xref: /openbmc/linux/fs/btrfs/super.c (revision 6189f1b0)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
72 static const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102 	/*
103 	 * today we only save the error info into ram.  Long term we'll
104 	 * also send it down to the disk
105 	 */
106 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107 }
108 
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 	struct super_block *sb = fs_info->sb;
113 
114 	if (sb->s_flags & MS_RDONLY)
115 		return;
116 
117 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 		sb->s_flags |= MS_RDONLY;
119 		btrfs_info(fs_info, "forced readonly");
120 		/*
121 		 * Note that a running device replace operation is not
122 		 * canceled here although there is no way to update
123 		 * the progress. It would add the risk of a deadlock,
124 		 * therefore the canceling is ommited. The only penalty
125 		 * is that some I/O remains active until the procedure
126 		 * completes. The next time when the filesystem is
127 		 * mounted writeable again, the device replace
128 		 * operation continues.
129 		 */
130 	}
131 }
132 
133 #ifdef CONFIG_PRINTK
134 /*
135  * __btrfs_std_error decodes expected errors from the caller and
136  * invokes the approciate error response.
137  */
138 __cold
139 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
140 		       unsigned int line, int errno, const char *fmt, ...)
141 {
142 	struct super_block *sb = fs_info->sb;
143 	const char *errstr;
144 
145 	/*
146 	 * Special case: if the error is EROFS, and we're already
147 	 * under MS_RDONLY, then it is safe here.
148 	 */
149 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
150   		return;
151 
152 	errstr = btrfs_decode_error(errno);
153 	if (fmt) {
154 		struct va_format vaf;
155 		va_list args;
156 
157 		va_start(args, fmt);
158 		vaf.fmt = fmt;
159 		vaf.va = &args;
160 
161 		printk(KERN_CRIT
162 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
163 			sb->s_id, function, line, errno, errstr, &vaf);
164 		va_end(args);
165 	} else {
166 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
167 			sb->s_id, function, line, errno, errstr);
168 	}
169 
170 	/* Don't go through full error handling during mount */
171 	save_error_info(fs_info);
172 	if (sb->s_flags & MS_BORN)
173 		btrfs_handle_error(fs_info);
174 }
175 
176 static const char * const logtypes[] = {
177 	"emergency",
178 	"alert",
179 	"critical",
180 	"error",
181 	"warning",
182 	"notice",
183 	"info",
184 	"debug",
185 };
186 
187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189 	struct super_block *sb = fs_info->sb;
190 	char lvl[4];
191 	struct va_format vaf;
192 	va_list args;
193 	const char *type = logtypes[4];
194 	int kern_level;
195 
196 	va_start(args, fmt);
197 
198 	kern_level = printk_get_level(fmt);
199 	if (kern_level) {
200 		size_t size = printk_skip_level(fmt) - fmt;
201 		memcpy(lvl, fmt,  size);
202 		lvl[size] = '\0';
203 		fmt += size;
204 		type = logtypes[kern_level - '0'];
205 	} else
206 		*lvl = '\0';
207 
208 	vaf.fmt = fmt;
209 	vaf.va = &args;
210 
211 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
212 
213 	va_end(args);
214 }
215 
216 #else
217 
218 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
219 		       unsigned int line, int errno, const char *fmt, ...)
220 {
221 	struct super_block *sb = fs_info->sb;
222 
223 	/*
224 	 * Special case: if the error is EROFS, and we're already
225 	 * under MS_RDONLY, then it is safe here.
226 	 */
227 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
228 		return;
229 
230 	/* Don't go through full error handling during mount */
231 	if (sb->s_flags & MS_BORN) {
232 		save_error_info(fs_info);
233 		btrfs_handle_error(fs_info);
234 	}
235 }
236 #endif
237 
238 /*
239  * We only mark the transaction aborted and then set the file system read-only.
240  * This will prevent new transactions from starting or trying to join this
241  * one.
242  *
243  * This means that error recovery at the call site is limited to freeing
244  * any local memory allocations and passing the error code up without
245  * further cleanup. The transaction should complete as it normally would
246  * in the call path but will return -EIO.
247  *
248  * We'll complete the cleanup in btrfs_end_transaction and
249  * btrfs_commit_transaction.
250  */
251 __cold
252 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
253 			       struct btrfs_root *root, const char *function,
254 			       unsigned int line, int errno)
255 {
256 	trans->aborted = errno;
257 	/* Nothing used. The other threads that have joined this
258 	 * transaction may be able to continue. */
259 	if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
260 		const char *errstr;
261 
262 		errstr = btrfs_decode_error(errno);
263 		btrfs_warn(root->fs_info,
264 		           "%s:%d: Aborting unused transaction(%s).",
265 		           function, line, errstr);
266 		return;
267 	}
268 	ACCESS_ONCE(trans->transaction->aborted) = errno;
269 	/* Wake up anybody who may be waiting on this transaction */
270 	wake_up(&root->fs_info->transaction_wait);
271 	wake_up(&root->fs_info->transaction_blocked_wait);
272 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
273 }
274 /*
275  * __btrfs_panic decodes unexpected, fatal errors from the caller,
276  * issues an alert, and either panics or BUGs, depending on mount options.
277  */
278 __cold
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280 		   unsigned int line, int errno, const char *fmt, ...)
281 {
282 	char *s_id = "<unknown>";
283 	const char *errstr;
284 	struct va_format vaf = { .fmt = fmt };
285 	va_list args;
286 
287 	if (fs_info)
288 		s_id = fs_info->sb->s_id;
289 
290 	va_start(args, fmt);
291 	vaf.va = &args;
292 
293 	errstr = btrfs_decode_error(errno);
294 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296 			s_id, function, line, &vaf, errno, errstr);
297 
298 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299 		   function, line, &vaf, errno, errstr);
300 	va_end(args);
301 	/* Caller calls BUG() */
302 }
303 
304 static void btrfs_put_super(struct super_block *sb)
305 {
306 	close_ctree(btrfs_sb(sb)->tree_root);
307 }
308 
309 enum {
310 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
311 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
312 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
313 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
314 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
315 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
316 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
317 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
318 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
319 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
320 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
321 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
322 	Opt_datasum, Opt_treelog, Opt_noinode_cache,
323 	Opt_err,
324 };
325 
326 static match_table_t tokens = {
327 	{Opt_degraded, "degraded"},
328 	{Opt_subvol, "subvol=%s"},
329 	{Opt_subvolid, "subvolid=%s"},
330 	{Opt_device, "device=%s"},
331 	{Opt_nodatasum, "nodatasum"},
332 	{Opt_datasum, "datasum"},
333 	{Opt_nodatacow, "nodatacow"},
334 	{Opt_datacow, "datacow"},
335 	{Opt_nobarrier, "nobarrier"},
336 	{Opt_barrier, "barrier"},
337 	{Opt_max_inline, "max_inline=%s"},
338 	{Opt_alloc_start, "alloc_start=%s"},
339 	{Opt_thread_pool, "thread_pool=%d"},
340 	{Opt_compress, "compress"},
341 	{Opt_compress_type, "compress=%s"},
342 	{Opt_compress_force, "compress-force"},
343 	{Opt_compress_force_type, "compress-force=%s"},
344 	{Opt_ssd, "ssd"},
345 	{Opt_ssd_spread, "ssd_spread"},
346 	{Opt_nossd, "nossd"},
347 	{Opt_acl, "acl"},
348 	{Opt_noacl, "noacl"},
349 	{Opt_notreelog, "notreelog"},
350 	{Opt_treelog, "treelog"},
351 	{Opt_flushoncommit, "flushoncommit"},
352 	{Opt_noflushoncommit, "noflushoncommit"},
353 	{Opt_ratio, "metadata_ratio=%d"},
354 	{Opt_discard, "discard"},
355 	{Opt_nodiscard, "nodiscard"},
356 	{Opt_space_cache, "space_cache"},
357 	{Opt_clear_cache, "clear_cache"},
358 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
359 	{Opt_enospc_debug, "enospc_debug"},
360 	{Opt_noenospc_debug, "noenospc_debug"},
361 	{Opt_subvolrootid, "subvolrootid=%d"},
362 	{Opt_defrag, "autodefrag"},
363 	{Opt_nodefrag, "noautodefrag"},
364 	{Opt_inode_cache, "inode_cache"},
365 	{Opt_noinode_cache, "noinode_cache"},
366 	{Opt_no_space_cache, "nospace_cache"},
367 	{Opt_recovery, "recovery"},
368 	{Opt_skip_balance, "skip_balance"},
369 	{Opt_check_integrity, "check_int"},
370 	{Opt_check_integrity_including_extent_data, "check_int_data"},
371 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
372 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
373 	{Opt_fatal_errors, "fatal_errors=%s"},
374 	{Opt_commit_interval, "commit=%d"},
375 	{Opt_err, NULL},
376 };
377 
378 /*
379  * Regular mount options parser.  Everything that is needed only when
380  * reading in a new superblock is parsed here.
381  * XXX JDM: This needs to be cleaned up for remount.
