if (!sb->s_root) { 1178 err = -ENOMEM; 1179 goto fail_close; 1180 } 1181 1182 cleancache_init_fs(sb); 1183 sb->s_flags |= MS_ACTIVE; 1184 return 0; 1185 1186 fail_close: 1187 close_ctree(fs_info); 1188 return err; 1189 } 1190 1191 int btrfs_sync_fs(struct super_block *sb, int wait) 1192 { 1193 struct btrfs_trans_handle *trans; 1194 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1195 struct btrfs_root *root = fs_info->tree_root; 1196 1197 trace_btrfs_sync_fs(fs_info, wait); 1198 1199 if (!wait) { 1200 filemap_flush(fs_info->btree_inode->i_mapping); 1201 return 0; 1202 } 1203 1204 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1205 1206 trans = btrfs_attach_transaction_barrier(root); 1207 if (IS_ERR(trans)) { 1208 /* no transaction, don't bother */ 1209 if (PTR_ERR(trans) == -ENOENT) { 1210 /* 1211 * Exit unless we have some pending changes 1212 * that need to go through commit 1213 */ 1214 if (fs_info->pending_changes == 0) 1215 return 0; 1216 /* 1217 * A non-blocking test if the fs is frozen. We must not 1218 * start a new transaction here otherwise a deadlock 1219 * happens. The pending operations are delayed to the 1220 * next commit after thawing. 1221 */ 1222 if (sb_start_write_trylock(sb)) 1223 sb_end_write(sb); 1224 else 1225 return 0; 1226 trans = btrfs_start_transaction(root, 0); 1227 } 1228 if (IS_ERR(trans)) 1229 return PTR_ERR(trans); 1230 } 1231 return btrfs_commit_transaction(trans); 1232 } 1233 1234 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1235 { 1236 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1237 char *compress_type; 1238 1239 if (btrfs_test_opt(info, DEGRADED)) 1240 seq_puts(seq, ",degraded"); 1241 if (btrfs_test_opt(info, NODATASUM)) 1242 seq_puts(seq, ",nodatasum"); 1243 if (btrfs_test_opt(info, NODATACOW)) 1244 seq_puts(seq, ",nodatacow"); 1245 if (btrfs_test_opt(info, NOBARRIER)) 1246 seq_puts(seq, ",nobarrier"); 1247 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1248 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1249 if (info->thread_pool_size != min_t(unsigned long, 1250 num_online_cpus() + 2, 8)) 1251 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1252 if (btrfs_test_opt(info, COMPRESS)) { 1253 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1254 compress_type = "zlib"; 1255 else if (info->compress_type == BTRFS_COMPRESS_LZO) 1256 compress_type = "lzo"; 1257 else 1258 compress_type = "zstd"; 1259 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1260 seq_printf(seq, ",compress-force=%s", compress_type); 1261 else 1262 seq_printf(seq, ",compress=%s", compress_type); 1263 if (info->compress_level) 1264 seq_printf(seq, ":%d", info->compress_level); 1265 } 1266 if (btrfs_test_opt(info, NOSSD)) 1267 seq_puts(seq, ",nossd"); 1268 if (btrfs_test_opt(info, SSD_SPREAD)) 1269 seq_puts(seq, ",ssd_spread"); 1270 else if (btrfs_test_opt(info, SSD)) 1271 seq_puts(seq, ",ssd"); 1272 if (btrfs_test_opt(info, NOTREELOG)) 1273 seq_puts(seq, ",notreelog"); 1274 if (btrfs_test_opt(info, NOLOGREPLAY)) 1275 seq_puts(seq, ",nologreplay"); 1276 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1277 seq_puts(seq, ",flushoncommit"); 1278 if (btrfs_test_opt(info, DISCARD)) 1279 seq_puts(seq, ",discard"); 1280 if (!(info->sb->s_flags & MS_POSIXACL)) 1281 seq_puts(seq, ",noacl"); 1282 if (btrfs_test_opt(info, SPACE_CACHE)) 1283 seq_puts(seq, ",space_cache"); 1284 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1285 seq_puts(seq, ",space_cache=v2"); 1286 else 1287 seq_puts(seq, ",nospace_cache"); 1288 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1289 seq_puts(seq, ",rescan_uuid_tree"); 1290 if (btrfs_test_opt(info, CLEAR_CACHE)) 1291 seq_puts(seq, ",clear_cache"); 1292 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1293 seq_puts(seq, ",user_subvol_rm_allowed"); 1294 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1295 seq_puts(seq, ",enospc_debug"); 1296 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1297 seq_puts(seq, ",autodefrag"); 1298 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1299 seq_puts(seq, ",inode_cache"); 1300 if (btrfs_test_opt(info, SKIP_BALANCE)) 1301 seq_puts(seq, ",skip_balance"); 1302 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1303 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1304 seq_puts(seq, ",check_int_data"); 1305 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1306 seq_puts(seq, ",check_int"); 1307 if (info->check_integrity_print_mask) 1308 seq_printf(seq, ",check_int_print_mask=%d", 1309 info->check_integrity_print_mask); 1310 #endif 1311 if (info->metadata_ratio) 1312 seq_printf(seq, ",metadata_ratio=%d", 1313 info->metadata_ratio); 1314 