xref: /openbmc/linux/fs/btrfs/super.c (revision 56d06fa2)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
72 const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102 	/*
103 	 * today we only save the error info into ram.  Long term we'll
104 	 * also send it down to the disk
105 	 */
106 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107 }
108 
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 	struct super_block *sb = fs_info->sb;
113 
114 	if (sb->s_flags & MS_RDONLY)
115 		return;
116 
117 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 		sb->s_flags |= MS_RDONLY;
119 		btrfs_info(fs_info, "forced readonly");
120 		/*
121 		 * Note that a running device replace operation is not
122 		 * canceled here although there is no way to update
123 		 * the progress. It would add the risk of a deadlock,
124 		 * therefore the canceling is ommited. The only penalty
125 		 * is that some I/O remains active until the procedure
126 		 * completes. The next time when the filesystem is
127 		 * mounted writeable again, the device replace
128 		 * operation continues.
129 		 */
130 	}
131 }
132 
133 /*
134  * __btrfs_std_error decodes expected errors from the caller and
135  * invokes the approciate error response.
136  */
137 __cold
138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139 		       unsigned int line, int errno, const char *fmt, ...)
140 {
141 	struct super_block *sb = fs_info->sb;
142 #ifdef CONFIG_PRINTK
143 	const char *errstr;
144 #endif
145 
146 	/*
147 	 * Special case: if the error is EROFS, and we're already
148 	 * under MS_RDONLY, then it is safe here.
149 	 */
150 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
151   		return;
152 
153 #ifdef CONFIG_PRINTK
154 	errstr = btrfs_decode_error(errno);
155 	if (fmt) {
156 		struct va_format vaf;
157 		va_list args;
158 
159 		va_start(args, fmt);
160 		vaf.fmt = fmt;
161 		vaf.va = &args;
162 
163 		printk(KERN_CRIT
164 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
165 			sb->s_id, function, line, errno, errstr, &vaf);
166 		va_end(args);
167 	} else {
168 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
169 			sb->s_id, function, line, errno, errstr);
170 	}
171 #endif
172 
173 	/* Don't go through full error handling during mount */
174 	save_error_info(fs_info);
175 	if (sb->s_flags & MS_BORN)
176 		btrfs_handle_error(fs_info);
177 }
178 
179 #ifdef CONFIG_PRINTK
180 static const char * const logtypes[] = {
181 	"emergency",
182 	"alert",
183 	"critical",
184 	"error",
185 	"warning",
186 	"notice",
187 	"info",
188 	"debug",
189 };
190 
191 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
192 {
193 	struct super_block *sb = fs_info->sb;
194 	char lvl[4];
195 	struct va_format vaf;
196 	va_list args;
197 	const char *type = logtypes[4];
198 	int kern_level;
199 
200 	va_start(args, fmt);
201 
202 	kern_level = printk_get_level(fmt);
203 	if (kern_level) {
204 		size_t size = printk_skip_level(fmt) - fmt;
205 		memcpy(lvl, fmt,  size);
206 		lvl[size] = '\0';
207 		fmt += size;
208 		type = logtypes[kern_level - '0'];
209 	} else
210 		*lvl = '\0';
211 
212 	vaf.fmt = fmt;
213 	vaf.va = &args;
214 
215 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
216 
217 	va_end(args);
218 }
219 #endif
220 
221 /*
222  * We only mark the transaction aborted and then set the file system read-only.
223  * This will prevent new transactions from starting or trying to join this
224  * one.
225  *
226  * This means that error recovery at the call site is limited to freeing
227  * any local memory allocations and passing the error code up without
228  * further cleanup. The transaction should complete as it normally would
229  * in the call path but will return -EIO.
230  *
231  * We'll complete the cleanup in btrfs_end_transaction and
232  * btrfs_commit_transaction.
233  */
234 __cold
235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 			       struct btrfs_root *root, const char *function,
237 			       unsigned int line, int errno)
238 {
239 	trans->aborted = errno;
240 	/* Nothing used. The other threads that have joined this
241 	 * transaction may be able to continue. */
242 	if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
243 		const char *errstr;
244 
245 		errstr = btrfs_decode_error(errno);
246 		btrfs_warn(root->fs_info,
247 		           "%s:%d: Aborting unused transaction(%s).",
248 		           function, line, errstr);
249 		return;
250 	}
251 	ACCESS_ONCE(trans->transaction->aborted) = errno;
252 	/* Wake up anybody who may be waiting on this transaction */
253 	wake_up(&root->fs_info->transaction_wait);
254 	wake_up(&root->fs_info->transaction_blocked_wait);
255 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
256 }
257 /*
258  * __btrfs_panic decodes unexpected, fatal errors from the caller,
259  * issues an alert, and either panics or BUGs, depending on mount options.
260  */
261 __cold
262 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
263 		   unsigned int line, int errno, const char *fmt, ...)
264 {
265 	char *s_id = "<unknown>";
266 	const char *errstr;
267 	struct va_format vaf = { .fmt = fmt };
268 	va_list args;
269 
270 	if (fs_info)
271 		s_id = fs_info->sb->s_id;
272 
273 	va_start(args, fmt);
274 	vaf.va = &args;
275 
276 	errstr = btrfs_decode_error(errno);
277 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
278 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
279 			s_id, function, line, &vaf, errno, errstr);
280 
281 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
282 		   function, line, &vaf, errno, errstr);
283 	va_end(args);
284 	/* Caller calls BUG() */
285 }
286 
287 static void btrfs_put_super(struct super_block *sb)
288 {
289 	close_ctree(btrfs_sb(sb)->tree_root);
290 }
291 
292 enum {
293 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
294 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
295 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
296 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
297 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
298 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
299 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
300 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
301 	Opt_skip_balance, Opt_check_integrity,
302 	Opt_check_integrity_including_extent_data,
303 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
304 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
305 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
306 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
307 	Opt_nologreplay, Opt_norecovery,
308 #ifdef CONFIG_BTRFS_DEBUG
309 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
310 #endif
311 	Opt_err,
312 };
313 
314 static const match_table_t tokens = {
315 	{Opt_degraded, "degraded"},
316 	{Opt_subvol, "subvol=%s"},
317 	{Opt_subvolid, "subvolid=%s"},
318 	{Opt_device, "device=%s"},
319 	{Opt_nodatasum, "nodatasum"},
320 	{Opt_datasum, "datasum"},
321 	{Opt_nodatacow, "nodatacow"},
322 	{Opt_datacow, "datacow"},
323 	{Opt_nobarrier, "nobarrier"},
324 	{Opt_barrier, "barrier"},
325 	{Opt_max_inline, "max_inline=%s"},
326 	{Opt_alloc_start, "alloc_start=%s"},
327 	{Opt_thread_pool, "thread_pool=%d"},
328 	{Opt_compress, "compress"},
329 	{Opt_compress_type, "compress=%s"},
330 	{Opt_compress_force, "compress-force"},
331 	{Opt_compress_force_type, "compress-force=%s"},
332 	{Opt_ssd, "ssd"},
333 	{Opt_ssd_spread, "ssd_spread"},
334 	{Opt_nossd, "nossd"},
335 	{Opt_acl, "acl"},
336 	{Opt_noacl, "noacl"},
337 	{Opt_notreelog, "notreelog"},
338 	{Opt_treelog, "treelog"},
339 	{Opt_nologreplay, "nologreplay"},
340 	{Opt_norecovery, "norecovery"},
341 	{Opt_flushoncommit, "flushoncommit"},
342 	{Opt_noflushoncommit, "noflushoncommit"},
343 	{Opt_ratio, "metadata_ratio=%d"},
344 	{Opt_discard, "discard"},
345 	{Opt_nodiscard, "nodiscard"},
346 	{Opt_space_cache, "space_cache"},
347 	{Opt_space_cache_version, "space_cache=%s"},
348 	{Opt_clear_cache, "clear_cache"},
349 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
350 	{Opt_enospc_debug, "enospc_debug"},
351 	{Opt_noenospc_debug, "noenospc_debug"},
352 	{Opt_subvolrootid, "subvolrootid=%d"},
353 	{Opt_defrag, "autodefrag"},
354 	{Opt_nodefrag, "noautodefrag"},
355 	{Opt_inode_cache, "inode_cache"},
356 	{Opt_noinode_cache, "noinode_cache"},
357 	{Opt_no_space_cache, "nospace_cache"},
358 	{Opt_recovery, "recovery"}, /* deprecated */
359 	{Opt_usebackuproot, "usebackuproot"},
360 	{Opt_skip_balance, "skip_balance"},
361 	{Opt_check_integrity, "check_int"},
362 	{Opt_check_integrity_including_extent_data, "check_int_data"},
363 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
364 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
365 	{Opt_fatal_errors, "fatal_errors=%s"},
366 	{Opt_commit_interval, "commit=%d"},
367 #ifdef CONFIG_BTRFS_DEBUG
368 	{Opt_fragment_data, "fragment=data"},
369 	{Opt_fragment_metadata, "fragment=metadata"},
370 	{Opt_fragment_all, "fragment=all"},
371 #endif
372 	{Opt_err, NULL},
373 };
374 
375 /*
376  * Regular mount options parser.  Everything that is needed only when
377  * reading in a new superblock is parsed here.
378  * XXX JDM: This needs to be cleaned up for remount.
