1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #include "backref.h" 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/btrfs.h> 67 68 static const struct super_operations btrfs_super_ops; 69 static struct file_system_type btrfs_fs_type; 70 71 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 72 73 const char *btrfs_decode_error(int errno) 74 { 75 char *errstr = "unknown"; 76 77 switch (errno) { 78 case -EIO: 79 errstr = "IO failure"; 80 break; 81 case -ENOMEM: 82 errstr = "Out of memory"; 83 break; 84 case -EROFS: 85 errstr = "Readonly filesystem"; 86 break; 87 case -EEXIST: 88 errstr = "Object already exists"; 89 break; 90 case -ENOSPC: 91 errstr = "No space left"; 92 break; 93 case -ENOENT: 94 errstr = "No such entry"; 95 break; 96 } 97 98 return errstr; 99 } 100 101 /* btrfs handle error by forcing the filesystem readonly */ 102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 103 { 104 struct super_block *sb = fs_info->sb; 105 106 if (sb_rdonly(sb)) 107 return; 108 109 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 110 sb->s_flags |= SB_RDONLY; 111 btrfs_info(fs_info, "forced readonly"); 112 /* 113 * Note that a running device replace operation is not 114 * canceled here although there is no way to update 115 * the progress. It would add the risk of a deadlock, 116 * therefore the canceling is omitted. The only penalty 117 * is that some I/O remains active until the procedure 118 * completes. The next time when the filesystem is 119 * mounted writeable again, the device replace 120 * operation continues. 121 */ 122 } 123 } 124 125 /* 126 * __btrfs_handle_fs_error decodes expected errors from the caller and 127 * invokes the approciate error response. 128 */ 129 __cold 130 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 131 unsigned int line, int errno, const char *fmt, ...) 132 { 133 struct super_block *sb = fs_info->sb; 134 #ifdef CONFIG_PRINTK 135 const char *errstr; 136 #endif 137 138 /* 139 * Special case: if the error is EROFS, and we're already 140 * under SB_RDONLY, then it is safe here. 141 */ 142 if (errno == -EROFS && sb_rdonly(sb)) 143 return; 144 145 #ifdef CONFIG_PRINTK 146 errstr = btrfs_decode_error(errno); 147 if (fmt) { 148 struct va_format vaf; 149 va_list args; 150 151 va_start(args, fmt); 152 vaf.fmt = fmt; 153 vaf.va = &args; 154 155 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 156 sb->s_id, function, line, errno, errstr, &vaf); 157 va_end(args); 158 } else { 159 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 160 sb->s_id, function, line, errno, errstr); 161 } 162 #endif 163 164 /* 165 * Today we only save the error info to memory. Long term we'll 166 * also send it down to the disk 167 */ 168 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 169 170 /* Don't go through full error handling during mount */ 171 if (sb->s_flags & SB_BORN) 172 btrfs_handle_error(fs_info); 173 } 174 175 #ifdef CONFIG_PRINTK 176 static const char * const logtypes[] = { 177 "emergency", 178 "alert", 179 "critical", 180 "error", 181 "warning", 182 "notice", 183 "info", 184 "debug", 185 }; 186 187 188 /* 189 * Use one ratelimit state per log level so that a flood of less important 190 * messages doesn't cause more important ones to be dropped. 191 */ 192 static struct ratelimit_state printk_limits[] = { 193 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 200 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 201 }; 202 203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 204 { 205 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 206 struct va_format vaf; 207 va_list args; 208 int kern_level; 209 const char *type = logtypes[4]; 210 struct ratelimit_state *ratelimit = &printk_limits[4]; 211 212 va_start(args, fmt); 213 214 while ((kern_level = printk_get_level(fmt)) != 0) { 215 size_t size = printk_skip_level(fmt) - fmt; 216 217 if (kern_level >= '0' && kern_level <= '7') { 218 memcpy(lvl, fmt, size); 219 lvl[size] = '\0'; 220 type = logtypes[kern_level - '0']; 221 ratelimit = &printk_limits[kern_level - '0']; 222 } 223 fmt += size; 224 } 225 226 vaf.fmt = fmt; 227 vaf.va = &args; 228 229 if (__ratelimit(ratelimit)) 230 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 231 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 232 233 va_end(args); 234 } 235 #endif 236 237 /* 238 * We only mark the transaction aborted and then set the file system read-only. 239 * This will prevent new transactions from starting or trying to join this 240 * one. 241 * 242 * This means that error recovery at the call site is limited to freeing 243 * any local memory allocations and passing the error code up without 244 * further cleanup. The transaction should complete as it normally would 245 * in the call path but will return -EIO. 246 * 247 * We'll complete the cleanup in btrfs_end_transaction and 248 * btrfs_commit_transaction. 249 */ 250 __cold 251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 252 const char *function, 253 unsigned int line, int errno) 254 { 255 struct btrfs_fs_info *fs_info = trans->fs_info; 256 257 trans->aborted = errno; 258 /* Nothing used. The other threads that have joined this 259 * transaction may be able to continue. */ 260 if (!trans->dirty && list_empty(&trans->new_bgs)) { 261 const char *errstr; 262 263 errstr = btrfs_decode_error(errno); 264 btrfs_warn(fs_info, 265 "%s:%d: Aborting unused transaction(%s).", 266 function, line, errstr); 267 return; 268 } 269 WRITE_ONCE(trans->transaction->aborted, errno); 270 /* Wake up anybody who may be waiting on this transaction */ 271 wake_up(&fs_info->transaction_wait); 272 wake_up(&fs_info->transaction_blocked_wait); 273 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 274 } 275 /* 276 * __btrfs_panic decodes unexpected, fatal errors from the caller, 277 * issues an alert, and either panics or BUGs, depending on mount options. 278 */ 279 __cold 280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 281 unsigned int line, int errno, const char *fmt, ...) 282 { 283 char *s_id = "<unknown>"; 284 const char *errstr; 285 struct va_format vaf = { .fmt = fmt }; 286 va_list args; 287 288 if (fs_info) 289 s_id = fs_info->sb->s_id; 290 291 va_start(args, fmt); 292 vaf.va = &args; 293 294 errstr = btrfs_decode_error(errno); 295 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 296 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 297 s_id, function, line, &vaf, errno, errstr); 298 299 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 300 function, line, &vaf, errno, errstr); 301 va_end(args); 302 /* Caller calls BUG() */ 303 } 304 305 static void btrfs_put_super(struct super_block *sb) 306 { 307 close_ctree(btrfs_sb(sb)); 308 } 309 310 enum { 311 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 312 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 313 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 314 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 315 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 316 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, 317 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, 318 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, 319 Opt_skip_balance, Opt_check_integrity, 320 Opt_check_integrity_including_extent_data, 321 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 322 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 323 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 324 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, 325 Opt_nologreplay, Opt_norecovery, 326 #ifdef CONFIG_BTRFS_DEBUG 327 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 328 #endif 329 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 330 Opt_ref_verify, 331 #endif 332 Opt_err, 333 }; 334 335 static const match_table_t tokens = { 336 {Opt_degraded, "degraded"}, 337 {Opt_subvol, "subvol=%s"}, 338 {Opt_subvolid, "subvolid=%s"}, 339 {Opt_device, "device=%s"}, 340 {Opt_nodatasum, "nodatasum"}, 341 {Opt_datasum, "datasum"}, 342 {Opt_nodatacow, "nodatacow"}, 343 {Opt_datacow, "datacow"}, 344 {Opt_nobarrier, "nobarrier"}, 345 {Opt_barrier, "barrier"}, 346 {Opt_max_inline, "max_inline=%s"}, 347 {Opt_alloc_start, "alloc_start=%s"}, 348 {Opt_thread_pool, "thread_pool=%d"}, 349 {Opt_compress, "compress"}, 350 {Opt_compress_type, "compress=%s"}, 351 {Opt_compress_force, "compress-force"}, 352 {Opt_compress_force_type, "compress-force=%s"}, 353 {Opt_ssd, "ssd"}, 354 {Opt_ssd_spread, "ssd_spread"}, 355 {Opt_nossd, "nossd"}, 356 {Opt_acl, "acl"}, 357 {Opt_noacl, "noacl"}, 358 {Opt_notreelog, "notreelog"}, 359 {Opt_treelog, "treelog"}, 360 {Opt_nologreplay, "nologreplay"}, 361 {Opt_norecovery, "norecovery"}, 362 {Opt_flushoncommit, "flushoncommit"}, 363 {Opt_noflushoncommit, "noflushoncommit"}, 364 {Opt_ratio, "metadata_ratio=%d"}, 365 {Opt_discard, "discard"}, 366 {Opt_nodiscard, "nodiscard"}, 367 {Opt_space_cache, "space_cache"}, 368 {Opt_space_cache_version, "space_cache=%s"}, 369 {Opt_clear_cache, "clear_cache"}, 370 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 371 {Opt_enospc_debug, "enospc_debug"}, 372 {Opt_noenospc_debug, "noenospc_debug"}, 373 {Opt_subvolrootid, "subvolrootid=%d"}, 374 {Opt_defrag, "autodefrag"}, 375 {Opt_nodefrag, "noautodefrag"}, 376 {Opt_inode_cache, "inode_cache"}, 377 {Opt_noinode_cache, "noinode_cache"}, 378 {Opt_no_space_cache, "nospace_cache"}, 379 {Opt_recovery, "recovery"}, /* deprecated */ 380 {Opt_usebackuproot, "usebackuproot"}, 381 {Opt_skip_balance, "skip_balance"}, 382 {Opt_check_integrity, "check_int"}, 383 {Opt_check_integrity_including_extent_data, "check_int_data"}, 384 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 385 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 386 {Opt_fatal_errors, "fatal_errors=%s"}, 387 {Opt_commit_interval, "commit=%d"}, 388 #ifdef CONFIG_BTRFS_DEBUG 389 {Opt_fragment_data, "fragment=data"}, 390 {Opt_fragment_metadata, "fragment=metadata"}, 391 {Opt_fragment_all, "fragment=all"}, 392 #endif 393 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 394 {Opt_ref_verify, "ref_verify"}, 395 #endif 396 {Opt_err, NULL}, 397 }; 398 399 /* 400 * Regular mount options parser. Everything that is needed only when 401 * reading in a new superblock is parsed here. 402 * XXX JDM: This needs to be cleaned up for remount. 403 */ 404 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 405 unsigned long new_flags) 406 { 407 substring_t args[MAX_OPT_ARGS]; 408 char *p, *num, *orig = NULL; 409 u64 cache_gen; 410 int intarg; 411 int ret = 0; 412 char *compress_type; 413 bool compress_force = false; 414 enum btrfs_compression_type saved_compress_type; 415 bool saved_compress_force; 416 int no_compress = 0; 417 418 cache_gen = btrfs_super_cache_generation(info->super_copy); 419 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 420 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 421 else if (cache_gen) 422 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 423 424 /* 425 * Even the options are empty, we still need to do extra check 426 * against new flags 427 */ 428 if (!options) 429 goto check; 430 431 /* 432 * strsep changes the string, duplicate it because parse_options 433 * gets called twice 434 */ 435 options = kstrdup(options, GFP_KERNEL); 436 if (!options) 437 return -ENOMEM; 438 439 orig = options; 440 441 while ((p = strsep(&options, ",")) != NULL) { 442 int token; 443 if (!*p) 444 continue; 445 446 token = match_token(p, tokens, args); 447 switch (token) { 448 case Opt_degraded: 449 btrfs_info(info, "allowing degraded mounts"); 450 btrfs_set_opt(info->mount_opt, DEGRADED); 451 break; 452 case Opt_subvol: 453 case Opt_subvolid: 454 case Opt_subvolrootid: 455 case Opt_device: 456 /* 457 * These are parsed by btrfs_parse_early_options 458 * and can be happily ignored here. 459 */ 460 break; 461 case Opt_nodatasum: 462 btrfs_set_and_info(info, NODATASUM, 463 "setting nodatasum"); 464 break; 465 case Opt_datasum: 466 if (btrfs_test_opt(info, NODATASUM)) { 467 if (btrfs_test_opt(info, NODATACOW)) 468 btrfs_info(info, 469 "setting datasum, datacow enabled"); 470 else 471 btrfs_info(info, "setting datasum"); 472 } 473 btrfs_clear_opt(info->mount_opt, NODATACOW); 474 btrfs_clear_opt(info->mount_opt, NODATASUM); 475 break; 476 case Opt_nodatacow: 477 if (!btrfs_test_opt(info, NODATACOW)) { 478 if (!btrfs_test_opt(info, COMPRESS) || 479 !btrfs_test_opt(info, FORCE_COMPRESS)) { 480 btrfs_info(info, 481 "setting nodatacow, compression disabled"); 482 } else { 483 btrfs_info(info, "setting nodatacow"); 484 } 485 } 486 btrfs_clear_opt(info->mount_opt, COMPRESS); 487 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 488 btrfs_set_opt(info->mount_opt, NODATACOW); 489 btrfs_set_opt(info->mount_opt, NODATASUM); 490 break; 491 case Opt_datacow: 492 btrfs_clear_and_info(info, NODATACOW, 493 "setting datacow"); 494 break; 495 case Opt_compress_force: 496 case Opt_compress_force_type: 497 compress_force = true; 498 /* Fallthrough */ 499 case Opt_compress: 500 case Opt_compress_type: 501 saved_compress_type = btrfs_test_opt(info, 502 COMPRESS) ? 503 info->compress_type : BTRFS_COMPRESS_NONE; 504 saved_compress_force = 505 btrfs_test_opt(info, FORCE_COMPRESS); 506 if (token == Opt_compress || 507 token == Opt_compress_force || 508 strncmp(args[0].from, "zlib", 4) == 0) { 509 compress_type = "zlib"; 510 511 info->compress_type = BTRFS_COMPRESS_ZLIB; 512 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 513 /* 514 * args[0] contains uninitialized data since 515 * for these tokens we don't expect any 516 * parameter. 517 */ 518 if (token != Opt_compress && 519 token != Opt_compress_force) 520 info->compress_level = 521 btrfs_compress_str2level(args[0].from); 522 btrfs_set_opt(info->mount_opt, COMPRESS); 523 btrfs_clear_opt(info->mount_opt, NODATACOW); 524 btrfs_clear_opt(info->mount_opt, NODATASUM); 525 no_compress = 0; 526 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 527 compress_type = "lzo"; 528 info->compress_type = BTRFS_COMPRESS_LZO; 529 btrfs_set_opt(info->mount_opt, COMPRESS); 530 btrfs_clear_opt(info->mount_opt, NODATACOW); 531 btrfs_clear_opt(info->mount_opt, NODATASUM); 532 btrfs_set_fs_incompat(info, COMPRESS_LZO); 533 no_compress = 0; 534 } else if (strcmp(args[0].from, "zstd") == 0) { 535 compress_type = "zstd"; 536 info->compress_type = BTRFS_COMPRESS_ZSTD; 537 btrfs_set_opt(info->mount_opt, COMPRESS); 538 btrfs_clear_opt(info->mount_opt, NODATACOW); 539 btrfs_clear_opt(info->mount_opt, NODATASUM); 540 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 541 no_compress = 0; 542 } else if (strncmp(args[0].from, "no", 2) == 0) { 543 compress_type = "no"; 544 btrfs_clear_opt(info->mount_opt, COMPRESS); 545 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 546 compress_force = false; 547 no_compress++; 548 } else { 549 ret = -EINVAL; 550 goto out; 551 } 552 553 if (compress_force) { 554 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 555 } else { 556 /* 557 * If we remount from compress-force=xxx to 558 * compress=xxx, we need clear FORCE_COMPRESS 559 * flag, otherwise, there is no way for users 560 * to disable forcible compression separately. 561 */ 562 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 563 } 564 if ((btrfs_test_opt(info, COMPRESS) && 565 (info->compress_type != saved_compress_type || 566 compress_force != saved_compress_force)) || 567 (!btrfs_test_opt(info, COMPRESS) && 568 no_compress == 1)) { 569 btrfs_info(info, "%s %s compression, level %d", 570 (compress_force) ? "force" : "use", 571 compress_type, info->compress_level); 572 } 573 compress_force = false; 574 break; 575 case Opt_ssd: 576 btrfs_set_and_info(info, SSD, 577 "enabling ssd optimizations"); 578 btrfs_clear_opt(info->mount_opt, NOSSD); 579 break; 580 case Opt_ssd_spread: 581 btrfs_set_and_info(info, SSD, 582 "enabling ssd optimizations"); 583 btrfs_set_and_info(info, SSD_SPREAD, 584 "using spread ssd allocation scheme"); 585 btrfs_clear_opt(info->mount_opt, NOSSD); 586 break; 587 case Opt_nossd: 588 btrfs_set_opt(info->mount_opt, NOSSD); 589 btrfs_clear_and_info(info, SSD, 590 "not using ssd optimizations"); 591 btrfs_clear_and_info(info, SSD_SPREAD, 592 "not using spread ssd allocation scheme"); 593 break; 594 case Opt_barrier: 595 btrfs_clear_and_info(info, NOBARRIER, 596 "turning on barriers"); 597 break; 598 case Opt_nobarrier: 599 btrfs_set_and_info(info, NOBARRIER, 600 "turning off barriers"); 601 break; 602 case Opt_thread_pool: 603 ret = match_int(&args[0], &intarg); 604 if (ret) { 605 goto out; 606 } else if (intarg > 0) { 607 info->thread_pool_size = intarg; 608 } else { 609 ret = -EINVAL; 610 goto out; 611 } 612 break; 613 case Opt_max_inline: 614 num = match_strdup(&args[0]); 615 if (num) { 616 info->max_inline = memparse(num, NULL); 617 kfree(num); 618 619 if (info->max_inline) { 620 info->max_inline = min_t(u64, 621 info->max_inline, 622 info->sectorsize); 623 } 624 btrfs_info(info, "max_inline at %llu", 625 info->max_inline); 626 } else { 627 ret = -ENOMEM; 628 goto out; 629 } 630 break; 631 case Opt_alloc_start: 632 btrfs_info(info, 633 "option alloc_start is obsolete, ignored"); 634 break; 635 case Opt_acl: 636 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 637 info->sb->s_flags |= SB_POSIXACL; 638 break; 639 #else 640 btrfs_err(info, "support for ACL not compiled in!"); 641 ret = -EINVAL; 642 goto out; 