382  */
383 int btrfs_parse_options(struct btrfs_root *root, char *options)
384 {
385 	struct btrfs_fs_info *info = root->fs_info;
386 	substring_t args[MAX_OPT_ARGS];
387 	char *p, *num, *orig = NULL;
388 	u64 cache_gen;
389 	int intarg;
390 	int ret = 0;
391 	char *compress_type;
392 	bool compress_force = false;
393 
394 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
395 	if (cache_gen)
396 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
397 
398 	if (!options)
399 		goto out;
400 
401 	/*
402 	 * strsep changes the string, duplicate it because parse_options
403 	 * gets called twice
404 	 */
405 	options = kstrdup(options, GFP_NOFS);
406 	if (!options)
407 		return -ENOMEM;
408 
409 	orig = options;
410 
411 	while ((p = strsep(&options, ",")) != NULL) {
412 		int token;
413 		if (!*p)
414 			continue;
415 
416 		token = match_token(p, tokens, args);
417 		switch (token) {
418 		case Opt_degraded:
419 			btrfs_info(root->fs_info, "allowing degraded mounts");
420 			btrfs_set_opt(info->mount_opt, DEGRADED);
421 			break;
422 		case Opt_subvol:
423 		case Opt_subvolid:
424 		case Opt_subvolrootid:
425 		case Opt_device:
426 			/*
427 			 * These are parsed by btrfs_parse_early_options
428 			 * and can be happily ignored here.
429 			 */
430 			break;
431 		case Opt_nodatasum:
432 			btrfs_set_and_info(root, NODATASUM,
433 					   "setting nodatasum");
434 			break;
435 		case Opt_datasum:
436 			if (btrfs_test_opt(root, NODATASUM)) {
437 				if (btrfs_test_opt(root, NODATACOW))
438 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
439 				else
440 					btrfs_info(root->fs_info, "setting datasum");
441 			}
442 			btrfs_clear_opt(info->mount_opt, NODATACOW);
443 			btrfs_clear_opt(info->mount_opt, NODATASUM);
444 			break;
445 		case Opt_nodatacow:
446 			if (!btrfs_test_opt(root, NODATACOW)) {
447 				if (!btrfs_test_opt(root, COMPRESS) ||
448 				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
449 					btrfs_info(root->fs_info,
450 						   "setting nodatacow, compression disabled");
451 				} else {
452 					btrfs_info(root->fs_info, "setting nodatacow");
453 				}
454 			}
455 			btrfs_clear_opt(info->mount_opt, COMPRESS);
456 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
457 			btrfs_set_opt(info->mount_opt, NODATACOW);
458 			btrfs_set_opt(info->mount_opt, NODATASUM);
459 			break;
460 		case Opt_datacow:
461 			btrfs_clear_and_info(root, NODATACOW,
462 					     "setting datacow");
463 			break;
464 		case Opt_compress_force:
465 		case Opt_compress_force_type:
466 			compress_force = true;
467 			/* Fallthrough */
468 		case Opt_compress:
469 		case Opt_compress_type:
470 			if (token == Opt_compress ||
471 			    token == Opt_compress_force ||
472 			    strcmp(args[0].from, "zlib") == 0) {
473 				compress_type = "zlib";
474 				info->compress_type = BTRFS_COMPRESS_ZLIB;
475 				btrfs_set_opt(info->mount_opt, COMPRESS);
476 				btrfs_clear_opt(info->mount_opt, NODATACOW);
477 				btrfs_clear_opt(info->mount_opt, NODATASUM);
478 			} else if (strcmp(args[0].from, "lzo") == 0) {
479 				compress_type = "lzo";
480 				info->compress_type = BTRFS_COMPRESS_LZO;
481 				btrfs_set_opt(info->mount_opt, COMPRESS);
482 				btrfs_clear_opt(info->mount_opt, NODATACOW);
483 				btrfs_clear_opt(info->mount_opt, NODATASUM);
484 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
485 			} else if (strncmp(args[0].from, "no", 2) == 0) {
486 				compress_type = "no";
487 				btrfs_clear_opt(info->mount_opt, COMPRESS);
488 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
489 				compress_force = false;
490 			} else {
491 				ret = -EINVAL;
492 				goto out;
493 			}
494 
495 			if (compress_force) {
496 				btrfs_set_and_info(root, FORCE_COMPRESS,
497 						   "force %s compression",
498 						   compress_type);
499 			} else {
500 				if (!btrfs_test_opt(root, COMPRESS))
501 					btrfs_info(root->fs_info,
502 						   "btrfs: use %s compression",
503 						   compress_type);
504 				/*
505 				 * If we remount from compress-force=xxx to
506 				 * compress=xxx, we need clear FORCE_COMPRESS
507 				 * flag, otherwise, there is no way for users
508 				 * to disable forcible compression separately.
509 				 */
510 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
511 			}
512 			break;
513 		case Opt_ssd:
514 			btrfs_set_and_info(root, SSD,
515 					   "use ssd allocation scheme");
516 			break;
517 		case Opt_ssd_spread:
518 			btrfs_set_and_info(root, SSD_SPREAD,
519 					   "use spread ssd allocation scheme");
520 			btrfs_set_opt(info->mount_opt, SSD);
521 			break;
522 		case Opt_nossd:
523 			btrfs_set_and_info(root, NOSSD,
524 					     "not using ssd allocation scheme");
525 			btrfs_clear_opt(info->mount_opt, SSD);
526 			break;
527 		case Opt_barrier:
528 			btrfs_clear_and_info(root, NOBARRIER,
529 					     "turning on barriers");
530 			break;
531 		case Opt_nobarrier:
532 			btrfs_set_and_info(root, NOBARRIER,
533 					   "turning off barriers");
534 			break;
535 		case Opt_thread_pool:
536 			ret = match_int(&args[0], &intarg);
537 			if (ret) {
538 				goto out;
539 			} else if (intarg > 0) {
540 				info->thread_pool_size = intarg;
541 			} else {
542 				ret = -EINVAL;
543 				goto out;
544 			}
545 			break;
546 		case Opt_max_inline:
547 			num = match_strdup(&args[0]);
548 			if (num) {
549 				info->max_inline = memparse(num, NULL);
550 				kfree(num);
551 
552 				if (info->max_inline) {
553 					info->max_inline = min_t(u64,
554 						info->max_inline,
555 						root->sectorsize);
556 				}
557 				btrfs_info(root->fs_info, "max_inline at %llu",
558 					info->max_inline);
559 			} else {
560 				ret = -ENOMEM;
561 				goto out;
562 			}
563 			break;
564 		case Opt_alloc_start:
565 			num = match_strdup(&args[0]);
566 			if (num) {
567 				mutex_lock(&info->chunk_mutex);
568 				info->alloc_start = memparse(num, NULL);
569 				mutex_unlock(&info->chunk_mutex);
570 				kfree(num);
571 				btrfs_info(root->fs_info, "allocations start at %llu",
572 					info->alloc_start);
573 			} else {
574 				ret = -ENOMEM;
575 				goto out;
576 			}
577 			break;
578 		case Opt_acl:
579 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
580 			root->fs_info->sb->s_flags |= MS_POSIXACL;
581 			break;
582 #else
583 			btrfs_err(root->fs_info,
584 				"support for ACL not compiled in!");
585 			ret = -EINVAL;
586 			goto out;
587 #endif
588 		case Opt_noacl:
589 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
590 			break;
591 		case Opt_notreelog:
592 			btrfs_set_and_info(root, NOTREELOG,
593 					   "disabling tree log");
594 			break;
595 		case Opt_treelog:
596 			btrfs_clear_and_info(root, NOTREELOG,
597 					     "enabling tree log");
598 			break;
599 		case Opt_flushoncommit:
600 			btrfs_set_and_info(root, FLUSHONCOMMIT,
601 					   "turning on flush-on-commit");
602 			break;
603 		case Opt_noflushoncommit:
604 			btrfs_clear_and_info(root, FLUSHONCOMMIT,
605 					     "turning off flush-on-commit");
606 			break;
607 		case Opt_ratio:
608 			ret = match_int(&args[0], &intarg);
609 			if (ret) {
610 				goto out;
611 			} else if (intarg >= 0) {
612 				info->metadata_ratio = intarg;
613 				btrfs_info(root->fs_info, "metadata ratio %d",
614 				       info->metadata_ratio);
615 			} else {
616 				ret = -EINVAL;
617 				goto out;
618 			}
619 			break;
620 		case Opt_discard:
621 			btrfs_set_and_info(root, DISCARD,
622 					   "turning on discard");
623 			break;
624 		case Opt_nodiscard:
625 			btrfs_clear_and_info(root, DISCARD,
626 					     "turning off discard");
627 			break;
628 		case Opt_space_cache:
629 			btrfs_set_and_info(root, SPACE_CACHE,
630 					   "enabling disk space caching");
631 			break;
632 		case Opt_rescan_uuid_tree:
633 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
634 			break;
635 		case Opt_no_space_cache:
636 			btrfs_clear_and_info(root, SPACE_CACHE,
637 					     "disabling disk space caching");
638 			break;
639 		case Opt_inode_cache:
640 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