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1315 seq_puts(seq, ",fatal_errors=panic"); 1316 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1317 seq_printf(seq, ",commit=%d", info->commit_interval); 1318 #ifdef CONFIG_BTRFS_DEBUG 1319 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1320 seq_puts(seq, ",fragment=data"); 1321 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1322 seq_puts(seq, ",fragment=metadata"); 1323 #endif 1324 if (btrfs_test_opt(info, REF_VERIFY)) 1325 seq_puts(seq, ",ref_verify"); 1326 seq_printf(seq, ",subvolid=%llu", 1327 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1328 seq_puts(seq, ",subvol="); 1329 seq_dentry(seq, dentry, " \t\n\\"); 1330 return 0; 1331 } 1332 1333 static int btrfs_test_super(struct super_block *s, void *data) 1334 { 1335 struct btrfs_fs_info *p = data; 1336 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1337 1338 return fs_info->fs_devices == p->fs_devices; 1339 } 1340 1341 static int btrfs_set_super(struct super_block *s, void *data) 1342 { 1343 int err = set_anon_super(s, data); 1344 if (!err) 1345 s->s_fs_info = data; 1346 return err; 1347 } 1348 1349 /* 1350 * subvolumes are identified by ino 256 1351 */ 1352 static inline int is_subvolume_inode(struct inode *inode) 1353 { 1354 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1355 return 1; 1356 return 0; 1357 } 1358 1359 /* 1360 * This will add subvolid=0 to the argument string while removing any subvol= 1361 * and subvolid= arguments to make sure we get the top-level root for path 1362 * walking to the subvol we want. 1363 */ 1364 static char *setup_root_args(char *args) 1365 { 1366 char *buf, *dst, *sep; 1367 1368 if (!args) 1369 return kstrdup("subvolid=0", GFP_KERNEL); 1370 1371 /* The worst case is that we add ",subvolid=0" to the end. */ 1372 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, 1373 GFP_KERNEL); 1374 if (!buf) 1375 return NULL; 1376 1377 while (1) { 1378 sep = strchrnul(args, ','); 1379 if (!strstarts(args, "subvol=") && 1380 !strstarts(args, "subvolid=")) { 1381 memcpy(dst, args, sep - args); 1382 dst += sep - args; 1383 *dst++ = ','; 1384 } 1385 if (*sep) 1386 args = sep + 1; 1387 else 1388 break; 1389 } 1390 strcpy(dst, "subvolid=0"); 1391 1392 return buf; 1393 } 1394 1395 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1396 int flags, const char *device_name, 1397 char *data) 1398 { 1399 struct dentry *root; 1400 struct vfsmount *mnt = NULL; 1401 char *newargs; 1402 int ret; 1403 1404 newargs = setup_root_args(data); 1405 if (!newargs) { 1406 root = ERR_PTR(-ENOMEM); 1407 goto out; 1408 } 1409 1410 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); 1411 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { 1412 if (flags & MS_RDONLY) { 1413 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, 1414 device_name, newargs); 1415 } else { 1416 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, 1417 device_name, newargs); 1418 if (IS_ERR(mnt)) { 1419 root = ERR_CAST(mnt); 1420 mnt = NULL; 1421 goto out; 1422 } 1423 1424 down_write(&mnt->mnt_sb->s_umount); 1425 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1426 up_write(&mnt->mnt_sb->s_umount); 1427 if (ret < 0) { 1428 root = ERR_PTR(ret); 1429 goto out; 1430 } 1431 } 1432 } 1433 if (IS_ERR(mnt)) { 1434 root = ERR_CAST(mnt); 1435 mnt = NULL; 1436 goto out; 1437 } 1438 1439 if (!subvol_name) { 1440 if (!subvol_objectid) { 1441 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1442 &subvol_objectid); 1443 if (ret) { 1444 root = ERR_PTR(ret); 1445 goto out; 1446 } 1447 } 1448 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1449 subvol_objectid); 1450 if (IS_ERR(subvol_name)) { 1451 root = ERR_CAST(subvol_name); 1452 subvol_name = NULL; 1453 goto out; 1454 } 1455 1456 } 1457 1458 root = mount_subtree(mnt, subvol_name); 1459 /* mount_subtree() drops our reference on the vfsmount. */ 1460 mnt = NULL; 1461 1462 if (!IS_ERR(root)) { 1463 struct super_block *s = root->d_sb; 1464 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1465 struct inode *root_inode = d_inode(root); 1466 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1467 1468 ret = 0; 1469 if (!is_subvolume_inode(root_inode)) { 1470 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1471 subvol_name); 1472 ret = -EINVAL; 1473 } 1474 if (subvol_objectid && root_objectid != subvol_objectid) { 1475 /* 1476 * This will also catch a race condition where a 1477 * subvolume which was passed by ID is renamed and 1478 * another subvolume is renamed over the old location. 