643 #endif 644 case Opt_noacl: 645 info->sb->s_flags &= ~SB_POSIXACL; 646 break; 647 case Opt_notreelog: 648 btrfs_set_and_info(info, NOTREELOG, 649 "disabling tree log"); 650 break; 651 case Opt_treelog: 652 btrfs_clear_and_info(info, NOTREELOG, 653 "enabling tree log"); 654 break; 655 case Opt_norecovery: 656 case Opt_nologreplay: 657 btrfs_set_and_info(info, NOLOGREPLAY, 658 "disabling log replay at mount time"); 659 break; 660 case Opt_flushoncommit: 661 btrfs_set_and_info(info, FLUSHONCOMMIT, 662 "turning on flush-on-commit"); 663 break; 664 case Opt_noflushoncommit: 665 btrfs_clear_and_info(info, FLUSHONCOMMIT, 666 "turning off flush-on-commit"); 667 break; 668 case Opt_ratio: 669 ret = match_int(&args[0], &intarg); 670 if (ret) { 671 goto out; 672 } else if (intarg >= 0) { 673 info->metadata_ratio = intarg; 674 btrfs_info(info, "metadata ratio %d", 675 info->metadata_ratio); 676 } else { 677 ret = -EINVAL; 678 goto out; 679 } 680 break; 681 case Opt_discard: 682 btrfs_set_and_info(info, DISCARD, 683 "turning on discard"); 684 break; 685 case Opt_nodiscard: 686 btrfs_clear_and_info(info, DISCARD, 687 "turning off discard"); 688 break; 689 case Opt_space_cache: 690 case Opt_space_cache_version: 691 if (token == Opt_space_cache || 692 strcmp(args[0].from, "v1") == 0) { 693 btrfs_clear_opt(info->mount_opt, 694 FREE_SPACE_TREE); 695 btrfs_set_and_info(info, SPACE_CACHE, 696 "enabling disk space caching"); 697 } else if (strcmp(args[0].from, "v2") == 0) { 698 btrfs_clear_opt(info->mount_opt, 699 SPACE_CACHE); 700 btrfs_set_and_info(info, FREE_SPACE_TREE, 701 "enabling free space tree"); 702 } else { 703 ret = -EINVAL; 704 goto out; 705 } 706 break; 707 case Opt_rescan_uuid_tree: 708 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 709 break; 710 case Opt_no_space_cache: 711 if (btrfs_test_opt(info, SPACE_CACHE)) { 712 btrfs_clear_and_info(info, SPACE_CACHE, 713 "disabling disk space caching"); 714 } 715 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 716 btrfs_clear_and_info(info, FREE_SPACE_TREE, 717 "disabling free space tree"); 718 } 719 break; 720 case Opt_inode_cache: 721 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 722 "enabling inode map caching"); 723 break; 724 case Opt_noinode_cache: 725 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 726 "disabling inode map caching"); 727 break; 728 case Opt_clear_cache: 729 btrfs_set_and_info(info, CLEAR_CACHE, 730 "force clearing of disk cache"); 731 break; 732 case Opt_user_subvol_rm_allowed: 733 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 734 break; 735 case Opt_enospc_debug: 736 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 737 break; 738 case Opt_noenospc_debug: 739 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 740 break; 741 case Opt_defrag: 742 btrfs_set_and_info(info, AUTO_DEFRAG, 743 "enabling auto defrag"); 744 break; 745 case Opt_nodefrag: 746 btrfs_clear_and_info(info, AUTO_DEFRAG, 747 "disabling auto defrag"); 748 break; 749 case Opt_recovery: 750 btrfs_warn(info, 751 "'recovery' is deprecated, use 'usebackuproot' instead"); 752 case Opt_usebackuproot: 753 btrfs_info(info, 754 "trying to use backup root at mount time"); 755 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 756 break; 757 case Opt_skip_balance: 758 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 759 break; 760 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 761 case Opt_check_integrity_including_extent_data: 762 btrfs_info(info, 763 "enabling check integrity including extent data"); 764 btrfs_set_opt(info->mount_opt, 765 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 766 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 767 break; 768 case Opt_check_integrity: 769 btrfs_info(info, "enabling check integrity"); 770 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 771 break; 772 case Opt_check_integrity_print_mask: 773 ret = match_int(&args[0], &intarg); 774 if (ret) { 775 goto out; 776 } else if (intarg >= 0) { 777 info->check_integrity_print_mask = intarg; 778 btrfs_info(info, 779 "check_integrity_print_mask 0x%x", 780 info->check_integrity_print_mask); 781 } else { 782 ret = -EINVAL; 783 goto out; 784 } 785 break; 786 #else 787 case Opt_check_integrity_including_extent_data: 788 case Opt_check_integrity: 789 case Opt_check_integrity_print_mask: 790 btrfs_err(info, 791 "support for check_integrity* not compiled in!"); 792 ret = -EINVAL; 793 goto out; 794 #endif 795 case Opt_fatal_errors: 796 if (strcmp(args[0].from, "panic") == 0) 797 btrfs_set_opt(info->mount_opt, 798 PANIC_ON_FATAL_ERROR); 799 else if (strcmp(args[0].from, "bug") == 0) 800 btrfs_clear_opt(info->mount_opt, 801 PANIC_ON_FATAL_ERROR); 802 else { 803 ret = -EINVAL; 804 goto out; 805 } 806 break; 807 case Opt_commit_interval: 808 intarg = 0; 809 ret = match_int(&args[0], &intarg); 810 if (ret < 0) { 811 btrfs_err(info, "invalid commit interval"); 812 ret = -EINVAL; 813 goto out; 814 } 815 if (intarg > 0) { 816 if (intarg > 300) { 817 btrfs_warn(info, 818 "excessive commit interval %d", 819 intarg); 820 } 821 info->commit_interval = intarg; 822 } else { 823 btrfs_info(info, 824 "using default commit interval %ds", 825 BTRFS_DEFAULT_COMMIT_INTERVAL); 826 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 827 } 828 break; 829 #ifdef CONFIG_BTRFS_DEBUG 830 case Opt_fragment_all: 831 btrfs_info(info, "fragmenting all space"); 832 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 833 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 834 break; 835 case Opt_fragment_metadata: 836 btrfs_info(info, "fragmenting metadata"); 837 btrfs_set_opt(info->mount_opt, 838 FRAGMENT_METADATA); 839 break; 840 case Opt_fragment_data: 841 btrfs_info(info, "fragmenting data"); 842 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 843 break; 844 #endif 845 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 846 case Opt_ref_verify: 847 btrfs_info(info, "doing ref verification"); 848 btrfs_set_opt(info->mount_opt, REF_VERIFY); 849 break; 850 #endif 851 case Opt_err: 852 btrfs_info(info, "unrecognized mount option '%s'", p); 853 ret = -EINVAL; 854 goto out; 855 default: 856 break; 857 } 858 } 859 check: 860 /* 861 * Extra check for current option against current flag 862 */ 863 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 864 btrfs_err(info, 865 "nologreplay must be used with ro mount option"); 866 ret = -EINVAL; 867 } 868 out: 869 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 870 !btrfs_test_opt(info, FREE_SPACE_TREE) && 871 !btrfs_test_opt(info, CLEAR_CACHE)) { 872 btrfs_err(info, "cannot disable free space tree"); 873 ret = -EINVAL; 874 875 } 876 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 877 btrfs_info(info, "disk space caching is enabled"); 878 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 879 btrfs_info(info, "using free space tree"); 880 kfree(orig); 881 return ret; 882 } 883 884 /* 885 * Parse mount options that are required early in the mount process. 886 * 887 * All other options will be parsed on much later in the mount process and 888 * only when we need to allocate a new super block. 889 */ 890 static int btrfs_parse_early_options(const char *options, fmode_t flags, 891 void *holder, char **subvol_name, u64 *subvol_objectid, 892 struct btrfs_fs_devices **fs_devices) 893 { 894 substring_t args[MAX_OPT_ARGS]; 895 char *device_name, *opts, *orig, *p; 896 char *num = NULL; 897 int error = 0; 898 899 if (!options) 900 return 0; 901 902 /* 903 * strsep changes the string, duplicate it because parse_options 904 * gets called twice 905 */ 906 opts = kstrdup(options, GFP_KERNEL); 907 if (!opts) 908 return -ENOMEM; 909 orig = opts; 910 911 while ((p = strsep(&opts, ",")) != NULL) { 912 int token; 913 if (!*p) 914 continue; 915 916 token = match_token(p, tokens, args); 917 switch (token) { 918 case Opt_subvol: 919 kfree(*subvol_name); 920 *subvol_name = match_strdup(&args[0]); 921 if (!*subvol_name) { 922 error = -ENOMEM; 923 goto out; 924 } 925 break; 926 case Opt_subvolid: 927 num = match_strdup(&args[0]); 928 if (num) { 929 *subvol_objectid = memparse(num, NULL); 930 kfree(num); 931 /* we want the original fs_tree */ 932 if (!