641 					   "enabling inode map caching");
642 			break;
643 		case Opt_noinode_cache:
644 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
645 					     "disabling inode map caching");
646 			break;
647 		case Opt_clear_cache:
648 			btrfs_set_and_info(root, CLEAR_CACHE,
649 					   "force clearing of disk cache");
650 			break;
651 		case Opt_user_subvol_rm_allowed:
652 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
653 			break;
654 		case Opt_enospc_debug:
655 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
656 			break;
657 		case Opt_noenospc_debug:
658 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
659 			break;
660 		case Opt_defrag:
661 			btrfs_set_and_info(root, AUTO_DEFRAG,
662 					   "enabling auto defrag");
663 			break;
664 		case Opt_nodefrag:
665 			btrfs_clear_and_info(root, AUTO_DEFRAG,
666 					     "disabling auto defrag");
667 			break;
668 		case Opt_recovery:
669 			btrfs_info(root->fs_info, "enabling auto recovery");
670 			btrfs_set_opt(info->mount_opt, RECOVERY);
671 			break;
672 		case Opt_skip_balance:
673 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
674 			break;
675 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
676 		case Opt_check_integrity_including_extent_data:
677 			btrfs_info(root->fs_info,
678 				   "enabling check integrity including extent data");
679 			btrfs_set_opt(info->mount_opt,
680 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
681 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
682 			break;
683 		case Opt_check_integrity:
684 			btrfs_info(root->fs_info, "enabling check integrity");
685 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
686 			break;
687 		case Opt_check_integrity_print_mask:
688 			ret = match_int(&args[0], &intarg);
689 			if (ret) {
690 				goto out;
691 			} else if (intarg >= 0) {
692 				info->check_integrity_print_mask = intarg;
693 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
694 				       info->check_integrity_print_mask);
695 			} else {
696 				ret = -EINVAL;
697 				goto out;
698 			}
699 			break;
700 #else
701 		case Opt_check_integrity_including_extent_data:
702 		case Opt_check_integrity:
703 		case Opt_check_integrity_print_mask:
704 			btrfs_err(root->fs_info,
705 				"support for check_integrity* not compiled in!");
706 			ret = -EINVAL;
707 			goto out;
708 #endif
709 		case Opt_fatal_errors:
710 			if (strcmp(args[0].from, "panic") == 0)
711 				btrfs_set_opt(info->mount_opt,
712 					      PANIC_ON_FATAL_ERROR);
713 			else if (strcmp(args[0].from, "bug") == 0)
714 				btrfs_clear_opt(info->mount_opt,
715 					      PANIC_ON_FATAL_ERROR);
716 			else {
717 				ret = -EINVAL;
718 				goto out;
719 			}
720 			break;
721 		case Opt_commit_interval:
722 			intarg = 0;
723 			ret = match_int(&args[0], &intarg);
724 			if (ret < 0) {
725 				btrfs_err(root->fs_info, "invalid commit interval");
726 				ret = -EINVAL;
727 				goto out;
728 			}
729 			if (intarg > 0) {
730 				if (intarg > 300) {
731 					btrfs_warn(root->fs_info, "excessive commit interval %d",
732 							intarg);
733 				}
734 				info->commit_interval = intarg;
735 			} else {
736 				btrfs_info(root->fs_info, "using default commit interval %ds",
737 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
738 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
739 			}
740 			break;
741 		case Opt_err:
742 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
743 			ret = -EINVAL;
744 			goto out;
745 		default:
746 			break;
747 		}
748 	}
749 out:
750 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
751 		btrfs_info(root->fs_info, "disk space caching is enabled");
752 	kfree(orig);
753 	return ret;
754 }
755 
756 /*
757  * Parse mount options that are required early in the mount process.
758  *
759  * All other options will be parsed on much later in the mount process and
760  * only when we need to allocate a new super block.
761  */
762 static int btrfs_parse_early_options(const char *options, fmode_t flags,
763 		void *holder, char **subvol_name, u64 *subvol_objectid,
764 		struct btrfs_fs_devices **fs_devices)
765 {
766 	substring_t args[MAX_OPT_ARGS];
767 	char *device_name, *opts, *orig, *p;
768 	char *num = NULL;
769 	int error = 0;
770 
771 	if (!options)
772 		return 0;
773 
774 	/*
775 	 * strsep changes the string, duplicate it because parse_options
776 	 * gets called twice
777 	 */
778 	opts = kstrdup(options, GFP_KERNEL);
779 	if (!opts)
780 		return -ENOMEM;
781 	orig = opts;
782 
783 	while ((p = strsep(&opts, ",")) != NULL) {
784 		int token;
785 		if (!*p)
786 			continue;
787 
788 		token = match_token(p, tokens, args);
789 		switch (token) {
790 		case Opt_subvol:
791 			kfree(*subvol_name);
792 			*subvol_name = match_strdup(&args[0]);
793 			if (!*subvol_name) {
794 				error = -ENOMEM;
795 				goto out;
796 			}
797 			break;
798 		case Opt_subvolid:
799 			num = match_strdup(&args[0]);
800 			if (num) {
801 				*subvol_objectid = memparse(num, NULL);
802 				kfree(num);
803 				/* we want the original fs_tree */
804 				if (!*subvol_objectid)
805 					*subvol_objectid =
806 						BTRFS_FS_TREE_OBJECTID;
807 			} else {
808 				error = -EINVAL;
809 				goto out;
810 			}
811 			break;
812 		case Opt_subvolrootid:
813 			printk(KERN_WARNING
814 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
815 				"no effect\n");
816 			break;
817 		case Opt_device:
818 			device_name = match_strdup(&args[0]);
819 			if (!device_name) {
820 				error = -ENOMEM;
821 				goto out;
822 			}
823 			error = btrfs_scan_one_device(device_name,
824 					flags, holder, fs_devices);
825 			kfree(device_name);
826 			if (error)
827 				goto out;
828 			break;
829 		default:
830 			break;
831 		}
832 	}
833 
834 out:
835 	kfree(orig);
836 	return error;
837 }
838 
839 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
840 					   u64 subvol_objectid)
841 {
842 	struct btrfs_root *root = fs_info->tree_root;
843 	struct btrfs_root *fs_root;
844 	struct btrfs_root_ref *root_ref;
845 	struct btrfs_inode_ref *inode_ref;
846 	struct btrfs_key key;
847 	struct btrfs_path *path = NULL;
848 	char *name = NULL, *ptr;
849 	u64 dirid;
850 	int len;
851 	int ret;
852 
853 	path = btrfs_alloc_path();
854 	if (!path) {
855 		ret = -ENOMEM;
856 		goto err;
857 	}
858 	path->leave_spinning = 1;
859 
860 	name = kmalloc(PATH_MAX, GFP_NOFS);
861 	if (!name) {
862 		ret = -ENOMEM;
863 		goto err;
864 	}
865 	ptr = name + PATH_MAX - 1;
866 	ptr[0] = '\0';
867 
868 	/*
869 	 * Walk up the subvolume trees in the tree of tree roots by root
870 	 * backrefs until we hit the top-level subvolume.
871 	 */
872 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
873 		key.objectid = subvol_objectid;
874 		key.type = BTRFS_ROOT_BACKREF_KEY;
875 		key.offset = (u64)-1;
876 
877 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
878 		if (ret < 0) {
879 			goto err;
880 		} else if (ret > 0) {
881 			ret = btrfs_previous_item(root, path, subvol_objectid,
882 						  BTRFS_ROOT_BACKREF_KEY);
883 			if (ret < 0) {
884 				goto err;
885 			} else if (ret > 0) {
886 				ret = -ENOENT;
887 				goto err;
888 			}
889 		}
890 
891 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
892 		subvol_objectid = key.offset;
893 
894 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
895 					  struct btrfs_root_ref);
896 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
897 		ptr -= len + 1;
898 		if (ptr < name) {
899 			ret = -ENAMETOOLONG;
900 			goto err;
901 		}
902 		read_extent_buffer(path->nodes[0], ptr + 1,
903 				   (unsigned long)(root_ref + 1), len);
904 		ptr[0] = '/';
905 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
906 		btrfs_release_path(path);
907 
908 		key.objectid = subvol_objectid;
909 		key.type = BTRFS_ROOT_ITEM_KEY;
910 		key.offset = (u64)-1;
911 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
912 		if (IS_ERR(fs_root)) {
913 			ret = PTR_ERR(fs_root);
914 			goto err;
915 		}
916 
917 		/*
918 		 * Walk up the filesystem tree by inode refs until we hit the
919 		 * root directory.