1479 */ 1480 btrfs_err(fs_info, 1481 "subvol '%s' does not match subvolid %llu", 1482 subvol_name, subvol_objectid); 1483 ret = -EINVAL; 1484 } 1485 if (ret) { 1486 dput(root); 1487 root = ERR_PTR(ret); 1488 deactivate_locked_super(s); 1489 } 1490 } 1491 1492 out: 1493 mntput(mnt); 1494 kfree(newargs); 1495 kfree(subvol_name); 1496 return root; 1497 } 1498 1499 static int parse_security_options(char *orig_opts, 1500 struct security_mnt_opts *sec_opts) 1501 { 1502 char *secdata = NULL; 1503 int ret = 0; 1504 1505 secdata = alloc_secdata(); 1506 if (!secdata) 1507 return -ENOMEM; 1508 ret = security_sb_copy_data(orig_opts, secdata); 1509 if (ret) { 1510 free_secdata(secdata); 1511 return ret; 1512 } 1513 ret = security_sb_parse_opts_str(secdata, sec_opts); 1514 free_secdata(secdata); 1515 return ret; 1516 } 1517 1518 static int setup_security_options(struct btrfs_fs_info *fs_info, 1519 struct super_block *sb, 1520 struct security_mnt_opts *sec_opts) 1521 { 1522 int ret = 0; 1523 1524 /* 1525 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1526 * is valid. 1527 */ 1528 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1529 if (ret) 1530 return ret; 1531 1532 #ifdef CONFIG_SECURITY 1533 if (!fs_info->security_opts.num_mnt_opts) { 1534 /* first time security setup, copy sec_opts to fs_info */ 1535 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1536 } else { 1537 /* 1538 * Since SELinux (the only one supporting security_mnt_opts) 1539 * does NOT support changing context during remount/mount of 1540 * the same sb, this must be the same or part of the same 1541 * security options, just free it. 1542 */ 1543 security_free_mnt_opts(sec_opts); 1544 } 1545 #endif 1546 return ret; 1547 } 1548 1549 /* 1550 * Find a superblock for the given device / mount point. 1551 * 1552 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1553 * for multiple device setup. Make sure to keep it in sync. 1554 */ 1555 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1556 const char *device_name, void *data) 1557 { 1558 struct block_device *bdev = NULL; 1559 struct super_block *s; 1560 struct btrfs_fs_devices *fs_devices = NULL; 1561 struct btrfs_fs_info *fs_info = NULL; 1562 struct security_mnt_opts new_sec_opts; 1563 fmode_t mode = FMODE_READ; 1564 char *subvol_name = NULL; 1565 u64 subvol_objectid = 0; 1566 int error = 0; 1567 1568 if (!(flags & MS_RDONLY)) 1569 mode |= FMODE_WRITE; 1570 1571 error = btrfs_parse_early_options(data, mode, fs_type, 1572 &subvol_name, &subvol_objectid, 1573 &fs_devices); 1574 if (error) { 1575 kfree(subvol_name); 1576 return ERR_PTR(error); 1577 } 1578 1579 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1580 /* mount_subvol() will free subvol_name. */ 1581 return mount_subvol(subvol_name, subvol_objectid, flags, 1582 device_name, data); 1583 } 1584 1585 security_init_mnt_opts(&new_sec_opts); 1586 if (data) { 1587 error = parse_security_options(data, &new_sec_opts); 1588 if (error) 1589 return ERR_PTR(error); 1590 } 1591 1592 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1593 if (error) 1594 goto error_sec_opts; 1595 1596 /* 1597 * Setup a dummy root and fs_info for test/set super. This is because 1598 * we don't actually fill this stuff out until open_ctree, but we need 1599 * it for searching for existing supers, so this lets us do that and 1600 * then open_ctree will properly initialize everything later. 1601 */ 1602 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1603 if (!fs_info) { 1604 error = -ENOMEM; 1605 goto error_sec_opts; 1606 } 1607 1608 fs_info->fs_devices = fs_devices; 1609 1610 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1611 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1612 security_init_mnt_opts(&fs_info->security_opts); 1613 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1614 error = -ENOMEM; 1615 goto error_fs_info; 1616 } 1617 1618 error = btrfs_open_devices(fs_devices, mode, fs_type); 1619 if (error) 1620 goto error_fs_info; 1621 1622 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1623 error = -EACCES; 1624 goto error_close_devices; 1625 } 1626 1627 bdev = fs_devices->latest_bdev; 1628 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1629 fs_info); 1630 if (IS_ERR(s)) { 1631 error = PTR_ERR(s); 1632 goto error_close_devices; 1633 } 1634 1635 if (s->s_root) { 1636 btrfs_close_devices(fs_devices); 1637 free_fs_info(fs_info); 1638 if ((flags ^ s->s_flags) & MS_RDONLY) 1639 error = -EBUSY; 1640 } else { 1641 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1642 btrfs_sb(s)->bdev_holder = fs_type; 1643 error = btrfs_fill_super(s, fs_devices, data); 1644 } 1645 if (error) { 1646 deactivate_locked_super(s); 1647 goto error_sec_opts; 1648 } 1649 1650 fs_info = btrfs_sb(s); 1651 error = setup_security_options(fs_info, s, &new_sec_opts); 