1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "tests/btrfs-tests.h" 48 #include "block-group.h" 49 #include "discard.h" 50 51 #include "qgroup.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 /* 71 * Generally the error codes correspond to their respective errors, but there 72 * are a few special cases. 73 * 74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 75 * instance will return EUCLEAN if any of the blocks are corrupted in 76 * a way that is problematic. We want to reserve EUCLEAN for these 77 * sort of corruptions. 78 * 79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 80 * need to use EROFS for this case. We will have no idea of the 81 * original failure, that will have been reported at the time we tripped 82 * over the error. Each subsequent error that doesn't have any context 83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 84 */ 85 const char * __attribute_const__ btrfs_decode_error(int errno) 86 { 87 char *errstr = "unknown"; 88 89 switch (errno) { 90 case -ENOENT: /* -2 */ 91 errstr = "No such entry"; 92 break; 93 case -EIO: /* -5 */ 94 errstr = "IO failure"; 95 break; 96 case -ENOMEM: /* -12*/ 97 errstr = "Out of memory"; 98 break; 99 case -EEXIST: /* -17 */ 100 errstr = "Object already exists"; 101 break; 102 case -ENOSPC: /* -28 */ 103 errstr = "No space left"; 104 break; 105 case -EROFS: /* -30 */ 106 errstr = "Readonly filesystem"; 107 break; 108 case -EOPNOTSUPP: /* -95 */ 109 errstr = "Operation not supported"; 110 break; 111 case -EUCLEAN: /* -117 */ 112 errstr = "Filesystem corrupted"; 113 break; 114 case -EDQUOT: /* -122 */ 115 errstr = "Quota exceeded"; 116 break; 117 } 118 119 return errstr; 120 } 121 122 /* 123 * __btrfs_handle_fs_error decodes expected errors from the caller and 124 * invokes the appropriate error response. 125 */ 126 __cold 127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 128 unsigned int line, int errno, const char *fmt, ...) 129 { 130 struct super_block *sb = fs_info->sb; 131 #ifdef CONFIG_PRINTK 132 const char *errstr; 133 #endif 134 135 /* 136 * Special case: if the error is EROFS, and we're already 137 * under SB_RDONLY, then it is safe here. 138 */ 139 if (errno == -EROFS && sb_rdonly(sb)) 140 return; 141 142 #ifdef CONFIG_PRINTK 143 errstr = btrfs_decode_error(errno); 144 if (fmt) { 145 struct va_format vaf; 146 va_list args; 147 148 va_start(args, fmt); 149 vaf.fmt = fmt; 150 vaf.va = &args; 151 152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 153 sb->s_id, function, line, errno, errstr, &vaf); 154 va_end(args); 155 } else { 156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 157 sb->s_id, function, line, errno, errstr); 158 } 159 #endif 160 161 /* 162 * Today we only save the error info to memory. Long term we'll 163 * also send it down to the disk 164 */ 165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 166 167 /* Don't go through full error handling during mount */ 168 if (!(sb->s_flags & SB_BORN)) 169 return; 170 171 if (sb_rdonly(sb)) 172 return; 173 174 btrfs_discard_stop(fs_info); 175 176 /* btrfs handle error by forcing the filesystem readonly */ 177 sb->s_flags |= SB_RDONLY; 178 btrfs_info(fs_info, "forced readonly"); 179 /* 180 * Note that a running device replace operation is not canceled here 181 * although there is no way to update the progress. It would add the 182 * risk of a deadlock, therefore the canceling is omitted. The only 183 * penalty is that some I/O remains active until the procedure 184 * completes. The next time when the filesystem is mounted writable 185 * again, the device replace operation continues. 