xref: /openbmc/linux/fs/btrfs/super.c (revision 6724ed7f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #include "backref.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/btrfs.h>
67 
68 static const struct super_operations btrfs_super_ops;
69 static struct file_system_type btrfs_fs_type;
70 
71 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
72 
73 const char *btrfs_decode_error(int errno)
74 {
75 	char *errstr = "unknown";
76 
77 	switch (errno) {
78 	case -EIO:
79 		errstr = "IO failure";
80 		break;
81 	case -ENOMEM:
82 		errstr = "Out of memory";
83 		break;
84 	case -EROFS:
85 		errstr = "Readonly filesystem";
86 		break;
87 	case -EEXIST:
88 		errstr = "Object already exists";
89 		break;
90 	case -ENOSPC:
91 		errstr = "No space left";
92 		break;
93 	case -ENOENT:
94 		errstr = "No such entry";
95 		break;
96 	}
97 
98 	return errstr;
99 }
100 
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103 {
104 	struct super_block *sb = fs_info->sb;
105 
106 	if (sb_rdonly(sb))
107 		return;
108 
109 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
110 		sb->s_flags |= SB_RDONLY;
111 		btrfs_info(fs_info, "forced readonly");
112 		/*
113 		 * Note that a running device replace operation is not
114 		 * canceled here although there is no way to update
115 		 * the progress. It would add the risk of a deadlock,
116 		 * therefore the canceling is omitted. The only penalty
117 		 * is that some I/O remains active until the procedure
118 		 * completes. The next time when the filesystem is
119 		 * mounted writeable again, the device replace
120 		 * operation continues.
121 		 */
122 	}
123 }
124 
125 /*
126  * __btrfs_handle_fs_error decodes expected errors from the caller and
127  * invokes the approciate error response.
128  */
129 __cold
130 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
131 		       unsigned int line, int errno, const char *fmt, ...)
132 {
133 	struct super_block *sb = fs_info->sb;
134 #ifdef CONFIG_PRINTK
135 	const char *errstr;
136 #endif
137 
138 	/*
139 	 * Special case: if the error is EROFS, and we're already
140 	 * under SB_RDONLY, then it is safe here.
141 	 */
142 	if (errno == -EROFS && sb_rdonly(sb))
143   		return;
144 
145 #ifdef CONFIG_PRINTK
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 			sb->s_id, function, line, errno, errstr, &vaf);
157 		va_end(args);
158 	} else {
159 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
160 			sb->s_id, function, line, errno, errstr);
161 	}
162 #endif
163 
164 	/*
165 	 * Today we only save the error info to memory.  Long term we'll
166 	 * also send it down to the disk
167 	 */
168 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
169 
170 	/* Don't go through full error handling during mount */
171 	if (sb->s_flags & SB_BORN)
172 		btrfs_handle_error(fs_info);
173 }
174 
175 #ifdef CONFIG_PRINTK
176 static const char * const logtypes[] = {
177 	"emergency",
178 	"alert",
179 	"critical",
180 	"error",
181 	"warning",
182 	"notice",
183 	"info",
184 	"debug",
185 };
186 
187 
188 /*
189  * Use one ratelimit state per log level so that a flood of less important
190  * messages doesn't cause more important ones to be dropped.
191  */
192 static struct ratelimit_state printk_limits[] = {
193 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
200 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
201 };
202 
203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
204 {
205 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
206 	struct va_format vaf;
207 	va_list args;
208 	int kern_level;
209 	const char *type = logtypes[4];
210 	struct ratelimit_state *ratelimit = &printk_limits[4];
211 
212 	va_start(args, fmt);
213 
214 	while ((kern_level = printk_get_level(fmt)) != 0) {
215 		size_t size = printk_skip_level(fmt) - fmt;
216 
217 		if (kern_level >= '0' && kern_level <= '7') {
218 			memcpy(lvl, fmt,  size);
219 			lvl[size] = '\0';
220 			type = logtypes[kern_level - '0'];
221 			ratelimit = &printk_limits[kern_level - '0'];
222 		}
223 		fmt += size;
224 	}
225 
226 	vaf.fmt = fmt;
227 	vaf.va = &args;
228 
229 	if (__ratelimit(ratelimit))
230 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
231 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
232 
233 	va_end(args);
234 }
235 #endif
236 
237 /*
238  * We only mark the transaction aborted and then set the file system read-only.
239  * This will prevent new transactions from starting or trying to join this
240  * one.
241  *
242  * This means that error recovery at the call site is limited to freeing
243  * any local memory allocations and passing the error code up without
244  * further cleanup. The transaction should complete as it normally would
245  * in the call path but will return -EIO.
246  *
247  * We'll complete the cleanup in btrfs_end_transaction and
248  * btrfs_commit_transaction.
249  */
250 __cold
251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
252 			       const char *function,
253 			       unsigned int line, int errno)
254 {
255 	struct btrfs_fs_info *fs_info = trans->fs_info;
256 
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno);
264 		btrfs_warn(fs_info,
265 		           "%s:%d: Aborting unused transaction(%s).",
266 		           function, line, errstr);
267 		return;
268 	}
269 	WRITE_ONCE(trans->transaction->aborted, errno);
270 	/* Wake up anybody who may be waiting on this transaction */
271 	wake_up(&fs_info->transaction_wait);
272 	wake_up(&fs_info->transaction_blocked_wait);
273 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 __cold
280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
281 		   unsigned int line, int errno, const char *fmt, ...)
282 {
283 	char *s_id = "<unknown>";
284 	const char *errstr;
285 	struct va_format vaf = { .fmt = fmt };
286 	va_list args;
287 
288 	if (fs_info)
289 		s_id = fs_info->sb->s_id;
290 
291 	va_start(args, fmt);
292 	vaf.va = &args;
293 
294 	errstr = btrfs_decode_error(errno);
295 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
296 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
297 			s_id, function, line, &vaf, errno, errstr);
298 
299 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
300 		   function, line, &vaf, errno, errstr);
301 	va_end(args);
302 	/* Caller calls BUG() */
303 }
304 
305 static void btrfs_put_super(struct super_block *sb)
306 {
307 	close_ctree(btrfs_sb(sb));
308 }
309 
310 enum {
311 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
312 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
313 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
314 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
315 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
316 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
317 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
318 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
319 	Opt_skip_balance, Opt_check_integrity,
320 	Opt_check_integrity_including_extent_data,
321 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
322 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
323 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
324 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
325 	Opt_nologreplay, Opt_norecovery,
326 #ifdef CONFIG_BTRFS_DEBUG
327 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
328 #endif
329 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
330 	Opt_ref_verify,
331 #endif
332 	Opt_err,
333 };
334 
335 static const match_table_t tokens = {
336 	{Opt_degraded, "degraded"},
337 	{Opt_subvol, "subvol=%s"},
338 	{Opt_subvolid, "subvolid=%s"},
339 	{Opt_device, "device=%s"},
340 	{Opt_nodatasum, "nodatasum"},
341 	{Opt_datasum, "datasum"},
342 	{Opt_nodatacow, "nodatacow"},
343 	{Opt_datacow, "datacow"},
344 	{Opt_nobarrier, "nobarrier"},
345 	{Opt_barrier, "barrier"},
346 	{Opt_max_inline, "max_inline=%s"},
347 	{Opt_alloc_start, "alloc_start=%s"},
348 	{Opt_thread_pool, "thread_pool=%d"},
349 	{Opt_compress, "compress"},
350 	{Opt_compress_type, "compress=%s"},
351 	{Opt_compress_force, "compress-force"},
352 	{Opt_compress_force_type, "compress-force=%s"},
353 	{Opt_ssd, "ssd"},
354 	{Opt_ssd_spread, "ssd_spread"},
355 	{Opt_nossd, "nossd"},
356 	{Opt_acl, "acl"},
357 	{Opt_noacl, "noacl"},
358 	{Opt_notreelog, "notreelog"},
359 	{Opt_treelog, "treelog"},
360 	{Opt_nologreplay, "nologreplay"},
361 	{Opt_norecovery, "norecovery"},
362 	{Opt_flushoncommit, "flushoncommit"},
363 	{Opt_noflushoncommit, "noflushoncommit"},
364 	{Opt_ratio, "metadata_ratio=%d"},
365 	{Opt_discard, "discard"},
366 	{Opt_nodiscard, "nodiscard"},
367 	{Opt_space_cache, "space_cache"},
368 	{Opt_space_cache_version, "space_cache=%s"},
369 	{Opt_clear_cache, "clear_cache"},
370 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
371 	{Opt_enospc_debug, "enospc_debug"},
372 	{Opt_noenospc_debug, "noenospc_debug"},
373 	{Opt_subvolrootid, "subvolrootid=%d"},
374 	{Opt_defrag, "autodefrag"},
375 	{Opt_nodefrag, "noautodefrag"},
376 	{Opt_inode_cache, "inode_cache"},
377 	{Opt_noinode_cache, "noinode_cache"},
378 	{Opt_no_space_cache, "nospace_cache"},
379 	{Opt_recovery, "recovery"}, /* deprecated */
380 	{Opt_usebackuproot, "usebackuproot"},
381 	{Opt_skip_balance, "skip_balance"},
382 	{Opt_check_integrity, "check_int"},
383 	{Opt_check_integrity_including_extent_data, "check_int_data"},
384 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
385 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
386 	{Opt_fatal_errors, "fatal_errors=%s"},
387 	{Opt_commit_interval, "commit=%d"},
388 #ifdef CONFIG_BTRFS_DEBUG
389 	{Opt_fragment_data, "fragment=data"},
390 	{Opt_fragment_metadata, "fragment=metadata"},
391 	{Opt_fragment_all, "fragment=all"},
392 #endif
393 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
394 	{Opt_ref_verify, "ref_verify"},
395 #endif
396 	{Opt_err, NULL},
397 };
398 
399 /*
400  * Regular mount options parser.  Everything that is needed only when
401  * reading in a new superblock is parsed here.