*subvol_objectid) 933 *subvol_objectid = 934 BTRFS_FS_TREE_OBJECTID; 935 } else { 936 error = -EINVAL; 937 goto out; 938 } 939 break; 940 case Opt_subvolrootid: 941 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 942 break; 943 case Opt_device: 944 device_name = match_strdup(&args[0]); 945 if (!device_name) { 946 error = -ENOMEM; 947 goto out; 948 } 949 error = btrfs_scan_one_device(device_name, 950 flags, holder, fs_devices); 951 kfree(device_name); 952 if (error) 953 goto out; 954 break; 955 default: 956 break; 957 } 958 } 959 960 out: 961 kfree(orig); 962 return error; 963 } 964 965 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 966 u64 subvol_objectid) 967 { 968 struct btrfs_root *root = fs_info->tree_root; 969 struct btrfs_root *fs_root; 970 struct btrfs_root_ref *root_ref; 971 struct btrfs_inode_ref *inode_ref; 972 struct btrfs_key key; 973 struct btrfs_path *path = NULL; 974 char *name = NULL, *ptr; 975 u64 dirid; 976 int len; 977 int ret; 978 979 path = btrfs_alloc_path(); 980 if (!path) { 981 ret = -ENOMEM; 982 goto err; 983 } 984 path->leave_spinning = 1; 985 986 name = kmalloc(PATH_MAX, GFP_KERNEL); 987 if (!name) { 988 ret = -ENOMEM; 989 goto err; 990 } 991 ptr = name + PATH_MAX - 1; 992 ptr[0] = '\0'; 993 994 /* 995 * Walk up the subvolume trees in the tree of tree roots by root 996 * backrefs until we hit the top-level subvolume. 997 */ 998 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 999 key.objectid = subvol_objectid; 1000 key.type = BTRFS_ROOT_BACKREF_KEY; 1001 key.offset = (u64)-1; 1002 1003 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1004 if (ret < 0) { 1005 goto err; 1006 } else if (ret > 0) { 1007 ret = btrfs_previous_item(root, path, subvol_objectid, 1008 BTRFS_ROOT_BACKREF_KEY); 1009 if (ret < 0) { 1010 goto err; 1011 } else if (ret > 0) { 1012 ret = -ENOENT; 1013 goto err; 1014 } 1015 } 1016 1017 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1018 subvol_objectid = key.offset; 1019 1020 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1021 struct btrfs_root_ref); 1022 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1023 ptr -= len + 1; 1024 if (ptr < name) { 1025 ret = -ENAMETOOLONG; 1026 goto err; 1027 } 1028 read_extent_buffer(path->nodes[0], ptr + 1, 1029 (unsigned long)(root_ref + 1), len); 1030 ptr[0] = '/'; 1031 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1032 btrfs_release_path(path); 1033 1034 key.objectid = subvol_objectid; 1035 key.type = BTRFS_ROOT_ITEM_KEY; 1036 key.offset = (u64)-1; 1037 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1038 if (IS_ERR(fs_root)) { 1039 ret = PTR_ERR(fs_root); 1040 goto err; 1041 } 1042 1043 /* 1044 * Walk up the filesystem tree by inode refs until we hit the 1045 * root directory. 1046 */ 1047 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1048 key.objectid = dirid; 1049 key.type = BTRFS_INODE_REF_KEY; 1050 key.offset = (u64)-1; 1051 1052 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1053 if (ret < 0) { 1054 goto err; 1055 } else if (ret > 0) { 1056 ret = btrfs_previous_item(fs_root, path, dirid, 1057 BTRFS_INODE_REF_KEY); 1058 if (ret < 0) { 1059 goto err; 1060 } else if (ret > 0) { 1061 ret = -ENOENT; 1062 goto err; 1063 } 1064 } 1065 1066 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1067 dirid = key.offset; 1068 1069 inode_ref = btrfs_item_ptr(path->nodes[0], 1070 path->slots[0], 1071 struct btrfs_inode_ref); 1072 len = btrfs_inode_ref_name_len(path->nodes[0], 1073 inode_ref); 1074 ptr -= len + 1; 1075 if (ptr < name) { 1076 ret = -ENAMETOOLONG; 1077 goto err; 1078 } 1079 read_extent_buffer(path->nodes[0], ptr + 1, 1080 (unsigned long)(inode_ref + 1), len); 1081 ptr[0] = '/'; 1082 btrfs_release_path(path); 1083 } 1084 } 1085 1086 btrfs_free_path(path); 1087 if (ptr == name + PATH_MAX - 1) { 1088 name[0] = '/'; 1089 name[1] = '\0'; 1090 } else { 1091 memmove(name, ptr, name + PATH_MAX - ptr); 1092 } 1093 return name; 1094 1095 err: 1096 btrfs_free_path(path); 1097 kfree(name); 1098 return ERR_PTR(ret); 1099 } 1100 1101 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1102 { 1103 struct btrfs_root *root = fs_info->tree_root; 1104 struct btrfs_dir_item *di; 1105 struct btrfs_path *path; 1106 struct btrfs_key location; 1107 u64 dir_id; 1108 1109 path = btrfs_alloc_path(); 1110 if (!path) 1111 return -ENOMEM; 1112 path->leave_spinning = 1; 1113 1114 /* 1115 * Find the "default" dir item which points to the root item that we 1116 * will mount by default if we haven't been given a specific subvolume 1117 * to mount. 1118 */ 1119 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1120 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1121 if (IS_ERR(di)) { 1122 btrfs_free_path(path); 1123 return PTR_ERR(di); 1124 } 1125 if (!di) { 1126 /* 1127 * Ok the default dir item isn't there. This is weird since 1128 * it's always been there, but don't freak out, just try and 1129 * mount the top-level subvolume. 1130 */ 1131 btrfs_free_path(path); 1132 *objectid = BTRFS_FS_TREE_OBJECTID; 1133 return 0; 1134 } 1135 1136 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1137 btrfs_free_path(path); 1138 *objectid = location.objectid; 1139 return 0; 1140 } 1141 1142 static int btrfs_fill_super(struct super_block *sb, 1143 struct btrfs_fs_devices *fs_devices, 1144 void *data) 1145 { 1146 struct inode *inode; 1147 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1148 struct btrfs_key key; 1149 int err; 1150 1151 sb->s_maxbytes = MAX_LFS_FILESIZE; 1152 sb->s_magic = BTRFS_SUPER_MAGIC; 1153 sb->s_op = &btrfs_super_ops; 1154 sb->s_d_op = &btrfs_dentry_operations; 1155 sb->s_export_op = &btrfs_export_ops; 1156 sb->s_xattr = btrfs_xattr_handlers; 1157 sb->s_time_gran = 1; 1158 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1159 sb->s_flags |= SB_POSIXACL; 1160 #endif 1161 sb->s_flags |= SB_I_VERSION; 1162 sb->s_iflags |= SB_I_CGROUPWB; 1163 1164 err = super_setup_bdi(sb); 1165 if (err) { 1166 btrfs_err(fs_info, "super_setup_bdi failed"); 1167 return err; 1168 } 1169 1170 err = open_ctree(sb, fs_devices, (char *)data); 1171 if (err) { 1172 btrfs_err(fs_info, "open_ctree failed"); 1173 return err; 1174 } 1175 1176 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1177 key.type = BTRFS_INODE_ITEM_KEY; 1178 key.offset = 0; 1179 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1180 if (IS_ERR(inode)) { 1181 err = PTR_ERR(inode); 1182 goto fail_close; 1183 } 1184 1185 sb->s_root = d_make_root(inode); 1186 if (!sb->s_root) { 1187 err = -ENOMEM; 1188 goto fail_close; 1189 } 1190 1191 cleancache_init_fs(sb); 1192 sb->s_flags |= SB_ACTIVE; 1193 return 0; 1194 1195 fail_close: 1196 close_ctree(fs_info); 1197 return err; 1198 } 1199 1200 int btrfs_sync_fs(struct super_block *sb, int wait) 1201 { 1202 struct btrfs_trans_handle *trans; 1203 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1204 struct btrfs_root *root = fs_info->tree_root; 1205 1206 trace_btrfs_sync_fs(fs_info, wait); 1207 1208 if (!wait) { 1209 filemap_flush(fs_info->btree_inode->i_mapping); 1210 return 0; 1211 } 1212 1213 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1214 1215 trans = btrfs_attach_transaction_barrier(root); 1216 if (IS_ERR(trans)) { 1217 /* no transaction, don't bother */ 1218 if (PTR_ERR(trans) == -ENOENT) { 1219 /* 1220 * Exit unless we have some pending changes 1221 * that need to go through commit 1222 */ 1223 if (fs_info->pending_changes == 0) 1224 return 0; 1225 /* 1226 * A non-blocking test if the fs is frozen. We must not 1227 * start a new transaction here otherwise a deadlock 1228 * happens. The pending operations are delayed to the 1229 * next commit after thawing. 1230 */ 1231 if (sb_start_write_trylock(sb)) 1232 sb_end_write(sb); 1233 else 1234 return 0; 1235 trans = btrfs_start_transaction(root, 0); 1236 } 1237 if (IS_ERR(trans)) 1238 return PTR_ERR(trans); 1239 } 1240 return btrfs_commit_transaction(trans); 1241 } 1242 1243 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1244 { 1245 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1246 char *compress_type; 1247 1248 if (btrfs_test_opt(info, DEGRADED)) 1249 seq_puts(seq, ",degraded"); 1250 if (btrfs_test_opt(info, NODATASUM)) 1251 seq_puts(seq, ",nodatasum"); 1252 if (btrfs_test_opt(info, NODATACOW)) 1253 seq_puts(seq, ",nodatacow"); 1254 if (btrfs_test_opt(info, NOBARRIER)) 1255 seq_puts(seq, ",nobarrier"); 1256 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1257 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1258 if (info->thread_pool_size != min_t(unsigned long, 1259 num_online_cpus() + 2, 8)) 1260 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1261 if (btrfs_test_opt(info, COMPRESS)) { 1262 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1263 compress_type = "zlib"; 1264 else if (info->compress_type == BTRFS_COMPRESS_LZO) 1265 compress_type = "lzo"; 1266 else 1267 compress_type = "zstd"; 1268 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1269 seq_printf(seq, ",compress-force=%s", compress_type); 1270 else 1271 seq_printf(seq, ",compress=%s", compress_type); 1272 if (info->compress_level) 1273 seq_printf(seq, ":%d", info->compress_level); 1274 } 1275 if (btrfs_test_opt(info, NOSSD)) 1276 seq_puts(seq, ",nossd"); 1277 if (btrfs_test_opt(info, SSD_SPREAD)) 1278 seq_puts(seq, ",ssd_spread"); 1279 else if (btrfs_test_opt(info, SSD)) 1280 seq_puts(seq, ",ssd"); 1281 if (btrfs_test_opt(info, NOTREELOG)) 1282 seq_puts(seq, ",notreelog"); 1283 if (btrfs_test_opt(info, NOLOGREPLAY)) 1284 seq_puts(seq, ",nologreplay"); 1285 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1286 seq_puts(seq, ",flushoncommit"); 1287 if (btrfs_test_opt(info, DISCARD)) 1288 seq_puts(seq, ",discard"); 1289 if (!