920 		 */
921 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
922 			key.objectid = dirid;
923 			key.type = BTRFS_INODE_REF_KEY;
924 			key.offset = (u64)-1;
925 
926 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
927 			if (ret < 0) {
928 				goto err;
929 			} else if (ret > 0) {
930 				ret = btrfs_previous_item(fs_root, path, dirid,
931 							  BTRFS_INODE_REF_KEY);
932 				if (ret < 0) {
933 					goto err;
934 				} else if (ret > 0) {
935 					ret = -ENOENT;
936 					goto err;
937 				}
938 			}
939 
940 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
941 			dirid = key.offset;
942 
943 			inode_ref = btrfs_item_ptr(path->nodes[0],
944 						   path->slots[0],
945 						   struct btrfs_inode_ref);
946 			len = btrfs_inode_ref_name_len(path->nodes[0],
947 						       inode_ref);
948 			ptr -= len + 1;
949 			if (ptr < name) {
950 				ret = -ENAMETOOLONG;
951 				goto err;
952 			}
953 			read_extent_buffer(path->nodes[0], ptr + 1,
954 					   (unsigned long)(inode_ref + 1), len);
955 			ptr[0] = '/';
956 			btrfs_release_path(path);
957 		}
958 	}
959 
960 	btrfs_free_path(path);
961 	if (ptr == name + PATH_MAX - 1) {
962 		name[0] = '/';
963 		name[1] = '\0';
964 	} else {
965 		memmove(name, ptr, name + PATH_MAX - ptr);
966 	}
967 	return name;
968 
969 err:
970 	btrfs_free_path(path);
971 	kfree(name);
972 	return ERR_PTR(ret);
973 }
974 
975 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
976 {
977 	struct btrfs_root *root = fs_info->tree_root;
978 	struct btrfs_dir_item *di;
979 	struct btrfs_path *path;
980 	struct btrfs_key location;
981 	u64 dir_id;
982 
983 	path = btrfs_alloc_path();
984 	if (!path)
985 		return -ENOMEM;
986 	path->leave_spinning = 1;
987 
988 	/*
989 	 * Find the "default" dir item which points to the root item that we
990 	 * will mount by default if we haven't been given a specific subvolume
991 	 * to mount.
992 	 */
993 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
994 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
995 	if (IS_ERR(di)) {
996 		btrfs_free_path(path);
997 		return PTR_ERR(di);
998 	}
999 	if (!di) {
1000 		/*
1001 		 * Ok the default dir item isn't there.  This is weird since
1002 		 * it's always been there, but don't freak out, just try and
1003 		 * mount the top-level subvolume.
1004 		 */
1005 		btrfs_free_path(path);
1006 		*objectid = BTRFS_FS_TREE_OBJECTID;
1007 		return 0;
1008 	}
1009 
1010 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1011 	btrfs_free_path(path);
1012 	*objectid = location.objectid;
1013 	return 0;
1014 }
1015 
1016 static int btrfs_fill_super(struct super_block *sb,
1017 			    struct btrfs_fs_devices *fs_devices,
1018 			    void *data, int silent)
1019 {
1020 	struct inode *inode;
1021 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1022 	struct btrfs_key key;
1023 	int err;
1024 
1025 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1026 	sb->s_magic = BTRFS_SUPER_MAGIC;
1027 	sb->s_op = &btrfs_super_ops;
1028 	sb->s_d_op = &btrfs_dentry_operations;
1029 	sb->s_export_op = &btrfs_export_ops;
1030 	sb->s_xattr = btrfs_xattr_handlers;
1031 	sb->s_time_gran = 1;
1032 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1033 	sb->s_flags |= MS_POSIXACL;
1034 #endif
1035 	sb->s_flags |= MS_I_VERSION;
1036 	err = open_ctree(sb, fs_devices, (char *)data);
1037 	if (err) {
1038 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
1039 		return err;
1040 	}
1041 
1042 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1043 	key.type = BTRFS_INODE_ITEM_KEY;
1044 	key.offset = 0;
1045 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1046 	if (IS_ERR(inode)) {
1047 		err = PTR_ERR(inode);
1048 		goto fail_close;
1049 	}
1050 
1051 	sb->s_root = d_make_root(inode);
1052 	if (!sb->s_root) {
1053 		err = -ENOMEM;
1054 		goto fail_close;
1055 	}
1056 
1057 	save_mount_options(sb, data);
1058 	cleancache_init_fs(sb);
1059 	sb->s_flags |= MS_ACTIVE;
1060 	return 0;
1061 
1062 fail_close:
1063 	close_ctree(fs_info->tree_root);
1064 	return err;
1065 }
1066 
1067 int btrfs_sync_fs(struct super_block *sb, int wait)
1068 {
1069 	struct btrfs_trans_handle *trans;
1070 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1071 	struct btrfs_root *root = fs_info->tree_root;
1072 
1073 	trace_btrfs_sync_fs(wait);
1074 
1075 	if (!wait) {
1076 		filemap_flush(fs_info->btree_inode->i_mapping);
1077 		return 0;
1078 	}
1079 
1080 	btrfs_wait_ordered_roots(fs_info, -1);
1081 
1082 	trans = btrfs_attach_transaction_barrier(root);
1083 	if (IS_ERR(trans)) {
1084 		/* no transaction, don't bother */
1085 		if (PTR_ERR(trans) == -ENOENT) {
1086 			/*
1087 			 * Exit unless we have some pending changes
1088 			 * that need to go through commit
1089 			 */
1090 			if (fs_info->pending_changes == 0)
1091 				return 0;
1092 			/*
1093 			 * A non-blocking test if the fs is frozen. We must not
1094 			 * start a new transaction here otherwise a deadlock
1095 			 * happens. The pending operations are delayed to the
1096 			 * next commit after thawing.
1097 			 */
1098 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1099 				__sb_end_write(sb, SB_FREEZE_WRITE);
1100 			else
1101 				return 0;
1102 			trans = btrfs_start_transaction(root, 0);
1103 		}
1104 		if (IS_ERR(trans))
1105 			return PTR_ERR(trans);
1106 	}
1107 	return btrfs_commit_transaction(trans, root);
1108 }
1109 
1110 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1111 {
1112 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1113 	struct btrfs_root *root = info->tree_root;
1114 	char *compress_type;
1115 
1116 	if (btrfs_test_opt(root, DEGRADED))
1117 		seq_puts(seq, ",degraded");
1118 	if (btrfs_test_opt(root, NODATASUM))
1119 		seq_puts(seq, ",nodatasum");
1120 	if (btrfs_test_opt(root, NODATACOW))
1121 		seq_puts(seq, ",nodatacow");
1122 	if (btrfs_test_opt(root, NOBARRIER))
1123 		seq_puts(seq, ",nobarrier");
1124 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1125 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1126 	if (info->alloc_start != 0)
1127 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1128 	if (info->thread_pool_size !=  min_t(unsigned long,
1129 					     num_online_cpus() + 2, 8))
1130 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1131 	if (btrfs_test_opt(root, COMPRESS)) {
1132 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1133 			compress_type = "zlib";
1134 		else
1135 			compress_type = "lzo";
1136 		if (btrfs_test_opt(root, FORCE_COMPRESS))
1137 			seq_printf(seq, ",compress-force=%s", compress_type);
1138 		else
1139 			seq_printf(seq, ",compress=%s", compress_type);
1140 	}
1141 	if (btrfs_test_opt(root, NOSSD))
1142 		seq_puts(seq, ",nossd");
1143 	if (btrfs_test_opt(root, SSD_SPREAD))
1144 		seq_puts(seq, ",ssd_spread");
1145 	else if (btrfs_test_opt(root, SSD))
1146 		seq_puts(seq, ",ssd");
1147 	if (btrfs_test_opt(root, NOTREELOG))
1148 		seq_puts(seq, ",notreelog");
1149 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1150 		seq_puts(seq, ",flushoncommit");
1151 	if (btrfs_test_opt(root, DISCARD))
1152 		seq_puts(seq, ",discard");
1153 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1154 		seq_puts(seq, ",noacl");
1155 	if (btrfs_test_opt(root, SPACE_CACHE))
1156 		seq_puts(seq, ",space_cache");
1157 	else
1158 		seq_puts(seq, ",nospace_cache");
1159 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1160 		seq_puts(seq, ",rescan_uuid_tree");
1161 	if (btrfs_test_opt(root, CLEAR_CACHE))
1162 		seq_puts(seq, ",clear_cache");
1163 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1164 		seq_puts(seq, ",user_subvol_rm_allowed");
1165 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1166 		seq_puts(seq, ",enospc_debug");
1167 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1168 		seq_puts(seq, ",autodefrag");
1169 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1170 		seq_puts(seq, ",inode_cache");
1171 	if (btrfs_test_opt(root, SKIP_BALANCE))
1172 		seq_puts(seq, ",skip_balance");
1173 	if (btrfs_test_opt(root, RECOVERY))
1174 		seq_puts(seq, ",recovery");
1175 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1176 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1177 		seq_puts(seq, ",check_int_data");
1178 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1179 		seq_puts(seq, ",check_int");
1180 	if (info->check_integrity_print_mask)
1181 		seq_printf(seq, ",check_int_print_mask=%d",
1182 				info->check_integrity_print_mask);
1183 #endif
1184 	if (info->metadata_ratio)
1185 		seq_printf(seq, ",metadata_ratio=%d",
1186 				info->metadata_ratio);
1187 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1188 		seq_puts(seq, ",fatal_errors=panic");
1189 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1190 		seq_printf(seq, ",commit=%d", info->commit_interval);
1191 	seq_printf(seq, ",subvolid=%llu",
1192 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1193 	seq_puts(seq, ",subvol=");
1194 	seq_dentry(seq, dentry, " \t\n\\");
1195 	return 0;
1196 }
1197 
1198 static int btrfs_test_super(struct super_block *s, void *data)
1199 {
1200 	struct btrfs_fs_info *p = data;
1201 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1202 
1203 	return fs_info->fs_devices == p->fs_devices;
1204 }
1205 
1206 static int btrfs_set_super(struct super_block *s, void *data)
1207 {
1208 	int err = set_anon_super(s, data);
1209 	if (!err)
1210 		s->s_fs_info = data;
1211 	return err;
1212 }
1213 
1214 /*
1215  * subvolumes are identified by ino 256
1216  */
1217 static inline int is_subvolume_inode(struct inode *inode)
1218 {
1219 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1220 		return 1;
1221 	return 0;
1222 }
1223 
1224 /*
1225  * This will add subvolid=0 to the argument string while removing any subvol=
1226  * and subvolid= arguments to make sure we get the top-level root for path
1227  * walking to the subvol we want.