402  * XXX JDM: This needs to be cleaned up for remount.
403  */
404 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
405 			unsigned long new_flags)
406 {
407 	substring_t args[MAX_OPT_ARGS];
408 	char *p, *num, *orig = NULL;
409 	u64 cache_gen;
410 	int intarg;
411 	int ret = 0;
412 	char *compress_type;
413 	bool compress_force = false;
414 	enum btrfs_compression_type saved_compress_type;
415 	bool saved_compress_force;
416 	int no_compress = 0;
417 
418 	cache_gen = btrfs_super_cache_generation(info->super_copy);
419 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
420 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
421 	else if (cache_gen)
422 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
423 
424 	/*
425 	 * Even the options are empty, we still need to do extra check
426 	 * against new flags
427 	 */
428 	if (!options)
429 		goto check;
430 
431 	/*
432 	 * strsep changes the string, duplicate it because parse_options
433 	 * gets called twice
434 	 */
435 	options = kstrdup(options, GFP_KERNEL);
436 	if (!options)
437 		return -ENOMEM;
438 
439 	orig = options;
440 
441 	while ((p = strsep(&options, ",")) != NULL) {
442 		int token;
443 		if (!*p)
444 			continue;
445 
446 		token = match_token(p, tokens, args);
447 		switch (token) {
448 		case Opt_degraded:
449 			btrfs_info(info, "allowing degraded mounts");
450 			btrfs_set_opt(info->mount_opt, DEGRADED);
451 			break;
452 		case Opt_subvol:
453 		case Opt_subvolid:
454 		case Opt_subvolrootid:
455 		case Opt_device:
456 			/*
457 			 * These are parsed by btrfs_parse_early_options
458 			 * and can be happily ignored here.
459 			 */
460 			break;
461 		case Opt_nodatasum:
462 			btrfs_set_and_info(info, NODATASUM,
463 					   "setting nodatasum");
464 			break;
465 		case Opt_datasum:
466 			if (btrfs_test_opt(info, NODATASUM)) {
467 				if (btrfs_test_opt(info, NODATACOW))
468 					btrfs_info(info,
469 						   "setting datasum, datacow enabled");
470 				else
471 					btrfs_info(info, "setting datasum");
472 			}
473 			btrfs_clear_opt(info->mount_opt, NODATACOW);
474 			btrfs_clear_opt(info->mount_opt, NODATASUM);
475 			break;
476 		case Opt_nodatacow:
477 			if (!btrfs_test_opt(info, NODATACOW)) {
478 				if (!btrfs_test_opt(info, COMPRESS) ||
479 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
480 					btrfs_info(info,
481 						   "setting nodatacow, compression disabled");
482 				} else {
483 					btrfs_info(info, "setting nodatacow");
484 				}
485 			}
486 			btrfs_clear_opt(info->mount_opt, COMPRESS);
487 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
488 			btrfs_set_opt(info->mount_opt, NODATACOW);
489 			btrfs_set_opt(info->mount_opt, NODATASUM);
490 			break;
491 		case Opt_datacow:
492 			btrfs_clear_and_info(info, NODATACOW,
493 					     "setting datacow");
494 			break;
495 		case Opt_compress_force:
496 		case Opt_compress_force_type:
497 			compress_force = true;
498 			/* Fallthrough */
499 		case Opt_compress:
500 		case Opt_compress_type:
501 			saved_compress_type = btrfs_test_opt(info,
502 							     COMPRESS) ?
503 				info->compress_type : BTRFS_COMPRESS_NONE;
504 			saved_compress_force =
505 				btrfs_test_opt(info, FORCE_COMPRESS);
506 			if (token == Opt_compress ||
507 			    token == Opt_compress_force ||
508 			    strncmp(args[0].from, "zlib", 4) == 0) {
509 				compress_type = "zlib";
510 
511 				info->compress_type = BTRFS_COMPRESS_ZLIB;
512 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
513 				/*
514 				 * args[0] contains uninitialized data since
515 				 * for these tokens we don't expect any
516 				 * parameter.
517 				 */
518 				if (token != Opt_compress &&
519 				    token != Opt_compress_force)
520 					info->compress_level =
521 					  btrfs_compress_str2level(args[0].from);
522 				btrfs_set_opt(info->mount_opt, COMPRESS);
523 				btrfs_clear_opt(info->mount_opt, NODATACOW);
524 				btrfs_clear_opt(info->mount_opt, NODATASUM);
525 				no_compress = 0;
526 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
527 				compress_type = "lzo";
528 				info->compress_type = BTRFS_COMPRESS_LZO;
529 				btrfs_set_opt(info->mount_opt, COMPRESS);
530 				btrfs_clear_opt(info->mount_opt, NODATACOW);
531 				btrfs_clear_opt(info->mount_opt, NODATASUM);
532 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
533 				no_compress = 0;
534 			} else if (strcmp(args[0].from, "zstd") == 0) {
535 				compress_type = "zstd";
536 				info->compress_type = BTRFS_COMPRESS_ZSTD;
537 				btrfs_set_opt(info->mount_opt, COMPRESS);
538 				btrfs_clear_opt(info->mount_opt, NODATACOW);
539 				btrfs_clear_opt(info->mount_opt, NODATASUM);
540 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
541 				no_compress = 0;
542 			} else if (strncmp(args[0].from, "no", 2) == 0) {
543 				compress_type = "no";
544 				btrfs_clear_opt(info->mount_opt, COMPRESS);
545 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
546 				compress_force = false;
547 				no_compress++;
548 			} else {
549 				ret = -EINVAL;
550 				goto out;
551 			}
552 
553 			if (compress_force) {
554 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
555 			} else {
556 				/*
557 				 * If we remount from compress-force=xxx to
558 				 * compress=xxx, we need clear FORCE_COMPRESS
559 				 * flag, otherwise, there is no way for users
560 				 * to disable forcible compression separately.
561 				 */
562 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
563 			}
564 			if ((btrfs_test_opt(info, COMPRESS) &&
565 			     (info->compress_type != saved_compress_type ||
566 			      compress_force != saved_compress_force)) ||
567 			    (!btrfs_test_opt(info, COMPRESS) &&
568 			     no_compress == 1)) {
569 				btrfs_info(info, "%s %s compression, level %d",
570 					   (compress_force) ? "force" : "use",
571 					   compress_type, info->compress_level);
572 			}
573 			compress_force = false;
574 			break;
575 		case Opt_ssd:
576 			btrfs_set_and_info(info, SSD,
577 					   "enabling ssd optimizations");
578 			btrfs_clear_opt(info->mount_opt, NOSSD);
579 			break;
580 		case Opt_ssd_spread:
581 			btrfs_set_and_info(info, SSD,
582 					   "enabling ssd optimizations");
583 			btrfs_set_and_info(info, SSD_SPREAD,
584 					   "using spread ssd allocation scheme");
585 			btrfs_clear_opt(info->mount_opt, NOSSD);
586 			break;
587 		case Opt_nossd:
588 			btrfs_set_opt(info->mount_opt, NOSSD);
589 			btrfs_clear_and_info(info, SSD,
590 					     "not using ssd optimizations");
591 			btrfs_clear_and_info(info, SSD_SPREAD,
592 					     "not using spread ssd allocation scheme");
593 			break;
594 		case Opt_barrier:
595 			btrfs_clear_and_info(info, NOBARRIER,
596 					     "turning on barriers");
597 			break;
598 		case Opt_nobarrier:
599 			btrfs_set_and_info(info, NOBARRIER,
600 					   "turning off barriers");
601 			break;
602 		case Opt_thread_pool:
603 			ret = match_int(&args[0], &intarg);
604 			if (ret) {
605 				goto out;
606 			} else if (intarg > 0) {
607 				info->thread_pool_size = intarg;
608 			} else {
609 				ret = -EINVAL;
610 				goto out;
611 			}
612 			break;
613 		case Opt_max_inline:
614 			num = match_strdup(&args[0]);
615 			if (num) {
616 				info->max_inline = memparse(num, NULL);
617 				kfree(num);
618 
619 				if (info->max_inline) {
620 					info->max_inline = min_t(u64,
621 						info->max_inline,
622 						info->sectorsize);
623 				}
624 				btrfs_info(info, "max_inline at %llu",
625 					   info->max_inline);
626 			} else {
627 				ret = -ENOMEM;
628 				goto out;
629 			}
630 			break;
631 		case Opt_alloc_start:
632 			btrfs_info(info,
633 				"option alloc_start is obsolete, ignored");
634 			break;
635 		case Opt_acl:
636 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
637 			info->sb->s_flags |= SB_POSIXACL;
638 			break;
639 #else
640 			btrfs_err(info, "support for ACL not compiled in!");
641 			ret = -EINVAL;
642 			goto out;
643 #endif
644 		case Opt_noacl:
645 			info->sb->s_flags &= ~SB_POSIXACL;
646 			break;
647 		case Opt_notreelog:
648 			btrfs_set_and_info(info, NOTREELOG,
649 					   "disabling tree log");
650 			break;
651 		case Opt_treelog:
652 			btrfs_clear_and_info(info, NOTREELOG,
653 					     "enabling tree log");
654 			break;
655 		case Opt_norecovery:
656 		case Opt_nologreplay:
657 			btrfs_set_and_info(info, NOLOGREPLAY,
658 					   "disabling log replay at mount time");
659 			break;
660 		case Opt_flushoncommit:
661 			btrfs_set_and_info(info, FLUSHONCOMMIT,
662 					   "turning on flush-on-commit");
663 			break;
664 		case Opt_noflushoncommit:
665 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
666 					     "turning off flush-on-commit");
667 			break;
668 		case Opt_ratio:
669 			ret = match_int(&args[0], &intarg);
670 			if (ret) {
671 				goto out;
672 			} else if (intarg >= 0) {
673 				info->metadata_ratio = intarg;
674 				btrfs_info(info, "metadata ratio %d",
675 					   info->metadata_ratio);
676 			} else {
677 				ret = -EINVAL;
678 				goto out;
679 			}
680 			break;
681 		case Opt_discard:
682 			btrfs_set_and_info(info, DISCARD,
683 					   "turning on discard");
684 			break;
685 		case Opt_nodiscard:
686 			btrfs_clear_and_info(info, DISCARD,
687 					     "turning off discard");
688 			break;