(info->sb->s_flags & SB_POSIXACL)) 1290 seq_puts(seq, ",noacl"); 1291 if (btrfs_test_opt(info, SPACE_CACHE)) 1292 seq_puts(seq, ",space_cache"); 1293 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1294 seq_puts(seq, ",space_cache=v2"); 1295 else 1296 seq_puts(seq, ",nospace_cache"); 1297 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1298 seq_puts(seq, ",rescan_uuid_tree"); 1299 if (btrfs_test_opt(info, CLEAR_CACHE)) 1300 seq_puts(seq, ",clear_cache"); 1301 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1302 seq_puts(seq, ",user_subvol_rm_allowed"); 1303 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1304 seq_puts(seq, ",enospc_debug"); 1305 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1306 seq_puts(seq, ",autodefrag"); 1307 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1308 seq_puts(seq, ",inode_cache"); 1309 if (btrfs_test_opt(info, SKIP_BALANCE)) 1310 seq_puts(seq, ",skip_balance"); 1311 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1312 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1313 seq_puts(seq, ",check_int_data"); 1314 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1315 seq_puts(seq, ",check_int"); 1316 if (info->check_integrity_print_mask) 1317 seq_printf(seq, ",check_int_print_mask=%d", 1318 info->check_integrity_print_mask); 1319 #endif 1320 if (info->metadata_ratio) 1321 seq_printf(seq, ",metadata_ratio=%d", 1322 info->metadata_ratio); 1323 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1324 seq_puts(seq, ",fatal_errors=panic"); 1325 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1326 seq_printf(seq, ",commit=%d", info->commit_interval); 1327 #ifdef CONFIG_BTRFS_DEBUG 1328 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1329 seq_puts(seq, ",fragment=data"); 1330 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1331 seq_puts(seq, ",fragment=metadata"); 1332 #endif 1333 if (btrfs_test_opt(info, REF_VERIFY)) 1334 seq_puts(seq, ",ref_verify"); 1335 seq_printf(seq, ",subvolid=%llu", 1336 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1337 seq_puts(seq, ",subvol="); 1338 seq_dentry(seq, dentry, " \t\n\\"); 1339 return 0; 1340 } 1341 1342 static int btrfs_test_super(struct super_block *s, void *data) 1343 { 1344 struct btrfs_fs_info *p = data; 1345 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1346 1347 return fs_info->fs_devices == p->fs_devices; 1348 } 1349 1350 static int btrfs_set_super(struct super_block *s, void *data) 1351 { 1352 int err = set_anon_super(s, data); 1353 if (!err) 1354 s->s_fs_info = data; 1355 return err; 1356 } 1357 1358 /* 1359 * subvolumes are identified by ino 256 1360 */ 1361 static inline int is_subvolume_inode(struct inode *inode) 1362 { 1363 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1364 return 1; 1365 return 0; 1366 } 1367 1368 /* 1369 * This will add subvolid=0 to the argument string while removing any subvol= 1370 * and subvolid= arguments to make sure we get the top-level root for path 1371 * walking to the subvol we want. 1372 */ 1373 static char *setup_root_args(char *args) 1374 { 1375 char *buf, *dst, *sep; 1376 1377 if (!args) 1378 return kstrdup("subvolid=0", GFP_KERNEL); 1379 1380 /* The worst case is that we add ",subvolid=0" to the end. */ 1381 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, 1382 GFP_KERNEL); 1383 if (!buf) 1384 return NULL; 1385 1386 while (1) { 1387 sep = strchrnul(args, ','); 1388 if (!strstarts(args, "subvol=") && 1389 !strstarts(args, "subvolid=")) { 1390 memcpy(dst, args, sep - args); 1391 dst += sep - args; 1392 *dst++ = ','; 1393 } 1394 if (*sep) 1395 args = sep + 1; 1396 else 1397 break; 1398 } 1399 strcpy(dst, "subvolid=0"); 1400 1401 return buf; 1402 } 1403 1404 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1405 int flags, const char *device_name, 1406 char *data) 1407 { 1408 struct dentry *root; 1409 struct vfsmount *mnt = NULL; 1410 char *newargs; 1411 int ret; 1412 1413 newargs = setup_root_args(data); 1414 if (!newargs) { 1415 root = ERR_PTR(-ENOMEM); 1416 goto out; 1417 } 1418 1419 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); 1420 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { 1421 if (flags & SB_RDONLY) { 1422 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~SB_RDONLY, 1423 device_name, newargs); 1424 } else { 1425 mnt = vfs_kern_mount(&btrfs_fs_type, flags | SB_RDONLY, 1426 device_name, newargs); 1427 if (IS_ERR(mnt)) { 1428 root = ERR_CAST(mnt); 1429 mnt = NULL; 1430 goto out; 1431 } 1432 1433 down_write(&mnt->mnt_sb->s_umount); 1434 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1435 up_write(&mnt->mnt_sb->s_umount); 1436 if (ret < 0) { 1437 root = ERR_PTR(ret); 1438 goto out; 1439 } 1440 } 1441 } 1442 if (IS_ERR(mnt)) { 1443 root = ERR_CAST(mnt); 1444 mnt = NULL; 1445 goto out; 1446 } 1447 1448 if (!subvol_name) { 1449 if (!subvol_objectid) { 1450 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1451 &subvol_objectid); 1452 if (ret) { 1453 root = ERR_PTR(ret); 1454 goto out; 1455 } 1456 } 1457 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1458 subvol_objectid); 1459 if (IS_ERR(subvol_name)) { 1460 root = ERR_CAST(subvol_name); 1461 subvol_name = NULL; 1462 goto out; 1463 } 1464 1465 } 1466 1467 root = mount_subtree(mnt, subvol_name); 1468 /* mount_subtree() drops our reference on the vfsmount. */ 1469 mnt = NULL; 1470 1471 if (!IS_ERR(root)) { 1472 struct super_block *s = root->d_sb; 1473 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1474 struct inode *root_inode = d_inode(root); 1475 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1476 1477 ret = 0; 1478 if (!is_subvolume_inode(root_inode)) { 1479 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1480 subvol_name); 1481 ret = -EINVAL; 1482 } 1483 if (subvol_objectid && root_objectid != subvol_objectid) { 1484 /* 1485 * This will also catch a race condition where a 1486 * subvolume which was passed by ID is renamed and 1487 * another subvolume is renamed over the old location. 1488 */ 1489 btrfs_err(fs_info, 1490 "subvol '%s' does not match subvolid %llu", 1491 subvol_name, subvol_objectid); 1492 ret = -EINVAL; 1493 } 1494 if (ret) { 1495 dput(root); 1496 root = ERR_PTR(ret); 1497 deactivate_locked_super(s); 1498 } 1499 } 1500 1501 out: 1502 mntput(mnt); 1503 kfree(newargs); 1504 kfree(subvol_name); 1505 return root; 1506 } 1507 1508 static int parse_security_options(char *orig_opts, 1509 struct security_mnt_opts *sec_opts) 1510 { 1511 char *secdata = NULL; 1512 int ret = 0; 1513 1514 secdata = alloc_secdata(); 1515 if (!secdata) 1516 return -ENOMEM; 1517 ret = security_sb_copy_data(orig_opts, secdata); 1518 if (ret) { 1519 free_secdata(secdata); 1520 return ret; 1521 } 1522 ret = security_sb_parse_opts_str(secdata, sec_opts); 1523 free_secdata(secdata); 1524 return ret; 1525 } 1526 1527 static int setup_security_options(struct btrfs_fs_info *fs_info, 1528 struct super_block *sb, 1529 struct security_mnt_opts *sec_opts) 1530 { 1531 int ret = 0; 1532 1533 /* 1534 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1535 * is valid. 1536 */ 1537 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1538 if (ret) 1539 return ret; 1540 1541 #ifdef CONFIG_SECURITY 1542 if (!fs_info->security_opts.num_mnt_opts) { 1543 /* first time security setup, copy sec_opts to fs_info */ 1544 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1545 } else { 1546 /* 1547 * Since SELinux (the only one supporting security_mnt_opts) 1548 * does NOT support changing context during remount/mount of 1549 * the same sb, this must be the same or part of the same 1550 * security options, just free it. 1551 */ 1552 security_free_mnt_opts(sec_opts); 1553 } 1554 #endif 1555 return ret; 1556 } 1557 1558 /* 1559 * Find a superblock for the given device / mount point. 1560 * 1561 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1562 * for multiple device setup. Make sure to keep it in sync. 1563 */ 1564 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1565 const char *device_name, void *data) 1566 { 1567 struct block_device *bdev = NULL; 1568 struct super_block *s; 1569 struct btrfs_fs_devices *fs_devices = NULL; 1570 struct btrfs_fs_info *fs_info = NULL; 1571 struct security_mnt_opts new_sec_opts; 1572 fmode_t mode = FMODE_READ; 1573 char *subvol_name = NULL; 1574 u64 subvol_objectid = 0; 1575 int error = 0; 1576 1577 if (!