1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "tests/btrfs-tests.h" 47 48 #include "qgroup.h" 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/btrfs.h> 51 52 static const struct super_operations btrfs_super_ops; 53 54 /* 55 * Types for mounting the default subvolume and a subvolume explicitly 56 * requested by subvol=/path. That way the callchain is straightforward and we 57 * don't have to play tricks with the mount options and recursive calls to 58 * btrfs_mount. 59 * 60 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 61 */ 62 static struct file_system_type btrfs_fs_type; 63 static struct file_system_type btrfs_root_fs_type; 64 65 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 66 67 const char *btrfs_decode_error(int errno) 68 { 69 char *errstr = "unknown"; 70 71 switch (errno) { 72 case -EIO: 73 errstr = "IO failure"; 74 break; 75 case -ENOMEM: 76 errstr = "Out of memory"; 77 break; 78 case -EROFS: 79 errstr = "Readonly filesystem"; 80 break; 81 case -EEXIST: 82 errstr = "Object already exists"; 83 break; 84 case -ENOSPC: 85 errstr = "No space left"; 86 break; 87 case -ENOENT: 88 errstr = "No such entry"; 89 break; 90 } 91 92 return errstr; 93 } 94 95 /* 96 * __btrfs_handle_fs_error decodes expected errors from the caller and 97 * invokes the appropriate error response. 98 */ 99 __cold 100 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 101 unsigned int line, int errno, const char *fmt, ...) 102 { 103 struct super_block *sb = fs_info->sb; 104 #ifdef CONFIG_PRINTK 105 const char *errstr; 106 #endif 107 108 /* 109 * Special case: if the error is EROFS, and we're already 110 * under SB_RDONLY, then it is safe here. 111 */ 112 if (errno == -EROFS && sb_rdonly(sb)) 113 return; 114 115 #ifdef CONFIG_PRINTK 116 errstr = btrfs_decode_error(errno); 117 if (fmt) { 118 struct va_format vaf; 119 va_list args; 120 121 va_start(args, fmt); 122 vaf.fmt = fmt; 123 vaf.va = &args; 124 125 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 126 sb->s_id, function, line, errno, errstr, &vaf); 127 va_end(args); 128 } else { 129 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 130 sb->s_id, function, line, errno, errstr); 131 } 132 #endif 133 134 /* 135 * Today we only save the error info to memory. Long term we'll 136 * also send it down to the disk 137 */ 138 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 139 140 /* Don't go through full error handling during mount */ 141 if (!(sb->s_flags & SB_BORN)) 142 return; 143 144 if (sb_rdonly(sb)) 145 return; 146 147 /* btrfs handle error by forcing the filesystem readonly */ 148 sb->s_flags |= SB_RDONLY; 149 btrfs_info(fs_info, "forced readonly"); 150 /* 151 * Note that a running device replace operation is not canceled here 152 * although there is no way to update the progress. It would add the 153 * risk of a deadlock, therefore the canceling is omitted. The only 154 * penalty is that some I/O remains active until the procedure 155 * completes. The next time when the filesystem is mounted writable 156 * again, the device replace operation continues. 157 */ 158 } 159 160 #ifdef CONFIG_PRINTK 161 static const char * const logtypes[] = { 162 "emergency", 163 "alert", 164 "critical", 165 "error", 166 "warning", 167 "notice", 168 "info", 169 "debug", 170 }; 171 172 173 /* 174 * Use one ratelimit state per log level so that a flood of less important 175 * messages doesn't cause more important ones to be dropped. 176 */ 177 static struct ratelimit_state printk_limits[] = { 178 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 179 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 180 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 181 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 182 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 183 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 184 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 185 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 186 }; 187 188 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 189 { 190 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 191 struct va_format vaf; 192 va_list args; 193 int kern_level; 194 const char *type = logtypes[4]; 195 struct ratelimit_state *ratelimit = &printk_limits[4]; 196 197 va_start(args, fmt); 198 199 while ((kern_level = printk_get_level(fmt)) != 0) { 200 size_t size = printk_skip_level(fmt) - fmt; 201 202 if (kern_level >= '0' && kern_level <= '7') { 203 memcpy(lvl, fmt, size); 204 lvl[size] = '\0'; 205 type = logtypes[kern_level - '0']; 206 ratelimit = &printk_limits[kern_level - '0']; 207 } 208 fmt += size; 209 } 210 211 vaf.fmt = fmt; 212 vaf.va = &args; 213 214 if (__ratelimit(ratelimit)) 215 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 216 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 217 218 va_end(args); 219 } 220 #endif 221 222 /* 223 * We only mark the transaction aborted and then set the file system read-only. 224 * This will prevent new transactions from starting or trying to join this 225 * one. 226 * 227 * This means that error recovery at the call site is limited to freeing 228 * any local memory allocations and passing the error code up without 229 * further cleanup. The transaction should complete as it normally would 230 * in the call path but will return -EIO. 231 * 232 * We'll complete the cleanup in btrfs_end_transaction and 233 * btrfs_commit_transaction. 234 */ 235 __cold 236 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 237 const char *function, 238 unsigned int line, int errno) 239 { 240 struct btrfs_fs_info *fs_info = trans->fs_info; 241 242 trans->aborted = errno; 243 /* Nothing used. The other threads that have joined this 244 * transaction may be able to continue. */ 245 if (!trans->dirty && list_empty(&trans->new_bgs)) { 246 const char *errstr; 247 248 errstr = btrfs_decode_error(errno); 249 btrfs_warn(fs_info, 250 "%s:%d: Aborting unused transaction(%s).", 251 function, line, errstr); 252 return; 253 } 254 WRITE_ONCE(trans->transaction->aborted, errno); 255 /* Wake up anybody who may be waiting on this transaction */ 256 wake_up(&fs_info->transaction_wait); 257 wake_up(&fs_info->transaction_blocked_wait); 258 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 259 } 260 /* 261 * __btrfs_panic decodes unexpected, fatal errors from the caller, 262 * issues an alert, and either panics or BUGs, depending on mount options. 263 */ 264 __cold 265 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 266 unsigned int line, int errno, const char *fmt, ...) 267 { 268 char *s_id = "<unknown>"; 269 const char *errstr; 270 struct va_format vaf = { .fmt = fmt }; 271 va_list args; 272 273 if (fs_info) 274 s_id = fs_info->sb->s_id; 275 276 va_start(args, fmt); 277 vaf.va = &args; 278 279 errstr = btrfs_decode_error(errno); 280 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 281 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 282 s_id, function, line, &vaf, errno, errstr); 283 284 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 285 function, line, &vaf, errno, errstr); 286 va_end(args); 287 /* Caller calls BUG() */ 288 } 289 290 static void btrfs_put_super(struct super_block *sb) 291 { 292 close_ctree(btrfs_sb(sb)); 293 } 294 295 enum { 296 Opt_acl, Opt_noacl, 297 Opt_clear_cache, 298 Opt_commit_interval, 299 Opt_compress, 300 Opt_compress_force, 301 Opt_compress_force_type, 302 Opt_compress_type, 303 Opt_degraded, 304 Opt_device, 305 Opt_fatal_errors, 306 Opt_flushoncommit, Opt_noflushoncommit, 307 Opt_inode_cache, Opt_noinode_cache, 308 Opt_max_inline, 309 Opt_barrier, Opt_nobarrier, 310 Opt_datacow, Opt_nodatacow, 311 Opt_datasum, Opt_nodatasum, 312 Opt_defrag, Opt_nodefrag, 313 Opt_discard, Opt_nodiscard, 314 Opt_nologreplay, 315 Opt_norecovery, 316 Opt_ratio, 317 Opt_rescan_uuid_tree, 318 Opt_skip_balance, 319 Opt_space_cache, Opt_no_space_cache, 320 Opt_space_cache_version, 321 Opt_ssd, Opt_nossd, 322 Opt_ssd_spread, Opt_nossd_spread, 323 Opt_subvol, 324 Opt_subvol_empty, 325 Opt_subvolid, 326 Opt_thread_pool, 327 Opt_treelog, Opt_notreelog, 328 Opt_usebackuproot, 329 Opt_user_subvol_rm_allowed, 330 331 /* Deprecated options */ 332 Opt_alloc_start, 333 Opt_recovery, 334 Opt_subvolrootid, 335 336 /* Debugging options */ 337 Opt_check_integrity, 338 Opt_check_integrity_including_extent_data, 339 Opt_check_integrity_print_mask, 340 Opt_enospc_debug, Opt_noenospc_debug, 341 #ifdef CONFIG_BTRFS_DEBUG 342 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 343 #endif 344 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 345 Opt_ref_verify, 346 #endif 347 Opt_err, 348 }; 349 350 static const match_table_t tokens = { 351 {Opt_acl, "acl"}, 352 {Opt_noacl, "noacl"}, 353 {Opt_clear_cache, "clear_cache"}, 354 {Opt_commit_interval, "commit=%u"}, 355 {Opt_compress, "compress"}, 