186 */ 187 } 188 189 #ifdef CONFIG_PRINTK 190 static const char * const logtypes[] = { 191 "emergency", 192 "alert", 193 "critical", 194 "error", 195 "warning", 196 "notice", 197 "info", 198 "debug", 199 }; 200 201 202 /* 203 * Use one ratelimit state per log level so that a flood of less important 204 * messages doesn't cause more important ones to be dropped. 205 */ 206 static struct ratelimit_state printk_limits[] = { 207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 215 }; 216 217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 218 { 219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 220 struct va_format vaf; 221 va_list args; 222 int kern_level; 223 const char *type = logtypes[4]; 224 struct ratelimit_state *ratelimit = &printk_limits[4]; 225 226 va_start(args, fmt); 227 228 while ((kern_level = printk_get_level(fmt)) != 0) { 229 size_t size = printk_skip_level(fmt) - fmt; 230 231 if (kern_level >= '0' && kern_level <= '7') { 232 memcpy(lvl, fmt, size); 233 lvl[size] = '\0'; 234 type = logtypes[kern_level - '0']; 235 ratelimit = &printk_limits[kern_level - '0']; 236 } 237 fmt += size; 238 } 239 240 vaf.fmt = fmt; 241 vaf.va = &args; 242 243 if (__ratelimit(ratelimit)) 244 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 245 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 246 247 va_end(args); 248 } 249 #endif 250 251 /* 252 * We only mark the transaction aborted and then set the file system read-only. 253 * This will prevent new transactions from starting or trying to join this 254 * one. 255 * 256 * This means that error recovery at the call site is limited to freeing 257 * any local memory allocations and passing the error code up without 258 * further cleanup. The transaction should complete as it normally would 259 * in the call path but will return -EIO. 260 * 261 * We'll complete the cleanup in btrfs_end_transaction and 262 * btrfs_commit_transaction. 263 */ 264 __cold 265 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 266 const char *function, 267 unsigned int line, int errno) 268 { 269 struct btrfs_fs_info *fs_info = trans->fs_info; 270 271 WRITE_ONCE(trans->aborted, errno); 272 /* Nothing used. The other threads that have joined this 273 * transaction may be able to continue. */ 274 if (!trans->dirty && list_empty(&trans->new_bgs)) { 275 const char *errstr; 276 277 errstr = btrfs_decode_error(errno); 278 btrfs_warn(fs_info, 279 "%s:%d: Aborting unused transaction(%s).", 280 function, line, errstr); 281 return; 282 } 283 WRITE_ONCE(trans->transaction->aborted, errno); 284 /* Wake up anybody who may be waiting on this transaction */ 285 wake_up(&fs_info->transaction_wait); 286 wake_up(&fs_info->transaction_blocked_wait); 287 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 288 } 289 /* 290 * __btrfs_panic decodes unexpected, fatal errors from the caller, 291 * issues an alert, and either panics or BUGs, depending on mount options. 292 */ 293 __cold 294 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 295 unsigned int line, int errno, const char *fmt, ...) 296 { 297 char *s_id = "<unknown>"; 298 const char *errstr; 299 struct va_format vaf = { .fmt = fmt }; 300 va_list args; 301 302 if (fs_info) 303 s_id = fs_info->sb->s_id; 304 305 va_start(args, fmt); 306 vaf.va = &args; 307 308 errstr = btrfs_decode_error(errno); 309 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 310 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 311 s_id, function, line, &vaf, errno, errstr); 312 313 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 314 function, line, &vaf, errno, errstr); 315 va_end(args); 316 /* Caller calls BUG() */ 317 } 318 319 static void btrfs_put_super(struct super_block *sb) 320 { 321 close_ctree(btrfs_sb(sb)); 322 } 323 324 enum { 325 Opt_acl, Opt_noacl, 326 Opt_clear_cache, 327 Opt_commit_interval, 328 Opt_compress, 329 Opt_compress_force, 330 Opt_compress_force_type, 331 Opt_compress_type, 332 Opt_degraded, 333 Opt_device, 334 Opt_fatal_errors, 335 Opt_flushoncommit, Opt_noflushoncommit, 336 Opt_inode_cache, Opt_noinode_cache, 337 Opt_max_inline, 338 Opt_barrier, Opt_nobarrier, 339 Opt_datacow, Opt_nodatacow, 340 Opt_datasum, Opt_nodatasum, 341 Opt_defrag, Opt_nodefrag, 342 Opt_discard, Opt_nodiscard, 343 Opt_discard_mode, 344 Opt_norecovery, 345 Opt_ratio, 346 Opt_rescan_uuid_tree, 347 Opt_skip_balance, 348 Opt_space_cache, Opt_no_space_cache, 349 Opt_space_cache_version, 350 Opt_ssd, Opt_nossd, 351 Opt_ssd_spread, Opt_nossd_spread, 352 Opt_subvol, 353 Opt_subvol_empty, 354 Opt_subvolid, 355 Opt_thread_pool, 356 Opt_treelog, Opt_notreelog, 357 Opt_user_subvol_rm_allowed, 358 359 /* Rescue options */ 360 Opt_rescue, 361 Opt_usebackuproot, 362 Opt_nologreplay, 363 364 /* Deprecated options */ 365 Opt_recovery, 366 367 /* Debugging options */ 368 Opt_check_integrity, 369 Opt_check_integrity_including_extent_data, 370 Opt_check_integrity_print_mask, 371 Opt_enospc_debug, Opt_noenospc_debug, 372 #ifdef CONFIG_BTRFS_DEBUG 373 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 374 #endif 375 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 376 Opt_ref_verify, 377 #endif 378 Opt_err, 379 }; 380 381 static const match_table_t tokens = { 382 {Opt_acl, "acl"}, 383 {Opt_noacl, "noacl"}, 384 {Opt_clear_cache, "clear_cache"}, 385 {Opt_commit_interval, "commit=%u"}, 386 {Opt_compress, "compress"}, 387 {Opt_compress_type, "compress=%s"}, 388 {Opt_compress_force, "compress-force"}, 389 {Opt_compress_force_type, "compress-force=%s"}, 390 {Opt_degraded, "degraded"}, 391 {Opt_device, "device=%s"}, 392 {Opt_fatal_errors, "fatal_errors=%s"}, 393 {Opt_flushoncommit, "flushoncommit"}, 394 {Opt_noflushoncommit, "noflushoncommit"}, 395 {Opt_inode_cache, "inode_cache"}, 396 {Opt_noinode_cache, "noinode_cache"}, 397 {Opt_max_inline, "max_inline=%s"}, 398 {Opt_barrier, "barrier"}, 399 {Opt_nobarrier, "nobarrier"}, 400 {Opt_datacow, "datacow"}, 401 {Opt_nodatacow, "nodatacow"}, 402 {Opt_datasum, "datasum"}, 403 {Opt_nodatasum, "nodatasum"}, 404 {Opt_defrag, "autodefrag"}, 405 {Opt_nodefrag, "noautodefrag"}, 406 {Opt_discard, "discard"}, 407 {Opt_discard_mode, "discard=%s"}, 408 {Opt_nodiscard, "nodiscard"}, 409 {Opt_norecovery, "norecovery"}, 410 {Opt_ratio, "metadata_ratio=%u"}, 411 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 412 {Opt_skip_balance, "skip_balance"}, 413 {Opt_space_cache, "space_cache"}, 414 {Opt_no_space_cache, "nospace_cache"}, 415 {Opt_space_cache_version, "space_cache=%s"}, 416 {Opt_ssd, "ssd"}, 417 {Opt_nossd, "nossd"}, 418 {Opt_ssd_spread, "ssd_spread"}, 419 {Opt_nossd_spread, "nossd_spread"}, 420 {Opt_subvol, "subvol=%s"}, 421 {Opt_subvol_empty, "subvol="}, 422 {Opt_subvolid, "subvolid=%s"}, 423 {Opt_thread_pool, "thread_pool=%u"}, 424 {Opt_treelog, "treelog"}, 425 {Opt_notreelog, "notreelog"}, 426 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 427 428 /* Rescue options */ 429 {Opt_rescue, "rescue=%s"}, 430 /* Deprecated, with alias rescue=nologreplay */ 431 {Opt_nologreplay, "nologreplay"}, 432 /* Deprecated, with alias rescue=usebackuproot */ 433 {Opt_usebackuproot, "usebackuproot"}, 434 435 /* Deprecated options */ 436 {Opt_recovery, "recovery"}, 437 438 /* Debugging options */ 439 {Opt_check_integrity, "check_int"}, 