379  */
380 int btrfs_parse_options(struct btrfs_root *root, char *options,
381 			unsigned long new_flags)
382 {
383 	struct btrfs_fs_info *info = root->fs_info;
384 	substring_t args[MAX_OPT_ARGS];
385 	char *p, *num, *orig = NULL;
386 	u64 cache_gen;
387 	int intarg;
388 	int ret = 0;
389 	char *compress_type;
390 	bool compress_force = false;
391 	enum btrfs_compression_type saved_compress_type;
392 	bool saved_compress_force;
393 	int no_compress = 0;
394 
395 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
396 	if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE))
397 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
398 	else if (cache_gen)
399 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
400 
401 	/*
402 	 * Even the options are empty, we still need to do extra check
403 	 * against new flags
404 	 */
405 	if (!options)
406 		goto check;
407 
408 	/*
409 	 * strsep changes the string, duplicate it because parse_options
410 	 * gets called twice
411 	 */
412 	options = kstrdup(options, GFP_NOFS);
413 	if (!options)
414 		return -ENOMEM;
415 
416 	orig = options;
417 
418 	while ((p = strsep(&options, ",")) != NULL) {
419 		int token;
420 		if (!*p)
421 			continue;
422 
423 		token = match_token(p, tokens, args);
424 		switch (token) {
425 		case Opt_degraded:
426 			btrfs_info(root->fs_info, "allowing degraded mounts");
427 			btrfs_set_opt(info->mount_opt, DEGRADED);
428 			break;
429 		case Opt_subvol:
430 		case Opt_subvolid:
431 		case Opt_subvolrootid:
432 		case Opt_device:
433 			/*
434 			 * These are parsed by btrfs_parse_early_options
435 			 * and can be happily ignored here.
436 			 */
437 			break;
438 		case Opt_nodatasum:
439 			btrfs_set_and_info(root, NODATASUM,
440 					   "setting nodatasum");
441 			break;
442 		case Opt_datasum:
443 			if (btrfs_test_opt(root, NODATASUM)) {
444 				if (btrfs_test_opt(root, NODATACOW))
445 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
446 				else
447 					btrfs_info(root->fs_info, "setting datasum");
448 			}
449 			btrfs_clear_opt(info->mount_opt, NODATACOW);
450 			btrfs_clear_opt(info->mount_opt, NODATASUM);
451 			break;
452 		case Opt_nodatacow:
453 			if (!btrfs_test_opt(root, NODATACOW)) {
454 				if (!btrfs_test_opt(root, COMPRESS) ||
455 				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
456 					btrfs_info(root->fs_info,
457 						   "setting nodatacow, compression disabled");
458 				} else {
459 					btrfs_info(root->fs_info, "setting nodatacow");
460 				}
461 			}
462 			btrfs_clear_opt(info->mount_opt, COMPRESS);
463 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
464 			btrfs_set_opt(info->mount_opt, NODATACOW);
465 			btrfs_set_opt(info->mount_opt, NODATASUM);
466 			break;
467 		case Opt_datacow:
468 			btrfs_clear_and_info(root, NODATACOW,
469 					     "setting datacow");
470 			break;
471 		case Opt_compress_force:
472 		case Opt_compress_force_type:
473 			compress_force = true;
474 			/* Fallthrough */
475 		case Opt_compress:
476 		case Opt_compress_type:
477 			saved_compress_type = btrfs_test_opt(root, COMPRESS) ?
478 				info->compress_type : BTRFS_COMPRESS_NONE;
479 			saved_compress_force =
480 				btrfs_test_opt(root, FORCE_COMPRESS);
481 			if (token == Opt_compress ||
482 			    token == Opt_compress_force ||
483 			    strcmp(args[0].from, "zlib") == 0) {
484 				compress_type = "zlib";
485 				info->compress_type = BTRFS_COMPRESS_ZLIB;
486 				btrfs_set_opt(info->mount_opt, COMPRESS);
487 				btrfs_clear_opt(info->mount_opt, NODATACOW);
488 				btrfs_clear_opt(info->mount_opt, NODATASUM);
489 				no_compress = 0;
490 			} else if (strcmp(args[0].from, "lzo") == 0) {
491 				compress_type = "lzo";
492 				info->compress_type = BTRFS_COMPRESS_LZO;
493 				btrfs_set_opt(info->mount_opt, COMPRESS);
494 				btrfs_clear_opt(info->mount_opt, NODATACOW);
495 				btrfs_clear_opt(info->mount_opt, NODATASUM);
496 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
497 				no_compress = 0;
498 			} else if (strncmp(args[0].from, "no", 2) == 0) {
499 				compress_type = "no";
500 				btrfs_clear_opt(info->mount_opt, COMPRESS);
501 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
502 				compress_force = false;
503 				no_compress++;
504 			} else {
505 				ret = -EINVAL;
506 				goto out;
507 			}
508 
509 			if (compress_force) {
510 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
511 			} else {
512 				/*
513 				 * If we remount from compress-force=xxx to
514 				 * compress=xxx, we need clear FORCE_COMPRESS
515 				 * flag, otherwise, there is no way for users
516 				 * to disable forcible compression separately.
517 				 */
518 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
519 			}
520 			if ((btrfs_test_opt(root, COMPRESS) &&
521 			     (info->compress_type != saved_compress_type ||
522 			      compress_force != saved_compress_force)) ||
523 			    (!btrfs_test_opt(root, COMPRESS) &&
524 			     no_compress == 1)) {
525 				btrfs_info(root->fs_info,
526 					   "%s %s compression",
527 					   (compress_force) ? "force" : "use",
528 					   compress_type);
529 			}
530 			compress_force = false;
531 			break;
532 		case Opt_ssd:
533 			btrfs_set_and_info(root, SSD,
534 					   "use ssd allocation scheme");
535 			break;
536 		case Opt_ssd_spread:
537 			btrfs_set_and_info(root, SSD_SPREAD,
538 					   "use spread ssd allocation scheme");
539 			btrfs_set_opt(info->mount_opt, SSD);
540 			break;
541 		case Opt_nossd:
542 			btrfs_set_and_info(root, NOSSD,
543 					     "not using ssd allocation scheme");
544 			btrfs_clear_opt(info->mount_opt, SSD);
545 			break;
546 		case Opt_barrier:
547 			btrfs_clear_and_info(root, NOBARRIER,
548 					     "turning on barriers");
549 			break;
550 		case Opt_nobarrier:
551 			btrfs_set_and_info(root, NOBARRIER,
552 					   "turning off barriers");
553 			break;
554 		case Opt_thread_pool:
555 			ret = match_int(&args[0], &intarg);
556 			if (ret) {
557 				goto out;
558 			} else if (intarg > 0) {
559 				info->thread_pool_size = intarg;
560 			} else {
561 				ret = -EINVAL;
562 				goto out;
563 			}
564 			break;
565 		case Opt_max_inline:
566 			num = match_strdup(&args[0]);
567 			if (num) {
568 				info->max_inline = memparse(num, NULL);
569 				kfree(num);
570 
571 				if (info->max_inline) {
572 					info->max_inline = min_t(u64,
573 						info->max_inline,
574 						root->sectorsize);
575 				}
576 				btrfs_info(root->fs_info, "max_inline at %llu",
577 					info->max_inline);
578 			} else {
579 				ret = -ENOMEM;
580 				goto out;
581 			}
582 			break;
583 		case Opt_alloc_start:
584 			num = match_strdup(&args[0]);
585 			if (num) {
586 				mutex_lock(&info->chunk_mutex);
587 				info->alloc_start = memparse(num, NULL);
588 				mutex_unlock(&info->chunk_mutex);
589 				kfree(num);
590 				btrfs_info(root->fs_info, "allocations start at %llu",
591 					info->alloc_start);
592 			} else {
593 				ret = -ENOMEM;
594 				goto out;
595 			}
596 			break;
597 		case Opt_acl:
598 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
599 			root->fs_info->sb->s_flags |= MS_POSIXACL;
600 			break;
601 #else
602 			btrfs_err(root->fs_info,
603 				"support for ACL not compiled in!");
604 			ret = -EINVAL;
605 			goto out;
606 #endif
607 		case Opt_noacl:
608 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
609 			break;
610 		case Opt_notreelog:
611 			btrfs_set_and_info(root, NOTREELOG,
612 					   "disabling tree log");
613 			break;
614 		case Opt_treelog:
615 			btrfs_clear_and_info(root, NOTREELOG,
616 					     "enabling tree log");
617 			break;
618 		case Opt_norecovery:
619 		case Opt_nologreplay:
620 			btrfs_set_and_info(root, NOLOGREPLAY,
621 					   "disabling log replay at mount time");
622 			break;
623 		case Opt_flushoncommit:
624 			btrfs_set_and_info(root, FLUSHONCOMMIT,
625 					   "turning on flush-on-commit");
626 			break;
627 		case Opt_noflushoncommit:
628 			btrfs_clear_and_info(root, FLUSHONCOMMIT,
629 					     "turning off flush-on-commit");
630 			break;
631 		case Opt_ratio:
632 			ret = match_int(&args[0], &intarg);
633 			if (ret) {
634 				goto out;
635 			} else if (intarg >= 0) {
636 				info->metadata_ratio = intarg;
637 				btrfs_info(root->fs_info, "metadata ratio %d",
638 				       info->metadata_ratio);
639 			} else {
640 				ret = -EINVAL;
641 				goto out;
642 			}
643 			break;
644 		case Opt_discard:
645 			btrfs_set_and_info(root, DISCARD,
646 					   "turning on discard");
647 			break;
648 		case Opt_nodiscard:
649 			btrfs_clear_and_info(root, DISCARD,
650 					     "turning off discard");
651 			break;
652 		case Opt_space_cache:
653 		case Opt_space_cache_version:
654 			if (token == Opt_space_cache ||
655 			    strcmp(args[0].from, "v1") == 0) {
656 				btrfs_clear_opt(root->fs_info->mount_opt,
657 						FREE_SPACE_TREE);
658 				btrfs_set_and_info(root, SPACE_CACHE,
659 						   "enabling disk space caching");