356 {Opt_compress_type, "compress=%s"}, 357 {Opt_compress_force, "compress-force"}, 358 {Opt_compress_force_type, "compress-force=%s"}, 359 {Opt_degraded, "degraded"}, 360 {Opt_device, "device=%s"}, 361 {Opt_fatal_errors, "fatal_errors=%s"}, 362 {Opt_flushoncommit, "flushoncommit"}, 363 {Opt_noflushoncommit, "noflushoncommit"}, 364 {Opt_inode_cache, "inode_cache"}, 365 {Opt_noinode_cache, "noinode_cache"}, 366 {Opt_max_inline, "max_inline=%s"}, 367 {Opt_barrier, "barrier"}, 368 {Opt_nobarrier, "nobarrier"}, 369 {Opt_datacow, "datacow"}, 370 {Opt_nodatacow, "nodatacow"}, 371 {Opt_datasum, "datasum"}, 372 {Opt_nodatasum, "nodatasum"}, 373 {Opt_defrag, "autodefrag"}, 374 {Opt_nodefrag, "noautodefrag"}, 375 {Opt_discard, "discard"}, 376 {Opt_nodiscard, "nodiscard"}, 377 {Opt_nologreplay, "nologreplay"}, 378 {Opt_norecovery, "norecovery"}, 379 {Opt_ratio, "metadata_ratio=%u"}, 380 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 381 {Opt_skip_balance, "skip_balance"}, 382 {Opt_space_cache, "space_cache"}, 383 {Opt_no_space_cache, "nospace_cache"}, 384 {Opt_space_cache_version, "space_cache=%s"}, 385 {Opt_ssd, "ssd"}, 386 {Opt_nossd, "nossd"}, 387 {Opt_ssd_spread, "ssd_spread"}, 388 {Opt_nossd_spread, "nossd_spread"}, 389 {Opt_subvol, "subvol=%s"}, 390 {Opt_subvol_empty, "subvol="}, 391 {Opt_subvolid, "subvolid=%s"}, 392 {Opt_thread_pool, "thread_pool=%u"}, 393 {Opt_treelog, "treelog"}, 394 {Opt_notreelog, "notreelog"}, 395 {Opt_usebackuproot, "usebackuproot"}, 396 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 397 398 /* Deprecated options */ 399 {Opt_alloc_start, "alloc_start=%s"}, 400 {Opt_recovery, "recovery"}, 401 {Opt_subvolrootid, "subvolrootid=%d"}, 402 403 /* Debugging options */ 404 {Opt_check_integrity, "check_int"}, 405 {Opt_check_integrity_including_extent_data, "check_int_data"}, 406 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 407 {Opt_enospc_debug, "enospc_debug"}, 408 {Opt_noenospc_debug, "noenospc_debug"}, 409 #ifdef CONFIG_BTRFS_DEBUG 410 {Opt_fragment_data, "fragment=data"}, 411 {Opt_fragment_metadata, "fragment=metadata"}, 412 {Opt_fragment_all, "fragment=all"}, 413 #endif 414 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 415 {Opt_ref_verify, "ref_verify"}, 416 #endif 417 {Opt_err, NULL}, 418 }; 419 420 /* 421 * Regular mount options parser. Everything that is needed only when 422 * reading in a new superblock is parsed here. 423 * XXX JDM: This needs to be cleaned up for remount. 424 */ 425 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 426 unsigned long new_flags) 427 { 428 substring_t args[MAX_OPT_ARGS]; 429 char *p, *num; 430 u64 cache_gen; 431 int intarg; 432 int ret = 0; 433 char *compress_type; 434 bool compress_force = false; 435 enum btrfs_compression_type saved_compress_type; 436 bool saved_compress_force; 437 int no_compress = 0; 438 439 cache_gen = btrfs_super_cache_generation(info->super_copy); 440 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 441 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 442 else if (cache_gen) 443 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 444 445 /* 446 * Even the options are empty, we still need to do extra check 447 * against new flags 448 */ 449 if (!options) 450 goto check; 451 452 while ((p = strsep(&options, ",")) != NULL) { 453 int token; 454 if (!*p) 455 continue; 456 457 token = match_token(p, tokens, args); 458 switch (token) { 459 case Opt_degraded: 460 btrfs_info(info, "allowing degraded mounts"); 461 btrfs_set_opt(info->mount_opt, DEGRADED); 462 break; 463 case Opt_subvol: 464 case Opt_subvol_empty: 465 case Opt_subvolid: 466 case Opt_subvolrootid: 467 case Opt_device: 468 /* 469 * These are parsed by btrfs_parse_subvol_options or 470 * btrfs_parse_device_options and can be ignored here. 471 */ 472 break; 473 case Opt_nodatasum: 474 btrfs_set_and_info(info, NODATASUM, 475 "setting nodatasum"); 476 break; 477 case Opt_datasum: 478 if (btrfs_test_opt(info, NODATASUM)) { 479 if (btrfs_test_opt(info, NODATACOW)) 480 btrfs_info(info, 481 "setting datasum, datacow enabled"); 482 else 483 btrfs_info(info, "setting datasum"); 484 } 485 btrfs_clear_opt(info->mount_opt, NODATACOW); 486 btrfs_clear_opt(info->mount_opt, NODATASUM); 487 break; 488 case Opt_nodatacow: 489 if (!btrfs_test_opt(info, NODATACOW)) { 490 if (!btrfs_test_opt(info, COMPRESS) || 491 !btrfs_test_opt(info, FORCE_COMPRESS)) { 492 btrfs_info(info, 493 "setting nodatacow, compression disabled"); 494 } else { 495 btrfs_info(info, "setting nodatacow"); 496 } 497 } 498 btrfs_clear_opt(info->mount_opt, COMPRESS); 499 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 500 btrfs_set_opt(info->mount_opt, NODATACOW); 501 btrfs_set_opt(info->mount_opt, NODATASUM); 502 break; 503 case Opt_datacow: 504 btrfs_clear_and_info(info, NODATACOW, 505 "setting datacow"); 506 break; 507 case Opt_compress_force: 508 case Opt_compress_force_type: 509 compress_force = true; 510 /* Fallthrough */ 511 case Opt_compress: 512 case Opt_compress_type: 513 saved_compress_type = btrfs_test_opt(info, 514 COMPRESS) ? 515 info->compress_type : BTRFS_COMPRESS_NONE; 516 saved_compress_force = 517 btrfs_test_opt(info, FORCE_COMPRESS); 518 if (token == Opt_compress || 519 token == Opt_compress_force || 520 strncmp(args[0].from, "zlib", 4) == 0) { 521 compress_type = "zlib"; 522 523 info->compress_type = BTRFS_COMPRESS_ZLIB; 524 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 525 /* 526 * args[0] contains uninitialized data since 527 * for these tokens we don't expect any 528 * parameter. 529 */ 530 if (token != Opt_compress && 531 token != Opt_compress_force) 532 info->compress_level = 533 btrfs_compress_str2level( 534 BTRFS_COMPRESS_ZLIB, 535 args[0].from + 4); 536 btrfs_set_opt(info->mount_opt, COMPRESS); 537 btrfs_clear_opt(info->mount_opt, NODATACOW); 538 btrfs_clear_opt(info->mount_opt, NODATASUM); 539 no_compress = 0; 540 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 541 compress_type = "lzo"; 542 info->compress_type = BTRFS_COMPRESS_LZO; 543 btrfs_set_opt(info->mount_opt, COMPRESS); 544 btrfs_clear_opt(info->mount_opt, NODATACOW); 545 btrfs_clear_opt(info->mount_opt, NODATASUM); 546 btrfs_set_fs_incompat(info, COMPRESS_LZO); 547 no_compress = 0; 548 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 549 compress_type = "zstd"; 550 info->compress_type = BTRFS_COMPRESS_ZSTD; 551 info->compress_level = 552 btrfs_compress_str2level( 553 BTRFS_COMPRESS_ZSTD, 554 args[0].from + 4); 555 btrfs_set_opt(info->mount_opt, COMPRESS); 556 btrfs_clear_opt(info->mount_opt, NODATACOW); 557 btrfs_clear_opt(info->mount_opt, NODATASUM); 558 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 559 no_compress = 0; 560 } else if (strncmp(args[0].from, "no", 2) == 0) { 561 compress_type = "no"; 562 btrfs_clear_opt(info->mount_opt, COMPRESS); 563 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 564 compress_force = false; 565 no_compress++; 566 } else { 567 ret = -EINVAL; 568 goto out; 569 } 570 571 if (compress_force) { 572 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 573 } else { 574 /* 575 * If we remount from compress-force=xxx to 576 * compress=xxx, we need clear FORCE_COMPRESS 577 * flag, otherwise, there is no way for users 578 * to disable forcible compression separately. 579 */ 580 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 581 } 582 if ((btrfs_test_opt(info, COMPRESS) && 583 (info->compress_type != saved_compress_type || 584 compress_force != saved_compress_force)) || 585 (!btrfs_test_opt(info, COMPRESS) && 586 no_compress == 1)) { 587 btrfs_info(info, "%s %s compression, level %d", 588 (compress_force) ? "force" : "use", 589 compress_type, info->compress_level); 590 } 591 compress_force = false; 592 break; 593 case Opt_ssd: 594 btrfs_set_and_info(info, SSD, 595 "enabling ssd optimizations"); 596 btrfs_clear_opt(info->mount_opt, NOSSD); 597 break; 598 case Opt_ssd_spread: 599 btrfs_set_and_info(info, SSD, 600 "enabling ssd optimizations"); 601 btrfs_set_and_info(info, SSD_SPREAD, 602 "using spread ssd allocation scheme"); 603 btrfs_clear_opt(info->mount_opt, NOSSD); 604 break; 605 case Opt_nossd: 606 btrfs_set_opt(info->mount_opt, NOSSD); 607 btrfs_clear_and_info(info, SSD, 608 "not using ssd optimizations"); 609 /* Fallthrough */ 610 case Opt_nossd_spread: 611 btrfs_clear_and_info(info, SSD_SPREAD, 612 "not using spread ssd allocation scheme"); 613 break; 614 case Opt_barrier: 615 btrfs_clear_and_info(info, NOBARRIER, 616 "turning on barriers"); 617 break; 618 case Opt_nobarrier: 619 btrfs_set_and_info(info, NOBARRIER, 620 "turning off barriers"); 621 break; 622 case Opt_thread_pool: 623 ret = match_int(&args[0], &intarg); 624 if (ret) { 625 goto out; 626 } else if (intarg == 0) { 627 ret = -EINVAL; 628 goto out; 629 } 630 info->thread_pool_size = intarg; 631 break; 632 