1228  */
1229 static char *setup_root_args(char *args)
1230 {
1231 	char *buf, *dst, *sep;
1232 
1233 	if (!args)
1234 		return kstrdup("subvolid=0", GFP_NOFS);
1235 
1236 	/* The worst case is that we add ",subvolid=0" to the end. */
1237 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1238 	if (!buf)
1239 		return NULL;
1240 
1241 	while (1) {
1242 		sep = strchrnul(args, ',');
1243 		if (!strstarts(args, "subvol=") &&
1244 		    !strstarts(args, "subvolid=")) {
1245 			memcpy(dst, args, sep - args);
1246 			dst += sep - args;
1247 			*dst++ = ',';
1248 		}
1249 		if (*sep)
1250 			args = sep + 1;
1251 		else
1252 			break;
1253 	}
1254 	strcpy(dst, "subvolid=0");
1255 
1256 	return buf;
1257 }
1258 
1259 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1260 				   int flags, const char *device_name,
1261 				   char *data)
1262 {
1263 	struct dentry *root;
1264 	struct vfsmount *mnt = NULL;
1265 	char *newargs;
1266 	int ret;
1267 
1268 	newargs = setup_root_args(data);
1269 	if (!newargs) {
1270 		root = ERR_PTR(-ENOMEM);
1271 		goto out;
1272 	}
1273 
1274 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1275 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1276 		if (flags & MS_RDONLY) {
1277 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1278 					     device_name, newargs);
1279 		} else {
1280 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1281 					     device_name, newargs);
1282 			if (IS_ERR(mnt)) {
1283 				root = ERR_CAST(mnt);
1284 				mnt = NULL;
1285 				goto out;
1286 			}
1287 
1288 			down_write(&mnt->mnt_sb->s_umount);
1289 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1290 			up_write(&mnt->mnt_sb->s_umount);
1291 			if (ret < 0) {
1292 				root = ERR_PTR(ret);
1293 				goto out;
1294 			}
1295 		}
1296 	}
1297 	if (IS_ERR(mnt)) {
1298 		root = ERR_CAST(mnt);
1299 		mnt = NULL;
1300 		goto out;
1301 	}
1302 
1303 	if (!subvol_name) {
1304 		if (!subvol_objectid) {
1305 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1306 							  &subvol_objectid);
1307 			if (ret) {
1308 				root = ERR_PTR(ret);
1309 				goto out;
1310 			}
1311 		}
1312 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1313 							    subvol_objectid);
1314 		if (IS_ERR(subvol_name)) {
1315 			root = ERR_CAST(subvol_name);
1316 			subvol_name = NULL;
1317 			goto out;
1318 		}
1319 
1320 	}
1321 
1322 	root = mount_subtree(mnt, subvol_name);
1323 	/* mount_subtree() drops our reference on the vfsmount. */
1324 	mnt = NULL;
1325 
1326 	if (!IS_ERR(root)) {
1327 		struct super_block *s = root->d_sb;
1328 		struct inode *root_inode = d_inode(root);
1329 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1330 
1331 		ret = 0;
1332 		if (!is_subvolume_inode(root_inode)) {
1333 			pr_err("BTRFS: '%s' is not a valid subvolume\n",
1334 			       subvol_name);
1335 			ret = -EINVAL;
1336 		}
1337 		if (subvol_objectid && root_objectid != subvol_objectid) {
1338 			/*
1339 			 * This will also catch a race condition where a
1340 			 * subvolume which was passed by ID is renamed and
1341 			 * another subvolume is renamed over the old location.
1342 			 */
1343 			pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
1344 			       subvol_name, subvol_objectid);
1345 			ret = -EINVAL;
1346 		}
1347 		if (ret) {
1348 			dput(root);
1349 			root = ERR_PTR(ret);
1350 			deactivate_locked_super(s);
1351 		}
1352 	}
1353 
1354 out:
1355 	mntput(mnt);
1356 	kfree(newargs);
1357 	kfree(subvol_name);
1358 	return root;
1359 }
1360 
1361 static int parse_security_options(char *orig_opts,
1362 				  struct security_mnt_opts *sec_opts)
1363 {
1364 	char *secdata = NULL;
1365 	int ret = 0;
1366 
1367 	secdata = alloc_secdata();
1368 	if (!secdata)
1369 		return -ENOMEM;
1370 	ret = security_sb_copy_data(orig_opts, secdata);
1371 	if (ret) {
1372 		free_secdata(secdata);
1373 		return ret;
1374 	}
1375 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1376 	free_secdata(secdata);
1377 	return ret;
1378 }
1379 
1380 static int setup_security_options(struct btrfs_fs_info *fs_info,
1381 				  struct super_block *sb,
1382 				  struct security_mnt_opts *sec_opts)
1383 {
1384 	int ret = 0;
1385 
1386 	/*
1387 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1388 	 * is valid.
1389 	 */
1390 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1391 	if (ret)
1392 		return ret;
1393 
1394 #ifdef CONFIG_SECURITY
1395 	if (!fs_info->security_opts.num_mnt_opts) {
1396 		/* first time security setup, copy sec_opts to fs_info */
1397 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1398 	} else {
1399 		/*
1400 		 * Since SELinux(the only one supports security_mnt_opts) does
1401 		 * NOT support changing context during remount/mount same sb,
1402 		 * This must be the same or part of the same security options,
1403 		 * just free it.
1404 		 */
1405 		security_free_mnt_opts(sec_opts);
1406 	}
1407 #endif
1408 	return ret;
1409 }
1410 
1411 /*
1412  * Find a superblock for the given device / mount point.
1413  *
1414  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1415  *	  for multiple device setup.  Make sure to keep it in sync.
1416  */
1417 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1418 		const char *device_name, void *data)
1419 {
1420 	struct block_device *bdev = NULL;
1421 	struct super_block *s;
1422 	struct btrfs_fs_devices *fs_devices = NULL;
1423 	struct btrfs_fs_info *fs_info = NULL;
1424 	struct security_mnt_opts new_sec_opts;
1425 	fmode_t mode = FMODE_READ;
1426 	char *subvol_name = NULL;
1427 	u64 subvol_objectid = 0;
1428 	int error = 0;
1429 
1430 	if (!(flags & MS_RDONLY))
1431 		mode |= FMODE_WRITE;
1432 
1433 	error = btrfs_parse_early_options(data, mode, fs_type,
1434 					  &subvol_name, &subvol_objectid,
1435 					  &fs_devices);
1436 	if (error) {
1437 		kfree(subvol_name);
1438 		return ERR_PTR(error);
1439 	}
1440 
1441 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1442 		/* mount_subvol() will free subvol_name. */
1443 		return mount_subvol(subvol_name, subvol_objectid, flags,
1444 				    device_name, data);
1445 	}
1446 
1447 	security_init_mnt_opts(&new_sec_opts);
1448 	if (data) {
1449 		error = parse_security_options(data, &new_sec_opts);
1450 		if (error)
1451 			return ERR_PTR(error);
1452 	}
1453 
1454 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1455 	if (error)
1456 		goto error_sec_opts;
1457 
1458 	/*
1459 	 * Setup a dummy root and fs_info for test/set super.  This is because
1460 	 * we don't actually fill this stuff out until open_ctree, but we need
1461 	 * it for searching for existing supers, so this lets us do that and
1462 	 * then open_ctree will properly initialize everything later.