689 		case Opt_space_cache:
690 		case Opt_space_cache_version:
691 			if (token == Opt_space_cache ||
692 			    strcmp(args[0].from, "v1") == 0) {
693 				btrfs_clear_opt(info->mount_opt,
694 						FREE_SPACE_TREE);
695 				btrfs_set_and_info(info, SPACE_CACHE,
696 					   "enabling disk space caching");
697 			} else if (strcmp(args[0].from, "v2") == 0) {
698 				btrfs_clear_opt(info->mount_opt,
699 						SPACE_CACHE);
700 				btrfs_set_and_info(info, FREE_SPACE_TREE,
701 						   "enabling free space tree");
702 			} else {
703 				ret = -EINVAL;
704 				goto out;
705 			}
706 			break;
707 		case Opt_rescan_uuid_tree:
708 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
709 			break;
710 		case Opt_no_space_cache:
711 			if (btrfs_test_opt(info, SPACE_CACHE)) {
712 				btrfs_clear_and_info(info, SPACE_CACHE,
713 					     "disabling disk space caching");
714 			}
715 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
716 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
717 					     "disabling free space tree");
718 			}
719 			break;
720 		case Opt_inode_cache:
721 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
722 					   "enabling inode map caching");
723 			break;
724 		case Opt_noinode_cache:
725 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
726 					     "disabling inode map caching");
727 			break;
728 		case Opt_clear_cache:
729 			btrfs_set_and_info(info, CLEAR_CACHE,
730 					   "force clearing of disk cache");
731 			break;
732 		case Opt_user_subvol_rm_allowed:
733 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
734 			break;
735 		case Opt_enospc_debug:
736 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
737 			break;
738 		case Opt_noenospc_debug:
739 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
740 			break;
741 		case Opt_defrag:
742 			btrfs_set_and_info(info, AUTO_DEFRAG,
743 					   "enabling auto defrag");
744 			break;
745 		case Opt_nodefrag:
746 			btrfs_clear_and_info(info, AUTO_DEFRAG,
747 					     "disabling auto defrag");
748 			break;
749 		case Opt_recovery:
750 			btrfs_warn(info,
751 				   "'recovery' is deprecated, use 'usebackuproot' instead");
752 		case Opt_usebackuproot:
753 			btrfs_info(info,
754 				   "trying to use backup root at mount time");
755 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
756 			break;
757 		case Opt_skip_balance:
758 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
759 			break;
760 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
761 		case Opt_check_integrity_including_extent_data:
762 			btrfs_info(info,
763 				   "enabling check integrity including extent data");
764 			btrfs_set_opt(info->mount_opt,
765 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
766 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
767 			break;
768 		case Opt_check_integrity:
769 			btrfs_info(info, "enabling check integrity");
770 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
771 			break;
772 		case Opt_check_integrity_print_mask:
773 			ret = match_int(&args[0], &intarg);
774 			if (ret) {
775 				goto out;
776 			} else if (intarg >= 0) {
777 				info->check_integrity_print_mask = intarg;
778 				btrfs_info(info,
779 					   "check_integrity_print_mask 0x%x",
780 					   info->check_integrity_print_mask);
781 			} else {
782 				ret = -EINVAL;
783 				goto out;
784 			}
785 			break;
786 #else
787 		case Opt_check_integrity_including_extent_data:
788 		case Opt_check_integrity:
789 		case Opt_check_integrity_print_mask:
790 			btrfs_err(info,
791 				  "support for check_integrity* not compiled in!");
792 			ret = -EINVAL;
793 			goto out;
794 #endif
795 		case Opt_fatal_errors:
796 			if (strcmp(args[0].from, "panic") == 0)
797 				btrfs_set_opt(info->mount_opt,
798 					      PANIC_ON_FATAL_ERROR);
799 			else if (strcmp(args[0].from, "bug") == 0)
800 				btrfs_clear_opt(info->mount_opt,
801 					      PANIC_ON_FATAL_ERROR);
802 			else {
803 				ret = -EINVAL;
804 				goto out;
805 			}
806 			break;
807 		case Opt_commit_interval:
808 			intarg = 0;
809 			ret = match_int(&args[0], &intarg);
810 			if (ret < 0) {
811 				btrfs_err(info, "invalid commit interval");
812 				ret = -EINVAL;
813 				goto out;
814 			}
815 			if (intarg > 0) {
816 				if (intarg > 300) {
817 					btrfs_warn(info,
818 						"excessive commit interval %d",
819 						intarg);
820 				}
821 				info->commit_interval = intarg;
822 			} else {
823 				btrfs_info(info,
824 					   "using default commit interval %ds",
825 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
826 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
827 			}
828 			break;
829 #ifdef CONFIG_BTRFS_DEBUG
830 		case Opt_fragment_all:
831 			btrfs_info(info, "fragmenting all space");
832 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
833 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
834 			break;
835 		case Opt_fragment_metadata:
836 			btrfs_info(info, "fragmenting metadata");
837 			btrfs_set_opt(info->mount_opt,
838 				      FRAGMENT_METADATA);
839 			break;
840 		case Opt_fragment_data:
841 			btrfs_info(info, "fragmenting data");
842 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
843 			break;
844 #endif
845 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
846 		case Opt_ref_verify:
847 			btrfs_info(info, "doing ref verification");
848 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
849 			break;
850 #endif
851 		case Opt_err:
852 			btrfs_info(info, "unrecognized mount option '%s'", p);
853 			ret = -EINVAL;
854 			goto out;
855 		default:
856 			break;
857 		}
858 	}
859 check:
860 	/*
861 	 * Extra check for current option against current flag
862 	 */
863 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
864 		btrfs_err(info,
865 			  "nologreplay must be used with ro mount option");
866 		ret = -EINVAL;
867 	}
868 out:
869 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
870 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
871 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
872 		btrfs_err(info, "cannot disable free space tree");
873 		ret = -EINVAL;
874 
875 	}
876 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
877 		btrfs_info(info, "disk space caching is enabled");
878 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
879 		btrfs_info(info, "using free space tree");
880 	kfree(orig);
881 	return ret;
882 }
883 
884 /*
885  * Parse mount options that are required early in the mount process.
886  *
887  * All other options will be parsed on much later in the mount process and
888  * only when we need to allocate a new super block.
889  */
890 static int btrfs_parse_early_options(const char *options, fmode_t flags,
891 		void *holder, char **subvol_name, u64 *subvol_objectid,
892 		struct btrfs_fs_devices **fs_devices)
893 {
894 	substring_t args[MAX_OPT_ARGS];
895 	char *device_name, *opts, *orig, *p;
896 	char *num = NULL;
897 	int error = 0;
898 
899 	if (!options)
900 		return 0;
901 
902 	/*
903 	 * strsep changes the string, duplicate it because parse_options
904 	 * gets called twice
905 	 */
906 	opts = kstrdup(options, GFP_KERNEL);
907 	if (!opts)
908 		return -ENOMEM;
909 	orig = opts;
910 
911 	while ((p = strsep(&opts, ",")) != NULL) {
912 		int token;
913 		if (!*p)
914 			continue;
915 
916 		token = match_token(p, tokens, args);
917 		switch (token) {
918 		case Opt_subvol:
919 			kfree(*subvol_name);
920 			*subvol_name = match_strdup(&args[0]);
921 			if (!*subvol_name) {
922 				error = -ENOMEM;
923 				goto out;
924 			}
925 			break;
926 		case Opt_subvolid:
927 			num = match_strdup(&args[0]);
928 			if (num) {
929 				*subvol_objectid = memparse(num, NULL);
930 				kfree(num);
931 				/* we want the original fs_tree */
932 				if (!*subvol_objectid)
933 					*subvol_objectid =
934 						BTRFS_FS_TREE_OBJECTID;
935 			} else {
936 				error = -EINVAL;
937 				goto out;
938 			}
939 			break;
940 		case Opt_subvolrootid:
941 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
942 			break;
943 		case Opt_device:
944 			device_name = match_strdup(&args[0]);
945 			if (!device_name) {
946 				error = -ENOMEM;
947 				goto out;
948 			}
949 			error = btrfs_scan_one_device(device_name,
950 					flags, holder, fs_devices);
951 			kfree(device_name);
952 			if (error)
953 				goto out;
954 			break;
955 		default:
956 			break;
957 		}
958 	}
959 
960 out:
961 	kfree(orig);
962 	return error;
963 }
964 
965 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
966 					   u64 subvol_objectid)
967 {
968 	struct btrfs_root *root = fs_info->tree_root;
969 	struct btrfs_root *fs_root;
970 	struct btrfs_root_ref *root_ref;
971 	struct btrfs_inode_ref *inode_ref;
972 	struct btrfs_key key;
973 	struct btrfs_path *path = NULL;
974 	char *name = NULL, *ptr;
975 	u64 dirid;
976 	int len;
977 	int ret;
978 
979 	path = btrfs_alloc_path();
980 	if (!path) {
981 		ret = -ENOMEM;
982 		goto err;
983 	}
984 	path->leave_spinning = 1;
985 
986 	name = kmalloc(PATH_MAX, GFP_KERNEL);
987 	if (!name) {
988 		ret = -ENOMEM;
989 		goto err;
990 	}
991 	ptr = name + PATH_MAX - 1;
992 	ptr[0] = '\0';
993 
994 	/*
995 	 * Walk up the subvolume trees in the tree of tree roots by root
996 	 * backrefs until we hit the top-level subvolume.