case Opt_max_inline: 633 num = match_strdup(&args[0]); 634 if (num) { 635 info->max_inline = memparse(num, NULL); 636 kfree(num); 637 638 if (info->max_inline) { 639 info->max_inline = min_t(u64, 640 info->max_inline, 641 info->sectorsize); 642 } 643 btrfs_info(info, "max_inline at %llu", 644 info->max_inline); 645 } else { 646 ret = -ENOMEM; 647 goto out; 648 } 649 break; 650 case Opt_alloc_start: 651 btrfs_info(info, 652 "option alloc_start is obsolete, ignored"); 653 break; 654 case Opt_acl: 655 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 656 info->sb->s_flags |= SB_POSIXACL; 657 break; 658 #else 659 btrfs_err(info, "support for ACL not compiled in!"); 660 ret = -EINVAL; 661 goto out; 662 #endif 663 case Opt_noacl: 664 info->sb->s_flags &= ~SB_POSIXACL; 665 break; 666 case Opt_notreelog: 667 btrfs_set_and_info(info, NOTREELOG, 668 "disabling tree log"); 669 break; 670 case Opt_treelog: 671 btrfs_clear_and_info(info, NOTREELOG, 672 "enabling tree log"); 673 break; 674 case Opt_norecovery: 675 case Opt_nologreplay: 676 btrfs_set_and_info(info, NOLOGREPLAY, 677 "disabling log replay at mount time"); 678 break; 679 case Opt_flushoncommit: 680 btrfs_set_and_info(info, FLUSHONCOMMIT, 681 "turning on flush-on-commit"); 682 break; 683 case Opt_noflushoncommit: 684 btrfs_clear_and_info(info, FLUSHONCOMMIT, 685 "turning off flush-on-commit"); 686 break; 687 case Opt_ratio: 688 ret = match_int(&args[0], &intarg); 689 if (ret) 690 goto out; 691 info->metadata_ratio = intarg; 692 btrfs_info(info, "metadata ratio %u", 693 info->metadata_ratio); 694 break; 695 case Opt_discard: 696 btrfs_set_and_info(info, DISCARD, 697 "turning on discard"); 698 break; 699 case Opt_nodiscard: 700 btrfs_clear_and_info(info, DISCARD, 701 "turning off discard"); 702 break; 703 case Opt_space_cache: 704 case Opt_space_cache_version: 705 if (token == Opt_space_cache || 706 strcmp(args[0].from, "v1") == 0) { 707 btrfs_clear_opt(info->mount_opt, 708 FREE_SPACE_TREE); 709 btrfs_set_and_info(info, SPACE_CACHE, 710 "enabling disk space caching"); 711 } else if (strcmp(args[0].from, "v2") == 0) { 712 btrfs_clear_opt(info->mount_opt, 713 SPACE_CACHE); 714 btrfs_set_and_info(info, FREE_SPACE_TREE, 715 "enabling free space tree"); 716 } else { 717 ret = -EINVAL; 718 goto out; 719 } 720 break; 721 case Opt_rescan_uuid_tree: 722 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 723 break; 724 case Opt_no_space_cache: 725 if (btrfs_test_opt(info, SPACE_CACHE)) { 726 btrfs_clear_and_info(info, SPACE_CACHE, 727 "disabling disk space caching"); 728 } 729 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 730 btrfs_clear_and_info(info, FREE_SPACE_TREE, 731 "disabling free space tree"); 732 } 733 break; 734 case Opt_inode_cache: 735 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 736 "enabling inode map caching"); 737 break; 738 case Opt_noinode_cache: 739 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 740 "disabling inode map caching"); 741 break; 742 case Opt_clear_cache: 743 btrfs_set_and_info(info, CLEAR_CACHE, 744 "force clearing of disk cache"); 745 break; 746 case Opt_user_subvol_rm_allowed: 747 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 748 break; 749 case Opt_enospc_debug: 750 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 751 break; 752 case Opt_noenospc_debug: 753 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 754 break; 755 case Opt_defrag: 756 btrfs_set_and_info(info, AUTO_DEFRAG, 757 "enabling auto defrag"); 758 break; 759 case Opt_nodefrag: 760 btrfs_clear_and_info(info, AUTO_DEFRAG, 761 "disabling auto defrag"); 762 break; 763 case Opt_recovery: 764 btrfs_warn(info, 765 "'recovery' is deprecated, use 'usebackuproot' instead"); 766 /* fall through */ 767 case Opt_usebackuproot: 768 btrfs_info(info, 769 "trying to use backup root at mount time"); 770 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 771 break; 772 case Opt_skip_balance: 773 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 774 break; 775 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 776 case Opt_check_integrity_including_extent_data: 777 btrfs_info(info, 778 "enabling check integrity including extent data"); 779 btrfs_set_opt(info->mount_opt, 780 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 781 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 782 break; 783 case Opt_check_integrity: 784 btrfs_info(info, "enabling check integrity"); 785 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 786 break; 787 case Opt_check_integrity_print_mask: 788 ret = match_int(&args[0], &intarg); 789 if (ret) 790 goto out; 791 info->check_integrity_print_mask = intarg; 792 btrfs_info(info, "check_integrity_print_mask 0x%x", 793 info->check_integrity_print_mask); 794 break; 795 #else 796 case Opt_check_integrity_including_extent_data: 797 case Opt_check_integrity: 798 case Opt_check_integrity_print_mask: 799 btrfs_err(info, 800 "support for check_integrity* not compiled in!"); 801 ret = -EINVAL; 802 goto out; 803 #endif 804 case Opt_fatal_errors: 805 if (strcmp(args[0].from, "panic") == 0) 806 btrfs_set_opt(info->mount_opt, 807 PANIC_ON_FATAL_ERROR); 808 else if (strcmp(args[0].from, "bug") == 0) 809 btrfs_clear_opt(info->mount_opt, 810 PANIC_ON_FATAL_ERROR); 811 else { 812 ret = -EINVAL; 813 goto out; 814 } 815 break; 816 case Opt_commit_interval: 817 intarg = 0; 818 ret = match_int(&args[0], &intarg); 819 if (ret) 820 goto out; 821 if (intarg == 0) { 822 btrfs_info(info, 823 "using default commit interval %us", 824 BTRFS_DEFAULT_COMMIT_INTERVAL); 825 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 826 } else if (intarg > 300) { 827 btrfs_warn(info, "excessive commit interval %d", 828 intarg); 829 } 830 info->commit_interval = intarg; 831 break; 832 #ifdef CONFIG_BTRFS_DEBUG 833 case Opt_fragment_all: 834 btrfs_info(info, "fragmenting all space"); 835 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 836 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 837 break; 838 case Opt_fragment_metadata: 839 btrfs_info(info, "fragmenting metadata"); 840 btrfs_set_opt(info->mount_opt, 841 FRAGMENT_METADATA); 842 break; 843 case Opt_fragment_data: 844 btrfs_info(info, "fragmenting data"); 845 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 846 break; 847 #endif 848 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 849 case Opt_ref_verify: 850 btrfs_info(info, "doing ref verification"); 851 btrfs_set_opt(info->mount_opt, REF_VERIFY); 852 break; 853 #endif 854 case Opt_err: 855 btrfs_info(info, "unrecognized mount option '%s'", p); 856 ret = -EINVAL; 857 goto out; 858 default: 859 break; 860 } 861 } 862 check: 863 /* 864 * Extra check for current option against current flag 865 */ 866 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 867 btrfs_err(info, 868 "nologreplay must be used with ro mount option"); 869 ret = -EINVAL; 870 } 871 out: 872 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 873 !btrfs_test_opt(info, FREE_SPACE_TREE) && 874 !btrfs_test_opt(info, CLEAR_CACHE)) { 875 btrfs_err(info, "cannot disable free space tree"); 876 ret = -EINVAL; 877 878 } 879 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 880 btrfs_info(info, "disk space caching is enabled"); 881 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 882 btrfs_info(info, "using free space tree"); 883 return ret; 884 } 885 886 /* 887 * Parse mount options that are required early in the mount process. 888 * 889 * All other options will be parsed on much later in the mount process and 890 * only when we need to allocate a new super block. 891 */ 892 static int btrfs_parse_device_options(const char *options, fmode_t flags, 893 void *holder) 894 { 895 substring_t args[MAX_OPT_ARGS]; 896 char *device_name, *opts, *orig, *p; 897 struct btrfs_device *device = NULL; 898 int error = 0; 899 900 lockdep_assert_held(&uuid_mutex); 901 902 if (!options) 903 return 0; 904 905 /* 906 * strsep changes the string, duplicate it because btrfs_parse_options 907 * gets called later 908 */ 909 opts = kstrdup(options, GFP_KERNEL); 910 if (!opts) 911 return -ENOMEM; 912 orig = opts; 913 914 while ((p = strsep(&opts, ",")) != NULL) { 915 int token; 916 917 if (!*p) 918 continue; 919 920 token = match_token(p, tokens, args); 921 if (token == Opt_device) { 922 device_name = match_strdup(&args[0]); 923 if (!device_name) { 924 error = -ENOMEM; 925 goto out; 926 } 927 device = btrfs_scan_one_device(device_name, flags, 928 holder); 929 kfree(device_name); 930 if (IS_ERR(device)) { 931 error = PTR_ERR(device); 932 goto out; 933 } 934 } 935 } 936 937 out: 938 kfree(orig); 939 return error; 940 } 941 942 /* 943 * Parse mount options that are related to subvolume id 944 * 945 * The value is later passed to mount_subvol() 946 */ 947 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 948 u64 *subvol_objectid) 949 { 950 substring_t args[MAX_OPT_ARGS]; 951 char *opts, *orig, *p; 952 int error = 0; 953 u64 subvolid; 954 955 if (!options) 956 return 0; 957 958 /* 959 * strsep changes the string, duplicate it because 960 * btrfs_parse_device_options gets called later 961 */ 962 opts = kstrdup(options, GFP_KERNEL); 963 if (!opts) 964 return -ENOMEM; 965 orig = opts; 966 967 while ((p = strsep(&opts, ",")) != NULL) { 968 int token; 969 if (!