660 			} else if (strcmp(args[0].from, "v2") == 0) {
661 				btrfs_clear_opt(root->fs_info->mount_opt,
662 						SPACE_CACHE);
663 				btrfs_set_and_info(root, FREE_SPACE_TREE,
664 						   "enabling free space tree");
665 			} else {
666 				ret = -EINVAL;
667 				goto out;
668 			}
669 			break;
670 		case Opt_rescan_uuid_tree:
671 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
672 			break;
673 		case Opt_no_space_cache:
674 			if (btrfs_test_opt(root, SPACE_CACHE)) {
675 				btrfs_clear_and_info(root, SPACE_CACHE,
676 						     "disabling disk space caching");
677 			}
678 			if (btrfs_test_opt(root, FREE_SPACE_TREE)) {
679 				btrfs_clear_and_info(root, FREE_SPACE_TREE,
680 						     "disabling free space tree");
681 			}
682 			break;
683 		case Opt_inode_cache:
684 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
685 					   "enabling inode map caching");
686 			break;
687 		case Opt_noinode_cache:
688 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
689 					     "disabling inode map caching");
690 			break;
691 		case Opt_clear_cache:
692 			btrfs_set_and_info(root, CLEAR_CACHE,
693 					   "force clearing of disk cache");
694 			break;
695 		case Opt_user_subvol_rm_allowed:
696 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
697 			break;
698 		case Opt_enospc_debug:
699 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
700 			break;
701 		case Opt_noenospc_debug:
702 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
703 			break;
704 		case Opt_defrag:
705 			btrfs_set_and_info(root, AUTO_DEFRAG,
706 					   "enabling auto defrag");
707 			break;
708 		case Opt_nodefrag:
709 			btrfs_clear_and_info(root, AUTO_DEFRAG,
710 					     "disabling auto defrag");
711 			break;
712 		case Opt_recovery:
713 			btrfs_warn(root->fs_info,
714 				   "'recovery' is deprecated, use 'usebackuproot' instead");
715 		case Opt_usebackuproot:
716 			btrfs_info(root->fs_info,
717 				   "trying to use backup root at mount time");
718 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
719 			break;
720 		case Opt_skip_balance:
721 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
722 			break;
723 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
724 		case Opt_check_integrity_including_extent_data:
725 			btrfs_info(root->fs_info,
726 				   "enabling check integrity including extent data");
727 			btrfs_set_opt(info->mount_opt,
728 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
729 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
730 			break;
731 		case Opt_check_integrity:
732 			btrfs_info(root->fs_info, "enabling check integrity");
733 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
734 			break;
735 		case Opt_check_integrity_print_mask:
736 			ret = match_int(&args[0], &intarg);
737 			if (ret) {
738 				goto out;
739 			} else if (intarg >= 0) {
740 				info->check_integrity_print_mask = intarg;
741 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
742 				       info->check_integrity_print_mask);
743 			} else {
744 				ret = -EINVAL;
745 				goto out;
746 			}
747 			break;
748 #else
749 		case Opt_check_integrity_including_extent_data:
750 		case Opt_check_integrity:
751 		case Opt_check_integrity_print_mask:
752 			btrfs_err(root->fs_info,
753 				"support for check_integrity* not compiled in!");
754 			ret = -EINVAL;
755 			goto out;
756 #endif
757 		case Opt_fatal_errors:
758 			if (strcmp(args[0].from, "panic") == 0)
759 				btrfs_set_opt(info->mount_opt,
760 					      PANIC_ON_FATAL_ERROR);
761 			else if (strcmp(args[0].from, "bug") == 0)
762 				btrfs_clear_opt(info->mount_opt,
763 					      PANIC_ON_FATAL_ERROR);
764 			else {
765 				ret = -EINVAL;
766 				goto out;
767 			}
768 			break;
769 		case Opt_commit_interval:
770 			intarg = 0;
771 			ret = match_int(&args[0], &intarg);
772 			if (ret < 0) {
773 				btrfs_err(root->fs_info, "invalid commit interval");
774 				ret = -EINVAL;
775 				goto out;
776 			}
777 			if (intarg > 0) {
778 				if (intarg > 300) {
779 					btrfs_warn(root->fs_info, "excessive commit interval %d",
780 							intarg);
781 				}
782 				info->commit_interval = intarg;
783 			} else {
784 				btrfs_info(root->fs_info, "using default commit interval %ds",
785 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
786 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
787 			}
788 			break;
789 #ifdef CONFIG_BTRFS_DEBUG
790 		case Opt_fragment_all:
791 			btrfs_info(root->fs_info, "fragmenting all space");
792 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
793 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
794 			break;
795 		case Opt_fragment_metadata:
796 			btrfs_info(root->fs_info, "fragmenting metadata");
797 			btrfs_set_opt(info->mount_opt,
798 				      FRAGMENT_METADATA);
799 			break;
800 		case Opt_fragment_data:
801 			btrfs_info(root->fs_info, "fragmenting data");
802 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
803 			break;
804 #endif
805 		case Opt_err:
806 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
807 			ret = -EINVAL;
808 			goto out;
809 		default:
810 			break;
811 		}
812 	}
813 check:
814 	/*
815 	 * Extra check for current option against current flag
816 	 */
817 	if (btrfs_test_opt(root, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
818 		btrfs_err(root->fs_info,
819 			  "nologreplay must be used with ro mount option");
820 		ret = -EINVAL;
821 	}
822 out:
823 	if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) &&
824 	    !btrfs_test_opt(root, FREE_SPACE_TREE) &&
825 	    !btrfs_test_opt(root, CLEAR_CACHE)) {
826 		btrfs_err(root->fs_info, "cannot disable free space tree");
827 		ret = -EINVAL;
828 
829 	}
830 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
831 		btrfs_info(root->fs_info, "disk space caching is enabled");
832 	if (!ret && btrfs_test_opt(root, FREE_SPACE_TREE))
833 		btrfs_info(root->fs_info, "using free space tree");
834 	kfree(orig);
835 	return ret;
836 }
837 
838 /*
839  * Parse mount options that are required early in the mount process.
840  *
841  * All other options will be parsed on much later in the mount process and
842  * only when we need to allocate a new super block.
843  */
844 static int btrfs_parse_early_options(const char *options, fmode_t flags,
845 		void *holder, char **subvol_name, u64 *subvol_objectid,
846 		struct btrfs_fs_devices **fs_devices)
847 {
848 	substring_t args[MAX_OPT_ARGS];
849 	char *device_name, *opts, *orig, *p;
850 	char *num = NULL;
851 	int error = 0;
852 
853 	if (!options)
854 		return 0;
855 
856 	/*
857 	 * strsep changes the string, duplicate it because parse_options
858 	 * gets called twice
859 	 */
860 	opts = kstrdup(options, GFP_KERNEL);
861 	if (!opts)
862 		return -ENOMEM;
863 	orig = opts;
864 
865 	while ((p = strsep(&opts, ",")) != NULL) {
866 		int token;
867 		if (!*p)
868 			continue;
869 
870 		token = match_token(p, tokens, args);
871 		switch (token) {
872 		case Opt_subvol:
873 			kfree(*subvol_name);
874 			*subvol_name = match_strdup(&args[0]);
875 			if (!*subvol_name) {
876 				error = -ENOMEM;
877 				goto out;
878 			}
879 			break;
880 		case Opt_subvolid:
881 			num = match_strdup(&args[0]);
882 			if (num) {
883 				*subvol_objectid = memparse(num, NULL);
884 				kfree(num);
885 				/* we want the original fs_tree */
886 				if (!*subvol_objectid)
887 					*subvol_objectid =
888 						BTRFS_FS_TREE_OBJECTID;
889 			} else {
890 				error = -EINVAL;
891 				goto out;
892 			}
893 			break;
894 		case Opt_subvolrootid:
895 			printk(KERN_WARNING
896 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
897 				"no effect\n");
898 			break;
899 		case Opt_device:
900 			device_name = match_strdup(&args[0]);
901 			if (!device_name) {
902 				error = -ENOMEM;
903 				goto out;
904 			}
905 			error = btrfs_scan_one_device(device_name,
906 					flags, holder, fs_devices);
907 			kfree(device_name);
908 			if (error)
909 				goto out;
910 			break;
911 		default:
912 			break;
913 		}
914 	}
915 
916 out:
917 	kfree(orig);
918 	return error;
919 }
920 
921 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
922 					   u64 subvol_objectid)
923 {
924 	struct btrfs_root *root = fs_info->tree_root;
925 	struct btrfs_root *fs_root;
926 	struct btrfs_root_ref *root_ref;
927 	struct btrfs_inode_ref *inode_ref;
928 	struct btrfs_key key;
929 	struct btrfs_path *path = NULL;
930 	char *name = NULL, *ptr;
931 	u64 dirid;
932 	int len;
933 	int ret;
934 
935 	path = btrfs_alloc_path();
936 	if (!path) {
937 		ret = -ENOMEM;
938 		goto err;
939 	}
940 	path->leave_spinning = 1;
941 
942 	name = kmalloc(PATH_MAX, GFP_NOFS);
943 	if (!name) {
944 		ret = -ENOMEM;
945 		goto err;
946 	}
947 	ptr = name + PATH_MAX - 1;
948 	ptr[0] = '\0';
949 
950 	/*
951 	 * Walk up the subvolume trees in the tree of tree roots by root
952 	 * backrefs until we hit the top-level subvolume.