(flags & SB_RDONLY)) 1578 mode |= FMODE_WRITE; 1579 1580 error = btrfs_parse_early_options(data, mode, fs_type, 1581 &subvol_name, &subvol_objectid, 1582 &fs_devices); 1583 if (error) { 1584 kfree(subvol_name); 1585 return ERR_PTR(error); 1586 } 1587 1588 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1589 /* mount_subvol() will free subvol_name. */ 1590 return mount_subvol(subvol_name, subvol_objectid, flags, 1591 device_name, data); 1592 } 1593 1594 security_init_mnt_opts(&new_sec_opts); 1595 if (data) { 1596 error = parse_security_options(data, &new_sec_opts); 1597 if (error) 1598 return ERR_PTR(error); 1599 } 1600 1601 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1602 if (error) 1603 goto error_sec_opts; 1604 1605 /* 1606 * Setup a dummy root and fs_info for test/set super. This is because 1607 * we don't actually fill this stuff out until open_ctree, but we need 1608 * it for searching for existing supers, so this lets us do that and 1609 * then open_ctree will properly initialize everything later. 1610 */ 1611 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1612 if (!fs_info) { 1613 error = -ENOMEM; 1614 goto error_sec_opts; 1615 } 1616 1617 fs_info->fs_devices = fs_devices; 1618 1619 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1620 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1621 security_init_mnt_opts(&fs_info->security_opts); 1622 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1623 error = -ENOMEM; 1624 goto error_fs_info; 1625 } 1626 1627 error = btrfs_open_devices(fs_devices, mode, fs_type); 1628 if (error) 1629 goto error_fs_info; 1630 1631 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1632 error = -EACCES; 1633 goto error_close_devices; 1634 } 1635 1636 bdev = fs_devices->latest_bdev; 1637 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1638 fs_info); 1639 if (IS_ERR(s)) { 1640 error = PTR_ERR(s); 1641 goto error_close_devices; 1642 } 1643 1644 if (s->s_root) { 1645 btrfs_close_devices(fs_devices); 1646 free_fs_info(fs_info); 1647 if ((flags ^ s->s_flags) & SB_RDONLY) 1648 error = -EBUSY; 1649 } else { 1650 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1651 btrfs_sb(s)->bdev_holder = fs_type; 1652 error = btrfs_fill_super(s, fs_devices, data); 1653 } 1654 if (error) { 1655 deactivate_locked_super(s); 1656 goto error_sec_opts; 1657 } 1658 1659 fs_info = btrfs_sb(s); 1660 error = setup_security_options(fs_info, s, &new_sec_opts); 1661 if (error) { 1662 deactivate_locked_super(s); 1663 goto error_sec_opts; 1664 } 1665 1666 return dget(s->s_root); 1667 1668 error_close_devices: 1669 btrfs_close_devices(fs_devices); 1670 error_fs_info: 1671 free_fs_info(fs_info); 1672 error_sec_opts: 1673 security_free_mnt_opts(&new_sec_opts); 1674 return ERR_PTR(error); 1675 } 1676 1677 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1678 int new_pool_size, int old_pool_size) 1679 { 1680 if (new_pool_size == old_pool_size) 1681 return; 1682 1683 fs_info->thread_pool_size = new_pool_size; 1684 1685 btrfs_info(fs_info, "resize thread pool %d -> %d", 1686 old_pool_size, new_pool_size); 1687 1688 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1689 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1690 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1691 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1692 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1693 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1694 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1695 new_pool_size); 1696 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1697 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1698 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1699 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1700 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1701 new_pool_size); 1702 } 1703 1704 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1705 { 1706 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1707 } 1708 1709 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1710 unsigned long old_opts, int flags) 1711 { 1712 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1713 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1714 (flags & SB_RDONLY))) { 1715 /* wait for any defraggers to finish */ 1716 wait_event(fs_info->transaction_wait, 1717 (atomic_read(&fs_info->defrag_running) == 0)); 1718 if (flags & SB_RDONLY) 1719 sync_filesystem(fs_info->sb); 1720 } 1721 } 1722 1723 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1724 unsigned long old_opts) 1725 { 1726 /* 1727 * We need to cleanup all defragable inodes if the autodefragment is 1728 * close or the filesystem is read only. 1729 */ 1730 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1731 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1732 btrfs_cleanup_defrag_inodes(fs_info); 1733 } 1734 1735 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1736 } 1737 1738 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1739 { 1740 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1741 struct btrfs_root *root = fs_info->tree_root; 1742 unsigned old_flags = sb->s_flags; 1743 unsigned long old_opts = fs_info->mount_opt; 1744 unsigned long old_compress_type = fs_info->compress_type; 1745 u64 old_max_inline = fs_info->max_inline; 1746 int old_thread_pool_size = fs_info->thread_pool_size; 1747 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1748 int ret; 1749 1750 sync_filesystem(sb); 1751 btrfs_remount_prepare(fs_info); 1752 1753 if (data) { 1754 struct security_mnt_opts new_sec_opts; 1755 1756 security_init_mnt_opts(&new_sec_opts); 1757 ret = parse_security_options(data, &new_sec_opts); 1758 if (ret) 1759 goto restore; 1760 ret = setup_security_options(fs_info, sb, 1761 &new_sec_opts); 1762 if (ret) { 1763 security_free_mnt_opts(&new_sec_opts); 1764 goto restore; 1765 } 1766 } 1767 1768 ret = btrfs_parse_options(fs_info, data, *flags); 1769 if (ret) { 1770 ret = -EINVAL; 1771 goto restore; 1772 } 1773 1774 btrfs_remount_begin(fs_info, old_opts, *flags); 1775 btrfs_resize_thread_pool(fs_info, 1776 fs_info->thread_pool_size, old_thread_pool_size); 1777 1778 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1779 goto out; 1780 1781 if (*flags & SB_RDONLY) { 1782 /* 1783 * this also happens on 'umount -rf' or on shutdown, when 1784 * the filesystem is busy. 1785 */ 1786 cancel_work_sync(&fs_info->async_reclaim_work); 1787 1788 /* wait for the uuid_scan task to finish */ 1789 down(&fs_info->uuid_tree_rescan_sem); 1790 /* avoid complains from lockdep et al. */ 1791 up(&fs_info->uuid_tree_rescan_sem); 1792 1793 sb->s_flags |= SB_RDONLY; 1794 1795 /* 1796 * Setting SB_RDONLY will put the cleaner thread to 1797 * sleep at the next loop if it's already active. 1798 * If it's already asleep, we'll leave unused block 1799 * groups on disk until we're mounted read-write again 1800 * unless we clean them up here. 1801 */ 1802 btrfs_delete_unused_bgs(fs_info); 1803 1804 btrfs_dev_replace_suspend_for_unmount(fs_info); 1805 btrfs_scrub_cancel(fs_info); 1806 btrfs_pause_balance(fs_info); 1807 1808 ret = btrfs_commit_super(fs_info); 1809 if (ret) 1810 goto restore; 1811 } else { 1812 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1813 btrfs_err(fs_info, 1814 "Remounting read-write after error is not allowed"); 1815 ret = -EINVAL; 1816 goto restore; 1817 } 1818 if (fs_info->fs_devices->rw_devices == 0) { 1819 ret = -EACCES; 1820 goto restore; 1821 } 1822 1823 if (!btrfs_check_rw_degradable(fs_info)) { 1824 btrfs_warn(fs_info, 1825 "too many missing devices, writeable remount is not allowed"); 1826 ret = -EACCES; 1827 goto restore; 1828 } 1829 1830 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1831 ret = -EINVAL; 1832 goto restore; 1833 } 1834 1835 ret = btrfs_cleanup_fs_roots(fs_info); 1836 if (ret) 1837 goto restore; 1838 1839 /* recover relocation */ 1840 mutex_lock(&fs_info->cleaner_mutex); 1841 ret = btrfs_recover_relocation(root); 1842 mutex_unlock(&fs_info->cleaner_mutex); 1843 if (ret) 1844 goto restore; 1845 1846 ret = btrfs_resume_balance_async(fs_info); 1847 if (ret) 1848 goto restore; 1849 1850 ret = btrfs_resume_dev_replace_async(fs_info); 1851 if (ret) { 1852 btrfs_warn(fs_info, "failed to resume dev_replace"); 1853 goto restore; 1854 } 1855 1856 btrfs_qgroup_rescan_resume(fs_info); 1857 1858 if (!fs_info->uuid_root) { 1859 btrfs_info(fs_info, "creating UUID tree"); 1860 ret = btrfs_create_uuid_tree(fs_info); 