*p) 970 continue; 971 972 token = match_token(p, tokens, args); 973 switch (token) { 974 case Opt_subvol: 975 kfree(*subvol_name); 976 *subvol_name = match_strdup(&args[0]); 977 if (!*subvol_name) { 978 error = -ENOMEM; 979 goto out; 980 } 981 break; 982 case Opt_subvolid: 983 error = match_u64(&args[0], &subvolid); 984 if (error) 985 goto out; 986 987 /* we want the original fs_tree */ 988 if (subvolid == 0) 989 subvolid = BTRFS_FS_TREE_OBJECTID; 990 991 *subvol_objectid = subvolid; 992 break; 993 case Opt_subvolrootid: 994 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 995 break; 996 default: 997 break; 998 } 999 } 1000 1001 out: 1002 kfree(orig); 1003 return error; 1004 } 1005 1006 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1007 u64 subvol_objectid) 1008 { 1009 struct btrfs_root *root = fs_info->tree_root; 1010 struct btrfs_root *fs_root; 1011 struct btrfs_root_ref *root_ref; 1012 struct btrfs_inode_ref *inode_ref; 1013 struct btrfs_key key; 1014 struct btrfs_path *path = NULL; 1015 char *name = NULL, *ptr; 1016 u64 dirid; 1017 int len; 1018 int ret; 1019 1020 path = btrfs_alloc_path(); 1021 if (!path) { 1022 ret = -ENOMEM; 1023 goto err; 1024 } 1025 path->leave_spinning = 1; 1026 1027 name = kmalloc(PATH_MAX, GFP_KERNEL); 1028 if (!name) { 1029 ret = -ENOMEM; 1030 goto err; 1031 } 1032 ptr = name + PATH_MAX - 1; 1033 ptr[0] = '\0'; 1034 1035 /* 1036 * Walk up the subvolume trees in the tree of tree roots by root 1037 * backrefs until we hit the top-level subvolume. 1038 */ 1039 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1040 key.objectid = subvol_objectid; 1041 key.type = BTRFS_ROOT_BACKREF_KEY; 1042 key.offset = (u64)-1; 1043 1044 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1045 if (ret < 0) { 1046 goto err; 1047 } else if (ret > 0) { 1048 ret = btrfs_previous_item(root, path, subvol_objectid, 1049 BTRFS_ROOT_BACKREF_KEY); 1050 if (ret < 0) { 1051 goto err; 1052 } else if (ret > 0) { 1053 ret = -ENOENT; 1054 goto err; 1055 } 1056 } 1057 1058 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1059 subvol_objectid = key.offset; 1060 1061 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1062 struct btrfs_root_ref); 1063 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1064 ptr -= len + 1; 1065 if (ptr < name) { 1066 ret = -ENAMETOOLONG; 1067 goto err; 1068 } 1069 read_extent_buffer(path->nodes[0], ptr + 1, 1070 (unsigned long)(root_ref + 1), len); 1071 ptr[0] = '/'; 1072 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1073 btrfs_release_path(path); 1074 1075 key.objectid = subvol_objectid; 1076 key.type = BTRFS_ROOT_ITEM_KEY; 1077 key.offset = (u64)-1; 1078 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1079 if (IS_ERR(fs_root)) { 1080 ret = PTR_ERR(fs_root); 1081 goto err; 1082 } 1083 1084 /* 1085 * Walk up the filesystem tree by inode refs until we hit the 1086 * root directory. 1087 */ 1088 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1089 key.objectid = dirid; 1090 key.type = BTRFS_INODE_REF_KEY; 1091 key.offset = (u64)-1; 1092 1093 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1094 if (ret < 0) { 1095 goto err; 1096 } else if (ret > 0) { 1097 ret = btrfs_previous_item(fs_root, path, dirid, 1098 BTRFS_INODE_REF_KEY); 1099 if (ret < 0) { 1100 goto err; 1101 } else if (ret > 0) { 1102 ret = -ENOENT; 1103 goto err; 1104 } 1105 } 1106 1107 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1108 dirid = key.offset; 1109 1110 inode_ref = btrfs_item_ptr(path->nodes[0], 1111 path->slots[0], 1112 struct btrfs_inode_ref); 1113 len = btrfs_inode_ref_name_len(path->nodes[0], 1114 inode_ref); 1115 ptr -= len + 1; 1116 if (ptr < name) { 1117 ret = -ENAMETOOLONG; 1118 goto err; 1119 } 1120 read_extent_buffer(path->nodes[0], ptr + 1, 1121 (unsigned long)(inode_ref + 1), len); 1122 ptr[0] = '/'; 1123 btrfs_release_path(path); 1124 } 1125 } 1126 1127 btrfs_free_path(path); 1128 if (ptr == name + PATH_MAX - 1) { 1129 name[0] = '/'; 1130 name[1] = '\0'; 1131 } else { 1132 memmove(name, ptr, name + PATH_MAX - ptr); 1133 } 1134 return name; 1135 1136 err: 1137 btrfs_free_path(path); 1138 kfree(name); 1139 return ERR_PTR(ret); 1140 } 1141 1142 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1143 { 1144 struct btrfs_root *root = fs_info->tree_root; 1145 struct btrfs_dir_item *di; 1146 struct btrfs_path *path; 1147 struct btrfs_key location; 1148 u64 dir_id; 1149 1150 path = btrfs_alloc_path(); 1151 if (!path) 1152 return -ENOMEM; 1153 path->leave_spinning = 1; 1154 1155 /* 1156 * Find the "default" dir item which points to the root item that we 1157 * will mount by default if we haven't been given a specific subvolume 1158 * to mount. 1159 */ 1160 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1161 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1162 if (IS_ERR(di)) { 1163 btrfs_free_path(path); 1164 return PTR_ERR(di); 1165 } 1166 if (!di) { 1167 /* 1168 * Ok the default dir item isn't there. This is weird since 1169 * it's always been there, but don't freak out, just try and 1170 * mount the top-level subvolume. 1171 */ 1172 btrfs_free_path(path); 1173 *objectid = BTRFS_FS_TREE_OBJECTID; 1174 return 0; 1175 } 1176 1177 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1178 btrfs_free_path(path); 1179 *objectid = location.objectid; 1180 return 0; 1181 } 1182 1183 static int btrfs_fill_super(struct super_block *sb, 1184 struct btrfs_fs_devices *fs_devices, 1185 void *data) 1186 { 1187 struct inode *inode; 1188 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1189 struct btrfs_key key; 1190 int err; 1191 1192 sb->s_maxbytes = MAX_LFS_FILESIZE; 1193 sb->s_magic = BTRFS_SUPER_MAGIC; 1194 sb->s_op = &btrfs_super_ops; 1195 sb->s_d_op = &btrfs_dentry_operations; 1196 sb->s_export_op = &btrfs_export_ops; 1197 sb->s_xattr = btrfs_xattr_handlers; 1198 sb->s_time_gran = 1; 1199 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1200 sb->s_flags |= SB_POSIXACL; 1201 #endif 1202 sb->s_flags |= SB_I_VERSION; 1203 sb->s_iflags |= SB_I_CGROUPWB; 1204 1205 err = super_setup_bdi(sb); 1206 if (err) { 1207 btrfs_err(fs_info, "super_setup_bdi failed"); 1208 return err; 1209 } 1210 1211 err = open_ctree(sb, fs_devices, (char *)data); 1212 if (err) { 1213 btrfs_err(fs_info, "open_ctree failed"); 1214 return err; 1215 } 1216 1217 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1218 key.type = BTRFS_INODE_ITEM_KEY; 1219 key.offset = 0; 1220 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1221 if (IS_ERR(inode)) { 1222 err = PTR_ERR(inode); 1223 goto fail_close; 1224 } 1225 1226 sb->s_root = d_make_root(inode); 1227 if (!sb->s_root) { 1228 err = -ENOMEM; 1229 goto fail_close; 1230 } 1231 1232 cleancache_init_fs(sb); 1233 sb->s_flags |= SB_ACTIVE; 1234 return 0; 1235 1236 fail_close: 1237 close_ctree(fs_info); 1238 return err; 1239 } 1240 1241 int btrfs_sync_fs(struct super_block *sb, int wait) 1242 { 1243 struct btrfs_trans_handle *trans; 1244 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1245 struct btrfs_root *root = fs_info->tree_root; 1246 1247 trace_btrfs_sync_fs(fs_info, wait); 1248 1249 if (!wait) { 1250 filemap_flush(fs_info->btree_inode->i_mapping); 1251 return 0; 1252 } 1253 1254 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1255 1256 trans = btrfs_attach_transaction_barrier(root); 1257 if (IS_ERR(trans)) { 1258 /* no transaction, don't bother */ 1259 if (PTR_ERR(trans) == -ENOENT) { 1260 /* 1261 * Exit unless we have some pending changes 1262 * that need to go through commit 1263 */ 1264 if (fs_info->pending_changes == 0) 1265 return 0; 1266 /* 1267 * A non-blocking test if the fs is frozen. We must not 1268 * start a new transaction here otherwise a deadlock 1269 * happens. The pending operations are delayed to the 1270 * next commit after thawing. 