1652 if (error) { 1653 deactivate_locked_super(s); 1654 goto error_sec_opts; 1655 } 1656 1657 return dget(s->s_root); 1658 1659 error_close_devices: 1660 btrfs_close_devices(fs_devices); 1661 error_fs_info: 1662 free_fs_info(fs_info); 1663 error_sec_opts: 1664 security_free_mnt_opts(&new_sec_opts); 1665 return ERR_PTR(error); 1666 } 1667 1668 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1669 int new_pool_size, int old_pool_size) 1670 { 1671 if (new_pool_size == old_pool_size) 1672 return; 1673 1674 fs_info->thread_pool_size = new_pool_size; 1675 1676 btrfs_info(fs_info, "resize thread pool %d -> %d", 1677 old_pool_size, new_pool_size); 1678 1679 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1680 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1681 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1682 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1683 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1684 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1685 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1686 new_pool_size); 1687 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1688 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1689 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1690 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1691 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1692 new_pool_size); 1693 } 1694 1695 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1696 { 1697 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1698 } 1699 1700 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1701 unsigned long old_opts, int flags) 1702 { 1703 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1704 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1705 (flags & MS_RDONLY))) { 1706 /* wait for any defraggers to finish */ 1707 wait_event(fs_info->transaction_wait, 1708 (atomic_read(&fs_info->defrag_running) == 0)); 1709 if (flags & MS_RDONLY) 1710 sync_filesystem(fs_info->sb); 1711 } 1712 } 1713 1714 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1715 unsigned long old_opts) 1716 { 1717 /* 1718 * We need to cleanup all defragable inodes if the autodefragment is 1719 * close or the filesystem is read only. 1720 */ 1721 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1722 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1723 btrfs_cleanup_defrag_inodes(fs_info); 1724 } 1725 1726 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1727 } 1728 1729 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1730 { 1731 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1732 struct btrfs_root *root = fs_info->tree_root; 1733 unsigned old_flags = sb->s_flags; 1734 unsigned long old_opts = fs_info->mount_opt; 1735 unsigned long old_compress_type = fs_info->compress_type; 1736 u64 old_max_inline = fs_info->max_inline; 1737 int old_thread_pool_size = fs_info->thread_pool_size; 1738 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1739 int ret; 1740 1741 sync_filesystem(sb); 1742 btrfs_remount_prepare(fs_info); 1743 1744 if (data) { 1745 struct security_mnt_opts new_sec_opts; 1746 1747 security_init_mnt_opts(&new_sec_opts); 1748 ret = parse_security_options(data, &new_sec_opts); 1749 if (ret) 1750 goto restore; 1751 ret = setup_security_options(fs_info, sb, 1752 &new_sec_opts); 1753 if (ret) { 1754 security_free_mnt_opts(&new_sec_opts); 1755 goto restore; 1756 } 1757 } 1758 1759 ret = btrfs_parse_options(fs_info, data, *flags); 1760 if (ret) { 1761 ret = -EINVAL; 1762 goto restore; 1763 } 1764 1765 btrfs_remount_begin(fs_info, old_opts, *flags); 1766 btrfs_resize_thread_pool(fs_info, 1767 fs_info->thread_pool_size, old_thread_pool_size); 1768 1769 if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb)) 1770 goto out; 1771 1772 if (*flags & MS_RDONLY) { 1773 /* 1774 * this also happens on 'umount -rf' or on shutdown, when 1775 * the filesystem is busy. 1776 */ 1777 cancel_work_sync(&fs_info->async_reclaim_work); 1778 1779 /* wait for the uuid_scan task to finish */ 1780 down(&fs_info->uuid_tree_rescan_sem); 1781 /* avoid complains from lockdep et al. */ 1782 up(&fs_info->uuid_tree_rescan_sem); 1783 1784 sb->s_flags |= MS_RDONLY; 1785 1786 /* 1787 * Setting MS_RDONLY will put the cleaner thread to 1788 * sleep at the next loop if it's already active. 