997 	 */
998 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
999 		key.objectid = subvol_objectid;
1000 		key.type = BTRFS_ROOT_BACKREF_KEY;
1001 		key.offset = (u64)-1;
1002 
1003 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1004 		if (ret < 0) {
1005 			goto err;
1006 		} else if (ret > 0) {
1007 			ret = btrfs_previous_item(root, path, subvol_objectid,
1008 						  BTRFS_ROOT_BACKREF_KEY);
1009 			if (ret < 0) {
1010 				goto err;
1011 			} else if (ret > 0) {
1012 				ret = -ENOENT;
1013 				goto err;
1014 			}
1015 		}
1016 
1017 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1018 		subvol_objectid = key.offset;
1019 
1020 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1021 					  struct btrfs_root_ref);
1022 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1023 		ptr -= len + 1;
1024 		if (ptr < name) {
1025 			ret = -ENAMETOOLONG;
1026 			goto err;
1027 		}
1028 		read_extent_buffer(path->nodes[0], ptr + 1,
1029 				   (unsigned long)(root_ref + 1), len);
1030 		ptr[0] = '/';
1031 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1032 		btrfs_release_path(path);
1033 
1034 		key.objectid = subvol_objectid;
1035 		key.type = BTRFS_ROOT_ITEM_KEY;
1036 		key.offset = (u64)-1;
1037 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1038 		if (IS_ERR(fs_root)) {
1039 			ret = PTR_ERR(fs_root);
1040 			goto err;
1041 		}
1042 
1043 		/*
1044 		 * Walk up the filesystem tree by inode refs until we hit the
1045 		 * root directory.
1046 		 */
1047 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1048 			key.objectid = dirid;
1049 			key.type = BTRFS_INODE_REF_KEY;
1050 			key.offset = (u64)-1;
1051 
1052 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1053 			if (ret < 0) {
1054 				goto err;
1055 			} else if (ret > 0) {
1056 				ret = btrfs_previous_item(fs_root, path, dirid,
1057 							  BTRFS_INODE_REF_KEY);
1058 				if (ret < 0) {
1059 					goto err;
1060 				} else if (ret > 0) {
1061 					ret = -ENOENT;
1062 					goto err;
1063 				}
1064 			}
1065 
1066 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1067 			dirid = key.offset;
1068 
1069 			inode_ref = btrfs_item_ptr(path->nodes[0],
1070 						   path->slots[0],
1071 						   struct btrfs_inode_ref);
1072 			len = btrfs_inode_ref_name_len(path->nodes[0],
1073 						       inode_ref);
1074 			ptr -= len + 1;
1075 			if (ptr < name) {
1076 				ret = -ENAMETOOLONG;
1077 				goto err;
1078 			}
1079 			read_extent_buffer(path->nodes[0], ptr + 1,
1080 					   (unsigned long)(inode_ref + 1), len);
1081 			ptr[0] = '/';
1082 			btrfs_release_path(path);
1083 		}
1084 	}
1085 
1086 	btrfs_free_path(path);
1087 	if (ptr == name + PATH_MAX - 1) {
1088 		name[0] = '/';
1089 		name[1] = '\0';
1090 	} else {
1091 		memmove(name, ptr, name + PATH_MAX - ptr);
1092 	}
1093 	return name;
1094 
1095 err:
1096 	btrfs_free_path(path);
1097 	kfree(name);
1098 	return ERR_PTR(ret);
1099 }
1100 
1101 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1102 {
1103 	struct btrfs_root *root = fs_info->tree_root;
1104 	struct btrfs_dir_item *di;
1105 	struct btrfs_path *path;
1106 	struct btrfs_key location;
1107 	u64 dir_id;
1108 
1109 	path = btrfs_alloc_path();
1110 	if (!path)
1111 		return -ENOMEM;
1112 	path->leave_spinning = 1;
1113 
1114 	/*
1115 	 * Find the "default" dir item which points to the root item that we
1116 	 * will mount by default if we haven't been given a specific subvolume
1117 	 * to mount.
1118 	 */
1119 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1120 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1121 	if (IS_ERR(di)) {
1122 		btrfs_free_path(path);
1123 		return PTR_ERR(di);
1124 	}
1125 	if (!di) {
1126 		/*
1127 		 * Ok the default dir item isn't there.  This is weird since
1128 		 * it's always been there, but don't freak out, just try and
1129 		 * mount the top-level subvolume.
1130 		 */
1131 		btrfs_free_path(path);
1132 		*objectid = BTRFS_FS_TREE_OBJECTID;
1133 		return 0;
1134 	}
1135 
1136 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1137 	btrfs_free_path(path);
1138 	*objectid = location.objectid;
1139 	return 0;
1140 }
1141 
1142 static int btrfs_fill_super(struct super_block *sb,
1143 			    struct btrfs_fs_devices *fs_devices,
1144 			    void *data)
1145 {
1146 	struct inode *inode;
1147 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1148 	struct btrfs_key key;
1149 	int err;
1150 
1151 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1152 	sb->s_magic = BTRFS_SUPER_MAGIC;
1153 	sb->s_op = &btrfs_super_ops;
1154 	sb->s_d_op = &btrfs_dentry_operations;
1155 	sb->s_export_op = &btrfs_export_ops;
1156 	sb->s_xattr = btrfs_xattr_handlers;
1157 	sb->s_time_gran = 1;
1158 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1159 	sb->s_flags |= SB_POSIXACL;
1160 #endif
1161 	sb->s_flags |= SB_I_VERSION;
1162 	sb->s_iflags |= SB_I_CGROUPWB;
1163 
1164 	err = super_setup_bdi(sb);
1165 	if (err) {
1166 		btrfs_err(fs_info, "super_setup_bdi failed");
1167 		return err;
1168 	}
1169 
1170 	err = open_ctree(sb, fs_devices, (char *)data);
1171 	if (err) {
1172 		btrfs_err(fs_info, "open_ctree failed");
1173 		return err;
1174 	}
1175 
1176 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1177 	key.type = BTRFS_INODE_ITEM_KEY;
1178 	key.offset = 0;
1179 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1180 	if (IS_ERR(inode)) {
1181 		err = PTR_ERR(inode);
1182 		goto fail_close;
1183 	}
1184 
1185 	sb->s_root = d_make_root(inode);
1186 	if (!sb->s_root) {
1187 		err = -ENOMEM;
1188 		goto fail_close;
1189 	}
1190 
1191 	cleancache_init_fs(sb);
1192 	sb->s_flags |= SB_ACTIVE;
1193 	return 0;
1194 
1195 fail_close:
1196 	close_ctree(fs_info);
1197 	return err;
1198 }
1199 
1200 int btrfs_sync_fs(struct super_block *sb, int wait)
1201 {
1202 	struct btrfs_trans_handle *trans;
1203 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1204 	struct btrfs_root *root = fs_info->tree_root;
1205 
1206 	trace_btrfs_sync_fs(fs_info, wait);
1207 
1208 	if (!wait) {
1209 		filemap_flush(fs_info->btree_inode->i_mapping);
1210 		return 0;
1211 	}
1212 
1213 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1214 
1215 	trans = btrfs_attach_transaction_barrier(root);
1216 	if (IS_ERR(trans)) {
1217 		/* no transaction, don't bother */
1218 		if (PTR_ERR(trans) == -ENOENT) {
1219 			/*
1220 			 * Exit unless we have some pending changes
1221 			 * that need to go through commit
1222 			 */
1223 			if (fs_info->pending_changes == 0)
1224 				return 0;
1225 			/*
1226 			 * A non-blocking test if the fs is frozen. We must not
1227 			 * start a new transaction here otherwise a deadlock
1228 			 * happens. The pending operations are delayed to the
1229 			 * next commit after thawing.