1271 */ 1272 if (sb_start_write_trylock(sb)) 1273 sb_end_write(sb); 1274 else 1275 return 0; 1276 trans = btrfs_start_transaction(root, 0); 1277 } 1278 if (IS_ERR(trans)) 1279 return PTR_ERR(trans); 1280 } 1281 return btrfs_commit_transaction(trans); 1282 } 1283 1284 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1285 { 1286 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1287 const char *compress_type; 1288 1289 if (btrfs_test_opt(info, DEGRADED)) 1290 seq_puts(seq, ",degraded"); 1291 if (btrfs_test_opt(info, NODATASUM)) 1292 seq_puts(seq, ",nodatasum"); 1293 if (btrfs_test_opt(info, NODATACOW)) 1294 seq_puts(seq, ",nodatacow"); 1295 if (btrfs_test_opt(info, NOBARRIER)) 1296 seq_puts(seq, ",nobarrier"); 1297 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1298 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1299 if (info->thread_pool_size != min_t(unsigned long, 1300 num_online_cpus() + 2, 8)) 1301 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1302 if (btrfs_test_opt(info, COMPRESS)) { 1303 compress_type = btrfs_compress_type2str(info->compress_type); 1304 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1305 seq_printf(seq, ",compress-force=%s", compress_type); 1306 else 1307 seq_printf(seq, ",compress=%s", compress_type); 1308 if (info->compress_level) 1309 seq_printf(seq, ":%d", info->compress_level); 1310 } 1311 if (btrfs_test_opt(info, NOSSD)) 1312 seq_puts(seq, ",nossd"); 1313 if (btrfs_test_opt(info, SSD_SPREAD)) 1314 seq_puts(seq, ",ssd_spread"); 1315 else if (btrfs_test_opt(info, SSD)) 1316 seq_puts(seq, ",ssd"); 1317 if (btrfs_test_opt(info, NOTREELOG)) 1318 seq_puts(seq, ",notreelog"); 1319 if (btrfs_test_opt(info, NOLOGREPLAY)) 1320 seq_puts(seq, ",nologreplay"); 1321 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1322 seq_puts(seq, ",flushoncommit"); 1323 if (btrfs_test_opt(info, DISCARD)) 1324 seq_puts(seq, ",discard"); 1325 if (!(info->sb->s_flags & SB_POSIXACL)) 1326 seq_puts(seq, ",noacl"); 1327 if (btrfs_test_opt(info, SPACE_CACHE)) 1328 seq_puts(seq, ",space_cache"); 1329 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1330 seq_puts(seq, ",space_cache=v2"); 1331 else 1332 seq_puts(seq, ",nospace_cache"); 1333 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1334 seq_puts(seq, ",rescan_uuid_tree"); 1335 if (btrfs_test_opt(info, CLEAR_CACHE)) 1336 seq_puts(seq, ",clear_cache"); 1337 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1338 seq_puts(seq, ",user_subvol_rm_allowed"); 1339 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1340 seq_puts(seq, ",enospc_debug"); 1341 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1342 seq_puts(seq, ",autodefrag"); 1343 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1344 seq_puts(seq, ",inode_cache"); 1345 if (btrfs_test_opt(info, SKIP_BALANCE)) 1346 seq_puts(seq, ",skip_balance"); 1347 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1348 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1349 seq_puts(seq, ",check_int_data"); 1350 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1351 seq_puts(seq, ",check_int"); 1352 if (info->check_integrity_print_mask) 1353 seq_printf(seq, ",check_int_print_mask=%d", 1354 info->check_integrity_print_mask); 1355 #endif 1356 if (info->metadata_ratio) 1357 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1358 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1359 seq_puts(seq, ",fatal_errors=panic"); 1360 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1361 seq_printf(seq, ",commit=%u", info->commit_interval); 1362 #ifdef CONFIG_BTRFS_DEBUG 1363 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1364 seq_puts(seq, ",fragment=data"); 1365 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1366 seq_puts(seq, ",fragment=metadata"); 1367 #endif 1368 if (btrfs_test_opt(info, REF_VERIFY)) 1369 seq_puts(seq, ",ref_verify"); 1370 seq_printf(seq, ",subvolid=%llu", 1371 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1372 seq_puts(seq, ",subvol="); 1373 seq_dentry(seq, dentry, " \t\n\\"); 1374 return 0; 1375 } 1376 1377 static int btrfs_test_super(struct super_block *s, void *data) 1378 { 1379 struct btrfs_fs_info *p = data; 1380 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1381 1382 return fs_info->fs_devices == p->fs_devices; 1383 } 1384 1385 static int btrfs_set_super(struct super_block *s, void *data) 1386 { 1387 int err = set_anon_super(s, data); 1388 if (!err) 1389 s->s_fs_info = data; 1390 return err; 1391 } 1392 1393 /* 1394 * subvolumes are identified by ino 256 1395 */ 1396 static inline int is_subvolume_inode(struct inode *inode) 1397 { 1398 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1399 return 1; 1400 return 0; 1401 } 1402 1403 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1404 struct vfsmount *mnt) 1405 { 1406 struct dentry *root; 1407 int ret; 1408 1409 if (!subvol_name) { 1410 if (!subvol_objectid) { 1411 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1412 &subvol_objectid); 1413 if (ret) { 1414 root = ERR_PTR(ret); 1415 goto out; 1416 } 1417 } 1418 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1419 subvol_objectid); 1420 if (IS_ERR(subvol_name)) { 1421 root = ERR_CAST(subvol_name); 1422 subvol_name = NULL; 1423 goto out; 1424 } 1425 1426 } 1427 1428 root = mount_subtree(mnt, subvol_name); 1429 /* mount_subtree() drops our reference on the vfsmount. */ 1430 mnt = NULL; 1431 1432 if (!IS_ERR(root)) { 1433 struct super_block *s = root->d_sb; 1434 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1435 struct inode *root_inode = d_inode(root); 1436 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1437 1438 ret = 0; 1439 if (!is_subvolume_inode(root_inode)) { 1440 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1441 subvol_name); 1442 ret = -EINVAL; 1443 } 1444 if (subvol_objectid && root_objectid != subvol_objectid) { 1445 /* 1446 * This will also catch a race condition where a 1447 * subvolume which was passed by ID is renamed and 1448 * another subvolume is renamed over the old location. 1449 */ 1450 btrfs_err(fs_info, 1451 "subvol '%s' does not match subvolid %llu", 1452 subvol_name, subvol_objectid); 1453 ret = -EINVAL; 1454 } 1455 if (ret) { 1456 dput(root); 1457 root = ERR_PTR(ret); 1458 deactivate_locked_super(s); 1459 } 1460 } 1461 1462 out: 1463 mntput(mnt); 1464 kfree(subvol_name); 1465 return root; 1466 } 1467 1468 /* 1469 * Find a superblock for the given device / mount point. 1470 * 1471 * Note: This is based on mount_bdev from fs/super.c with a few additions 1472 * for multiple device setup. Make sure to keep it in sync. 1473 */ 1474 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1475 int flags, const char *device_name, void *data) 1476 { 1477 struct block_device *bdev = NULL; 1478 struct super_block *s; 1479 struct btrfs_device *device = NULL; 1480 struct btrfs_fs_devices *fs_devices = NULL; 1481 struct btrfs_fs_info *fs_info = NULL; 1482 void *new_sec_opts = NULL; 1483 fmode_t mode = FMODE_READ; 1484 int error = 0; 1485 1486 if (!(flags & SB_RDONLY)) 1487 mode |= FMODE_WRITE; 1488 1489 if (data) { 1490 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1491 if (error) 1492 return ERR_PTR(error); 1493 } 1494 1495 /* 1496 * Setup a dummy root and fs_info for test/set super. This is because 1497 * we don't actually fill this stuff out until open_ctree, but we need 1498 * it for searching for existing supers, so this lets us do that and 1499 * then open_ctree will properly initialize everything later. 1500 */ 1501 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1502 if (!fs_info) { 1503 error = -ENOMEM; 1504 goto error_sec_opts; 1505 } 1506 1507 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1508 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1509 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1510 error = -ENOMEM; 1511 goto error_fs_info; 1512 } 1513 1514 mutex_lock(&uuid_mutex); 1515 error = btrfs_parse_device_options(data, mode, fs_type); 1516 if (error) { 1517 mutex_unlock(&uuid_mutex); 1518 goto error_fs_info; 1519 } 1520 1521 device = btrfs_scan_one_device(device_name, mode, fs_type); 1522 if (IS_ERR(device)) { 1523 mutex_unlock(&uuid_mutex); 1524 error = PTR_ERR(device); 1525 goto error_fs_info; 1526 } 1527 1528 fs_devices = device->fs_devices; 1529 fs_info->fs_devices = fs_devices; 1530 1531 error = btrfs_open_devices(fs_devices, mode, fs_type); 1532 mutex_unlock(&uuid_mutex); 1533 if (error) 1534 goto error_fs_info; 1535 1536 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1537 error = -EACCES; 1538 goto error_close_devices; 1539 } 1540 1541 bdev = fs_devices->latest_bdev; 1542 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1543 fs_info); 1544 if (IS_ERR(s)) { 1545 error = PTR_ERR(s); 1546 goto error_close_devices; 1547 } 1548 1549 if (s->s_root) { 1550 btrfs_close_devices(fs_devices); 1551 free_fs_info(fs_info); 1552 if ((flags ^ s->s_flags) & SB_RDONLY) 1553 error = -EBUSY; 1554 } else { 1555 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1556 btrfs_sb(s)->bdev_holder = fs_type; 1557 if (!strstr(crc32c_impl(), "generic")) 1558 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1559 error = btrfs_fill_super(s, fs_devices, data); 1560 } 1561 if (!error) 1562 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1563 security_free_mnt_opts(&new_sec_opts); 1564 if (error) { 1565 deactivate_locked_super(s); 1566 return ERR_PTR(error); 1567 } 1568 1569 return dget(s->s_root); 1570 1571 error_close_devices: 1572 btrfs_close_devices(fs_devices); 1573 error_fs_info: 1574 free_fs_info(fs_info); 1575 error_sec_opts: 1576 security_free_mnt_opts(&new_sec_opts); 1577 return ERR_PTR(error); 1578 } 1579 1580 /* 1581 * Mount function which is called by VFS layer. 