1861 if (ret) { 1862 btrfs_warn(fs_info, 1863 "failed to create the UUID tree %d", 1864 ret); 1865 goto restore; 1866 } 1867 } 1868 sb->s_flags &= ~SB_RDONLY; 1869 1870 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1871 } 1872 out: 1873 wake_up_process(fs_info->transaction_kthread); 1874 btrfs_remount_cleanup(fs_info, old_opts); 1875 return 0; 1876 1877 restore: 1878 /* We've hit an error - don't reset SB_RDONLY */ 1879 if (sb_rdonly(sb)) 1880 old_flags |= SB_RDONLY; 1881 sb->s_flags = old_flags; 1882 fs_info->mount_opt = old_opts; 1883 fs_info->compress_type = old_compress_type; 1884 fs_info->max_inline = old_max_inline; 1885 btrfs_resize_thread_pool(fs_info, 1886 old_thread_pool_size, fs_info->thread_pool_size); 1887 fs_info->metadata_ratio = old_metadata_ratio; 1888 btrfs_remount_cleanup(fs_info, old_opts); 1889 return ret; 1890 } 1891 1892 /* Used to sort the devices by max_avail(descending sort) */ 1893 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1894 const void *dev_info2) 1895 { 1896 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1897 ((struct btrfs_device_info *)dev_info2)->max_avail) 1898 return -1; 1899 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1900 ((struct btrfs_device_info *)dev_info2)->max_avail) 1901 return 1; 1902 else 1903 return 0; 1904 } 1905 1906 /* 1907 * sort the devices by max_avail, in which max free extent size of each device 1908 * is stored.(Descending Sort) 1909 */ 1910 static inline void btrfs_descending_sort_devices( 1911 struct btrfs_device_info *devices, 1912 size_t nr_devices) 1913 { 1914 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1915 btrfs_cmp_device_free_bytes, NULL); 1916 } 1917 1918 /* 1919 * The helper to calc the free space on the devices that can be used to store 1920 * file data. 1921 */ 1922 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1923 u64 *free_bytes) 1924 { 1925 struct btrfs_device_info *devices_info; 1926 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1927 struct btrfs_device *device; 1928 u64 skip_space; 1929 u64 type; 1930 u64 avail_space; 1931 u64 min_stripe_size; 1932 int min_stripes = 1, num_stripes = 1; 1933 int i = 0, nr_devices; 1934 1935 /* 1936 * We aren't under the device list lock, so this is racy-ish, but good 1937 * enough for our purposes. 1938 */ 1939 nr_devices = fs_info->fs_devices->open_devices; 1940 if (!nr_devices) { 1941 smp_mb(); 1942 nr_devices = fs_info->fs_devices->open_devices; 1943 ASSERT(nr_devices); 1944 if (!nr_devices) { 1945 *free_bytes = 0; 1946 return 0; 1947 } 1948 } 1949 1950 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1951 GFP_KERNEL); 1952 if (!devices_info) 1953 return -ENOMEM; 1954 1955 /* calc min stripe number for data space allocation */ 1956 type = btrfs_data_alloc_profile(fs_info); 1957 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1958 min_stripes = 2; 1959 num_stripes = nr_devices; 1960 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1961 min_stripes = 2; 1962 num_stripes = 2; 1963 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1964 min_stripes = 4; 1965 num_stripes = 4; 1966 } 1967 1968 if (type & BTRFS_BLOCK_GROUP_DUP) 1969 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1970 else 1971 min_stripe_size = BTRFS_STRIPE_LEN; 1972 1973 rcu_read_lock(); 1974 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1975 if (!device->in_fs_metadata || !device->bdev || 1976 device->is_tgtdev_for_dev_replace) 1977 continue; 1978 1979 if (i >= nr_devices) 1980 break; 1981 1982 avail_space = device->total_bytes - device->bytes_used; 1983 1984 /* align with stripe_len */ 1985 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1986 avail_space *= BTRFS_STRIPE_LEN; 1987 1988 /* 1989 * In order to avoid overwriting the superblock on the drive, 1990 * btrfs starts at an offset of at least 1MB when doing chunk 1991 * allocation. 1992 */ 1993 skip_space = SZ_1M; 1994 1995 /* 1996 * we can use the free space in [0, skip_space - 1], subtract 1997 * it from the total. 1998 */ 1999 if (avail_space && avail_space >= skip_space) 2000 avail_space -= skip_space; 2001 else 2002 avail_space = 0; 2003 2004 if (avail_space < min_stripe_size) 2005 continue; 2006 2007 devices_info[i].dev = device; 2008 devices_info[i].max_avail = avail_space; 2009 2010 i++; 2011 } 2012 rcu_read_unlock(); 2013 2014 nr_devices = i; 2015 2016 btrfs_descending_sort_devices(devices_info, nr_devices); 2017 2018 i = nr_devices - 1; 2019 avail_space = 0; 2020 while (nr_devices >= min_stripes) { 2021 if (num_stripes > nr_devices) 2022 num_stripes = nr_devices; 2023 2024 if (devices_info[i].max_avail >= min_stripe_size) { 2025 int j; 2026 u64 alloc_size; 2027 2028 avail_space += devices_info[i].max_avail * num_stripes; 2029 alloc_size = devices_info[i].max_avail; 2030 for (j = i + 1 - num_stripes; j <= i; j++) 2031 devices_info[j].max_avail -= alloc_size; 2032 } 2033 i--; 2034 nr_devices--; 2035 } 2036 2037 kfree(devices_info); 2038 *free_bytes = avail_space; 2039 return 0; 2040 } 2041 2042 /* 2043 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2044 * 2045 * If there's a redundant raid level at DATA block groups, use the respective 2046 * multiplier to scale the sizes. 2047 * 2048 * Unused device space usage is based on simulating the chunk allocator 2049 * algorithm that respects the device sizes and order of allocations. This is 2050 * a close approximation of the actual use but there are other factors that may 2051 * change the result (like a new metadata chunk). 2052 * 2053 * If metadata is exhausted, f_bavail will be 0. 2054 */ 2055 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2056 { 2057 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2058 struct btrfs_super_block *disk_super = fs_info->super_copy; 2059 struct list_head *head = &fs_info->space_info; 2060 struct btrfs_space_info *found; 2061 u64 total_used = 0; 2062 u64 total_free_data = 0; 2063 u64 total_free_meta = 0; 2064 int bits = dentry->d_sb->s_blocksize_bits; 2065 __be32 *fsid = (__be32 *)fs_info->fsid; 2066 unsigned factor = 1; 2067 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2068 int ret; 2069 u64 thresh = 0; 2070 int mixed = 0; 2071 2072 rcu_read_lock(); 2073 list_for_each_entry_rcu(found, head, list) { 2074 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2075 int i; 2076 2077 total_free_data += found->disk_total - found->disk_used; 2078 total_free_data -= 2079 btrfs_account_ro_block_groups_free_space(found); 2080 2081 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2082 if (!list_empty(&found->block_groups[i])) { 2083 switch (i) { 2084 case BTRFS_RAID_DUP: 2085 case BTRFS_RAID_RAID1: 2086 case BTRFS_RAID_RAID10: 2087 factor = 2; 2088 } 2089 } 2090 } 2091 } 2092 2093 /* 2094 * Metadata in mixed block goup profiles are accounted in data 2095 */ 2096 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2097 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2098 mixed = 1; 2099 else 2100 total_free_meta += found->disk_total - 2101 found->disk_used; 2102 } 2103 2104 total_used += found->disk_used; 2105 } 2106 2107 rcu_read_unlock(); 2108 2109 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2110 buf->f_blocks >>= bits; 2111 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2112 2113 /* Account global block reserve as used, it's in logical size already */ 2114 spin_lock(&block_rsv->lock); 2115 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2116 if (buf->f_bfree >= block_rsv->size >> bits) 2117 buf->f_bfree -= block_rsv->size >> bits; 2118 else 2119 buf->f_bfree = 0; 2120 spin_unlock(&block_rsv->lock); 2121 2122 buf->f_bavail = div_u64(total_free_data, factor); 2123 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2124 if (ret) 2125 return ret; 2126 buf->f_bavail += div_u64(total_free_data, factor); 2127 buf->f_bavail = buf->f_bavail >> bits; 2128 2129 /* 2130 * We calculate the remaining metadata space minus global reserve. If 2131 * this is (supposedly) smaller than zero, there's no space. But this 2132 * does not hold in practice, the exhausted state happens where's still 2133 * some positive delta. So we apply some guesswork and compare the 2134 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2135 * 2136 * We probably cannot calculate the exact threshold value because this 2137 * depends on the internal reservations requested by various 2138 * operations, so some operations that consume a few metadata will 2139 * succeed even if the Avail is zero. But this is better than the other 2140 * way around. 