1230 			 */
1231 			if (sb_start_write_trylock(sb))
1232 				sb_end_write(sb);
1233 			else
1234 				return 0;
1235 			trans = btrfs_start_transaction(root, 0);
1236 		}
1237 		if (IS_ERR(trans))
1238 			return PTR_ERR(trans);
1239 	}
1240 	return btrfs_commit_transaction(trans);
1241 }
1242 
1243 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1244 {
1245 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1246 	char *compress_type;
1247 
1248 	if (btrfs_test_opt(info, DEGRADED))
1249 		seq_puts(seq, ",degraded");
1250 	if (btrfs_test_opt(info, NODATASUM))
1251 		seq_puts(seq, ",nodatasum");
1252 	if (btrfs_test_opt(info, NODATACOW))
1253 		seq_puts(seq, ",nodatacow");
1254 	if (btrfs_test_opt(info, NOBARRIER))
1255 		seq_puts(seq, ",nobarrier");
1256 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1257 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1258 	if (info->thread_pool_size !=  min_t(unsigned long,
1259 					     num_online_cpus() + 2, 8))
1260 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1261 	if (btrfs_test_opt(info, COMPRESS)) {
1262 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1263 			compress_type = "zlib";
1264 		else if (info->compress_type == BTRFS_COMPRESS_LZO)
1265 			compress_type = "lzo";
1266 		else
1267 			compress_type = "zstd";
1268 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1269 			seq_printf(seq, ",compress-force=%s", compress_type);
1270 		else
1271 			seq_printf(seq, ",compress=%s", compress_type);
1272 		if (info->compress_level)
1273 			seq_printf(seq, ":%d", info->compress_level);
1274 	}
1275 	if (btrfs_test_opt(info, NOSSD))
1276 		seq_puts(seq, ",nossd");
1277 	if (btrfs_test_opt(info, SSD_SPREAD))
1278 		seq_puts(seq, ",ssd_spread");
1279 	else if (btrfs_test_opt(info, SSD))
1280 		seq_puts(seq, ",ssd");
1281 	if (btrfs_test_opt(info, NOTREELOG))
1282 		seq_puts(seq, ",notreelog");
1283 	if (btrfs_test_opt(info, NOLOGREPLAY))
1284 		seq_puts(seq, ",nologreplay");
1285 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1286 		seq_puts(seq, ",flushoncommit");
1287 	if (btrfs_test_opt(info, DISCARD))
1288 		seq_puts(seq, ",discard");
1289 	if (!(info->sb->s_flags & SB_POSIXACL))
1290 		seq_puts(seq, ",noacl");
1291 	if (btrfs_test_opt(info, SPACE_CACHE))
1292 		seq_puts(seq, ",space_cache");
1293 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1294 		seq_puts(seq, ",space_cache=v2");
1295 	else
1296 		seq_puts(seq, ",nospace_cache");
1297 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1298 		seq_puts(seq, ",rescan_uuid_tree");
1299 	if (btrfs_test_opt(info, CLEAR_CACHE))
1300 		seq_puts(seq, ",clear_cache");
1301 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1302 		seq_puts(seq, ",user_subvol_rm_allowed");
1303 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1304 		seq_puts(seq, ",enospc_debug");
1305 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1306 		seq_puts(seq, ",autodefrag");
1307 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1308 		seq_puts(seq, ",inode_cache");
1309 	if (btrfs_test_opt(info, SKIP_BALANCE))
1310 		seq_puts(seq, ",skip_balance");
1311 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1312 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1313 		seq_puts(seq, ",check_int_data");
1314 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1315 		seq_puts(seq, ",check_int");
1316 	if (info->check_integrity_print_mask)
1317 		seq_printf(seq, ",check_int_print_mask=%d",
1318 				info->check_integrity_print_mask);
1319 #endif
1320 	if (info->metadata_ratio)
1321 		seq_printf(seq, ",metadata_ratio=%d",
1322 				info->metadata_ratio);
1323 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1324 		seq_puts(seq, ",fatal_errors=panic");
1325 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1326 		seq_printf(seq, ",commit=%d", info->commit_interval);
1327 #ifdef CONFIG_BTRFS_DEBUG
1328 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1329 		seq_puts(seq, ",fragment=data");
1330 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1331 		seq_puts(seq, ",fragment=metadata");
1332 #endif
1333 	if (btrfs_test_opt(info, REF_VERIFY))
1334 		seq_puts(seq, ",ref_verify");
1335 	seq_printf(seq, ",subvolid=%llu",
1336 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1337 	seq_puts(seq, ",subvol=");
1338 	seq_dentry(seq, dentry, " \t\n\\");
1339 	return 0;
1340 }
1341 
1342 static int btrfs_test_super(struct super_block *s, void *data)
1343 {
1344 	struct btrfs_fs_info *p = data;
1345 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1346 
1347 	return fs_info->fs_devices == p->fs_devices;
1348 }
1349 
1350 static int btrfs_set_super(struct super_block *s, void *data)
1351 {
1352 	int err = set_anon_super(s, data);
1353 	if (!err)
1354 		s->s_fs_info = data;
1355 	return err;
1356 }
1357 
1358 /*
1359  * subvolumes are identified by ino 256
1360  */
1361 static inline int is_subvolume_inode(struct inode *inode)
1362 {
1363 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1364 		return 1;
1365 	return 0;
1366 }
1367 
1368 /*
1369  * This will add subvolid=0 to the argument string while removing any subvol=
1370  * and subvolid= arguments to make sure we get the top-level root for path
1371  * walking to the subvol we want.
1372  */
1373 static char *setup_root_args(char *args)
1374 {
1375 	char *buf, *dst, *sep;
1376 
1377 	if (!args)
1378 		return kstrdup("subvolid=0", GFP_KERNEL);
1379 
1380 	/* The worst case is that we add ",subvolid=0" to the end. */
1381 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1,
1382 			GFP_KERNEL);
1383 	if (!buf)
1384 		return NULL;
1385 
1386 	while (1) {
1387 		sep = strchrnul(args, ',');
1388 		if (!strstarts(args, "subvol=") &&
1389 		    !strstarts(args, "subvolid=")) {
1390 			memcpy(dst, args, sep - args);
1391 			dst += sep - args;
1392 			*dst++ = ',';
1393 		}
1394 		if (*sep)
1395 			args = sep + 1;
1396 		else
1397 			break;
1398 	}
1399 	strcpy(dst, "subvolid=0");
1400 
1401 	return buf;
1402 }
1403 
1404 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1405 				   int flags, const char *device_name,
1406 				   char *data)
1407 {
1408 	struct dentry *root;
1409 	struct vfsmount *mnt = NULL;
1410 	char *newargs;
1411 	int ret;
1412 
1413 	newargs = setup_root_args(data);
1414 	if (!newargs) {
1415 		root = ERR_PTR(-ENOMEM);
1416 		goto out;
1417 	}
1418 
1419 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1420 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1421 		if (flags & SB_RDONLY) {
1422 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~SB_RDONLY,
1423 					     device_name, newargs);
1424 		} else {
1425 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | SB_RDONLY,
1426 					     device_name, newargs);
1427 			if (IS_ERR(mnt)) {
1428 				root = ERR_CAST(mnt);
1429 				mnt = NULL;
1430 				goto out;
1431 			}
1432 
1433 			down_write(&mnt->mnt_sb->s_umount);
1434 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1435 			up_write(&mnt->mnt_sb->s_umount);
1436 			if (ret < 0) {
1437 				root = ERR_PTR(ret);
1438 				goto out;
1439 			}
1440 		}
1441 	}
1442 	if (IS_ERR(mnt)) {
1443 		root = ERR_CAST(mnt);
1444 		mnt = NULL;
1445 		goto out;
1446 	}
1447 
1448 	if (!subvol_name) {
1449 		if (!subvol_objectid) {
1450 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1451 							  &subvol_objectid);
1452 			if (ret) {
1453 				root = ERR_PTR(ret);
1454 				goto out;
1455 			}
1456 		}
1457 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1458 							    subvol_objectid);
1459 		if (IS_ERR(subvol_name)) {
1460 			root = ERR_CAST(subvol_name);
1461 			subvol_name = NULL;
1462 			goto out;
1463 		}
1464 
1465 	}
1466 
1467 	root = mount_subtree(mnt, subvol_name);
1468 	/* mount_subtree() drops our reference on the vfsmount. */
1469 	mnt = NULL;
1470 
1471 	if (!IS_ERR(root)) {
1472 		struct super_block *s = root->d_sb;
1473 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1474 		struct inode *root_inode = d_inode(root);
1475 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1476 
1477 		ret = 0;
1478 		if (!is_subvolume_inode(root_inode)) {
1479 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1480 			       subvol_name);
1481 			ret = -EINVAL;
1482 		}
1483 		if (subvol_objectid && root_objectid != subvol_objectid) {
1484 			/*
1485 			 * This will also catch a race condition where a
1486 			 * subvolume which was passed by ID is renamed and
1487 			 * another subvolume is renamed over the old location.
1488 			 */
1489 			btrfs_err(fs_info,
1490 				  "subvol '%s' does not match subvolid %llu",
1491 				  subvol_name, subvol_objectid);
1492 			ret = -EINVAL;
1493 		}
1494 		if (ret) {
1495 			dput(root);
1496 			root = ERR_PTR(ret);
1497 			deactivate_locked_super(s);
1498 		}
1499 	}
1500 
1501 out:
1502 	mntput(mnt);
1503 	kfree(newargs);
1504 	kfree(subvol_name);
1505 	return root;
1506 }
1507 
1508 static int parse_security_options(char *orig_opts,
1509 				  struct security_mnt_opts *sec_opts)
1510 {
1511 	char *secdata = NULL;
1512 	int ret = 0;
1513 
1514 	secdata = alloc_secdata();
1515 	if (!secdata)
1516 		return -ENOMEM;
1517 	ret = security_sb_copy_data(orig_opts, secdata);
1518 	if (ret) {
1519 		free_secdata(secdata);
1520 		return ret;
1521 	}
1522 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1523 	free_secdata(secdata);
1524 	return ret;
1525 }
1526 
1527 static int setup_security_options(struct btrfs_fs_info *fs_info,
1528 				  struct super_block *sb,
1529 				  struct security_mnt_opts *sec_opts)
1530 {
1531 	int ret = 0;
1532 
1533 	/*
1534 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1535 	 * is valid.
1536 	 */
1537 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1538 	if (ret)
1539 		return ret;
1540 
1541 #ifdef CONFIG_SECURITY
1542 	if (!fs_info->security_opts.num_mnt_opts) {
1543 		/* first time security setup, copy sec_opts to fs_info */
1544 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1545 	} else {
1546 		/*
1547 		 * Since SELinux (the only one supporting security_mnt_opts)
1548 		 * does NOT support changing context during remount/mount of
1549 		 * the same sb, this must be the same or part of the same
1550 		 * security options, just free it.
1551 		 */
1552 		security_free_mnt_opts(sec_opts);
1553 	}
1554 #endif
1555 	return ret;
1556 }
1557 
1558 /*
1559  * Find a superblock for the given device / mount point.
1560  *
1561  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1562  *	  for multiple device setup.  Make sure to keep it in sync.