1582 * 1583 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1584 * which needs vfsmount* of device's root (/). This means device's root has to 1585 * be mounted internally in any case. 1586 * 1587 * Operation flow: 1588 * 1. Parse subvol id related options for later use in mount_subvol(). 1589 * 1590 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1591 * 1592 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1593 * first place. In order to avoid calling btrfs_mount() again, we use 1594 * different file_system_type which is not registered to VFS by 1595 * register_filesystem() (btrfs_root_fs_type). As a result, 1596 * btrfs_mount_root() is called. The return value will be used by 1597 * mount_subtree() in mount_subvol(). 1598 * 1599 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1600 * "btrfs subvolume set-default", mount_subvol() is called always. 1601 */ 1602 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1603 const char *device_name, void *data) 1604 { 1605 struct vfsmount *mnt_root; 1606 struct dentry *root; 1607 char *subvol_name = NULL; 1608 u64 subvol_objectid = 0; 1609 int error = 0; 1610 1611 error = btrfs_parse_subvol_options(data, &subvol_name, 1612 &subvol_objectid); 1613 if (error) { 1614 kfree(subvol_name); 1615 return ERR_PTR(error); 1616 } 1617 1618 /* mount device's root (/) */ 1619 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1620 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1621 if (flags & SB_RDONLY) { 1622 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1623 flags & ~SB_RDONLY, device_name, data); 1624 } else { 1625 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1626 flags | SB_RDONLY, device_name, data); 1627 if (IS_ERR(mnt_root)) { 1628 root = ERR_CAST(mnt_root); 1629 kfree(subvol_name); 1630 goto out; 1631 } 1632 1633 down_write(&mnt_root->mnt_sb->s_umount); 1634 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1635 up_write(&mnt_root->mnt_sb->s_umount); 1636 if (error < 0) { 1637 root = ERR_PTR(error); 1638 mntput(mnt_root); 1639 kfree(subvol_name); 1640 goto out; 1641 } 1642 } 1643 } 1644 if (IS_ERR(mnt_root)) { 1645 root = ERR_CAST(mnt_root); 1646 kfree(subvol_name); 1647 goto out; 1648 } 1649 1650 /* mount_subvol() will free subvol_name and mnt_root */ 1651 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1652 1653 out: 1654 return root; 1655 } 1656 1657 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1658 u32 new_pool_size, u32 old_pool_size) 1659 { 1660 if (new_pool_size == old_pool_size) 1661 return; 1662 1663 fs_info->thread_pool_size = new_pool_size; 1664 1665 btrfs_info(fs_info, "resize thread pool %d -> %d", 1666 old_pool_size, new_pool_size); 1667 1668 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1669 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1670 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1671 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1672 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1673 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1674 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1675 new_pool_size); 1676 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1677 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1678 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1679 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1680 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1681 new_pool_size); 1682 } 1683 1684 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1685 { 1686 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1687 } 1688 1689 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1690 unsigned long old_opts, int flags) 1691 { 1692 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1693 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1694 (flags & SB_RDONLY))) { 1695 /* wait for any defraggers to finish */ 1696 wait_event(fs_info->transaction_wait, 1697 (atomic_read(&fs_info->defrag_running) == 0)); 1698 if (flags & SB_RDONLY) 1699 sync_filesystem(fs_info->sb); 1700 } 1701 } 1702 1703 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1704 unsigned long old_opts) 1705 { 1706 /* 1707 * We need to cleanup all defragable inodes if the autodefragment is 1708 * close or the filesystem is read only. 1709 */ 1710 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1711 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1712 btrfs_cleanup_defrag_inodes(fs_info); 1713 } 1714 1715 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1716 } 1717 1718 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1719 { 1720 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1721 struct btrfs_root *root = fs_info->tree_root; 1722 unsigned old_flags = sb->s_flags; 1723 unsigned long old_opts = fs_info->mount_opt; 1724 unsigned long old_compress_type = fs_info->compress_type; 1725 u64 old_max_inline = fs_info->max_inline; 1726 u32 old_thread_pool_size = fs_info->thread_pool_size; 1727 u32 old_metadata_ratio = fs_info->metadata_ratio; 1728 int ret; 1729 1730 sync_filesystem(sb); 1731 btrfs_remount_prepare(fs_info); 1732 1733 if (data) { 1734 void *new_sec_opts = NULL; 1735 1736 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1737 if (!ret) 1738 ret = security_sb_remount(sb, new_sec_opts); 1739 security_free_mnt_opts(&new_sec_opts); 1740 if (ret) 1741 goto restore; 1742 } 1743 1744 ret = btrfs_parse_options(fs_info, data, *flags); 1745 if (ret) 1746 goto restore; 1747 1748 btrfs_remount_begin(fs_info, old_opts, *flags); 1749 btrfs_resize_thread_pool(fs_info, 1750 fs_info->thread_pool_size, old_thread_pool_size); 1751 1752 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1753 goto out; 1754 1755 if (*flags & SB_RDONLY) { 1756 /* 1757 * this also happens on 'umount -rf' or on shutdown, when 1758 * the filesystem is busy. 1759 */ 1760 cancel_work_sync(&fs_info->async_reclaim_work); 1761 1762 /* wait for the uuid_scan task to finish */ 1763 down(&fs_info->uuid_tree_rescan_sem); 1764 /* avoid complains from lockdep et al. */ 1765 up(&fs_info->uuid_tree_rescan_sem); 1766 1767 sb->s_flags |= SB_RDONLY; 1768 1769 /* 1770 * Setting SB_RDONLY will put the cleaner thread to 1771 * sleep at the next loop if it's already active. 1772 * If it's already asleep, we'll leave unused block 1773 * groups on disk until we're mounted read-write again 1774 * unless we clean them up here. 1775 */ 1776 btrfs_delete_unused_bgs(fs_info); 1777 1778 btrfs_dev_replace_suspend_for_unmount(fs_info); 1779 btrfs_scrub_cancel(fs_info); 1780 btrfs_pause_balance(fs_info); 1781 1782 ret = btrfs_commit_super(fs_info); 1783 if (ret) 1784 goto restore; 1785 } else { 1786 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1787 btrfs_err(fs_info, 1788 "Remounting read-write after error is not allowed"); 1789 ret = -EINVAL; 1790 goto restore; 1791 } 1792 if (fs_info->fs_devices->rw_devices == 0) { 1793 ret = -EACCES; 1794 goto restore; 1795 } 1796 1797 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1798 btrfs_warn(fs_info, 1799 "too many missing devices, writable remount is not allowed"); 1800 ret = -EACCES; 1801 goto restore; 1802 } 1803 1804 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1805 ret = -EINVAL; 1806 goto restore; 1807 } 1808 1809 ret = btrfs_cleanup_fs_roots(fs_info); 1810 if (ret) 1811 goto restore; 1812 1813 /* recover relocation */ 1814 mutex_lock(&fs_info->cleaner_mutex); 1815 ret = btrfs_recover_relocation(root); 1816 mutex_unlock(&fs_info->cleaner_mutex); 1817 if (ret) 1818 goto restore; 1819 1820 ret = btrfs_resume_balance_async(fs_info); 1821 if (ret) 1822 goto restore; 1823 1824 ret = btrfs_resume_dev_replace_async(fs_info); 1825 if (ret) { 1826 btrfs_warn(fs_info, "failed to resume dev_replace"); 1827 goto restore; 1828 } 1829 1830 btrfs_qgroup_rescan_resume(fs_info); 1831 1832 if (!fs_info->uuid_root) { 1833 btrfs_info(fs_info, "creating UUID tree"); 1834 ret = btrfs_create_uuid_tree(fs_info); 1835 if (ret) { 1836 btrfs_warn(fs_info, 1837 "failed to create the UUID tree %d", 1838 ret); 1839 goto restore; 1840 } 1841 } 1842 sb->s_flags &= ~SB_RDONLY; 1843 1844 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1845 } 1846 out: 1847 wake_up_process(fs_info->transaction_kthread); 1848 btrfs_remount_cleanup(fs_info, old_opts); 1849 return 0; 1850 1851 restore: 1852 /* We've hit an error - don't reset SB_RDONLY */ 1853 if (sb_rdonly(sb)) 1854 old_flags |= SB_RDONLY; 1855 sb->s_flags = old_flags; 1856 fs_info->mount_opt = old_opts; 1857 fs_info->compress_type = old_compress_type; 1858 fs_info->max_inline = old_max_inline; 1859 btrfs_resize_thread_pool(fs_info, 1860 old_thread_pool_size, fs_info->thread_pool_size); 1861 fs_info->metadata_ratio = old_metadata_ratio; 1862 btrfs_remount_cleanup(fs_info, old_opts); 1863 return ret; 1864 } 1865 1866 /* Used to sort the devices by max_avail(descending sort) */ 1867 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 1868 const void *dev_info2) 1869 { 1870 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1871 ((struct btrfs_device_info *)dev_info2)->max_avail) 1872 return -1; 1873 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1874 ((struct btrfs_device_info *)dev_info2)->max_avail) 1875 return 1; 1876 else 1877 return 0; 1878 } 1879 1880 /* 1881 * sort the devices by max_avail, in which max free extent size of each device 1882 * is stored.