1789 * If it's already asleep, we'll leave unused block 1790 * groups on disk until we're mounted read-write again 1791 * unless we clean them up here. 1792 */ 1793 btrfs_delete_unused_bgs(fs_info); 1794 1795 btrfs_dev_replace_suspend_for_unmount(fs_info); 1796 btrfs_scrub_cancel(fs_info); 1797 btrfs_pause_balance(fs_info); 1798 1799 ret = btrfs_commit_super(fs_info); 1800 if (ret) 1801 goto restore; 1802 } else { 1803 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1804 btrfs_err(fs_info, 1805 "Remounting read-write after error is not allowed"); 1806 ret = -EINVAL; 1807 goto restore; 1808 } 1809 if (fs_info->fs_devices->rw_devices == 0) { 1810 ret = -EACCES; 1811 goto restore; 1812 } 1813 1814 if (!btrfs_check_rw_degradable(fs_info)) { 1815 btrfs_warn(fs_info, 1816 "too many missing devices, writeable remount is not allowed"); 1817 ret = -EACCES; 1818 goto restore; 1819 } 1820 1821 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1822 ret = -EINVAL; 1823 goto restore; 1824 } 1825 1826 ret = btrfs_cleanup_fs_roots(fs_info); 1827 if (ret) 1828 goto restore; 1829 1830 /* recover relocation */ 1831 mutex_lock(&fs_info->cleaner_mutex); 1832 ret = btrfs_recover_relocation(root); 1833 mutex_unlock(&fs_info->cleaner_mutex); 1834 if (ret) 1835 goto restore; 1836 1837 ret = btrfs_resume_balance_async(fs_info); 1838 if (ret) 1839 goto restore; 1840 1841 ret = btrfs_resume_dev_replace_async(fs_info); 1842 if (ret) { 1843 btrfs_warn(fs_info, "failed to resume dev_replace"); 1844 goto restore; 1845 } 1846 1847 btrfs_qgroup_rescan_resume(fs_info); 1848 1849 if (!fs_info->uuid_root) { 1850 btrfs_info(fs_info, "creating UUID tree"); 1851 ret = btrfs_create_uuid_tree(fs_info); 1852 if (ret) { 1853 btrfs_warn(fs_info, 1854 "failed to create the UUID tree %d", 1855 ret); 1856 goto restore; 1857 } 1858 } 1859 sb->s_flags &= ~MS_RDONLY; 1860 1861 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1862 } 1863 out: 1864 wake_up_process(fs_info->transaction_kthread); 1865 btrfs_remount_cleanup(fs_info, old_opts); 1866 return 0; 1867 1868 restore: 1869 /* We've hit an error - don't reset MS_RDONLY */ 1870 if (sb_rdonly(sb)) 1871 old_flags |= MS_RDONLY; 1872 sb->s_flags = old_flags; 1873 fs_info->mount_opt = old_opts; 1874 fs_info->compress_type = old_compress_type; 1875 fs_info->max_inline = old_max_inline; 1876 btrfs_resize_thread_pool(fs_info, 1877 old_thread_pool_size, fs_info->thread_pool_size); 1878 fs_info->metadata_ratio = old_metadata_ratio; 1879 btrfs_remount_cleanup(fs_info, old_opts); 1880 return ret; 1881 } 1882 1883 /* Used to sort the devices by max_avail(descending sort) */ 1884 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1885 const void *dev_info2) 1886 { 1887 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1888 ((struct btrfs_device_info *)dev_info2)->max_avail) 1889 return -1; 1890 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1891 ((struct btrfs_device_info *)dev_info2)->max_avail) 1892 return 1; 1893 else 1894 return 0; 1895 } 1896 1897 /* 1898 * sort the devices by max_avail, in which max free extent size of each device 1899 * is stored.(Descending Sort) 1900 */ 1901 static inline void btrfs_descending_sort_devices( 1902 struct btrfs_device_info *devices, 1903 size_t nr_devices) 1904 { 1905 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1906 btrfs_cmp_device_free_bytes, NULL); 1907 } 1908 1909 /* 1910 * The helper to calc the free space on the devices that can be used to store 1911 * file data. 1912 */ 1913 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1914 u64 *free_bytes) 1915 { 1916 struct btrfs_device_info *devices_info; 1917 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1918 struct btrfs_device *device; 1919 u64 skip_space; 1920 u64 type; 1921 u64 avail_space; 1922 u64 min_stripe_size; 1923 int min_stripes = 1, num_stripes = 1; 1924 int i = 0, nr_devices; 1925 1926 /* 1927 * We aren't under the device list lock, so this is racy-ish, but good 1928 * enough for our purposes. 1929 */ 1930 nr_devices = fs_info->fs_devices->open_devices; 1931 if (!nr_devices) { 1932 smp_mb(); 1933 nr_devices = fs_info->fs_devices->open_devices; 1934 ASSERT(nr_devices); 1935 if (!nr_devices) { 1936 *free_bytes = 0; 1937 return 0; 1938 } 1939 } 1940 1941 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1942 GFP_KERNEL); 1943 if (!devices_info) 1944 return -ENOMEM; 1945 1946 /* calc min stripe number for data space allocation */ 1947 type = btrfs_data_alloc_profile(fs_info); 1948 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1949 min_stripes = 2; 1950 num_stripes = nr_devices; 1951 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1952 min_stripes = 2; 1953 num_stripes = 2; 1954 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1955 min_stripes = 4; 1956 num_stripes = 4; 1957 } 1958 1959 if (type & BTRFS_BLOCK_GROUP_DUP) 1960 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1961 else 1962 min_stripe_size = BTRFS_STRIPE_LEN; 1963 1964 rcu_read_lock(); 1965 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1966 if (!device->in_fs_metadata || !device->bdev || 1967 device->is_tgtdev_for_dev_replace) 1968 continue; 1969 1970 if (i >= nr_devices) 1971 break; 1972 1973 avail_space = device->total_bytes - device->bytes_used; 1974 1975 /* align with stripe_len */ 1976 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1977 avail_space *= BTRFS_STRIPE_LEN; 1978 1979 /* 1980 * In order to avoid overwriting the superblock on the drive, 1981 * btrfs starts at an offset of at least 1MB when doing chunk 1982 * allocation. 