953 	 */
954 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
955 		key.objectid = subvol_objectid;
956 		key.type = BTRFS_ROOT_BACKREF_KEY;
957 		key.offset = (u64)-1;
958 
959 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
960 		if (ret < 0) {
961 			goto err;
962 		} else if (ret > 0) {
963 			ret = btrfs_previous_item(root, path, subvol_objectid,
964 						  BTRFS_ROOT_BACKREF_KEY);
965 			if (ret < 0) {
966 				goto err;
967 			} else if (ret > 0) {
968 				ret = -ENOENT;
969 				goto err;
970 			}
971 		}
972 
973 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
974 		subvol_objectid = key.offset;
975 
976 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
977 					  struct btrfs_root_ref);
978 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
979 		ptr -= len + 1;
980 		if (ptr < name) {
981 			ret = -ENAMETOOLONG;
982 			goto err;
983 		}
984 		read_extent_buffer(path->nodes[0], ptr + 1,
985 				   (unsigned long)(root_ref + 1), len);
986 		ptr[0] = '/';
987 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
988 		btrfs_release_path(path);
989 
990 		key.objectid = subvol_objectid;
991 		key.type = BTRFS_ROOT_ITEM_KEY;
992 		key.offset = (u64)-1;
993 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
994 		if (IS_ERR(fs_root)) {
995 			ret = PTR_ERR(fs_root);
996 			goto err;
997 		}
998 
999 		/*
1000 		 * Walk up the filesystem tree by inode refs until we hit the
1001 		 * root directory.
1002 		 */
1003 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1004 			key.objectid = dirid;
1005 			key.type = BTRFS_INODE_REF_KEY;
1006 			key.offset = (u64)-1;
1007 
1008 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1009 			if (ret < 0) {
1010 				goto err;
1011 			} else if (ret > 0) {
1012 				ret = btrfs_previous_item(fs_root, path, dirid,
1013 							  BTRFS_INODE_REF_KEY);
1014 				if (ret < 0) {
1015 					goto err;
1016 				} else if (ret > 0) {
1017 					ret = -ENOENT;
1018 					goto err;
1019 				}
1020 			}
1021 
1022 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1023 			dirid = key.offset;
1024 
1025 			inode_ref = btrfs_item_ptr(path->nodes[0],
1026 						   path->slots[0],
1027 						   struct btrfs_inode_ref);
1028 			len = btrfs_inode_ref_name_len(path->nodes[0],
1029 						       inode_ref);
1030 			ptr -= len + 1;
1031 			if (ptr < name) {
1032 				ret = -ENAMETOOLONG;
1033 				goto err;
1034 			}
1035 			read_extent_buffer(path->nodes[0], ptr + 1,
1036 					   (unsigned long)(inode_ref + 1), len);
1037 			ptr[0] = '/';
1038 			btrfs_release_path(path);
1039 		}
1040 	}
1041 
1042 	btrfs_free_path(path);
1043 	if (ptr == name + PATH_MAX - 1) {
1044 		name[0] = '/';
1045 		name[1] = '\0';
1046 	} else {
1047 		memmove(name, ptr, name + PATH_MAX - ptr);
1048 	}
1049 	return name;
1050 
1051 err:
1052 	btrfs_free_path(path);
1053 	kfree(name);
1054 	return ERR_PTR(ret);
1055 }
1056 
1057 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1058 {
1059 	struct btrfs_root *root = fs_info->tree_root;
1060 	struct btrfs_dir_item *di;
1061 	struct btrfs_path *path;
1062 	struct btrfs_key location;
1063 	u64 dir_id;
1064 
1065 	path = btrfs_alloc_path();
1066 	if (!path)
1067 		return -ENOMEM;
1068 	path->leave_spinning = 1;
1069 
1070 	/*
1071 	 * Find the "default" dir item which points to the root item that we
1072 	 * will mount by default if we haven't been given a specific subvolume
1073 	 * to mount.
1074 	 */
1075 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1076 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1077 	if (IS_ERR(di)) {
1078 		btrfs_free_path(path);
1079 		return PTR_ERR(di);
1080 	}
1081 	if (!di) {
1082 		/*
1083 		 * Ok the default dir item isn't there.  This is weird since
1084 		 * it's always been there, but don't freak out, just try and
1085 		 * mount the top-level subvolume.
1086 		 */
1087 		btrfs_free_path(path);
1088 		*objectid = BTRFS_FS_TREE_OBJECTID;
1089 		return 0;
1090 	}
1091 
1092 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1093 	btrfs_free_path(path);
1094 	*objectid = location.objectid;
1095 	return 0;
1096 }
1097 
1098 static int btrfs_fill_super(struct super_block *sb,
1099 			    struct btrfs_fs_devices *fs_devices,
1100 			    void *data, int silent)
1101 {
1102 	struct inode *inode;
1103 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1104 	struct btrfs_key key;
1105 	int err;
1106 
1107 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1108 	sb->s_magic = BTRFS_SUPER_MAGIC;
1109 	sb->s_op = &btrfs_super_ops;
1110 	sb->s_d_op = &btrfs_dentry_operations;
1111 	sb->s_export_op = &btrfs_export_ops;
1112 	sb->s_xattr = btrfs_xattr_handlers;
1113 	sb->s_time_gran = 1;
1114 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1115 	sb->s_flags |= MS_POSIXACL;
1116 #endif
1117 	sb->s_flags |= MS_I_VERSION;
1118 	sb->s_iflags |= SB_I_CGROUPWB;
1119 	err = open_ctree(sb, fs_devices, (char *)data);
1120 	if (err) {
1121 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
1122 		return err;
1123 	}
1124 
1125 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1126 	key.type = BTRFS_INODE_ITEM_KEY;
1127 	key.offset = 0;
1128 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1129 	if (IS_ERR(inode)) {
1130 		err = PTR_ERR(inode);
1131 		goto fail_close;
1132 	}
1133 
1134 	sb->s_root = d_make_root(inode);
1135 	if (!sb->s_root) {
1136 		err = -ENOMEM;
1137 		goto fail_close;
1138 	}
1139 
1140 	save_mount_options(sb, data);
1141 	cleancache_init_fs(sb);
1142 	sb->s_flags |= MS_ACTIVE;
1143 	return 0;
1144 
1145 fail_close:
1146 	close_ctree(fs_info->tree_root);
1147 	return err;
1148 }
1149 
1150 int btrfs_sync_fs(struct super_block *sb, int wait)
1151 {
1152 	struct btrfs_trans_handle *trans;
1153 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1154 	struct btrfs_root *root = fs_info->tree_root;
1155 
1156 	trace_btrfs_sync_fs(wait);
1157 
1158 	if (!wait) {
1159 		filemap_flush(fs_info->btree_inode->i_mapping);
1160 		return 0;
1161 	}
1162 
1163 	btrfs_wait_ordered_roots(fs_info, -1);
1164 
1165 	trans = btrfs_attach_transaction_barrier(root);
1166 	if (IS_ERR(trans)) {
1167 		/* no transaction, don't bother */
1168 		if (PTR_ERR(trans) == -ENOENT) {
1169 			/*
1170 			 * Exit unless we have some pending changes
1171 			 * that need to go through commit
1172 			 */
1173 			if (fs_info->pending_changes == 0)
1174 				return 0;
1175 			/*
1176 			 * A non-blocking test if the fs is frozen. We must not
1177 			 * start a new transaction here otherwise a deadlock
1178 			 * happens. The pending operations are delayed to the
1179 			 * next commit after thawing.
1180 			 */
1181 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1182 				__sb_end_write(sb, SB_FREEZE_WRITE);
1183 			else
1184 				return 0;
1185 			trans = btrfs_start_transaction(root, 0);
1186 		}
1187 		if (IS_ERR(trans))
1188 			return PTR_ERR(trans);
1189 	}
1190 	return btrfs_commit_transaction(trans, root);
1191 }
1192 
1193 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1194 {
1195 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1196 	struct btrfs_root *root = info->tree_root;
1197 	char *compress_type;
1198 
1199 	if (btrfs_test_opt(root, DEGRADED))
1200 		seq_puts(seq, ",degraded");
1201 	if (btrfs_test_opt(root, NODATASUM))
1202 		seq_puts(seq, ",nodatasum");
1203 	if (btrfs_test_opt(root, NODATACOW))
1204 		seq_puts(seq, ",nodatacow");
1205 	if (btrfs_test_opt(root, NOBARRIER))
1206 		seq_puts(seq, ",nobarrier");
1207 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1208 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1209 	if (info->alloc_start != 0)
1210 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1211 	if (info->thread_pool_size !=  min_t(unsigned long,
1212 					     num_online_cpus() + 2, 8))
1213 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1214 	if (btrfs_test_opt(root, COMPRESS)) {
1215 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1216 			compress_type = "zlib";
1217 		else
1218 			compress_type = "lzo";
1219 		if (btrfs_test_opt(root, FORCE_COMPRESS))
1220 			seq_printf(seq, ",compress-force=%s", compress_type);
1221 		else
1222 			seq_printf(seq, ",compress=%s", compress_type);
1223 	}
1224 	if (btrfs_test_opt(root, NOSSD))
1225 		seq_puts(seq, ",nossd");
1226 	if (btrfs_test_opt(root, SSD_SPREAD))
1227 		seq_puts(seq, ",ssd_spread");
1228 	else if (btrfs_test_opt(root, SSD))
1229 		seq_puts(seq, ",ssd");
1230 	if (btrfs_test_opt(root, NOTREELOG))
1231 		seq_puts(seq, ",notreelog");
1232 	if (btrfs_test_opt(root, NOLOGREPLAY))
1233 		seq_puts(seq, ",nologreplay");
1234 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1235 		seq_puts(seq, ",flushoncommit");
1236 	if (btrfs_test_opt(root, DISCARD))
1237 		seq_puts(seq, ",discard");
1238 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1239 		seq_puts(seq, ",noacl");
1240 	if (btrfs_test_opt(root, SPACE_CACHE))
1241 		seq_puts(seq, ",space_cache");
1242 	else if (btrfs_test_opt(root, FREE_SPACE_TREE))
1243 		seq_puts(seq, ",space_cache=v2");
1244 	else
1245 		seq_puts(seq, ",nospace_cache");
1246 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1247 		seq_puts(seq, ",rescan_uuid_tree");
1248 	if (btrfs_test_opt(root, CLEAR_CACHE))
1249 		seq_puts(seq, ",clear_cache");
1250 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1251 		seq_puts(seq, ",user_subvol_rm_allowed");
1252 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1253 		seq_puts(seq, ",enospc_debug");
1254 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1255 		seq_puts(seq, ",autodefrag");
1256 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1257 		seq_puts(seq, ",inode_cache");
1258 	if (btrfs_test_opt(root, SKIP_BALANCE))
1259 		seq_puts(seq, ",skip_balance");
1260 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1261 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1262 		seq_puts(seq, ",check_int_data");
1263 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1264 		seq_puts(seq, ",check_int");
1265 	if (info->check_integrity_print_mask)
1266 		seq_printf(seq, ",check_int_print_mask=%d",
1267 				info->check_integrity_print_mask);
1268 #endif
1269 	if (info->metadata_ratio)
1270 		seq_printf(seq, ",metadata_ratio=%d",
1271 				info->metadata_ratio);
1272 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1273 		seq_puts(seq, ",fatal_errors=panic");
1274 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1275 		seq_printf(seq, ",commit=%d", info->commit_interval);
1276 #ifdef CONFIG_BTRFS_DEBUG
1277 	if (btrfs_test_opt(root, FRAGMENT_DATA))
1278 		seq_puts(seq, ",fragment=data");
1279 	if (btrfs_test_opt(root, FRAGMENT_METADATA))
1280 		seq_puts(seq, ",fragment=metadata");
1281 #endif
1282 	seq_printf(seq, ",subvolid=%llu",
1283 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1284 	seq_puts(seq, ",subvol=");
1285 	seq_dentry(seq, dentry, " \t\n\\");
1286 	return 0;
1287 }
1288 
1289 static int btrfs_test_super(struct super_block *s, void *data)
1290 {
1291 	struct btrfs_fs_info *p = data;
1292 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1293 
1294 	return fs_info->fs_devices == p->fs_devices;
1295 }
1296 
1297 static int btrfs_set_super(struct super_block *s, void *data)
1298 {
1299 	int err = set_anon_super(s, data);
1300 	if (!err)
1301 		s->s_fs_info = data;
1302 	return err;
1303 }
1304 
1305 /*
1306  * subvolumes are identified by ino 256
1307  */
1308 static inline int is_subvolume_inode(struct inode *inode)
1309 {
1310 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1311 		return 1;
1312 	return 0;
1313 }
1314 
1315 /*
1316  * This will add subvolid=0 to the argument string while removing any subvol=
1317  * and subvolid= arguments to make sure we get the top-level root for path
1318  * walking to the subvol we want.