(Descending Sort) 1883 */ 1884 static inline void btrfs_descending_sort_devices( 1885 struct btrfs_device_info *devices, 1886 size_t nr_devices) 1887 { 1888 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1889 btrfs_cmp_device_free_bytes, NULL); 1890 } 1891 1892 /* 1893 * The helper to calc the free space on the devices that can be used to store 1894 * file data. 1895 */ 1896 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1897 u64 *free_bytes) 1898 { 1899 struct btrfs_device_info *devices_info; 1900 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1901 struct btrfs_device *device; 1902 u64 skip_space; 1903 u64 type; 1904 u64 avail_space; 1905 u64 min_stripe_size; 1906 int min_stripes, num_stripes = 1; 1907 int i = 0, nr_devices; 1908 const struct btrfs_raid_attr *rattr; 1909 1910 /* 1911 * We aren't under the device list lock, so this is racy-ish, but good 1912 * enough for our purposes. 1913 */ 1914 nr_devices = fs_info->fs_devices->open_devices; 1915 if (!nr_devices) { 1916 smp_mb(); 1917 nr_devices = fs_info->fs_devices->open_devices; 1918 ASSERT(nr_devices); 1919 if (!nr_devices) { 1920 *free_bytes = 0; 1921 return 0; 1922 } 1923 } 1924 1925 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1926 GFP_KERNEL); 1927 if (!devices_info) 1928 return -ENOMEM; 1929 1930 /* calc min stripe number for data space allocation */ 1931 type = btrfs_data_alloc_profile(fs_info); 1932 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1933 min_stripes = rattr->devs_min; 1934 1935 if (type & BTRFS_BLOCK_GROUP_RAID0) 1936 num_stripes = nr_devices; 1937 else if (type & BTRFS_BLOCK_GROUP_RAID1) 1938 num_stripes = 2; 1939 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1940 num_stripes = 4; 1941 1942 /* Adjust for more than 1 stripe per device */ 1943 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1944 1945 rcu_read_lock(); 1946 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1947 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1948 &device->dev_state) || 1949 !device->bdev || 1950 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1951 continue; 1952 1953 if (i >= nr_devices) 1954 break; 1955 1956 avail_space = device->total_bytes - device->bytes_used; 1957 1958 /* align with stripe_len */ 1959 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1960 avail_space *= BTRFS_STRIPE_LEN; 1961 1962 /* 1963 * In order to avoid overwriting the superblock on the drive, 1964 * btrfs starts at an offset of at least 1MB when doing chunk 1965 * allocation. 1966 */ 1967 skip_space = SZ_1M; 1968 1969 /* 1970 * we can use the free space in [0, skip_space - 1], subtract 1971 * it from the total. 1972 */ 1973 if (avail_space && avail_space >= skip_space) 1974 avail_space -= skip_space; 1975 else 1976 avail_space = 0; 1977 1978 if (avail_space < min_stripe_size) 1979 continue; 1980 1981 devices_info[i].dev = device; 1982 devices_info[i].max_avail = avail_space; 1983 1984 i++; 1985 } 1986 rcu_read_unlock(); 1987 1988 nr_devices = i; 1989 1990 btrfs_descending_sort_devices(devices_info, nr_devices); 1991 1992 i = nr_devices - 1; 1993 avail_space = 0; 1994 while (nr_devices >= min_stripes) { 1995 if (num_stripes > nr_devices) 1996 num_stripes = nr_devices; 1997 1998 if (devices_info[i].max_avail >= min_stripe_size) { 1999 int j; 2000 u64 alloc_size; 2001 2002 avail_space += devices_info[i].max_avail * num_stripes; 2003 alloc_size = devices_info[i].max_avail; 2004 for (j = i + 1 - num_stripes; j <= i; j++) 2005 devices_info[j].max_avail -= alloc_size; 2006 } 2007 i--; 2008 nr_devices--; 2009 } 2010 2011 kfree(devices_info); 2012 *free_bytes = avail_space; 2013 return 0; 2014 } 2015 2016 /* 2017 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2018 * 2019 * If there's a redundant raid level at DATA block groups, use the respective 2020 * multiplier to scale the sizes. 2021 * 2022 * Unused device space usage is based on simulating the chunk allocator 2023 * algorithm that respects the device sizes and order of allocations. This is 2024 * a close approximation of the actual use but there are other factors that may 2025 * change the result (like a new metadata chunk). 2026 * 2027 * If metadata is exhausted, f_bavail will be 0. 2028 */ 2029 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2030 { 2031 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2032 struct btrfs_super_block *disk_super = fs_info->super_copy; 2033 struct list_head *head = &fs_info->space_info; 2034 struct btrfs_space_info *found; 2035 u64 total_used = 0; 2036 u64 total_free_data = 0; 2037 u64 total_free_meta = 0; 2038 int bits = dentry->d_sb->s_blocksize_bits; 2039 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2040 unsigned factor = 1; 2041 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2042 int ret; 2043 u64 thresh = 0; 2044 int mixed = 0; 2045 2046 rcu_read_lock(); 2047 list_for_each_entry_rcu(found, head, list) { 2048 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2049 int i; 2050 2051 total_free_data += found->disk_total - found->disk_used; 2052 total_free_data -= 2053 btrfs_account_ro_block_groups_free_space(found); 2054 2055 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2056 if (!list_empty(&found->block_groups[i])) 2057 factor = btrfs_bg_type_to_factor( 2058 btrfs_raid_array[i].bg_flag); 2059 } 2060 } 2061 2062 /* 2063 * Metadata in mixed block goup profiles are accounted in data 2064 */ 2065 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2066 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2067 mixed = 1; 2068 else 2069 total_free_meta += found->disk_total - 2070 found->disk_used; 2071 } 2072 2073 total_used += found->disk_used; 2074 } 2075 2076 rcu_read_unlock(); 2077 2078 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2079 buf->f_blocks >>= bits; 2080 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2081 2082 /* Account global block reserve as used, it's in logical size already */ 2083 spin_lock(&block_rsv->lock); 2084 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2085 if (buf->f_bfree >= block_rsv->size >> bits) 2086 buf->f_bfree -= block_rsv->size >> bits; 2087 else 2088 buf->f_bfree = 0; 2089 spin_unlock(&block_rsv->lock); 2090 2091 buf->f_bavail = div_u64(total_free_data, factor); 2092 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2093 if (ret) 2094 return ret; 2095 buf->f_bavail += div_u64(total_free_data, factor); 2096 buf->f_bavail = buf->f_bavail >> bits; 2097 2098 /* 2099 * We calculate the remaining metadata space minus global reserve. If 2100 * this is (supposedly) smaller than zero, there's no space. But this 2101 * does not hold in practice, the exhausted state happens where's still 2102 * some positive delta. So we apply some guesswork and compare the 2103 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2104 * 2105 * We probably cannot calculate the exact threshold value because this 2106 * depends on the internal reservations requested by various 2107 * operations, so some operations that consume a few metadata will 2108 * succeed even if the Avail is zero. But this is better than the other 2109 * way around. 