440 {Opt_check_integrity_including_extent_data, "check_int_data"}, 441 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 442 {Opt_enospc_debug, "enospc_debug"}, 443 {Opt_noenospc_debug, "noenospc_debug"}, 444 #ifdef CONFIG_BTRFS_DEBUG 445 {Opt_fragment_data, "fragment=data"}, 446 {Opt_fragment_metadata, "fragment=metadata"}, 447 {Opt_fragment_all, "fragment=all"}, 448 #endif 449 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 450 {Opt_ref_verify, "ref_verify"}, 451 #endif 452 {Opt_err, NULL}, 453 }; 454 455 static const match_table_t rescue_tokens = { 456 {Opt_usebackuproot, "usebackuproot"}, 457 {Opt_nologreplay, "nologreplay"}, 458 {Opt_err, NULL}, 459 }; 460 461 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 462 { 463 char *opts; 464 char *orig; 465 char *p; 466 substring_t args[MAX_OPT_ARGS]; 467 int ret = 0; 468 469 opts = kstrdup(options, GFP_KERNEL); 470 if (!opts) 471 return -ENOMEM; 472 orig = opts; 473 474 while ((p = strsep(&opts, ":")) != NULL) { 475 int token; 476 477 if (!*p) 478 continue; 479 token = match_token(p, rescue_tokens, args); 480 switch (token){ 481 case Opt_usebackuproot: 482 btrfs_info(info, 483 "trying to use backup root at mount time"); 484 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 485 break; 486 case Opt_nologreplay: 487 btrfs_set_and_info(info, NOLOGREPLAY, 488 "disabling log replay at mount time"); 489 break; 490 case Opt_err: 491 btrfs_info(info, "unrecognized rescue option '%s'", p); 492 ret = -EINVAL; 493 goto out; 494 default: 495 break; 496 } 497 498 } 499 out: 500 kfree(orig); 501 return ret; 502 } 503 504 /* 505 * Regular mount options parser. Everything that is needed only when 506 * reading in a new superblock is parsed here. 507 * XXX JDM: This needs to be cleaned up for remount. 508 */ 509 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 510 unsigned long new_flags) 511 { 512 substring_t args[MAX_OPT_ARGS]; 513 char *p, *num; 514 u64 cache_gen; 515 int intarg; 516 int ret = 0; 517 char *compress_type; 518 bool compress_force = false; 519 enum btrfs_compression_type saved_compress_type; 520 bool saved_compress_force; 521 int no_compress = 0; 522 523 cache_gen = btrfs_super_cache_generation(info->super_copy); 524 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 525 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 526 else if (cache_gen) 527 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 528 529 /* 530 * Even the options are empty, we still need to do extra check 531 * against new flags 532 */ 533 if (!options) 534 goto check; 535 536 while ((p = strsep(&options, ",")) != NULL) { 537 int token; 538 if (!*p) 539 continue; 540 541 token = match_token(p, tokens, args); 542 switch (token) { 543 case Opt_degraded: 544 btrfs_info(info, "allowing degraded mounts"); 545 btrfs_set_opt(info->mount_opt, DEGRADED); 546 break; 547 case Opt_subvol: 548 case Opt_subvol_empty: 549 case Opt_subvolid: 550 case Opt_device: 551 /* 552 * These are parsed by btrfs_parse_subvol_options or 553 * btrfs_parse_device_options and can be ignored here. 554 */ 555 break; 556 case Opt_nodatasum: 557 btrfs_set_and_info(info, NODATASUM, 558 "setting nodatasum"); 559 break; 560 case Opt_datasum: 561 if (btrfs_test_opt(info, NODATASUM)) { 562 if (btrfs_test_opt(info, NODATACOW)) 563 btrfs_info(info, 564 "setting datasum, datacow enabled"); 565 else 566 btrfs_info(info, "setting datasum"); 567 } 568 btrfs_clear_opt(info->mount_opt, NODATACOW); 569 btrfs_clear_opt(info->mount_opt, NODATASUM); 570 break; 571 case Opt_nodatacow: 572 if (!btrfs_test_opt(info, NODATACOW)) { 573 if (!btrfs_test_opt(info, COMPRESS) || 574 !btrfs_test_opt(info, FORCE_COMPRESS)) { 575 btrfs_info(info, 576 "setting nodatacow, compression disabled"); 577 } else { 578 btrfs_info(info, "setting nodatacow"); 579 } 580 } 581 btrfs_clear_opt(info->mount_opt, COMPRESS); 582 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 583 btrfs_set_opt(info->mount_opt, NODATACOW); 584 btrfs_set_opt(info->mount_opt, NODATASUM); 585 break; 586 case Opt_datacow: 587 btrfs_clear_and_info(info, NODATACOW, 588 "setting datacow"); 589 break; 590 case Opt_compress_force: 591 case Opt_compress_force_type: 592 compress_force = true; 593 fallthrough; 594 case Opt_compress: 595 case Opt_compress_type: 596 saved_compress_type = btrfs_test_opt(info, 597 COMPRESS) ? 598 info->compress_type : BTRFS_COMPRESS_NONE; 599 saved_compress_force = 600 btrfs_test_opt(info, FORCE_COMPRESS); 601 if (token == Opt_compress || 602 token == Opt_compress_force || 603 strncmp(args[0].from, "zlib", 4) == 0) { 604 compress_type = "zlib"; 605 606 info->compress_type = BTRFS_COMPRESS_ZLIB; 607 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 608 /* 609 * args[0] contains uninitialized data since 610 * for these tokens we don't expect any 611 * parameter. 612 */ 613 if (token != Opt_compress && 614 token != Opt_compress_force) 615 info->compress_level = 616 btrfs_compress_str2level( 617 BTRFS_COMPRESS_ZLIB, 618 args[0].from + 4); 619 btrfs_set_opt(info->mount_opt, COMPRESS); 620 btrfs_clear_opt(info->mount_opt, NODATACOW); 621 btrfs_clear_opt(info->mount_opt, NODATASUM); 622 no_compress = 0; 623 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 624 compress_type = "lzo"; 625 info->compress_type = BTRFS_COMPRESS_LZO; 626 btrfs_set_opt(info->mount_opt, COMPRESS); 627 btrfs_clear_opt(info->mount_opt, NODATACOW); 628 btrfs_clear_opt(info->mount_opt, NODATASUM); 629 btrfs_set_fs_incompat(info, COMPRESS_LZO); 630 no_compress = 0; 631 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 632 compress_type = "zstd"; 633 info->compress_type = BTRFS_COMPRESS_ZSTD; 634 info->compress_level = 635 btrfs_compress_str2level( 636 BTRFS_COMPRESS_ZSTD, 637 args[0].from + 4); 638 btrfs_set_opt(info->mount_opt, COMPRESS); 639 btrfs_clear_opt(info->mount_opt, NODATACOW); 640 btrfs_clear_opt(info->mount_opt, NODATASUM); 641 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 642 no_compress = 0; 643 } else if (strncmp(args[0].from, "no", 2) == 0) { 644 compress_type = "no"; 645 btrfs_clear_opt(info->mount_opt, COMPRESS); 646 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 647 compress_force = false; 648 no_compress++; 649 } else { 650 ret = -EINVAL; 651 goto out; 652 } 653 654 if (compress_force) { 655 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 656 } else { 657 /* 658 * If we remount from compress-force=xxx to 659 * compress=xxx, we need clear FORCE_COMPRESS 660 * flag, otherwise, there is no way for users 661 * to disable forcible compression separately. 662 */ 663 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 664 } 665 if ((btrfs_test_opt(info, COMPRESS) && 666 (info->compress_type != saved_compress_type || 667 compress_force != saved_compress_force)) || 668 (!btrfs_test_opt(info, COMPRESS) && 669 no_compress == 1)) { 670 btrfs_info(info, "%s %s compression, level %d", 671 (compress_force) ? "force" : "use", 672 compress_type, info->compress_level); 673 } 674 compress_force = false; 675 break; 676 case Opt_ssd: 677 btrfs_set_and_info(info, SSD, 678 "enabling ssd optimizations"); 679 btrfs_clear_opt(info->mount_opt, NOSSD); 680 break; 681 case Opt_ssd_spread: 682 btrfs_set_and_info(info, SSD, 