1563  */
1564 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1565 		const char *device_name, void *data)
1566 {
1567 	struct block_device *bdev = NULL;
1568 	struct super_block *s;
1569 	struct btrfs_fs_devices *fs_devices = NULL;
1570 	struct btrfs_fs_info *fs_info = NULL;
1571 	struct security_mnt_opts new_sec_opts;
1572 	fmode_t mode = FMODE_READ;
1573 	char *subvol_name = NULL;
1574 	u64 subvol_objectid = 0;
1575 	int error = 0;
1576 
1577 	if (!(flags & SB_RDONLY))
1578 		mode |= FMODE_WRITE;
1579 
1580 	error = btrfs_parse_early_options(data, mode, fs_type,
1581 					  &subvol_name, &subvol_objectid,
1582 					  &fs_devices);
1583 	if (error) {
1584 		kfree(subvol_name);
1585 		return ERR_PTR(error);
1586 	}
1587 
1588 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1589 		/* mount_subvol() will free subvol_name. */
1590 		return mount_subvol(subvol_name, subvol_objectid, flags,
1591 				    device_name, data);
1592 	}
1593 
1594 	security_init_mnt_opts(&new_sec_opts);
1595 	if (data) {
1596 		error = parse_security_options(data, &new_sec_opts);
1597 		if (error)
1598 			return ERR_PTR(error);
1599 	}
1600 
1601 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1602 	if (error)
1603 		goto error_sec_opts;
1604 
1605 	/*
1606 	 * Setup a dummy root and fs_info for test/set super.  This is because
1607 	 * we don't actually fill this stuff out until open_ctree, but we need
1608 	 * it for searching for existing supers, so this lets us do that and
1609 	 * then open_ctree will properly initialize everything later.
1610 	 */
1611 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1612 	if (!fs_info) {
1613 		error = -ENOMEM;
1614 		goto error_sec_opts;
1615 	}
1616 
1617 	fs_info->fs_devices = fs_devices;
1618 
1619 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1620 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1621 	security_init_mnt_opts(&fs_info->security_opts);
1622 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1623 		error = -ENOMEM;
1624 		goto error_fs_info;
1625 	}
1626 
1627 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1628 	if (error)
1629 		goto error_fs_info;
1630 
1631 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1632 		error = -EACCES;
1633 		goto error_close_devices;
1634 	}
1635 
1636 	bdev = fs_devices->latest_bdev;
1637 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1638 		 fs_info);
1639 	if (IS_ERR(s)) {
1640 		error = PTR_ERR(s);
1641 		goto error_close_devices;
1642 	}
1643 
1644 	if (s->s_root) {
1645 		btrfs_close_devices(fs_devices);
1646 		free_fs_info(fs_info);
1647 		if ((flags ^ s->s_flags) & SB_RDONLY)
1648 			error = -EBUSY;
1649 	} else {
1650 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1651 		btrfs_sb(s)->bdev_holder = fs_type;
1652 		error = btrfs_fill_super(s, fs_devices, data);
1653 	}
1654 	if (error) {
1655 		deactivate_locked_super(s);
1656 		goto error_sec_opts;
1657 	}
1658 
1659 	fs_info = btrfs_sb(s);
1660 	error = setup_security_options(fs_info, s, &new_sec_opts);
1661 	if (error) {
1662 		deactivate_locked_super(s);
1663 		goto error_sec_opts;
1664 	}
1665 
1666 	return dget(s->s_root);
1667 
1668 error_close_devices:
1669 	btrfs_close_devices(fs_devices);
1670 error_fs_info:
1671 	free_fs_info(fs_info);
1672 error_sec_opts:
1673 	security_free_mnt_opts(&new_sec_opts);
1674 	return ERR_PTR(error);
1675 }
1676 
1677 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1678 				     int new_pool_size, int old_pool_size)
1679 {
1680 	if (new_pool_size == old_pool_size)
1681 		return;
1682 
1683 	fs_info->thread_pool_size = new_pool_size;
1684 
1685 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1686 	       old_pool_size, new_pool_size);
1687 
1688 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1689 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1690 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1691 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1692 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1693 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1694 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1695 				new_pool_size);
1696 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1697 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1698 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1699 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1700 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1701 				new_pool_size);
1702 }
1703 
1704 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1705 {
1706 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1707 }
1708 
1709 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1710 				       unsigned long old_opts, int flags)
1711 {
1712 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1713 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1714 	     (flags & SB_RDONLY))) {
1715 		/* wait for any defraggers to finish */
1716 		wait_event(fs_info->transaction_wait,
1717 			   (atomic_read(&fs_info->defrag_running) == 0));
1718 		if (flags & SB_RDONLY)
1719 			sync_filesystem(fs_info->sb);
1720 	}
1721 }
1722 
1723 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1724 					 unsigned long old_opts)
1725 {
1726 	/*
1727 	 * We need to cleanup all defragable inodes if the autodefragment is
1728 	 * close or the filesystem is read only.
1729 	 */
1730 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1731 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1732 		btrfs_cleanup_defrag_inodes(fs_info);
1733 	}
1734 
1735 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1736 }
1737 
1738 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1739 {
1740 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1741 	struct btrfs_root *root = fs_info->tree_root;
1742 	unsigned old_flags = sb->s_flags;
1743 	unsigned long old_opts = fs_info->mount_opt;
1744 	unsigned long old_compress_type = fs_info->compress_type;
1745 	u64 old_max_inline = fs_info->max_inline;
1746 	int old_thread_pool_size = fs_info->thread_pool_size;
1747 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1748 	int ret;
1749 
1750 	sync_filesystem(sb);
1751 	btrfs_remount_prepare(fs_info);
1752 
1753 	if (data) {
1754 		struct security_mnt_opts new_sec_opts;
1755 
1756 		security_init_mnt_opts(&new_sec_opts);
1757 		ret = parse_security_options(data, &new_sec_opts);
1758 		if (ret)
1759 			goto restore;
1760 		ret = setup_security_options(fs_info, sb,
1761 					     &new_sec_opts);
1762 		if (ret) {
1763 			security_free_mnt_opts(&new_sec_opts);
1764 			goto restore;
1765 		}
1766 	}
1767 
1768 	ret = btrfs_parse_options(fs_info, data, *flags);
1769 	if (ret) {
1770 		ret = -EINVAL;
1771 		goto restore;
1772 	}
1773 
1774 	btrfs_remount_begin(fs_info, old_opts, *flags);
1775 	btrfs_resize_thread_pool(fs_info,
1776 		fs_info->thread_pool_size, old_thread_pool_size);
1777 
1778 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1779 		goto out;
1780 
1781 	if (*flags & SB_RDONLY) {
1782 		/*
1783 		 * this also happens on 'umount -rf' or on shutdown, when
1784 		 * the filesystem is busy.
1785 		 */
1786 		cancel_work_sync(&fs_info->async_reclaim_work);
1787 
1788 		/* wait for the uuid_scan task to finish */
1789 		down(&fs_info->uuid_tree_rescan_sem);
1790 		/* avoid complains from lockdep et al. */
1791 		up(&fs_info->uuid_tree_rescan_sem);
1792 
1793 		sb->s_flags |= SB_RDONLY;
1794 
1795 		/*
1796 		 * Setting SB_RDONLY will put the cleaner thread to
1797 		 * sleep at the next loop if it's already active.
1798 		 * If it's already asleep, we'll leave unused block
1799 		 * groups on disk until we're mounted read-write again
1800 		 * unless we clean them up here.
1801 		 */
1802 		btrfs_delete_unused_bgs(fs_info);
1803 
1804 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1805 		btrfs_scrub_cancel(fs_info);
1806 		btrfs_pause_balance(fs_info);
1807 
1808 		ret = btrfs_commit_super(fs_info);
1809 		if (ret)
1810 			goto restore;
1811 	} else {
1812 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1813 			btrfs_err(fs_info,
1814 				"Remounting read-write after error is not allowed");
1815 			ret = -EINVAL;
1816 			goto restore;
1817 		}
1818 		if (fs_info->fs_devices->rw_devices == 0) {
1819 			ret = -EACCES;
1820 			goto restore;
1821 		}
1822 
1823 		if (!btrfs_check_rw_degradable(fs_info)) {
1824 			btrfs_warn(fs_info,
1825 				"too many missing devices, writeable remount is not allowed");
1826 			ret = -EACCES;
1827 			goto restore;
1828 		}
1829 
1830 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1831 			ret = -EINVAL;
1832 			goto restore;
1833 		}
1834 
1835 		ret = btrfs_cleanup_fs_roots(fs_info);
1836 		if (ret)
1837 			goto restore;
1838 
1839 		/* recover relocation */
1840 		mutex_lock(&fs_info->cleaner_mutex);
1841 		ret = btrfs_recover_relocation(root);
1842 		mutex_unlock(&fs_info->cleaner_mutex);
1843 		if (ret)
1844 			goto restore;
1845 
1846 		ret = btrfs_resume_balance_async(fs_info);
1847 		if (ret)
1848 			goto restore;
1849 
1850 		ret = btrfs_resume_dev_replace_async(fs_info);
1851 		if (ret) {
1852 			btrfs_warn(fs_info, "failed to resume dev_replace");
1853 			goto restore;
1854 		}
1855 
1856 		btrfs_qgroup_rescan_resume(fs_info);
1857 
1858 		if (!fs_info->uuid_root) {
1859 			btrfs_info(fs_info, "creating UUID tree");
1860 			ret = btrfs_create_uuid_tree(fs_info);
1861 			if (ret) {
1862 				btrfs_warn(fs_info,
1863 					   "failed to create the UUID tree %d",
1864 					   ret);
1865 				goto restore;
1866 			}
1867 		}
1868 		sb->s_flags &= ~SB_RDONLY;
1869 
1870 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1871 	}
1872 out:
1873 	wake_up_process(fs_info->transaction_kthread);
1874 	btrfs_remount_cleanup(fs_info, old_opts);
1875 	return 0;
1876 
1877 restore:
1878 	/* We've hit an error - don't reset SB_RDONLY */
1879 	if (sb_rdonly(sb))
1880 		old_flags |= SB_RDONLY;
1881 	sb->s_flags = old_flags;
1882 	fs_info->mount_opt = old_opts;
1883 	fs_info->compress_type = old_compress_type;
1884 	fs_info->max_inline = old_max_inline;
1885 	btrfs_resize_thread_pool(fs_info,
1886 		old_thread_pool_size, fs_info->thread_pool_size);
1887 	fs_info->metadata_ratio = old_metadata_ratio;
1888 	btrfs_remount_cleanup(fs_info, old_opts);
1889 	return ret;
1890 }
1891 
1892 /* Used to sort the devices by max_avail(descending sort) */
1893 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1894 				       const void *dev_info2)
1895 {
1896 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1897 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1898 		return -1;
1899 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1900 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1901 		return 1;
1902 	else
1903 	return 0;
1904 }
1905 
1906 /*
1907  * sort the devices by max_avail, in which max free extent size of each device
1908  * is stored.(Descending Sort)
1909  */
1910 static inline void btrfs_descending_sort_devices(
1911 					struct btrfs_device_info *devices,
1912 					size_t nr_devices)
1913 {
1914 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1915 	     btrfs_cmp_device_free_bytes, NULL);
1916 }
1917 
1918 /*
1919  * The helper to calc the free space on the devices that can be used to store
1920  * file data.