1983 */ 1984 skip_space = SZ_1M; 1985 1986 /* 1987 * we can use the free space in [0, skip_space - 1], subtract 1988 * it from the total. 1989 */ 1990 if (avail_space && avail_space >= skip_space) 1991 avail_space -= skip_space; 1992 else 1993 avail_space = 0; 1994 1995 if (avail_space < min_stripe_size) 1996 continue; 1997 1998 devices_info[i].dev = device; 1999 devices_info[i].max_avail = avail_space; 2000 2001 i++; 2002 } 2003 rcu_read_unlock(); 2004 2005 nr_devices = i; 2006 2007 btrfs_descending_sort_devices(devices_info, nr_devices); 2008 2009 i = nr_devices - 1; 2010 avail_space = 0; 2011 while (nr_devices >= min_stripes) { 2012 if (num_stripes > nr_devices) 2013 num_stripes = nr_devices; 2014 2015 if (devices_info[i].max_avail >= min_stripe_size) { 2016 int j; 2017 u64 alloc_size; 2018 2019 avail_space += devices_info[i].max_avail * num_stripes; 2020 alloc_size = devices_info[i].max_avail; 2021 for (j = i + 1 - num_stripes; j <= i; j++) 2022 devices_info[j].max_avail -= alloc_size; 2023 } 2024 i--; 2025 nr_devices--; 2026 } 2027 2028 kfree(devices_info); 2029 *free_bytes = avail_space; 2030 return 0; 2031 } 2032 2033 /* 2034 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2035 * 2036 * If there's a redundant raid level at DATA block groups, use the respective 2037 * multiplier to scale the sizes. 2038 * 2039 * Unused device space usage is based on simulating the chunk allocator 2040 * algorithm that respects the device sizes and order of allocations. This is 2041 * a close approximation of the actual use but there are other factors that may 2042 * change the result (like a new metadata chunk). 2043 * 2044 * If metadata is exhausted, f_bavail will be 0. 2045 */ 2046 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2047 { 2048 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2049 struct btrfs_super_block *disk_super = fs_info->super_copy; 2050 struct list_head *head = &fs_info->space_info; 2051 struct btrfs_space_info *found; 2052 u64 total_used = 0; 2053 u64 total_free_data = 0; 2054 u64 total_free_meta = 0; 2055 int bits = dentry->d_sb->s_blocksize_bits; 2056 __be32 *fsid = (__be32 *)fs_info->fsid; 2057 unsigned factor = 1; 2058 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2059 int ret; 2060 u64 thresh = 0; 2061 int mixed = 0; 2062 2063 rcu_read_lock(); 2064 list_for_each_entry_rcu(found, head, list) { 2065 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2066 int i; 2067 2068 total_free_data += found->disk_total - found->disk_used; 2069 total_free_data -= 2070 btrfs_account_ro_block_groups_free_space(found); 2071 2072 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2073 if (!list_empty(&found->block_groups[i])) { 2074 switch (i) { 2075 case BTRFS_RAID_DUP: 2076 case BTRFS_RAID_RAID1: 2077 case BTRFS_RAID_RAID10: 2078 factor = 2; 2079 } 2080 } 2081 } 2082 } 2083 2084 /* 2085 * Metadata in mixed block goup profiles are accounted in data 2086 */ 2087 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2088 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2089 mixed = 1; 2090 else 2091 total_free_meta += found->disk_total - 2092 found->disk_used; 2093 } 2094 2095 total_used += found->disk_used; 2096 } 2097 2098 rcu_read_unlock(); 2099 2100 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2101 buf->f_blocks >>= bits; 2102 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2103 2104 /* Account global block reserve as used, it's in logical size already */ 2105 spin_lock(&block_rsv->lock); 2106 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2107 if (buf->f_bfree >= block_rsv->size >> bits) 2108 buf->f_bfree -= block_rsv->size >> bits; 2109 else 2110 buf->f_bfree = 0; 2111 spin_unlock(&block_rsv->lock); 2112 2113 buf->f_bavail = div_u64(total_free_data, factor); 2114 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2115 if (ret) 2116 return ret; 2117 buf->f_bavail += div_u64(total_free_data, factor); 2118 buf->f_bavail = buf->f_bavail >> bits; 2119 2120 /* 2121 * We calculate the remaining metadata space minus global reserve. If 2122 * this is (supposedly) smaller than zero, there's no space. But this 2123 * does not hold in practice, the exhausted state happens where's still 2124 * some positive delta. So we apply some guesswork and compare the 2125 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2126 * 2127 * We probably cannot calculate the exact threshold value because this 2128 * depends on the internal reservations requested by various 2129 * operations, so some operations that consume a few metadata will 2130 * succeed even if the Avail is zero. But this is better than the other 2131 * way around. 