2141 */ 2142 thresh = SZ_4M; 2143 2144 if (!mixed && total_free_meta - thresh < block_rsv->size) 2145 buf->f_bavail = 0; 2146 2147 buf->f_type = BTRFS_SUPER_MAGIC; 2148 buf->f_bsize = dentry->d_sb->s_blocksize; 2149 buf->f_namelen = BTRFS_NAME_LEN; 2150 2151 /* We treat it as constant endianness (it doesn't matter _which_) 2152 because we want the fsid to come out the same whether mounted 2153 on a big-endian or little-endian host */ 2154 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2155 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2156 /* Mask in the root object ID too, to disambiguate subvols */ 2157 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2158 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2159 2160 return 0; 2161 } 2162 2163 static void btrfs_kill_super(struct super_block *sb) 2164 { 2165 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2166 kill_anon_super(sb); 2167 free_fs_info(fs_info); 2168 } 2169 2170 static struct file_system_type btrfs_fs_type = { 2171 .owner = THIS_MODULE, 2172 .name = "btrfs", 2173 .mount = btrfs_mount, 2174 .kill_sb = btrfs_kill_super, 2175 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2176 }; 2177 MODULE_ALIAS_FS("btrfs"); 2178 2179 static int btrfs_control_open(struct inode *inode, struct file *file) 2180 { 2181 /* 2182 * The control file's private_data is used to hold the 2183 * transaction when it is started and is used to keep 2184 * track of whether a transaction is already in progress. 2185 */ 2186 file->private_data = NULL; 2187 return 0; 2188 } 2189 2190 /* 2191 * used by btrfsctl to scan devices when no FS is mounted 2192 */ 2193 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2194 unsigned long arg) 2195 { 2196 struct btrfs_ioctl_vol_args *vol; 2197 struct btrfs_fs_devices *fs_devices; 2198 int ret = -ENOTTY; 2199 2200 if (!capable(CAP_SYS_ADMIN)) 2201 return -EPERM; 2202 2203 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2204 if (IS_ERR(vol)) 2205 return PTR_ERR(vol); 2206 2207 switch (cmd) { 2208 case BTRFS_IOC_SCAN_DEV: 2209 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2210 &btrfs_fs_type, &fs_devices); 2211 break; 2212 case BTRFS_IOC_DEVICES_READY: 2213 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2214 &btrfs_fs_type, &fs_devices); 2215 if (ret) 2216 break; 2217 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2218 break; 2219 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2220 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2221 break; 2222 } 2223 2224 kfree(vol); 2225 return ret; 2226 } 2227 2228 static int btrfs_freeze(struct super_block *sb) 2229 { 2230 struct btrfs_trans_handle *trans; 2231 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2232 struct btrfs_root *root = fs_info->tree_root; 2233 2234 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2235 /* 2236 * We don't need a barrier here, we'll wait for any transaction that 2237 * could be in progress on other threads (and do delayed iputs that 2238 * we want to avoid on a frozen filesystem), or do the commit 2239 * ourselves. 2240 */ 2241 trans = btrfs_attach_transaction_barrier(root); 2242 if (IS_ERR(trans)) { 2243 /* no transaction, don't bother */ 2244 if (PTR_ERR(trans) == -ENOENT) 2245 return 0; 2246 return PTR_ERR(trans); 2247 } 2248 return btrfs_commit_transaction(trans); 2249 } 2250 2251 static int btrfs_unfreeze(struct super_block *sb) 2252 { 2253 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2254 2255 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2256 return 0; 2257 } 2258 2259 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2260 { 2261 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2262 struct btrfs_fs_devices *cur_devices; 2263 struct btrfs_device *dev, *first_dev = NULL; 2264 struct list_head *head; 2265 struct rcu_string *name; 2266 2267 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2268 cur_devices = fs_info->fs_devices; 2269 while (cur_devices) { 2270 head = &cur_devices->devices; 2271 list_for_each_entry(dev, head, dev_list) { 2272 if (dev->missing) 2273 continue; 2274 if (!dev->name) 2275 continue; 2276 if (!first_dev || dev->devid < first_dev->devid) 2277 first_dev = dev; 2278 } 2279 cur_devices = cur_devices->seed; 2280 } 2281 2282 if (first_dev) { 2283 rcu_read_lock(); 2284 name = rcu_dereference(first_dev->name); 2285 seq_escape(m, name->str, " \t\n\\"); 2286 rcu_read_unlock(); 2287 } else { 2288 WARN_ON(1); 2289 } 2290 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2291 return 0; 2292 } 2293 2294 static const struct super_operations btrfs_super_ops = { 2295 .drop_inode = btrfs_drop_inode, 2296 .evict_inode = btrfs_evict_inode, 2297 .put_super = btrfs_put_super, 2298 .sync_fs = btrfs_sync_fs, 2299 .show_options = btrfs_show_options, 2300 .show_devname = btrfs_show_devname, 2301 .write_inode = btrfs_write_inode, 2302 .alloc_inode = btrfs_alloc_inode, 2303 .destroy_inode = btrfs_destroy_inode, 2304 .statfs = btrfs_statfs, 2305 .remount_fs = btrfs_remount, 2306 .freeze_fs = btrfs_freeze, 2307 .unfreeze_fs = btrfs_unfreeze, 2308 }; 2309 2310 static const struct file_operations btrfs_ctl_fops = { 2311 .open = btrfs_control_open, 2312 .unlocked_ioctl = btrfs_control_ioctl, 2313 .compat_ioctl = btrfs_control_ioctl, 2314 .owner = THIS_MODULE, 2315 .llseek = noop_llseek, 2316 }; 2317 2318 static struct miscdevice btrfs_misc = { 2319 .minor = BTRFS_MINOR, 2320 .name = "btrfs-control", 2321 .fops = &btrfs_ctl_fops 2322 }; 2323 2324 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2325 MODULE_ALIAS("devname:btrfs-control"); 2326 2327 static int btrfs_interface_init(void) 2328 { 2329 return misc_register(&btrfs_misc); 2330 } 2331 2332 static void btrfs_interface_exit(void) 2333 { 2334 misc_deregister(&btrfs_misc); 2335 } 2336 2337 static void btrfs_print_mod_info(void) 2338 { 2339 pr_info("Btrfs loaded, crc32c=%s" 2340 #ifdef CONFIG_BTRFS_DEBUG 2341 ", debug=on" 2342 #endif 2343 #ifdef CONFIG_BTRFS_ASSERT 2344 ", assert=on" 2345 #endif 2346 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2347 ", integrity-checker=on" 2348 #endif 2349 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2350 ", ref-verify=on" 2351 #endif 2352 "\n", 2353 btrfs_crc32c_impl()); 2354 } 2355 2356 static int __init init_btrfs_fs(void) 2357 { 2358 int err; 2359 2360 err = btrfs_hash_init(); 2361 if (err) 2362 return err; 2363 2364 btrfs_props_init(); 2365 2366 err = btrfs_init_sysfs(); 2367 if (err) 2368 goto free_hash; 2369 2370 btrfs_init_compress(); 2371 2372 err = btrfs_init_cachep(); 2373 if (err) 2374 goto free_compress; 2375 2376 err = extent_io_init(); 2377 if (err) 2378 goto free_cachep; 2379 2380 err = extent_map_init(); 2381 if (err) 2382 goto free_extent_io; 2383 2384 err = ordered_data_init(); 2385 if (err) 2386 goto free_extent_map; 2387 2388 err = btrfs_delayed_inode_init(); 2389 if (err) 2390 goto free_ordered_data; 2391 2392 err = btrfs_auto_defrag_init(); 2393 if (err) 2394 goto free_delayed_inode; 2395 2396 err = btrfs_delayed_ref_init(); 2397 if (err) 2398 goto free_auto_defrag; 2399 2400 err = btrfs_prelim_ref_init(); 2401 if (err) 2402 goto free_delayed_ref; 2403 2404 err = btrfs_end_io_wq_init(); 2405 if (err) 2406 goto free_prelim_ref; 2407 2408 err = btrfs_interface_init(); 2409 if (err) 2410 goto free_end_io_wq; 2411 2412 btrfs_init_lockdep(); 2413 2414 btrfs_print_mod_info(); 2415 2416 err = btrfs_run_sanity_tests(); 2417 if (err) 2418 goto unregister_ioctl; 2419 2420 err = register_filesystem(&btrfs_fs_type); 2421 if (err) 2422 goto unregister_ioctl; 2423 2424 return 0; 2425 2426 unregister_ioctl: 2427 btrfs_interface_exit(); 2428 free_end_io_wq: 2429 btrfs_end_io_wq_exit(); 2430 free_prelim_ref: 2431 btrfs_prelim_ref_exit(); 2432 free_delayed_ref: 2433 btrfs_delayed_ref_exit(); 2434 free_auto_defrag: 2435 btrfs_auto_defrag_exit(); 2436 free_delayed_inode: 2437 btrfs_delayed_inode_exit(); 2438 free_ordered_data: 2439 ordered_data_exit(); 2440 free_extent_map: 2441 extent_map_exit(); 2442 free_extent_io: 2443 extent_io_exit(); 2444 free_cachep: 2445 btrfs_destroy_cachep(); 2446 free_compress: 2447 btrfs_exit_compress(); 2448 btrfs_exit_sysfs(); 2449 free_hash: 2450 btrfs_hash_exit(); 2451 return err; 2452 } 2453 2454 static void __exit exit_btrfs_fs(void) 2455 { 2456 btrfs_destroy_cachep(); 2457 btrfs_delayed_ref_exit(); 2458 btrfs_auto_defrag_exit(); 2459 btrfs_delayed_inode_exit(); 2460 btrfs_prelim_ref_exit(); 2461 ordered_data_exit(); 2462 extent_map_exit(); 2463 extent_io_exit(); 2464 btrfs_interface_exit(); 2465 btrfs_end_io_wq_exit(); 2466 unregister_filesystem(&btrfs_fs_type); 2467 btrfs_exit_sysfs(); 2468 btrfs_cleanup_fs_uuids(); 2469 btrfs_exit_compress(); 2470 btrfs_hash_exit(); 2471 } 2472 2473 late_initcall(init_btrfs_fs); 2474 module_exit(exit_btrfs_fs) 2475 2476 MODULE_LICENSE("GPL"); 2477