1463 	 */
1464 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1465 	if (!fs_info) {
1466 		error = -ENOMEM;
1467 		goto error_sec_opts;
1468 	}
1469 
1470 	fs_info->fs_devices = fs_devices;
1471 
1472 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1473 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1474 	security_init_mnt_opts(&fs_info->security_opts);
1475 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1476 		error = -ENOMEM;
1477 		goto error_fs_info;
1478 	}
1479 
1480 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1481 	if (error)
1482 		goto error_fs_info;
1483 
1484 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1485 		error = -EACCES;
1486 		goto error_close_devices;
1487 	}
1488 
1489 	bdev = fs_devices->latest_bdev;
1490 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1491 		 fs_info);
1492 	if (IS_ERR(s)) {
1493 		error = PTR_ERR(s);
1494 		goto error_close_devices;
1495 	}
1496 
1497 	if (s->s_root) {
1498 		btrfs_close_devices(fs_devices);
1499 		free_fs_info(fs_info);
1500 		if ((flags ^ s->s_flags) & MS_RDONLY)
1501 			error = -EBUSY;
1502 	} else {
1503 		char b[BDEVNAME_SIZE];
1504 
1505 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1506 		btrfs_sb(s)->bdev_holder = fs_type;
1507 		error = btrfs_fill_super(s, fs_devices, data,
1508 					 flags & MS_SILENT ? 1 : 0);
1509 	}
1510 	if (error) {
1511 		deactivate_locked_super(s);
1512 		goto error_sec_opts;
1513 	}
1514 
1515 	fs_info = btrfs_sb(s);
1516 	error = setup_security_options(fs_info, s, &new_sec_opts);
1517 	if (error) {
1518 		deactivate_locked_super(s);
1519 		goto error_sec_opts;
1520 	}
1521 
1522 	return dget(s->s_root);
1523 
1524 error_close_devices:
1525 	btrfs_close_devices(fs_devices);
1526 error_fs_info:
1527 	free_fs_info(fs_info);
1528 error_sec_opts:
1529 	security_free_mnt_opts(&new_sec_opts);
1530 	return ERR_PTR(error);
1531 }
1532 
1533 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1534 				     int new_pool_size, int old_pool_size)
1535 {
1536 	if (new_pool_size == old_pool_size)
1537 		return;
1538 
1539 	fs_info->thread_pool_size = new_pool_size;
1540 
1541 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1542 	       old_pool_size, new_pool_size);
1543 
1544 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1545 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1546 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1547 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1548 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1549 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1550 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1551 				new_pool_size);
1552 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1553 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1554 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1555 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1556 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1557 				new_pool_size);
1558 }
1559 
1560 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1561 {
1562 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1563 }
1564 
1565 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1566 				       unsigned long old_opts, int flags)
1567 {
1568 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1569 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1570 	     (flags & MS_RDONLY))) {
1571 		/* wait for any defraggers to finish */
1572 		wait_event(fs_info->transaction_wait,
1573 			   (atomic_read(&fs_info->defrag_running) == 0));
1574 		if (flags & MS_RDONLY)
1575 			sync_filesystem(fs_info->sb);
1576 	}
1577 }
1578 
1579 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1580 					 unsigned long old_opts)
1581 {
1582 	/*
1583 	 * We need cleanup all defragable inodes if the autodefragment is
1584 	 * close or the fs is R/O.
1585 	 */
1586 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1587 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1588 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1589 		btrfs_cleanup_defrag_inodes(fs_info);
1590 	}
1591 
1592 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1593 }
1594 
1595 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1596 {
1597 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1598 	struct btrfs_root *root = fs_info->tree_root;
1599 	unsigned old_flags = sb->s_flags;
1600 	unsigned long old_opts = fs_info->mount_opt;
1601 	unsigned long old_compress_type = fs_info->compress_type;
1602 	u64 old_max_inline = fs_info->max_inline;
1603 	u64 old_alloc_start = fs_info->alloc_start;
1604 	int old_thread_pool_size = fs_info->thread_pool_size;
1605 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1606 	int ret;
1607 
1608 	sync_filesystem(sb);
1609 	btrfs_remount_prepare(fs_info);
1610 
1611 	if (data) {
1612 		struct security_mnt_opts new_sec_opts;
1613 
1614 		security_init_mnt_opts(&new_sec_opts);
1615 		ret = parse_security_options(data, &new_sec_opts);
1616 		if (ret)
1617 			goto restore;
1618 		ret = setup_security_options(fs_info, sb,
1619 					     &new_sec_opts);
1620 		if (ret) {
1621 			security_free_mnt_opts(&new_sec_opts);
1622 			goto restore;
1623 		}
1624 	}
1625 
1626 	ret = btrfs_parse_options(root, data);
1627 	if (ret) {
1628 		ret = -EINVAL;
1629 		goto restore;
1630 	}
1631 
1632 	btrfs_remount_begin(fs_info, old_opts, *flags);
1633 	btrfs_resize_thread_pool(fs_info,
1634 		fs_info->thread_pool_size, old_thread_pool_size);
1635 
1636 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1637 		goto out;
1638 
1639 	if (*flags & MS_RDONLY) {
1640 		/*
1641 		 * this also happens on 'umount -rf' or on shutdown, when
1642 		 * the filesystem is busy.
1643 		 */
1644 		cancel_work_sync(&fs_info->async_reclaim_work);
1645 
1646 		/* wait for the uuid_scan task to finish */
1647 		down(&fs_info->uuid_tree_rescan_sem);
1648 		/* avoid complains from lockdep et al. */
1649 		up(&fs_info->uuid_tree_rescan_sem);
1650 
1651 		sb->s_flags |= MS_RDONLY;
1652 
1653 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1654 		btrfs_scrub_cancel(fs_info);
1655 		btrfs_pause_balance(fs_info);
1656 
1657 		ret = btrfs_commit_super(root);
1658 		if (ret)
1659 			goto restore;
1660 	} else {
1661 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1662 			btrfs_err(fs_info,
1663 				"Remounting read-write after error is not allowed");
1664 			ret = -EINVAL;
1665 			goto restore;
1666 		}
1667 		if (fs_info->fs_devices->rw_devices == 0) {
1668 			ret = -EACCES;
1669 			goto restore;
1670 		}
1671 
1672 		if (fs_info->fs_devices->missing_devices >
1673 		     fs_info->num_tolerated_disk_barrier_failures &&
1674 		    !(*flags & MS_RDONLY)) {
1675 			btrfs_warn(fs_info,
1676 				"too many missing devices, writeable remount is not allowed");
1677 			ret = -EACCES;
1678 			goto restore;
1679 		}
1680 
1681 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1682 			ret = -EINVAL;
1683 			goto restore;
1684 		}
1685 
1686 		ret = btrfs_cleanup_fs_roots(fs_info);
1687 		if (ret)
1688 			goto restore;
1689 
1690 		/* recover relocation */
1691 		mutex_lock(&fs_info->cleaner_mutex);
1692 		ret = btrfs_recover_relocation(root);
1693 		mutex_unlock(&fs_info->cleaner_mutex);
1694 		if (ret)
1695 			goto restore;
1696 
1697 		ret = btrfs_resume_balance_async(fs_info);
1698 		if (ret)
1699 			goto restore;
1700 
1701 		ret = btrfs_resume_dev_replace_async(fs_info);
1702 		if (ret) {
1703 			btrfs_warn(fs_info, "failed to resume dev_replace");
1704 			goto restore;
1705 		}
1706 
1707 		if (!fs_info->uuid_root) {
1708 			btrfs_info(fs_info, "creating UUID tree");
1709 			ret = btrfs_create_uuid_tree(fs_info);
1710 			if (ret) {
1711 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1712 				goto restore;
1713 			}
1714 		}
1715 		sb->s_flags &= ~MS_RDONLY;
1716 	}
1717 out:
1718 	wake_up_process(fs_info->transaction_kthread);
1719 	btrfs_remount_cleanup(fs_info, old_opts);
1720 	return 0;
1721 
1722 restore:
1723 	/* We've hit an error - don't reset MS_RDONLY */
1724 	if (sb->s_flags & MS_RDONLY)
1725 		old_flags |= MS_RDONLY;
1726 	sb->s_flags = old_flags;
1727 	fs_info->mount_opt = old_opts;
1728 	fs_info->compress_type = old_compress_type;
1729 	fs_info->max_inline = old_max_inline;
1730 	mutex_lock(&fs_info->chunk_mutex);
1731 	fs_info->alloc_start = old_alloc_start;
1732 	mutex_unlock(&fs_info->chunk_mutex);
1733 	btrfs_resize_thread_pool(fs_info,
1734 		old_thread_pool_size, fs_info->thread_pool_size);
1735 	fs_info->metadata_ratio = old_metadata_ratio;
1736 	btrfs_remount_cleanup(fs_info, old_opts);
1737 	return ret;
1738 }
1739 
1740 /* Used to sort the devices by max_avail(descending sort) */
1741 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1742 				       const void *dev_info2)
1743 {
1744 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1745 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1746 		return -1;
1747 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1748 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1749 		return 1;
1750 	else
1751 	return 0;
1752 }
1753 
1754 /*
1755  * sort the devices by max_avail, in which max free extent size of each device
1756  * is stored.(Descending Sort)
1757  */
1758 static inline void btrfs_descending_sort_devices(
1759 					struct btrfs_device_info *devices,
1760 					size_t nr_devices)
1761 {
1762 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1763 	     btrfs_cmp_device_free_bytes, NULL);
1764 }
1765 
1766 /*
1767  * The helper to calc the free space on the devices that can be used to store
1768  * file data.