1319  */
1320 static char *setup_root_args(char *args)
1321 {
1322 	char *buf, *dst, *sep;
1323 
1324 	if (!args)
1325 		return kstrdup("subvolid=0", GFP_NOFS);
1326 
1327 	/* The worst case is that we add ",subvolid=0" to the end. */
1328 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1329 	if (!buf)
1330 		return NULL;
1331 
1332 	while (1) {
1333 		sep = strchrnul(args, ',');
1334 		if (!strstarts(args, "subvol=") &&
1335 		    !strstarts(args, "subvolid=")) {
1336 			memcpy(dst, args, sep - args);
1337 			dst += sep - args;
1338 			*dst++ = ',';
1339 		}
1340 		if (*sep)
1341 			args = sep + 1;
1342 		else
1343 			break;
1344 	}
1345 	strcpy(dst, "subvolid=0");
1346 
1347 	return buf;
1348 }
1349 
1350 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1351 				   int flags, const char *device_name,
1352 				   char *data)
1353 {
1354 	struct dentry *root;
1355 	struct vfsmount *mnt = NULL;
1356 	char *newargs;
1357 	int ret;
1358 
1359 	newargs = setup_root_args(data);
1360 	if (!newargs) {
1361 		root = ERR_PTR(-ENOMEM);
1362 		goto out;
1363 	}
1364 
1365 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1366 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1367 		if (flags & MS_RDONLY) {
1368 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1369 					     device_name, newargs);
1370 		} else {
1371 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1372 					     device_name, newargs);
1373 			if (IS_ERR(mnt)) {
1374 				root = ERR_CAST(mnt);
1375 				mnt = NULL;
1376 				goto out;
1377 			}
1378 
1379 			down_write(&mnt->mnt_sb->s_umount);
1380 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1381 			up_write(&mnt->mnt_sb->s_umount);
1382 			if (ret < 0) {
1383 				root = ERR_PTR(ret);
1384 				goto out;
1385 			}
1386 		}
1387 	}
1388 	if (IS_ERR(mnt)) {
1389 		root = ERR_CAST(mnt);
1390 		mnt = NULL;
1391 		goto out;
1392 	}
1393 
1394 	if (!subvol_name) {
1395 		if (!subvol_objectid) {
1396 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1397 							  &subvol_objectid);
1398 			if (ret) {
1399 				root = ERR_PTR(ret);
1400 				goto out;
1401 			}
1402 		}
1403 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1404 							    subvol_objectid);
1405 		if (IS_ERR(subvol_name)) {
1406 			root = ERR_CAST(subvol_name);
1407 			subvol_name = NULL;
1408 			goto out;
1409 		}
1410 
1411 	}
1412 
1413 	root = mount_subtree(mnt, subvol_name);
1414 	/* mount_subtree() drops our reference on the vfsmount. */
1415 	mnt = NULL;
1416 
1417 	if (!IS_ERR(root)) {
1418 		struct super_block *s = root->d_sb;
1419 		struct inode *root_inode = d_inode(root);
1420 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1421 
1422 		ret = 0;
1423 		if (!is_subvolume_inode(root_inode)) {
1424 			pr_err("BTRFS: '%s' is not a valid subvolume\n",
1425 			       subvol_name);
1426 			ret = -EINVAL;
1427 		}
1428 		if (subvol_objectid && root_objectid != subvol_objectid) {
1429 			/*
1430 			 * This will also catch a race condition where a
1431 			 * subvolume which was passed by ID is renamed and
1432 			 * another subvolume is renamed over the old location.
1433 			 */
1434 			pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
1435 			       subvol_name, subvol_objectid);
1436 			ret = -EINVAL;
1437 		}
1438 		if (ret) {
1439 			dput(root);
1440 			root = ERR_PTR(ret);
1441 			deactivate_locked_super(s);
1442 		}
1443 	}
1444 
1445 out:
1446 	mntput(mnt);
1447 	kfree(newargs);
1448 	kfree(subvol_name);
1449 	return root;
1450 }
1451 
1452 static int parse_security_options(char *orig_opts,
1453 				  struct security_mnt_opts *sec_opts)
1454 {
1455 	char *secdata = NULL;
1456 	int ret = 0;
1457 
1458 	secdata = alloc_secdata();
1459 	if (!secdata)
1460 		return -ENOMEM;
1461 	ret = security_sb_copy_data(orig_opts, secdata);
1462 	if (ret) {
1463 		free_secdata(secdata);
1464 		return ret;
1465 	}
1466 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1467 	free_secdata(secdata);
1468 	return ret;
1469 }
1470 
1471 static int setup_security_options(struct btrfs_fs_info *fs_info,
1472 				  struct super_block *sb,
1473 				  struct security_mnt_opts *sec_opts)
1474 {
1475 	int ret = 0;
1476 
1477 	/*
1478 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1479 	 * is valid.
1480 	 */
1481 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1482 	if (ret)
1483 		return ret;
1484 
1485 #ifdef CONFIG_SECURITY
1486 	if (!fs_info->security_opts.num_mnt_opts) {
1487 		/* first time security setup, copy sec_opts to fs_info */
1488 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1489 	} else {
1490 		/*
1491 		 * Since SELinux(the only one supports security_mnt_opts) does
1492 		 * NOT support changing context during remount/mount same sb,
1493 		 * This must be the same or part of the same security options,
1494 		 * just free it.
1495 		 */
1496 		security_free_mnt_opts(sec_opts);
1497 	}
1498 #endif
1499 	return ret;
1500 }
1501 
1502 /*
1503  * Find a superblock for the given device / mount point.
1504  *
1505  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1506  *	  for multiple device setup.  Make sure to keep it in sync.
1507  */
1508 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1509 		const char *device_name, void *data)
1510 {
1511 	struct block_device *bdev = NULL;
1512 	struct super_block *s;
1513 	struct btrfs_fs_devices *fs_devices = NULL;
1514 	struct btrfs_fs_info *fs_info = NULL;
1515 	struct security_mnt_opts new_sec_opts;
1516 	fmode_t mode = FMODE_READ;
1517 	char *subvol_name = NULL;
1518 	u64 subvol_objectid = 0;
1519 	int error = 0;
1520 
1521 	if (!(flags & MS_RDONLY))
1522 		mode |= FMODE_WRITE;
1523 
1524 	error = btrfs_parse_early_options(data, mode, fs_type,
1525 					  &subvol_name, &subvol_objectid,
1526 					  &fs_devices);
1527 	if (error) {
1528 		kfree(subvol_name);
1529 		return ERR_PTR(error);
1530 	}
1531 
1532 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1533 		/* mount_subvol() will free subvol_name. */
1534 		return mount_subvol(subvol_name, subvol_objectid, flags,
1535 				    device_name, data);
1536 	}
1537 
1538 	security_init_mnt_opts(&new_sec_opts);
1539 	if (data) {
1540 		error = parse_security_options(data, &new_sec_opts);
1541 		if (error)
1542 			return ERR_PTR(error);
1543 	}
1544 
1545 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1546 	if (error)
1547 		goto error_sec_opts;
1548 
1549 	/*
1550 	 * Setup a dummy root and fs_info for test/set super.  This is because
1551 	 * we don't actually fill this stuff out until open_ctree, but we need
1552 	 * it for searching for existing supers, so this lets us do that and
1553 	 * then open_ctree will properly initialize everything later.