2110 */ 2111 thresh = SZ_4M; 2112 2113 if (!mixed && total_free_meta - thresh < block_rsv->size) 2114 buf->f_bavail = 0; 2115 2116 buf->f_type = BTRFS_SUPER_MAGIC; 2117 buf->f_bsize = dentry->d_sb->s_blocksize; 2118 buf->f_namelen = BTRFS_NAME_LEN; 2119 2120 /* We treat it as constant endianness (it doesn't matter _which_) 2121 because we want the fsid to come out the same whether mounted 2122 on a big-endian or little-endian host */ 2123 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2124 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2125 /* Mask in the root object ID too, to disambiguate subvols */ 2126 buf->f_fsid.val[0] ^= 2127 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2128 buf->f_fsid.val[1] ^= 2129 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2130 2131 return 0; 2132 } 2133 2134 static void btrfs_kill_super(struct super_block *sb) 2135 { 2136 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2137 kill_anon_super(sb); 2138 free_fs_info(fs_info); 2139 } 2140 2141 static struct file_system_type btrfs_fs_type = { 2142 .owner = THIS_MODULE, 2143 .name = "btrfs", 2144 .mount = btrfs_mount, 2145 .kill_sb = btrfs_kill_super, 2146 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2147 }; 2148 2149 static struct file_system_type btrfs_root_fs_type = { 2150 .owner = THIS_MODULE, 2151 .name = "btrfs", 2152 .mount = btrfs_mount_root, 2153 .kill_sb = btrfs_kill_super, 2154 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2155 }; 2156 2157 MODULE_ALIAS_FS("btrfs"); 2158 2159 static int btrfs_control_open(struct inode *inode, struct file *file) 2160 { 2161 /* 2162 * The control file's private_data is used to hold the 2163 * transaction when it is started and is used to keep 2164 * track of whether a transaction is already in progress. 2165 */ 2166 file->private_data = NULL; 2167 return 0; 2168 } 2169 2170 /* 2171 * used by btrfsctl to scan devices when no FS is mounted 2172 */ 2173 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2174 unsigned long arg) 2175 { 2176 struct btrfs_ioctl_vol_args *vol; 2177 struct btrfs_device *device = NULL; 2178 int ret = -ENOTTY; 2179 2180 if (!capable(CAP_SYS_ADMIN)) 2181 return -EPERM; 2182 2183 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2184 if (IS_ERR(vol)) 2185 return PTR_ERR(vol); 2186 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2187 2188 switch (cmd) { 2189 case BTRFS_IOC_SCAN_DEV: 2190 mutex_lock(&uuid_mutex); 2191 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2192 &btrfs_root_fs_type); 2193 ret = PTR_ERR_OR_ZERO(device); 2194 mutex_unlock(&uuid_mutex); 2195 break; 2196 case BTRFS_IOC_FORGET_DEV: 2197 ret = btrfs_forget_devices(vol->name); 2198 break; 2199 case BTRFS_IOC_DEVICES_READY: 2200 mutex_lock(&uuid_mutex); 2201 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2202 &btrfs_root_fs_type); 2203 if (IS_ERR(device)) { 2204 mutex_unlock(&uuid_mutex); 2205 ret = PTR_ERR(device); 2206 break; 2207 } 2208 ret = !(device->fs_devices->num_devices == 2209 device->fs_devices->total_devices); 2210 mutex_unlock(&uuid_mutex); 2211 break; 2212 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2213 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2214 break; 2215 } 2216 2217 kfree(vol); 2218 return ret; 2219 } 2220 2221 static int btrfs_freeze(struct super_block *sb) 2222 { 2223 struct btrfs_trans_handle *trans; 2224 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2225 struct btrfs_root *root = fs_info->tree_root; 2226 2227 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2228 /* 2229 * We don't need a barrier here, we'll wait for any transaction that 2230 * could be in progress on other threads (and do delayed iputs that 2231 * we want to avoid on a frozen filesystem), or do the commit 2232 * ourselves. 2233 */ 2234 trans = btrfs_attach_transaction_barrier(root); 2235 if (IS_ERR(trans)) { 2236 /* no transaction, don't bother */ 2237 if (PTR_ERR(trans) == -ENOENT) 2238 return 0; 2239 return PTR_ERR(trans); 2240 } 2241 return btrfs_commit_transaction(trans); 2242 } 2243 2244 static int btrfs_unfreeze(struct super_block *sb) 2245 { 2246 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2247 2248 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2249 return 0; 2250 } 2251 2252 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2253 { 2254 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2255 struct btrfs_fs_devices *cur_devices; 2256 struct btrfs_device *dev, *first_dev = NULL; 2257 struct list_head *head; 2258 2259 /* 2260 * Lightweight locking of the devices. We should not need 2261 * device_list_mutex here as we only read the device data and the list 2262 * is protected by RCU. Even if a device is deleted during the list 2263 * traversals, we'll get valid data, the freeing callback will wait at 2264 * least until the rcu_read_unlock. 2265 */ 2266 rcu_read_lock(); 2267 cur_devices = fs_info->fs_devices; 2268 while (cur_devices) { 2269 head = &cur_devices->devices; 2270 list_for_each_entry_rcu(dev, head, dev_list) { 2271 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2272 continue; 2273 if (!dev->name) 2274 continue; 2275 if (!first_dev || dev->devid < first_dev->devid) 2276 first_dev = dev; 2277 } 2278 cur_devices = cur_devices->seed; 2279 } 2280 2281 if (first_dev) 2282 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2283 else 2284 WARN_ON(1); 2285 rcu_read_unlock(); 2286 return 0; 2287 } 2288 2289 static const struct super_operations btrfs_super_ops = { 2290 .drop_inode = btrfs_drop_inode, 2291 .evict_inode = btrfs_evict_inode, 2292 .put_super = btrfs_put_super, 2293 .sync_fs = btrfs_sync_fs, 2294 .show_options = btrfs_show_options, 2295 .show_devname = btrfs_show_devname, 2296 .alloc_inode = btrfs_alloc_inode, 2297 .destroy_inode = btrfs_destroy_inode, 2298 .free_inode = btrfs_free_inode, 2299 .statfs = btrfs_statfs, 2300 .remount_fs = btrfs_remount, 2301 .freeze_fs = btrfs_freeze, 2302 .unfreeze_fs = btrfs_unfreeze, 2303 }; 2304 2305 static const struct file_operations btrfs_ctl_fops = { 2306 .open = btrfs_control_open, 2307 .unlocked_ioctl = btrfs_control_ioctl, 2308 .compat_ioctl = btrfs_control_ioctl, 2309 .owner = THIS_MODULE, 2310 .llseek = noop_llseek, 2311 }; 2312 2313 static struct miscdevice btrfs_misc = { 2314 .minor = BTRFS_MINOR, 2315 .name = "btrfs-control", 2316 .fops = &btrfs_ctl_fops 2317 }; 2318 2319 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2320 MODULE_ALIAS("devname:btrfs-control"); 2321 2322 static int __init btrfs_interface_init(void) 2323 { 2324 return misc_register(&btrfs_misc); 2325 } 2326 2327 static __cold void btrfs_interface_exit(void) 2328 { 2329 misc_deregister(&btrfs_misc); 2330 } 2331 2332 static void __init btrfs_print_mod_info(void) 2333 { 2334 static const char options[] = "" 2335 #ifdef CONFIG_BTRFS_DEBUG 2336 ", debug=on" 2337 #endif 2338 #ifdef CONFIG_BTRFS_ASSERT 2339 ", assert=on" 2340 #endif 2341 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2342 ", integrity-checker=on" 2343 #endif 2344 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2345 ", ref-verify=on" 2346 #endif 2347 ; 2348 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2349 } 2350 2351 static int __init init_btrfs_fs(void) 2352 { 2353 int err; 2354 2355 btrfs_props_init(); 2356 2357 err = btrfs_init_sysfs(); 2358 if (err) 2359 return err; 2360 2361 btrfs_init_compress(); 2362 2363 err = btrfs_init_cachep(); 2364 if (err) 2365 goto free_compress; 2366 2367 err = extent_io_init(); 2368 if (err) 2369 goto free_cachep; 2370 2371 err = extent_map_init(); 2372 if (err) 2373 goto free_extent_io; 2374 2375 err = ordered_data_init(); 2376 if (err) 2377 goto free_extent_map; 2378 2379 err = btrfs_delayed_inode_init(); 2380 if (err) 2381 goto free_ordered_data; 2382 2383 err = btrfs_auto_defrag_init(); 2384 if (err) 2385 goto free_delayed_inode; 2386 2387 err = btrfs_delayed_ref_init(); 2388 if (err) 2389 goto free_auto_defrag; 2390 2391 err = btrfs_prelim_ref_init(); 2392 if (err) 2393 goto free_delayed_ref; 2394 2395 err = btrfs_end_io_wq_init(); 2396 if (err) 2397 goto free_prelim_ref; 2398 2399 err = btrfs_interface_init(); 2400 if (err) 2401 goto free_end_io_wq; 2402 2403 btrfs_init_lockdep(); 2404 2405 btrfs_print_mod_info(); 2406 2407 err = btrfs_run_sanity_tests(); 2408 if (err) 2409 goto unregister_ioctl; 2410 2411 err = register_filesystem(&btrfs_fs_type); 2412 if (err) 2413 goto unregister_ioctl; 2414 2415 return 0; 2416 2417 unregister_ioctl: 2418 btrfs_interface_exit(); 2419 free_end_io_wq: 2420 btrfs_end_io_wq_exit(); 2421 free_prelim_ref: 2422 btrfs_prelim_ref_exit(); 2423 free_delayed_ref: 2424 btrfs_delayed_ref_exit(); 2425 free_auto_defrag: 2426 btrfs_auto_defrag_exit(); 2427 free_delayed_inode: 2428 btrfs_delayed_inode_exit(); 2429 free_ordered_data: 2430 ordered_data_exit(); 2431 free_extent_map: 2432 extent_map_exit(); 2433 free_extent_io: 2434 extent_io_exit(); 2435 free_cachep: 2436 btrfs_destroy_cachep(); 2437 free_compress: 2438 btrfs_exit_compress(); 2439 btrfs_exit_sysfs(); 2440 2441 return err; 2442 } 2443 2444 static void __exit exit_btrfs_fs(void) 2445 { 2446 btrfs_destroy_cachep(); 2447 btrfs_delayed_ref_exit(); 2448 btrfs_auto_defrag_exit(); 2449 btrfs_delayed_inode_exit(); 2450 btrfs_prelim_ref_exit(); 2451 ordered_data_exit(); 2452 extent_map_exit(); 2453 extent_io_exit(); 2454 btrfs_interface_exit(); 2455 btrfs_end_io_wq_exit(); 2456 unregister_filesystem(&btrfs_fs_type); 2457 btrfs_exit_sysfs(); 2458 btrfs_cleanup_fs_uuids(); 2459 btrfs_exit_compress(); 2460 } 2461 2462 late_initcall(init_btrfs_fs); 2463 module_exit(exit_btrfs_fs) 2464 2465 MODULE_LICENSE("GPL"); 2466 MODULE_SOFTDEP("pre: crc32c"); 2467