1769  */
1770 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1771 {
1772 	struct btrfs_fs_info *fs_info = root->fs_info;
1773 	struct btrfs_device_info *devices_info;
1774 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1775 	struct btrfs_device *device;
1776 	u64 skip_space;
1777 	u64 type;
1778 	u64 avail_space;
1779 	u64 used_space;
1780 	u64 min_stripe_size;
1781 	int min_stripes = 1, num_stripes = 1;
1782 	int i = 0, nr_devices;
1783 	int ret;
1784 
1785 	/*
1786 	 * We aren't under the device list lock, so this is racey-ish, but good
1787 	 * enough for our purposes.
1788 	 */
1789 	nr_devices = fs_info->fs_devices->open_devices;
1790 	if (!nr_devices) {
1791 		smp_mb();
1792 		nr_devices = fs_info->fs_devices->open_devices;
1793 		ASSERT(nr_devices);
1794 		if (!nr_devices) {
1795 			*free_bytes = 0;
1796 			return 0;
1797 		}
1798 	}
1799 
1800 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1801 			       GFP_NOFS);
1802 	if (!devices_info)
1803 		return -ENOMEM;
1804 
1805 	/* calc min stripe number for data space alloction */
1806 	type = btrfs_get_alloc_profile(root, 1);
1807 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1808 		min_stripes = 2;
1809 		num_stripes = nr_devices;
1810 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1811 		min_stripes = 2;
1812 		num_stripes = 2;
1813 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1814 		min_stripes = 4;
1815 		num_stripes = 4;
1816 	}
1817 
1818 	if (type & BTRFS_BLOCK_GROUP_DUP)
1819 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1820 	else
1821 		min_stripe_size = BTRFS_STRIPE_LEN;
1822 
1823 	if (fs_info->alloc_start)
1824 		mutex_lock(&fs_devices->device_list_mutex);
1825 	rcu_read_lock();
1826 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1827 		if (!device->in_fs_metadata || !device->bdev ||
1828 		    device->is_tgtdev_for_dev_replace)
1829 			continue;
1830 
1831 		if (i >= nr_devices)
1832 			break;
1833 
1834 		avail_space = device->total_bytes - device->bytes_used;
1835 
1836 		/* align with stripe_len */
1837 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1838 		avail_space *= BTRFS_STRIPE_LEN;
1839 
1840 		/*
1841 		 * In order to avoid overwritting the superblock on the drive,
1842 		 * btrfs starts at an offset of at least 1MB when doing chunk
1843 		 * allocation.
1844 		 */
1845 		skip_space = 1024 * 1024;
1846 
1847 		/* user can set the offset in fs_info->alloc_start. */
1848 		if (fs_info->alloc_start &&
1849 		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1850 		    device->total_bytes) {
1851 			rcu_read_unlock();
1852 			skip_space = max(fs_info->alloc_start, skip_space);
1853 
1854 			/*
1855 			 * btrfs can not use the free space in
1856 			 * [0, skip_space - 1], we must subtract it from the
1857 			 * total. In order to implement it, we account the used
1858 			 * space in this range first.
1859 			 */
1860 			ret = btrfs_account_dev_extents_size(device, 0,
1861 							     skip_space - 1,
1862 							     &used_space);
1863 			if (ret) {
1864 				kfree(devices_info);
1865 				mutex_unlock(&fs_devices->device_list_mutex);
1866 				return ret;
1867 			}
1868 
1869 			rcu_read_lock();
1870 
1871 			/* calc the free space in [0, skip_space - 1] */
1872 			skip_space -= used_space;
1873 		}
1874 
1875 		/*
1876 		 * we can use the free space in [0, skip_space - 1], subtract
1877 		 * it from the total.
1878 		 */
1879 		if (avail_space && avail_space >= skip_space)
1880 			avail_space -= skip_space;
1881 		else
1882 			avail_space = 0;
1883 
1884 		if (avail_space < min_stripe_size)
1885 			continue;
1886 
1887 		devices_info[i].dev = device;
1888 		devices_info[i].max_avail = avail_space;
1889 
1890 		i++;
1891 	}
1892 	rcu_read_unlock();
1893 	if (fs_info->alloc_start)
1894 		mutex_unlock(&fs_devices->device_list_mutex);
1895 
1896 	nr_devices = i;
1897 
1898 	btrfs_descending_sort_devices(devices_info, nr_devices);
1899 
1900 	i = nr_devices - 1;
1901 	avail_space = 0;
1902 	while (nr_devices >= min_stripes) {
1903 		if (num_stripes > nr_devices)
1904 			num_stripes = nr_devices;
1905 
1906 		if (devices_info[i].max_avail >= min_stripe_size) {
1907 			int j;
1908 			u64 alloc_size;
1909 
1910 			avail_space += devices_info[i].max_avail * num_stripes;
1911 			alloc_size = devices_info[i].max_avail;
1912 			for (j = i + 1 - num_stripes; j <= i; j++)
1913 				devices_info[j].max_avail -= alloc_size;
1914 		}
1915 		i--;
1916 		nr_devices--;
1917 	}
1918 
1919 	kfree(devices_info);
1920 	*free_bytes = avail_space;
1921 	return 0;
1922 }
1923 
1924 /*
1925  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1926  *
1927  * If there's a redundant raid level at DATA block groups, use the respective
1928  * multiplier to scale the sizes.
1929  *
1930  * Unused device space usage is based on simulating the chunk allocator
1931  * algorithm that respects the device sizes, order of allocations and the
1932  * 'alloc_start' value, this is a close approximation of the actual use but
1933  * there are other factors that may change the result (like a new metadata
1934  * chunk).
1935  *
1936  * FIXME: not accurate for mixed block groups, total and free/used are ok,
1937  * available appears slightly larger.
1938  */
1939 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1940 {
1941 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1942 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1943 	struct list_head *head = &fs_info->space_info;
1944 	struct btrfs_space_info *found;
1945 	u64 total_used = 0;
1946 	u64 total_free_data = 0;
1947 	int bits = dentry->d_sb->s_blocksize_bits;
1948 	__be32 *fsid = (__be32 *)fs_info->fsid;
1949 	unsigned factor = 1;
1950 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1951 	int ret;
1952 
1953 	/*
1954 	 * holding chunk_muext to avoid allocating new chunks, holding
1955 	 * device_list_mutex to avoid the device being removed
1956 	 */
1957 	rcu_read_lock();
1958 	list_for_each_entry_rcu(found, head, list) {
1959 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1960 			int i;
1961 
1962 			total_free_data += found->disk_total - found->disk_used;
1963 			total_free_data -=
1964 				btrfs_account_ro_block_groups_free_space(found);
1965 
1966 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1967 				if (!list_empty(&found->block_groups[i])) {
1968 					switch (i) {
1969 					case BTRFS_RAID_DUP:
1970 					case BTRFS_RAID_RAID1:
1971 					case BTRFS_RAID_RAID10:
1972 						factor = 2;
1973 					}
1974 				}
1975 			}
1976 		}
1977 
1978 		total_used += found->disk_used;
1979 	}
1980 
1981 	rcu_read_unlock();
1982 
1983 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1984 	buf->f_blocks >>= bits;
1985 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1986 
1987 	/* Account global block reserve as used, it's in logical size already */
1988 	spin_lock(&block_rsv->lock);
1989 	buf->f_bfree -= block_rsv->size >> bits;
1990 	spin_unlock(&block_rsv->lock);
1991 
1992 	buf->f_bavail = div_u64(total_free_data, factor);
1993 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1994 	if (ret)
1995 		return ret;
1996 	buf->f_bavail += div_u64(total_free_data, factor);
1997 	buf->f_bavail = buf->f_bavail >> bits;
1998 
1999 	buf->f_type = BTRFS_SUPER_MAGIC;
2000 	buf->f_bsize = dentry->d_sb->s_blocksize;
2001 	buf->f_namelen = BTRFS_NAME_LEN;
2002 
2003 	/* We treat it as constant endianness (it doesn't matter _which_)
2004 	   because we want the fsid to come out the same whether mounted
2005 	   on a big-endian or little-endian host */
2006 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2007 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2008 	/* Mask in the root object ID too, to disambiguate subvols */
2009 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2010 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2011 
2012 	return 0;
2013 }
2014 
2015 static void btrfs_kill_super(struct super_block *sb)
2016 {
2017 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2018 	kill_anon_super(sb);
2019 	free_fs_info(fs_info);
2020 }
2021 
2022 static struct file_system_type btrfs_fs_type = {
2023 	.owner		= THIS_MODULE,
2024 	.name		= "btrfs",
2025 	.mount		= btrfs_mount,
2026 	.kill_sb	= btrfs_kill_super,
2027 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2028 };
2029 MODULE_ALIAS_FS("btrfs");
2030 
2031 static int btrfs_control_open(struct inode *inode, struct file *file)
2032 {
2033 	/*
2034 	 * The control file's private_data is used to hold the
2035 	 * transaction when it is started and is used to keep
2036 	 * track of whether a transaction is already in progress.