1554 	 */
1555 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1556 	if (!fs_info) {
1557 		error = -ENOMEM;
1558 		goto error_sec_opts;
1559 	}
1560 
1561 	fs_info->fs_devices = fs_devices;
1562 
1563 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1564 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1565 	security_init_mnt_opts(&fs_info->security_opts);
1566 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1567 		error = -ENOMEM;
1568 		goto error_fs_info;
1569 	}
1570 
1571 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1572 	if (error)
1573 		goto error_fs_info;
1574 
1575 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1576 		error = -EACCES;
1577 		goto error_close_devices;
1578 	}
1579 
1580 	bdev = fs_devices->latest_bdev;
1581 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1582 		 fs_info);
1583 	if (IS_ERR(s)) {
1584 		error = PTR_ERR(s);
1585 		goto error_close_devices;
1586 	}
1587 
1588 	if (s->s_root) {
1589 		btrfs_close_devices(fs_devices);
1590 		free_fs_info(fs_info);
1591 		if ((flags ^ s->s_flags) & MS_RDONLY)
1592 			error = -EBUSY;
1593 	} else {
1594 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1595 		btrfs_sb(s)->bdev_holder = fs_type;
1596 		error = btrfs_fill_super(s, fs_devices, data,
1597 					 flags & MS_SILENT ? 1 : 0);
1598 	}
1599 	if (error) {
1600 		deactivate_locked_super(s);
1601 		goto error_sec_opts;
1602 	}
1603 
1604 	fs_info = btrfs_sb(s);
1605 	error = setup_security_options(fs_info, s, &new_sec_opts);
1606 	if (error) {
1607 		deactivate_locked_super(s);
1608 		goto error_sec_opts;
1609 	}
1610 
1611 	return dget(s->s_root);
1612 
1613 error_close_devices:
1614 	btrfs_close_devices(fs_devices);
1615 error_fs_info:
1616 	free_fs_info(fs_info);
1617 error_sec_opts:
1618 	security_free_mnt_opts(&new_sec_opts);
1619 	return ERR_PTR(error);
1620 }
1621 
1622 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1623 				     int new_pool_size, int old_pool_size)
1624 {
1625 	if (new_pool_size == old_pool_size)
1626 		return;
1627 
1628 	fs_info->thread_pool_size = new_pool_size;
1629 
1630 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1631 	       old_pool_size, new_pool_size);
1632 
1633 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1634 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1635 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1636 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1637 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1638 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1639 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1640 				new_pool_size);
1641 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1642 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1643 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1644 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1645 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1646 				new_pool_size);
1647 }
1648 
1649 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1650 {
1651 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1652 }
1653 
1654 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1655 				       unsigned long old_opts, int flags)
1656 {
1657 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1658 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1659 	     (flags & MS_RDONLY))) {
1660 		/* wait for any defraggers to finish */
1661 		wait_event(fs_info->transaction_wait,
1662 			   (atomic_read(&fs_info->defrag_running) == 0));
1663 		if (flags & MS_RDONLY)
1664 			sync_filesystem(fs_info->sb);
1665 	}
1666 }
1667 
1668 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1669 					 unsigned long old_opts)
1670 {
1671 	/*
1672 	 * We need cleanup all defragable inodes if the autodefragment is
1673 	 * close or the fs is R/O.
1674 	 */
1675 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1676 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1677 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1678 		btrfs_cleanup_defrag_inodes(fs_info);
1679 	}
1680 
1681 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1682 }
1683 
1684 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1685 {
1686 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1687 	struct btrfs_root *root = fs_info->tree_root;
1688 	unsigned old_flags = sb->s_flags;
1689 	unsigned long old_opts = fs_info->mount_opt;
1690 	unsigned long old_compress_type = fs_info->compress_type;
1691 	u64 old_max_inline = fs_info->max_inline;
1692 	u64 old_alloc_start = fs_info->alloc_start;
1693 	int old_thread_pool_size = fs_info->thread_pool_size;
1694 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1695 	int ret;
1696 
1697 	sync_filesystem(sb);
1698 	btrfs_remount_prepare(fs_info);
1699 
1700 	if (data) {
1701 		struct security_mnt_opts new_sec_opts;
1702 
1703 		security_init_mnt_opts(&new_sec_opts);
1704 		ret = parse_security_options(data, &new_sec_opts);
1705 		if (ret)
1706 			goto restore;
1707 		ret = setup_security_options(fs_info, sb,
1708 					     &new_sec_opts);
1709 		if (ret) {
1710 			security_free_mnt_opts(&new_sec_opts);
1711 			goto restore;
1712 		}
1713 	}
1714 
1715 	ret = btrfs_parse_options(root, data, *flags);
1716 	if (ret) {
1717 		ret = -EINVAL;
1718 		goto restore;
1719 	}
1720 
1721 	btrfs_remount_begin(fs_info, old_opts, *flags);
1722 	btrfs_resize_thread_pool(fs_info,
1723 		fs_info->thread_pool_size, old_thread_pool_size);
1724 
1725 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1726 		goto out;
1727 
1728 	if (*flags & MS_RDONLY) {
1729 		/*
1730 		 * this also happens on 'umount -rf' or on shutdown, when
1731 		 * the filesystem is busy.
1732 		 */
1733 		cancel_work_sync(&fs_info->async_reclaim_work);
1734 
1735 		/* wait for the uuid_scan task to finish */
1736 		down(&fs_info->uuid_tree_rescan_sem);
1737 		/* avoid complains from lockdep et al. */
1738 		up(&fs_info->uuid_tree_rescan_sem);
1739 
1740 		sb->s_flags |= MS_RDONLY;
1741 
1742 		/*
1743 		 * Setting MS_RDONLY will put the cleaner thread to
1744 		 * sleep at the next loop if it's already active.
1745 		 * If it's already asleep, we'll leave unused block
1746 		 * groups on disk until we're mounted read-write again
1747 		 * unless we clean them up here.
1748 		 */
1749 		btrfs_delete_unused_bgs(fs_info);
1750 
1751 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1752 		btrfs_scrub_cancel(fs_info);
1753 		btrfs_pause_balance(fs_info);
1754 
1755 		ret = btrfs_commit_super(root);
1756 		if (ret)
1757 			goto restore;
1758 	} else {
1759 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1760 			btrfs_err(fs_info,
1761 				"Remounting read-write after error is not allowed");
1762 			ret = -EINVAL;
1763 			goto restore;
1764 		}
1765 		if (fs_info->fs_devices->rw_devices == 0) {
1766 			ret = -EACCES;
1767 			goto restore;
1768 		}
1769 
1770 		if (fs_info->fs_devices->missing_devices >
1771 		     fs_info->num_tolerated_disk_barrier_failures &&
1772 		    !(*flags & MS_RDONLY)) {
1773 			btrfs_warn(fs_info,
1774 				"too many missing devices, writeable remount is not allowed");
1775 			ret = -EACCES;
1776 			goto restore;
1777 		}
1778 
1779 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1780 			ret = -EINVAL;
1781 			goto restore;
1782 		}
1783 
1784 		ret = btrfs_cleanup_fs_roots(fs_info);
1785 		if (ret)
1786 			goto restore;
1787 
1788 		/* recover relocation */
1789 		mutex_lock(&fs_info->cleaner_mutex);
1790 		ret = btrfs_recover_relocation(root);
1791 		mutex_unlock(&fs_info->cleaner_mutex);
1792 		if (ret)
1793 			goto restore;
1794 
1795 		ret = btrfs_resume_balance_async(fs_info);
1796 		if (ret)
1797 			goto restore;
1798 
1799 		ret = btrfs_resume_dev_replace_async(fs_info);
1800 		if (ret) {
1801 			btrfs_warn(fs_info, "failed to resume dev_replace");
1802 			goto restore;
1803 		}
1804 
1805 		if (!fs_info->uuid_root) {
1806 			btrfs_info(fs_info, "creating UUID tree");
1807 			ret = btrfs_create_uuid_tree(fs_info);
1808 			if (ret) {
1809 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1810 				goto restore;
1811 			}
1812 		}
1813 		sb->s_flags &= ~MS_RDONLY;
1814 	}
1815 out:
1816 	wake_up_process(fs_info->transaction_kthread);
1817 	btrfs_remount_cleanup(fs_info, old_opts);
1818 	return 0;
1819 
1820 restore:
1821 	/* We've hit an error - don't reset MS_RDONLY */
1822 	if (sb->s_flags & MS_RDONLY)
1823 		old_flags |= MS_RDONLY;
1824 	sb->s_flags = old_flags;
1825 	fs_info->mount_opt = old_opts;
1826 	fs_info->compress_type = old_compress_type;
1827 	fs_info->max_inline = old_max_inline;
1828 	mutex_lock(&fs_info->chunk_mutex);
1829 	fs_info->alloc_start = old_alloc_start;
1830 	mutex_unlock(&fs_info->chunk_mutex);
1831 	btrfs_resize_thread_pool(fs_info,
1832 		old_thread_pool_size, fs_info->thread_pool_size);
1833 	fs_info->metadata_ratio = old_metadata_ratio;
1834 	btrfs_remount_cleanup(fs_info, old_opts);
1835 	return ret;
1836 }
1837 
1838 /* Used to sort the devices by max_avail(descending sort) */
1839 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1840 				       const void *dev_info2)
1841 {
1842 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1843 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1844 		return -1;
1845 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1846 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1847 		return 1;
1848 	else
1849 	return 0;
1850 }
1851 
1852 /*
1853  * sort the devices by max_avail, in which max free extent size of each device
1854  * is stored.(Descending Sort)
1855  */
1856 static inline void btrfs_descending_sort_devices(
1857 					struct btrfs_device_info *devices,
1858 					size_t nr_devices)
1859 {
1860 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1861 	     btrfs_cmp_device_free_bytes, NULL);
1862 }
1863 
1864 /*
1865  * The helper to calc the free space on the devices that can be used to store
1866  * file data.