1921  */
1922 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1923 				       u64 *free_bytes)
1924 {
1925 	struct btrfs_device_info *devices_info;
1926 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1927 	struct btrfs_device *device;
1928 	u64 skip_space;
1929 	u64 type;
1930 	u64 avail_space;
1931 	u64 min_stripe_size;
1932 	int min_stripes = 1, num_stripes = 1;
1933 	int i = 0, nr_devices;
1934 
1935 	/*
1936 	 * We aren't under the device list lock, so this is racy-ish, but good
1937 	 * enough for our purposes.
1938 	 */
1939 	nr_devices = fs_info->fs_devices->open_devices;
1940 	if (!nr_devices) {
1941 		smp_mb();
1942 		nr_devices = fs_info->fs_devices->open_devices;
1943 		ASSERT(nr_devices);
1944 		if (!nr_devices) {
1945 			*free_bytes = 0;
1946 			return 0;
1947 		}
1948 	}
1949 
1950 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1951 			       GFP_KERNEL);
1952 	if (!devices_info)
1953 		return -ENOMEM;
1954 
1955 	/* calc min stripe number for data space allocation */
1956 	type = btrfs_data_alloc_profile(fs_info);
1957 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1958 		min_stripes = 2;
1959 		num_stripes = nr_devices;
1960 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1961 		min_stripes = 2;
1962 		num_stripes = 2;
1963 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1964 		min_stripes = 4;
1965 		num_stripes = 4;
1966 	}
1967 
1968 	if (type & BTRFS_BLOCK_GROUP_DUP)
1969 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1970 	else
1971 		min_stripe_size = BTRFS_STRIPE_LEN;
1972 
1973 	rcu_read_lock();
1974 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1975 		if (!device->in_fs_metadata || !device->bdev ||
1976 		    device->is_tgtdev_for_dev_replace)
1977 			continue;
1978 
1979 		if (i >= nr_devices)
1980 			break;
1981 
1982 		avail_space = device->total_bytes - device->bytes_used;
1983 
1984 		/* align with stripe_len */
1985 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1986 		avail_space *= BTRFS_STRIPE_LEN;
1987 
1988 		/*
1989 		 * In order to avoid overwriting the superblock on the drive,
1990 		 * btrfs starts at an offset of at least 1MB when doing chunk
1991 		 * allocation.
1992 		 */
1993 		skip_space = SZ_1M;
1994 
1995 		/*
1996 		 * we can use the free space in [0, skip_space - 1], subtract
1997 		 * it from the total.
1998 		 */
1999 		if (avail_space && avail_space >= skip_space)
2000 			avail_space -= skip_space;
2001 		else
2002 			avail_space = 0;
2003 
2004 		if (avail_space < min_stripe_size)
2005 			continue;
2006 
2007 		devices_info[i].dev = device;
2008 		devices_info[i].max_avail = avail_space;
2009 
2010 		i++;
2011 	}
2012 	rcu_read_unlock();
2013 
2014 	nr_devices = i;
2015 
2016 	btrfs_descending_sort_devices(devices_info, nr_devices);
2017 
2018 	i = nr_devices - 1;
2019 	avail_space = 0;
2020 	while (nr_devices >= min_stripes) {
2021 		if (num_stripes > nr_devices)
2022 			num_stripes = nr_devices;
2023 
2024 		if (devices_info[i].max_avail >= min_stripe_size) {
2025 			int j;
2026 			u64 alloc_size;
2027 
2028 			avail_space += devices_info[i].max_avail * num_stripes;
2029 			alloc_size = devices_info[i].max_avail;
2030 			for (j = i + 1 - num_stripes; j <= i; j++)
2031 				devices_info[j].max_avail -= alloc_size;
2032 		}
2033 		i--;
2034 		nr_devices--;
2035 	}
2036 
2037 	kfree(devices_info);
2038 	*free_bytes = avail_space;
2039 	return 0;
2040 }
2041 
2042 /*
2043  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2044  *
2045  * If there's a redundant raid level at DATA block groups, use the respective
2046  * multiplier to scale the sizes.
2047  *
2048  * Unused device space usage is based on simulating the chunk allocator
2049  * algorithm that respects the device sizes and order of allocations.  This is
2050  * a close approximation of the actual use but there are other factors that may
2051  * change the result (like a new metadata chunk).
2052  *
2053  * If metadata is exhausted, f_bavail will be 0.
2054  */
2055 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2056 {
2057 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2058 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2059 	struct list_head *head = &fs_info->space_info;
2060 	struct btrfs_space_info *found;
2061 	u64 total_used = 0;
2062 	u64 total_free_data = 0;
2063 	u64 total_free_meta = 0;
2064 	int bits = dentry->d_sb->s_blocksize_bits;
2065 	__be32 *fsid = (__be32 *)fs_info->fsid;
2066 	unsigned factor = 1;
2067 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2068 	int ret;
2069 	u64 thresh = 0;
2070 	int mixed = 0;
2071 
2072 	rcu_read_lock();
2073 	list_for_each_entry_rcu(found, head, list) {
2074 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2075 			int i;
2076 
2077 			total_free_data += found->disk_total - found->disk_used;
2078 			total_free_data -=
2079 				btrfs_account_ro_block_groups_free_space(found);
2080 
2081 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2082 				if (!list_empty(&found->block_groups[i])) {
2083 					switch (i) {
2084 					case BTRFS_RAID_DUP:
2085 					case BTRFS_RAID_RAID1:
2086 					case BTRFS_RAID_RAID10:
2087 						factor = 2;
2088 					}
2089 				}
2090 			}
2091 		}
2092 
2093 		/*
2094 		 * Metadata in mixed block goup profiles are accounted in data
2095 		 */
2096 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2097 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2098 				mixed = 1;
2099 			else
2100 				total_free_meta += found->disk_total -
2101 					found->disk_used;
2102 		}
2103 
2104 		total_used += found->disk_used;
2105 	}
2106 
2107 	rcu_read_unlock();
2108 
2109 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2110 	buf->f_blocks >>= bits;
2111 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2112 
2113 	/* Account global block reserve as used, it's in logical size already */
2114 	spin_lock(&block_rsv->lock);
2115 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2116 	if (buf->f_bfree >= block_rsv->size >> bits)
2117 		buf->f_bfree -= block_rsv->size >> bits;
2118 	else
2119 		buf->f_bfree = 0;
2120 	spin_unlock(&block_rsv->lock);
2121 
2122 	buf->f_bavail = div_u64(total_free_data, factor);
2123 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2124 	if (ret)
2125 		return ret;
2126 	buf->f_bavail += div_u64(total_free_data, factor);
2127 	buf->f_bavail = buf->f_bavail >> bits;
2128 
2129 	/*
2130 	 * We calculate the remaining metadata space minus global reserve. If
2131 	 * this is (supposedly) smaller than zero, there's no space. But this
2132 	 * does not hold in practice, the exhausted state happens where's still
2133 	 * some positive delta. So we apply some guesswork and compare the
2134 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2135 	 *
2136 	 * We probably cannot calculate the exact threshold value because this
2137 	 * depends on the internal reservations requested by various
2138 	 * operations, so some operations that consume a few metadata will
2139 	 * succeed even if the Avail is zero. But this is better than the other
2140 	 * way around.
2141 	 */
2142 	thresh = SZ_4M;
2143 
2144 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2145 		buf->f_bavail = 0;
2146 
2147 	buf->f_type = BTRFS_SUPER_MAGIC;
2148 	buf->f_bsize = dentry->d_sb->s_blocksize;
2149 	buf->f_namelen = BTRFS_NAME_LEN;
2150 
2151 	/* We treat it as constant endianness (it doesn't matter _which_)
2152 	   because we want the fsid to come out the same whether mounted
2153 	   on a big-endian or little-endian host */
2154 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2155 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2156 	/* Mask in the root object ID too, to disambiguate subvols */
2157 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2158 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2159 
2160 	return 0;
2161 }
2162 
2163 static void btrfs_kill_super(struct super_block *sb)
2164 {
2165 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2166 	kill_anon_super(sb);
2167 	free_fs_info(fs_info);
2168 }
2169 
2170 static struct file_system_type btrfs_fs_type = {
2171 	.owner		= THIS_MODULE,
2172 	.name		= "btrfs",
2173 	.mount		= btrfs_mount,
2174 	.kill_sb	= btrfs_kill_super,
2175 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2176 };
2177 MODULE_ALIAS_FS("btrfs");
2178 
2179 static int btrfs_control_open(struct inode *inode, struct file *file)
2180 {
2181 	/*
2182 	 * The control file's private_data is used to hold the
2183 	 * transaction when it is started and is used to keep
2184 	 * track of whether a transaction is already in progress.