2037 	 */
2038 	file->private_data = NULL;
2039 	return 0;
2040 }
2041 
2042 /*
2043  * used by btrfsctl to scan devices when no FS is mounted
2044  */
2045 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2046 				unsigned long arg)
2047 {
2048 	struct btrfs_ioctl_vol_args *vol;
2049 	struct btrfs_fs_devices *fs_devices;
2050 	int ret = -ENOTTY;
2051 
2052 	if (!capable(CAP_SYS_ADMIN))
2053 		return -EPERM;
2054 
2055 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2056 	if (IS_ERR(vol))
2057 		return PTR_ERR(vol);
2058 
2059 	switch (cmd) {
2060 	case BTRFS_IOC_SCAN_DEV:
2061 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2062 					    &btrfs_fs_type, &fs_devices);
2063 		break;
2064 	case BTRFS_IOC_DEVICES_READY:
2065 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2066 					    &btrfs_fs_type, &fs_devices);
2067 		if (ret)
2068 			break;
2069 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2070 		break;
2071 	}
2072 
2073 	kfree(vol);
2074 	return ret;
2075 }
2076 
2077 static int btrfs_freeze(struct super_block *sb)
2078 {
2079 	struct btrfs_trans_handle *trans;
2080 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2081 
2082 	trans = btrfs_attach_transaction_barrier(root);
2083 	if (IS_ERR(trans)) {
2084 		/* no transaction, don't bother */
2085 		if (PTR_ERR(trans) == -ENOENT)
2086 			return 0;
2087 		return PTR_ERR(trans);
2088 	}
2089 	return btrfs_commit_transaction(trans, root);
2090 }
2091 
2092 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2093 {
2094 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2095 	struct btrfs_fs_devices *cur_devices;
2096 	struct btrfs_device *dev, *first_dev = NULL;
2097 	struct list_head *head;
2098 	struct rcu_string *name;
2099 
2100 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2101 	cur_devices = fs_info->fs_devices;
2102 	while (cur_devices) {
2103 		head = &cur_devices->devices;
2104 		list_for_each_entry(dev, head, dev_list) {
2105 			if (dev->missing)
2106 				continue;
2107 			if (!dev->name)
2108 				continue;
2109 			if (!first_dev || dev->devid < first_dev->devid)
2110 				first_dev = dev;
2111 		}
2112 		cur_devices = cur_devices->seed;
2113 	}
2114 
2115 	if (first_dev) {
2116 		rcu_read_lock();
2117 		name = rcu_dereference(first_dev->name);
2118 		seq_escape(m, name->str, " \t\n\\");
2119 		rcu_read_unlock();
2120 	} else {
2121 		WARN_ON(1);
2122 	}
2123 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2124 	return 0;
2125 }
2126 
2127 static const struct super_operations btrfs_super_ops = {
2128 	.drop_inode	= btrfs_drop_inode,
2129 	.evict_inode	= btrfs_evict_inode,
2130 	.put_super	= btrfs_put_super,
2131 	.sync_fs	= btrfs_sync_fs,
2132 	.show_options	= btrfs_show_options,
2133 	.show_devname	= btrfs_show_devname,
2134 	.write_inode	= btrfs_write_inode,
2135 	.alloc_inode	= btrfs_alloc_inode,
2136 	.destroy_inode	= btrfs_destroy_inode,
2137 	.statfs		= btrfs_statfs,
2138 	.remount_fs	= btrfs_remount,
2139 	.freeze_fs	= btrfs_freeze,
2140 };
2141 
2142 static const struct file_operations btrfs_ctl_fops = {
2143 	.open = btrfs_control_open,
2144 	.unlocked_ioctl	 = btrfs_control_ioctl,
2145 	.compat_ioctl = btrfs_control_ioctl,
2146 	.owner	 = THIS_MODULE,
2147 	.llseek = noop_llseek,
2148 };
2149 
2150 static struct miscdevice btrfs_misc = {
2151 	.minor		= BTRFS_MINOR,
2152 	.name		= "btrfs-control",
2153 	.fops		= &btrfs_ctl_fops
2154 };
2155 
2156 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2157 MODULE_ALIAS("devname:btrfs-control");
2158 
2159 static int btrfs_interface_init(void)
2160 {
2161 	return misc_register(&btrfs_misc);
2162 }
2163 
2164 static void btrfs_interface_exit(void)
2165 {
2166 	if (misc_deregister(&btrfs_misc) < 0)
2167 		printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
2168 }
2169 
2170 static void btrfs_print_info(void)
2171 {
2172 	printk(KERN_INFO "Btrfs loaded"
2173 #ifdef CONFIG_BTRFS_DEBUG
2174 			", debug=on"
2175 #endif
2176 #ifdef CONFIG_BTRFS_ASSERT
2177 			", assert=on"
2178 #endif
2179 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2180 			", integrity-checker=on"
2181 #endif
2182 			"\n");
2183 }
2184 
2185 static int btrfs_run_sanity_tests(void)
2186 {
2187 	int ret;
2188 
2189 	ret = btrfs_init_test_fs();
2190 	if (ret)
2191 		return ret;
2192 
2193 	ret = btrfs_test_free_space_cache();
2194 	if (ret)
2195 		goto out;
2196 	ret = btrfs_test_extent_buffer_operations();
2197 	if (ret)
2198 		goto out;
2199 	ret = btrfs_test_extent_io();
2200 	if (ret)
2201 		goto out;
2202 	ret = btrfs_test_inodes();
2203 	if (ret)
2204 		goto out;
2205 	ret = btrfs_test_qgroups();
2206 out:
2207 	btrfs_destroy_test_fs();
2208 	return ret;
2209 }
2210 
2211 static int __init init_btrfs_fs(void)
2212 {
2213 	int err;
2214 
2215 	err = btrfs_hash_init();
2216 	if (err)
2217 		return err;
2218 
2219 	btrfs_props_init();
2220 
2221 	err = btrfs_init_sysfs();
2222 	if (err)
2223 		goto free_hash;
2224 
2225 	btrfs_init_compress();
2226 
2227 	err = btrfs_init_cachep();
2228 	if (err)
2229 		goto free_compress;
2230 
2231 	err = extent_io_init();
2232 	if (err)
2233 		goto free_cachep;
2234 
2235 	err = extent_map_init();
2236 	if (err)
2237 		goto free_extent_io;
2238 
2239 	err = ordered_data_init();
2240 	if (err)
2241 		goto free_extent_map;
2242 
2243 	err = btrfs_delayed_inode_init();
2244 	if (err)
2245 		goto free_ordered_data;
2246 
2247 	err = btrfs_auto_defrag_init();
2248 	if (err)
2249 		goto free_delayed_inode;
2250 
2251 	err = btrfs_delayed_ref_init();
2252 	if (err)
2253 		goto free_auto_defrag;
2254 
2255 	err = btrfs_prelim_ref_init();
2256 	if (err)
2257 		goto free_delayed_ref;
2258 
2259 	err = btrfs_end_io_wq_init();
2260 	if (err)
2261 		goto free_prelim_ref;
2262 
2263 	err = btrfs_interface_init();
2264 	if (err)
2265 		goto free_end_io_wq;
2266 
2267 	btrfs_init_lockdep();
2268 
2269 	btrfs_print_info();
2270 
2271 	err = btrfs_run_sanity_tests();
2272 	if (err)
2273 		goto unregister_ioctl;
2274 
2275 	err = register_filesystem(&btrfs_fs_type);
2276 	if (err)
2277 		goto unregister_ioctl;
2278 
2279 	return 0;
2280 
2281 unregister_ioctl:
2282 	btrfs_interface_exit();
2283 free_end_io_wq:
2284 	btrfs_end_io_wq_exit();
2285 free_prelim_ref:
2286 	btrfs_prelim_ref_exit();
2287 free_delayed_ref:
2288 	btrfs_delayed_ref_exit();
2289 free_auto_defrag:
2290 	btrfs_auto_defrag_exit();
2291 free_delayed_inode:
2292 	btrfs_delayed_inode_exit();
2293 free_ordered_data:
2294 	ordered_data_exit();
2295 free_extent_map:
2296 	extent_map_exit();
2297 free_extent_io:
2298 	extent_io_exit();
2299 free_cachep:
2300 	btrfs_destroy_cachep();
2301 free_compress:
2302 	btrfs_exit_compress();
2303 	btrfs_exit_sysfs();
2304 free_hash:
2305 	btrfs_hash_exit();
2306 	return err;
2307 }
2308 
2309 static void __exit exit_btrfs_fs(void)
2310 {
2311 	btrfs_destroy_cachep();
2312 	btrfs_delayed_ref_exit();
2313 	btrfs_auto_defrag_exit();
2314 	btrfs_delayed_inode_exit();
2315 	btrfs_prelim_ref_exit();
2316 	ordered_data_exit();
2317 	extent_map_exit();
2318 	extent_io_exit();
2319 	btrfs_interface_exit();
2320 	btrfs_end_io_wq_exit();
2321 	unregister_filesystem(&btrfs_fs_type);
2322 	btrfs_exit_sysfs();
2323 	btrfs_cleanup_fs_uuids();
2324 	btrfs_exit_compress();
2325 	btrfs_hash_exit();
2326 }
2327 
2328 late_initcall(init_btrfs_fs);
2329 module_exit(exit_btrfs_fs)
2330 
2331 MODULE_LICENSE("GPL");
2332