1867  */
1868 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1869 {
1870 	struct btrfs_fs_info *fs_info = root->fs_info;
1871 	struct btrfs_device_info *devices_info;
1872 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1873 	struct btrfs_device *device;
1874 	u64 skip_space;
1875 	u64 type;
1876 	u64 avail_space;
1877 	u64 used_space;
1878 	u64 min_stripe_size;
1879 	int min_stripes = 1, num_stripes = 1;
1880 	int i = 0, nr_devices;
1881 	int ret;
1882 
1883 	/*
1884 	 * We aren't under the device list lock, so this is racey-ish, but good
1885 	 * enough for our purposes.
1886 	 */
1887 	nr_devices = fs_info->fs_devices->open_devices;
1888 	if (!nr_devices) {
1889 		smp_mb();
1890 		nr_devices = fs_info->fs_devices->open_devices;
1891 		ASSERT(nr_devices);
1892 		if (!nr_devices) {
1893 			*free_bytes = 0;
1894 			return 0;
1895 		}
1896 	}
1897 
1898 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1899 			       GFP_NOFS);
1900 	if (!devices_info)
1901 		return -ENOMEM;
1902 
1903 	/* calc min stripe number for data space alloction */
1904 	type = btrfs_get_alloc_profile(root, 1);
1905 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1906 		min_stripes = 2;
1907 		num_stripes = nr_devices;
1908 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1909 		min_stripes = 2;
1910 		num_stripes = 2;
1911 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1912 		min_stripes = 4;
1913 		num_stripes = 4;
1914 	}
1915 
1916 	if (type & BTRFS_BLOCK_GROUP_DUP)
1917 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1918 	else
1919 		min_stripe_size = BTRFS_STRIPE_LEN;
1920 
1921 	if (fs_info->alloc_start)
1922 		mutex_lock(&fs_devices->device_list_mutex);
1923 	rcu_read_lock();
1924 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1925 		if (!device->in_fs_metadata || !device->bdev ||
1926 		    device->is_tgtdev_for_dev_replace)
1927 			continue;
1928 
1929 		if (i >= nr_devices)
1930 			break;
1931 
1932 		avail_space = device->total_bytes - device->bytes_used;
1933 
1934 		/* align with stripe_len */
1935 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1936 		avail_space *= BTRFS_STRIPE_LEN;
1937 
1938 		/*
1939 		 * In order to avoid overwritting the superblock on the drive,
1940 		 * btrfs starts at an offset of at least 1MB when doing chunk
1941 		 * allocation.
1942 		 */
1943 		skip_space = SZ_1M;
1944 
1945 		/* user can set the offset in fs_info->alloc_start. */
1946 		if (fs_info->alloc_start &&
1947 		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1948 		    device->total_bytes) {
1949 			rcu_read_unlock();
1950 			skip_space = max(fs_info->alloc_start, skip_space);
1951 
1952 			/*
1953 			 * btrfs can not use the free space in
1954 			 * [0, skip_space - 1], we must subtract it from the
1955 			 * total. In order to implement it, we account the used
1956 			 * space in this range first.
1957 			 */
1958 			ret = btrfs_account_dev_extents_size(device, 0,
1959 							     skip_space - 1,
1960 							     &used_space);
1961 			if (ret) {
1962 				kfree(devices_info);
1963 				mutex_unlock(&fs_devices->device_list_mutex);
1964 				return ret;
1965 			}
1966 
1967 			rcu_read_lock();
1968 
1969 			/* calc the free space in [0, skip_space - 1] */
1970 			skip_space -= used_space;
1971 		}
1972 
1973 		/*
1974 		 * we can use the free space in [0, skip_space - 1], subtract
1975 		 * it from the total.
1976 		 */
1977 		if (avail_space && avail_space >= skip_space)
1978 			avail_space -= skip_space;
1979 		else
1980 			avail_space = 0;
1981 
1982 		if (avail_space < min_stripe_size)
1983 			continue;
1984 
1985 		devices_info[i].dev = device;
1986 		devices_info[i].max_avail = avail_space;
1987 
1988 		i++;
1989 	}
1990 	rcu_read_unlock();
1991 	if (fs_info->alloc_start)
1992 		mutex_unlock(&fs_devices->device_list_mutex);
1993 
1994 	nr_devices = i;
1995 
1996 	btrfs_descending_sort_devices(devices_info, nr_devices);
1997 
1998 	i = nr_devices - 1;
1999 	avail_space = 0;
2000 	while (nr_devices >= min_stripes) {
2001 		if (num_stripes > nr_devices)
2002 			num_stripes = nr_devices;
2003 
2004 		if (devices_info[i].max_avail >= min_stripe_size) {
2005 			int j;
2006 			u64 alloc_size;
2007 
2008 			avail_space += devices_info[i].max_avail * num_stripes;
2009 			alloc_size = devices_info[i].max_avail;
2010 			for (j = i + 1 - num_stripes; j <= i; j++)
2011 				devices_info[j].max_avail -= alloc_size;
2012 		}
2013 		i--;
2014 		nr_devices--;
2015 	}
2016 
2017 	kfree(devices_info);
2018 	*free_bytes = avail_space;
2019 	return 0;
2020 }
2021 
2022 /*
2023  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2024  *
2025  * If there's a redundant raid level at DATA block groups, use the respective
2026  * multiplier to scale the sizes.
2027  *
2028  * Unused device space usage is based on simulating the chunk allocator
2029  * algorithm that respects the device sizes, order of allocations and the
2030  * 'alloc_start' value, this is a close approximation of the actual use but
2031  * there are other factors that may change the result (like a new metadata
2032  * chunk).
2033  *
2034  * If metadata is exhausted, f_bavail will be 0.
2035  *
2036  * FIXME: not accurate for mixed block groups, total and free/used are ok,
2037  * available appears slightly larger.
2038  */
2039 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2040 {
2041 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2042 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2043 	struct list_head *head = &fs_info->space_info;
2044 	struct btrfs_space_info *found;
2045 	u64 total_used = 0;
2046 	u64 total_free_data = 0;
2047 	u64 total_free_meta = 0;
2048 	int bits = dentry->d_sb->s_blocksize_bits;
2049 	__be32 *fsid = (__be32 *)fs_info->fsid;
2050 	unsigned factor = 1;
2051 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2052 	int ret;
2053 	u64 thresh = 0;
2054 
2055 	/*
2056 	 * holding chunk_muext to avoid allocating new chunks, holding
2057 	 * device_list_mutex to avoid the device being removed
2058 	 */
2059 	rcu_read_lock();
2060 	list_for_each_entry_rcu(found, head, list) {
2061 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2062 			int i;
2063 
2064 			total_free_data += found->disk_total - found->disk_used;
2065 			total_free_data -=
2066 				btrfs_account_ro_block_groups_free_space(found);
2067 
2068 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2069 				if (!list_empty(&found->block_groups[i])) {
2070 					switch (i) {
2071 					case BTRFS_RAID_DUP:
2072 					case BTRFS_RAID_RAID1:
2073 					case BTRFS_RAID_RAID10:
2074 						factor = 2;
2075 					}
2076 				}
2077 			}
2078 		}
2079 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2080 			total_free_meta += found->disk_total - found->disk_used;
2081 
2082 		total_used += found->disk_used;
2083 	}
2084 
2085 	rcu_read_unlock();
2086 
2087 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2088 	buf->f_blocks >>= bits;
2089 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2090 
2091 	/* Account global block reserve as used, it's in logical size already */
2092 	spin_lock(&block_rsv->lock);
2093 	buf->f_bfree -= block_rsv->size >> bits;
2094 	spin_unlock(&block_rsv->lock);
2095 
2096 	buf->f_bavail = div_u64(total_free_data, factor);
2097 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
2098 	if (ret)
2099 		return ret;
2100 	buf->f_bavail += div_u64(total_free_data, factor);
2101 	buf->f_bavail = buf->f_bavail >> bits;
2102 
2103 	/*
2104 	 * We calculate the remaining metadata space minus global reserve. If
2105 	 * this is (supposedly) smaller than zero, there's no space. But this
2106 	 * does not hold in practice, the exhausted state happens where's still
2107 	 * some positive delta. So we apply some guesswork and compare the
2108 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2109 	 *
2110 	 * We probably cannot calculate the exact threshold value because this
2111 	 * depends on the internal reservations requested by various
2112 	 * operations, so some operations that consume a few metadata will
2113 	 * succeed even if the Avail is zero. But this is better than the other
2114 	 * way around.
2115 	 */
2116 	thresh = 4 * 1024 * 1024;
2117 
2118 	if (total_free_meta - thresh < block_rsv->size)
2119 		buf->f_bavail = 0;
2120 
2121 	buf->f_type = BTRFS_SUPER_MAGIC;
2122 	buf->f_bsize = dentry->d_sb->s_blocksize;
2123 	buf->f_namelen = BTRFS_NAME_LEN;
2124 
2125 	/* We treat it as constant endianness (it doesn't matter _which_)
2126 	   because we want the fsid to come out the same whether mounted
2127 	   on a big-endian or little-endian host */
2128 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2129 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2130 	/* Mask in the root object ID too, to disambiguate subvols */
2131 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2132 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2133 
2134 	return 0;
2135 }
2136 
2137 static void btrfs_kill_super(struct super_block *sb)
2138 {
2139 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2140 	kill_anon_super(sb);
2141 	free_fs_info(fs_info);
2142 }
2143 
2144 static struct file_system_type btrfs_fs_type = {
2145 	.owner		= THIS_MODULE,
2146 	.name		= "btrfs",
2147 	.mount		= btrfs_mount,
2148 	.kill_sb	= btrfs_kill_super,
2149 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2150 };
2151 MODULE_ALIAS_FS("btrfs");
2152 
2153 static int btrfs_control_open(struct inode *inode, struct file *file)
2154 {
2155 	/*
2156 	 * The control file's private_data is used to hold the
2157 	 * transaction when it is started and is used to keep
2158 	 * track of whether a transaction is already in progress.