2185 	 */
2186 	file->private_data = NULL;
2187 	return 0;
2188 }
2189 
2190 /*
2191  * used by btrfsctl to scan devices when no FS is mounted
2192  */
2193 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2194 				unsigned long arg)
2195 {
2196 	struct btrfs_ioctl_vol_args *vol;
2197 	struct btrfs_fs_devices *fs_devices;
2198 	int ret = -ENOTTY;
2199 
2200 	if (!capable(CAP_SYS_ADMIN))
2201 		return -EPERM;
2202 
2203 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2204 	if (IS_ERR(vol))
2205 		return PTR_ERR(vol);
2206 
2207 	switch (cmd) {
2208 	case BTRFS_IOC_SCAN_DEV:
2209 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2210 					    &btrfs_fs_type, &fs_devices);
2211 		break;
2212 	case BTRFS_IOC_DEVICES_READY:
2213 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2214 					    &btrfs_fs_type, &fs_devices);
2215 		if (ret)
2216 			break;
2217 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2218 		break;
2219 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2220 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2221 		break;
2222 	}
2223 
2224 	kfree(vol);
2225 	return ret;
2226 }
2227 
2228 static int btrfs_freeze(struct super_block *sb)
2229 {
2230 	struct btrfs_trans_handle *trans;
2231 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2232 	struct btrfs_root *root = fs_info->tree_root;
2233 
2234 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2235 	/*
2236 	 * We don't need a barrier here, we'll wait for any transaction that
2237 	 * could be in progress on other threads (and do delayed iputs that
2238 	 * we want to avoid on a frozen filesystem), or do the commit
2239 	 * ourselves.
2240 	 */
2241 	trans = btrfs_attach_transaction_barrier(root);
2242 	if (IS_ERR(trans)) {
2243 		/* no transaction, don't bother */
2244 		if (PTR_ERR(trans) == -ENOENT)
2245 			return 0;
2246 		return PTR_ERR(trans);
2247 	}
2248 	return btrfs_commit_transaction(trans);
2249 }
2250 
2251 static int btrfs_unfreeze(struct super_block *sb)
2252 {
2253 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2254 
2255 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2256 	return 0;
2257 }
2258 
2259 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2260 {
2261 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2262 	struct btrfs_fs_devices *cur_devices;
2263 	struct btrfs_device *dev, *first_dev = NULL;
2264 	struct list_head *head;
2265 	struct rcu_string *name;
2266 
2267 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2268 	cur_devices = fs_info->fs_devices;
2269 	while (cur_devices) {
2270 		head = &cur_devices->devices;
2271 		list_for_each_entry(dev, head, dev_list) {
2272 			if (dev->missing)
2273 				continue;
2274 			if (!dev->name)
2275 				continue;
2276 			if (!first_dev || dev->devid < first_dev->devid)
2277 				first_dev = dev;
2278 		}
2279 		cur_devices = cur_devices->seed;
2280 	}
2281 
2282 	if (first_dev) {
2283 		rcu_read_lock();
2284 		name = rcu_dereference(first_dev->name);
2285 		seq_escape(m, name->str, " \t\n\\");
2286 		rcu_read_unlock();
2287 	} else {
2288 		WARN_ON(1);
2289 	}
2290 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2291 	return 0;
2292 }
2293 
2294 static const struct super_operations btrfs_super_ops = {
2295 	.drop_inode	= btrfs_drop_inode,
2296 	.evict_inode	= btrfs_evict_inode,
2297 	.put_super	= btrfs_put_super,
2298 	.sync_fs	= btrfs_sync_fs,
2299 	.show_options	= btrfs_show_options,
2300 	.show_devname	= btrfs_show_devname,
2301 	.write_inode	= btrfs_write_inode,
2302 	.alloc_inode	= btrfs_alloc_inode,
2303 	.destroy_inode	= btrfs_destroy_inode,
2304 	.statfs		= btrfs_statfs,
2305 	.remount_fs	= btrfs_remount,
2306 	.freeze_fs	= btrfs_freeze,
2307 	.unfreeze_fs	= btrfs_unfreeze,
2308 };
2309 
2310 static const struct file_operations btrfs_ctl_fops = {
2311 	.open = btrfs_control_open,
2312 	.unlocked_ioctl	 = btrfs_control_ioctl,
2313 	.compat_ioctl = btrfs_control_ioctl,
2314 	.owner	 = THIS_MODULE,
2315 	.llseek = noop_llseek,
2316 };
2317 
2318 static struct miscdevice btrfs_misc = {
2319 	.minor		= BTRFS_MINOR,
2320 	.name		= "btrfs-control",
2321 	.fops		= &btrfs_ctl_fops
2322 };
2323 
2324 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2325 MODULE_ALIAS("devname:btrfs-control");
2326 
2327 static int btrfs_interface_init(void)
2328 {
2329 	return misc_register(&btrfs_misc);
2330 }
2331 
2332 static void btrfs_interface_exit(void)
2333 {
2334 	misc_deregister(&btrfs_misc);
2335 }
2336 
2337 static void btrfs_print_mod_info(void)
2338 {
2339 	pr_info("Btrfs loaded, crc32c=%s"
2340 #ifdef CONFIG_BTRFS_DEBUG
2341 			", debug=on"
2342 #endif
2343 #ifdef CONFIG_BTRFS_ASSERT
2344 			", assert=on"
2345 #endif
2346 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2347 			", integrity-checker=on"
2348 #endif
2349 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2350 			", ref-verify=on"
2351 #endif
2352 			"\n",
2353 			btrfs_crc32c_impl());
2354 }
2355 
2356 static int __init init_btrfs_fs(void)
2357 {
2358 	int err;
2359 
2360 	err = btrfs_hash_init();
2361 	if (err)
2362 		return err;
2363 
2364 	btrfs_props_init();
2365 
2366 	err = btrfs_init_sysfs();
2367 	if (err)
2368 		goto free_hash;
2369 
2370 	btrfs_init_compress();
2371 
2372 	err = btrfs_init_cachep();
2373 	if (err)
2374 		goto free_compress;
2375 
2376 	err = extent_io_init();
2377 	if (err)
2378 		goto free_cachep;
2379 
2380 	err = extent_map_init();
2381 	if (err)
2382 		goto free_extent_io;
2383 
2384 	err = ordered_data_init();
2385 	if (err)
2386 		goto free_extent_map;
2387 
2388 	err = btrfs_delayed_inode_init();
2389 	if (err)
2390 		goto free_ordered_data;
2391 
2392 	err = btrfs_auto_defrag_init();
2393 	if (err)
2394 		goto free_delayed_inode;
2395 
2396 	err = btrfs_delayed_ref_init();
2397 	if (err)
2398 		goto free_auto_defrag;
2399 
2400 	err = btrfs_prelim_ref_init();
2401 	if (err)
2402 		goto free_delayed_ref;
2403 
2404 	err = btrfs_end_io_wq_init();
2405 	if (err)
2406 		goto free_prelim_ref;
2407 
2408 	err = btrfs_interface_init();
2409 	if (err)
2410 		goto free_end_io_wq;
2411 
2412 	btrfs_init_lockdep();
2413 
2414 	btrfs_print_mod_info();
2415 
2416 	err = btrfs_run_sanity_tests();
2417 	if (err)
2418 		goto unregister_ioctl;
2419 
2420 	err = register_filesystem(&btrfs_fs_type);
2421 	if (err)
2422 		goto unregister_ioctl;
2423 
2424 	return 0;
2425 
2426 unregister_ioctl:
2427 	btrfs_interface_exit();
2428 free_end_io_wq:
2429 	btrfs_end_io_wq_exit();
2430 free_prelim_ref:
2431 	btrfs_prelim_ref_exit();
2432 free_delayed_ref:
2433 	btrfs_delayed_ref_exit();
2434 free_auto_defrag:
2435 	btrfs_auto_defrag_exit();
2436 free_delayed_inode:
2437 	btrfs_delayed_inode_exit();
2438 free_ordered_data:
2439 	ordered_data_exit();
2440 free_extent_map:
2441 	extent_map_exit();
2442 free_extent_io:
2443 	extent_io_exit();
2444 free_cachep:
2445 	btrfs_destroy_cachep();
2446 free_compress:
2447 	btrfs_exit_compress();
2448 	btrfs_exit_sysfs();
2449 free_hash:
2450 	btrfs_hash_exit();
2451 	return err;
2452 }
2453 
2454 static void __exit exit_btrfs_fs(void)
2455 {
2456 	btrfs_destroy_cachep();
2457 	btrfs_delayed_ref_exit();
2458 	btrfs_auto_defrag_exit();
2459 	btrfs_delayed_inode_exit();
2460 	btrfs_prelim_ref_exit();
2461 	ordered_data_exit();
2462 	extent_map_exit();
2463 	extent_io_exit();
2464 	btrfs_interface_exit();
2465 	btrfs_end_io_wq_exit();
2466 	unregister_filesystem(&btrfs_fs_type);
2467 	btrfs_exit_sysfs();
2468 	btrfs_cleanup_fs_uuids();
2469 	btrfs_exit_compress();
2470 	btrfs_hash_exit();
2471 }
2472 
2473 late_initcall(init_btrfs_fs);
2474 module_exit(exit_btrfs_fs)
2475 
2476 MODULE_LICENSE("GPL");
2477