2132 */ 2133 thresh = SZ_4M; 2134 2135 if (!mixed && total_free_meta - thresh < block_rsv->size) 2136 buf->f_bavail = 0; 2137 2138 buf->f_type = BTRFS_SUPER_MAGIC; 2139 buf->f_bsize = dentry->d_sb->s_blocksize; 2140 buf->f_namelen = BTRFS_NAME_LEN; 2141 2142 /* We treat it as constant endianness (it doesn't matter _which_) 2143 because we want the fsid to come out the same whether mounted 2144 on a big-endian or little-endian host */ 2145 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2146 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2147 /* Mask in the root object ID too, to disambiguate subvols */ 2148 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2149 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2150 2151 return 0; 2152 } 2153 2154 static void btrfs_kill_super(struct super_block *sb) 2155 { 2156 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2157 kill_anon_super(sb); 2158 free_fs_info(fs_info); 2159 } 2160 2161 static struct file_system_type btrfs_fs_type = { 2162 .owner = THIS_MODULE, 2163 .name = "btrfs", 2164 .mount = btrfs_mount, 2165 .kill_sb = btrfs_kill_super, 2166 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2167 }; 2168 MODULE_ALIAS_FS("btrfs"); 2169 2170 static int btrfs_control_open(struct inode *inode, struct file *file) 2171 { 2172 /* 2173 * The control file's private_data is used to hold the 2174 * transaction when it is started and is used to keep 2175 * track of whether a transaction is already in progress. 2176 */ 2177 file->private_data = NULL; 2178 return 0; 2179 } 2180 2181 /* 2182 * used by btrfsctl to scan devices when no FS is mounted 2183 */ 2184 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2185 unsigned long arg) 2186 { 2187 struct btrfs_ioctl_vol_args *vol; 2188 struct btrfs_fs_devices *fs_devices; 2189 int ret = -ENOTTY; 2190 2191 if (!capable(CAP_SYS_ADMIN)) 2192 return -EPERM; 2193 2194 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2195 if (IS_ERR(vol)) 2196 return PTR_ERR(vol); 2197 2198 switch (cmd) { 2199 case BTRFS_IOC_SCAN_DEV: 2200 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2201 &btrfs_fs_type, &fs_devices); 2202 break; 2203 case BTRFS_IOC_DEVICES_READY: 2204 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2205 &btrfs_fs_type, &fs_devices); 2206 if (ret) 2207 break; 2208 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2209 break; 2210 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2211 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2212 break; 2213 } 2214 2215 kfree(vol); 2216 return ret; 2217 } 2218 2219 static int btrfs_freeze(struct super_block *sb) 2220 { 2221 struct btrfs_trans_handle *trans; 2222 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2223 struct btrfs_root *root = fs_info->tree_root; 2224 2225 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2226 /* 2227 * We don't need a barrier here, we'll wait for any transaction that 2228 * could be in progress on other threads (and do delayed iputs that 2229 * we want to avoid on a frozen filesystem), or do the commit 2230 * ourselves. 2231 */ 2232 trans = btrfs_attach_transaction_barrier(root); 2233 if (IS_ERR(trans)) { 2234 /* no transaction, don't bother */ 2235 if (PTR_ERR(trans) == -ENOENT) 2236 return 0; 2237 return PTR_ERR(trans); 2238 } 2239 return btrfs_commit_transaction(trans); 2240 } 2241 2242 static int btrfs_unfreeze(struct super_block *sb) 2243 { 2244 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2245 2246 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2247 return 0; 2248 } 2249 2250 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2251 { 2252 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2253 struct btrfs_fs_devices *cur_devices; 2254 struct btrfs_device *dev, *first_dev = NULL; 2255 struct list_head *head; 2256 struct rcu_string *name; 2257 2258 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2259 cur_devices = fs_info->fs_devices; 2260 while (cur_devices) { 2261 head = &cur_devices->devices; 2262 list_for_each_entry(dev, head, dev_list) { 2263 if (dev->missing) 2264 continue; 2265 if (!dev->name) 2266 continue; 2267 if (!first_dev || dev->devid < first_dev->devid) 2268 first_dev = dev; 2269 } 2270 cur_devices = cur_devices->seed; 2271 } 2272 2273 if (first_dev) { 2274 rcu_read_lock(); 2275 name = rcu_dereference(first_dev->name); 2276 seq_escape(m, name->str, " \t\n\\"); 2277 rcu_read_unlock(); 2278 } else { 2279 WARN_ON(1); 2280 } 2281 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2282 return 0; 2283 } 2284 2285 static const struct super_operations btrfs_super_ops = { 2286 .drop_inode = btrfs_drop_inode, 2287 .evict_inode = btrfs_evict_inode, 2288 .put_super = btrfs_put_super, 2289 .sync_fs = btrfs_sync_fs, 2290 .show_options = btrfs_show_options, 2291 .show_devname = btrfs_show_devname, 2292 .write_inode = btrfs_write_inode, 2293 .alloc_inode = btrfs_alloc_inode, 2294 .destroy_inode = btrfs_destroy_inode, 2295 .statfs = btrfs_statfs, 2296 .remount_fs = btrfs_remount, 2297 .freeze_fs = btrfs_freeze, 2298 .unfreeze_fs = btrfs_unfreeze, 2299 }; 2300 2301 static const struct file_operations btrfs_ctl_fops = { 2302 .open = btrfs_control_open, 2303 .unlocked_ioctl = btrfs_control_ioctl, 2304 .compat_ioctl = btrfs_control_ioctl, 2305 .owner = THIS_MODULE, 2306 .llseek = noop_llseek, 2307 }; 2308 2309 static struct miscdevice btrfs_misc = { 2310 .minor = BTRFS_MINOR, 2311 .name = "btrfs-control", 2312 .fops = &btrfs_ctl_fops 2313 }; 2314 2315 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2316 MODULE_ALIAS("devname:btrfs-control"); 2317 2318 static int btrfs_interface_init(void) 2319 { 2320 return misc_register(&btrfs_misc); 2321 } 2322 2323 static void btrfs_interface_exit(void) 2324 { 2325 misc_deregister(&btrfs_misc); 2326 } 2327 2328 static void btrfs_print_mod_info(void) 2329 { 2330 pr_info("Btrfs loaded, crc32c=%s" 2331 #ifdef CONFIG_BTRFS_DEBUG 2332 ", debug=on" 2333 #endif 2334 #ifdef CONFIG_BTRFS_ASSERT 2335 ", assert=on" 2336 #endif 2337 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2338 ", integrity-checker=on" 2339 #endif 2340 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2341 ", ref-verify=on" 2342 #endif 2343 "\n", 2344 btrfs_crc32c_impl()); 2345 } 2346 2347 static int __init init_btrfs_fs(void) 2348 { 2349 int err; 2350 2351 err = btrfs_hash_init(); 2352 if (err) 2353 return err; 2354 2355 btrfs_props_init(); 2356 2357 err = btrfs_init_sysfs(); 2358 if (err) 2359 goto free_hash; 2360 2361 btrfs_init_compress(); 2362 2363 err = btrfs_init_cachep(); 2364 if (err) 2365 goto free_compress; 2366 2367 err = extent_io_init(); 2368 if (err) 2369 goto free_cachep; 2370 2371 err = extent_map_init(); 2372 if (err) 2373 goto free_extent_io; 2374 2375 err = ordered_data_init(); 2376 if (err) 2377 goto free_extent_map; 2378 2379 err = btrfs_delayed_inode_init(); 2380 if (err) 2381 goto free_ordered_data; 2382 2383 err = btrfs_auto_defrag_init(); 2384 if (err) 2385 goto free_delayed_inode; 2386 2387 err = btrfs_delayed_ref_init(); 2388 if (err) 2389 goto free_auto_defrag; 2390 2391 err = btrfs_prelim_ref_init(); 2392 if (err) 2393 goto free_delayed_ref; 2394 2395 err = btrfs_end_io_wq_init(); 2396 if (err) 2397 goto free_prelim_ref; 2398 2399 err = btrfs_interface_init(); 2400 if (err) 2401 goto free_end_io_wq; 2402 2403 btrfs_init_lockdep(); 2404 2405 btrfs_print_mod_info(); 2406 2407 err = btrfs_run_sanity_tests(); 2408 if (err) 2409 goto unregister_ioctl; 2410 2411 err = register_filesystem(&btrfs_fs_type); 2412 if (err) 2413 goto unregister_ioctl; 2414 2415 return 0; 2416 2417 unregister_ioctl: 2418 btrfs_interface_exit(); 2419 free_end_io_wq: 2420 btrfs_end_io_wq_exit(); 2421 free_prelim_ref: 2422 btrfs_prelim_ref_exit(); 2423 free_delayed_ref: 2424 btrfs_delayed_ref_exit(); 2425 free_auto_defrag: 2426 btrfs_auto_defrag_exit(); 2427 free_delayed_inode: 2428 btrfs_delayed_inode_exit(); 2429 free_ordered_data: 2430 ordered_data_exit(); 2431 free_extent_map: 2432 extent_map_exit(); 2433 free_extent_io: 2434 extent_io_exit(); 2435 free_cachep: 2436 btrfs_destroy_cachep(); 2437 free_compress: 2438 btrfs_exit_compress(); 2439 btrfs_exit_sysfs(); 2440 free_hash: 2441 btrfs_hash_exit(); 2442 return err; 2443 } 2444 2445 static void __exit exit_btrfs_fs(void) 2446 { 2447 btrfs_destroy_cachep(); 2448 btrfs_delayed_ref_exit(); 2449 btrfs_auto_defrag_exit(); 2450 btrfs_delayed_inode_exit(); 2451 btrfs_prelim_ref_exit(); 2452 ordered_data_exit(); 2453 extent_map_exit(); 2454 extent_io_exit(); 2455 btrfs_interface_exit(); 2456 btrfs_end_io_wq_exit(); 2457 unregister_filesystem(&btrfs_fs_type); 2458 btrfs_exit_sysfs(); 2459 btrfs_cleanup_fs_uuids(); 2460 btrfs_exit_compress(); 2461 btrfs_hash_exit(); 2462 } 2463 2464 late_initcall(init_btrfs_fs); 2465 module_exit(exit_btrfs_fs) 2466 2467 MODULE_LICENSE("GPL"); 2468