2159 	 */
2160 	file->private_data = NULL;
2161 	return 0;
2162 }
2163 
2164 /*
2165  * used by btrfsctl to scan devices when no FS is mounted
2166  */
2167 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2168 				unsigned long arg)
2169 {
2170 	struct btrfs_ioctl_vol_args *vol;
2171 	struct btrfs_fs_devices *fs_devices;
2172 	int ret = -ENOTTY;
2173 
2174 	if (!capable(CAP_SYS_ADMIN))
2175 		return -EPERM;
2176 
2177 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2178 	if (IS_ERR(vol))
2179 		return PTR_ERR(vol);
2180 
2181 	switch (cmd) {
2182 	case BTRFS_IOC_SCAN_DEV:
2183 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2184 					    &btrfs_fs_type, &fs_devices);
2185 		break;
2186 	case BTRFS_IOC_DEVICES_READY:
2187 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2188 					    &btrfs_fs_type, &fs_devices);
2189 		if (ret)
2190 			break;
2191 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2192 		break;
2193 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2194 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2195 		break;
2196 	}
2197 
2198 	kfree(vol);
2199 	return ret;
2200 }
2201 
2202 static int btrfs_freeze(struct super_block *sb)
2203 {
2204 	struct btrfs_trans_handle *trans;
2205 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2206 
2207 	trans = btrfs_attach_transaction_barrier(root);
2208 	if (IS_ERR(trans)) {
2209 		/* no transaction, don't bother */
2210 		if (PTR_ERR(trans) == -ENOENT)
2211 			return 0;
2212 		return PTR_ERR(trans);
2213 	}
2214 	return btrfs_commit_transaction(trans, root);
2215 }
2216 
2217 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2218 {
2219 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2220 	struct btrfs_fs_devices *cur_devices;
2221 	struct btrfs_device *dev, *first_dev = NULL;
2222 	struct list_head *head;
2223 	struct rcu_string *name;
2224 
2225 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2226 	cur_devices = fs_info->fs_devices;
2227 	while (cur_devices) {
2228 		head = &cur_devices->devices;
2229 		list_for_each_entry(dev, head, dev_list) {
2230 			if (dev->missing)
2231 				continue;
2232 			if (!dev->name)
2233 				continue;
2234 			if (!first_dev || dev->devid < first_dev->devid)
2235 				first_dev = dev;
2236 		}
2237 		cur_devices = cur_devices->seed;
2238 	}
2239 
2240 	if (first_dev) {
2241 		rcu_read_lock();
2242 		name = rcu_dereference(first_dev->name);
2243 		seq_escape(m, name->str, " \t\n\\");
2244 		rcu_read_unlock();
2245 	} else {
2246 		WARN_ON(1);
2247 	}
2248 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2249 	return 0;
2250 }
2251 
2252 static const struct super_operations btrfs_super_ops = {
2253 	.drop_inode	= btrfs_drop_inode,
2254 	.evict_inode	= btrfs_evict_inode,
2255 	.put_super	= btrfs_put_super,
2256 	.sync_fs	= btrfs_sync_fs,
2257 	.show_options	= btrfs_show_options,
2258 	.show_devname	= btrfs_show_devname,
2259 	.write_inode	= btrfs_write_inode,
2260 	.alloc_inode	= btrfs_alloc_inode,
2261 	.destroy_inode	= btrfs_destroy_inode,
2262 	.statfs		= btrfs_statfs,
2263 	.remount_fs	= btrfs_remount,
2264 	.freeze_fs	= btrfs_freeze,
2265 };
2266 
2267 static const struct file_operations btrfs_ctl_fops = {
2268 	.open = btrfs_control_open,
2269 	.unlocked_ioctl	 = btrfs_control_ioctl,
2270 	.compat_ioctl = btrfs_control_ioctl,
2271 	.owner	 = THIS_MODULE,
2272 	.llseek = noop_llseek,
2273 };
2274 
2275 static struct miscdevice btrfs_misc = {
2276 	.minor		= BTRFS_MINOR,
2277 	.name		= "btrfs-control",
2278 	.fops		= &btrfs_ctl_fops
2279 };
2280 
2281 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2282 MODULE_ALIAS("devname:btrfs-control");
2283 
2284 static int btrfs_interface_init(void)
2285 {
2286 	return misc_register(&btrfs_misc);
2287 }
2288 
2289 static void btrfs_interface_exit(void)
2290 {
2291 	misc_deregister(&btrfs_misc);
2292 }
2293 
2294 static void btrfs_print_mod_info(void)
2295 {
2296 	printk(KERN_INFO "Btrfs loaded"
2297 #ifdef CONFIG_BTRFS_DEBUG
2298 			", debug=on"
2299 #endif
2300 #ifdef CONFIG_BTRFS_ASSERT
2301 			", assert=on"
2302 #endif
2303 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2304 			", integrity-checker=on"
2305 #endif
2306 			"\n");
2307 }
2308 
2309 static int btrfs_run_sanity_tests(void)
2310 {
2311 	int ret;
2312 
2313 	ret = btrfs_init_test_fs();
2314 	if (ret)
2315 		return ret;
2316 
2317 	ret = btrfs_test_free_space_cache();
2318 	if (ret)
2319 		goto out;
2320 	ret = btrfs_test_extent_buffer_operations();
2321 	if (ret)
2322 		goto out;
2323 	ret = btrfs_test_extent_io();
2324 	if (ret)
2325 		goto out;
2326 	ret = btrfs_test_inodes();
2327 	if (ret)
2328 		goto out;
2329 	ret = btrfs_test_qgroups();
2330 	if (ret)
2331 		goto out;
2332 	ret = btrfs_test_free_space_tree();
2333 out:
2334 	btrfs_destroy_test_fs();
2335 	return ret;
2336 }
2337 
2338 static int __init init_btrfs_fs(void)
2339 {
2340 	int err;
2341 
2342 	err = btrfs_hash_init();
2343 	if (err)
2344 		return err;
2345 
2346 	btrfs_props_init();
2347 
2348 	err = btrfs_init_sysfs();
2349 	if (err)
2350 		goto free_hash;
2351 
2352 	btrfs_init_compress();
2353 
2354 	err = btrfs_init_cachep();
2355 	if (err)
2356 		goto free_compress;
2357 
2358 	err = extent_io_init();
2359 	if (err)
2360 		goto free_cachep;
2361 
2362 	err = extent_map_init();
2363 	if (err)
2364 		goto free_extent_io;
2365 
2366 	err = ordered_data_init();
2367 	if (err)
2368 		goto free_extent_map;
2369 
2370 	err = btrfs_delayed_inode_init();
2371 	if (err)
2372 		goto free_ordered_data;
2373 
2374 	err = btrfs_auto_defrag_init();
2375 	if (err)
2376 		goto free_delayed_inode;
2377 
2378 	err = btrfs_delayed_ref_init();
2379 	if (err)
2380 		goto free_auto_defrag;
2381 
2382 	err = btrfs_prelim_ref_init();
2383 	if (err)
2384 		goto free_delayed_ref;
2385 
2386 	err = btrfs_end_io_wq_init();
2387 	if (err)
2388 		goto free_prelim_ref;
2389 
2390 	err = btrfs_interface_init();
2391 	if (err)
2392 		goto free_end_io_wq;
2393 
2394 	btrfs_init_lockdep();
2395 
2396 	btrfs_print_mod_info();
2397 
2398 	err = btrfs_run_sanity_tests();
2399 	if (err)
2400 		goto unregister_ioctl;
2401 
2402 	err = register_filesystem(&btrfs_fs_type);
2403 	if (err)
2404 		goto unregister_ioctl;
2405 
2406 	return 0;
2407 
2408 unregister_ioctl:
2409 	btrfs_interface_exit();
2410 free_end_io_wq:
2411 	btrfs_end_io_wq_exit();
2412 free_prelim_ref:
2413 	btrfs_prelim_ref_exit();
2414 free_delayed_ref:
2415 	btrfs_delayed_ref_exit();
2416 free_auto_defrag:
2417 	btrfs_auto_defrag_exit();
2418 free_delayed_inode:
2419 	btrfs_delayed_inode_exit();
2420 free_ordered_data:
2421 	ordered_data_exit();
2422 free_extent_map:
2423 	extent_map_exit();
2424 free_extent_io:
2425 	extent_io_exit();
2426 free_cachep:
2427 	btrfs_destroy_cachep();
2428 free_compress:
2429 	btrfs_exit_compress();
2430 	btrfs_exit_sysfs();
2431 free_hash:
2432 	btrfs_hash_exit();
2433 	return err;
2434 }
2435 
2436 static void __exit exit_btrfs_fs(void)
2437 {
2438 	btrfs_destroy_cachep();
2439 	btrfs_delayed_ref_exit();
2440 	btrfs_auto_defrag_exit();
2441 	btrfs_delayed_inode_exit();
2442 	btrfs_prelim_ref_exit();
2443 	ordered_data_exit();
2444 	extent_map_exit();
2445 	extent_io_exit();
2446 	btrfs_interface_exit();
2447 	btrfs_end_io_wq_exit();
2448 	unregister_filesystem(&btrfs_fs_type);
2449 	btrfs_exit_sysfs();
2450 	btrfs_cleanup_fs_uuids();
2451 	btrfs_exit_compress();
2452 	btrfs_hash_exit();
2453 }
2454 
2455 late_initcall(init_btrfs_fs);
2456 module_exit(exit_btrfs_fs)
2457 
2458 MODULE_LICENSE("GPL");
2459