683 "enabling ssd optimizations"); 684 btrfs_set_and_info(info, SSD_SPREAD, 685 "using spread ssd allocation scheme"); 686 btrfs_clear_opt(info->mount_opt, NOSSD); 687 break; 688 case Opt_nossd: 689 btrfs_set_opt(info->mount_opt, NOSSD); 690 btrfs_clear_and_info(info, SSD, 691 "not using ssd optimizations"); 692 fallthrough; 693 case Opt_nossd_spread: 694 btrfs_clear_and_info(info, SSD_SPREAD, 695 "not using spread ssd allocation scheme"); 696 break; 697 case Opt_barrier: 698 btrfs_clear_and_info(info, NOBARRIER, 699 "turning on barriers"); 700 break; 701 case Opt_nobarrier: 702 btrfs_set_and_info(info, NOBARRIER, 703 "turning off barriers"); 704 break; 705 case Opt_thread_pool: 706 ret = match_int(&args[0], &intarg); 707 if (ret) { 708 goto out; 709 } else if (intarg == 0) { 710 ret = -EINVAL; 711 goto out; 712 } 713 info->thread_pool_size = intarg; 714 break; 715 case Opt_max_inline: 716 num = match_strdup(&args[0]); 717 if (num) { 718 info->max_inline = memparse(num, NULL); 719 kfree(num); 720 721 if (info->max_inline) { 722 info->max_inline = min_t(u64, 723 info->max_inline, 724 info->sectorsize); 725 } 726 btrfs_info(info, "max_inline at %llu", 727 info->max_inline); 728 } else { 729 ret = -ENOMEM; 730 goto out; 731 } 732 break; 733 case Opt_acl: 734 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 735 info->sb->s_flags |= SB_POSIXACL; 736 break; 737 #else 738 btrfs_err(info, "support for ACL not compiled in!"); 739 ret = -EINVAL; 740 goto out; 741 #endif 742 case Opt_noacl: 743 info->sb->s_flags &= ~SB_POSIXACL; 744 break; 745 case Opt_notreelog: 746 btrfs_set_and_info(info, NOTREELOG, 747 "disabling tree log"); 748 break; 749 case Opt_treelog: 750 btrfs_clear_and_info(info, NOTREELOG, 751 "enabling tree log"); 752 break; 753 case Opt_norecovery: 754 case Opt_nologreplay: 755 btrfs_warn(info, 756 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 757 btrfs_set_and_info(info, NOLOGREPLAY, 758 "disabling log replay at mount time"); 759 break; 760 case Opt_flushoncommit: 761 btrfs_set_and_info(info, FLUSHONCOMMIT, 762 "turning on flush-on-commit"); 763 break; 764 case Opt_noflushoncommit: 765 btrfs_clear_and_info(info, FLUSHONCOMMIT, 766 "turning off flush-on-commit"); 767 break; 768 case Opt_ratio: 769 ret = match_int(&args[0], &intarg); 770 if (ret) 771 goto out; 772 info->metadata_ratio = intarg; 773 btrfs_info(info, "metadata ratio %u", 774 info->metadata_ratio); 775 break; 776 case Opt_discard: 777 case Opt_discard_mode: 778 if (token == Opt_discard || 779 strcmp(args[0].from, "sync") == 0) { 780 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 781 btrfs_set_and_info(info, DISCARD_SYNC, 782 "turning on sync discard"); 783 } else if (strcmp(args[0].from, "async") == 0) { 784 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 785 btrfs_set_and_info(info, DISCARD_ASYNC, 786 "turning on async discard"); 787 } else { 788 ret = -EINVAL; 789 goto out; 790 } 791 break; 792 case Opt_nodiscard: 793 btrfs_clear_and_info(info, DISCARD_SYNC, 794 "turning off discard"); 795 btrfs_clear_and_info(info, DISCARD_ASYNC, 796 "turning off async discard"); 797 break; 798 case Opt_space_cache: 799 case Opt_space_cache_version: 800 if (token == Opt_space_cache || 801 strcmp(args[0].from, "v1") == 0) { 802 btrfs_clear_opt(info->mount_opt, 803 FREE_SPACE_TREE); 804 btrfs_set_and_info(info, SPACE_CACHE, 805 "enabling disk space caching"); 806 } else if (strcmp(args[0].from, "v2") == 0) { 807 btrfs_clear_opt(info->mount_opt, 808 SPACE_CACHE); 809 btrfs_set_and_info(info, FREE_SPACE_TREE, 810 "enabling free space tree"); 811 } else { 812 ret = -EINVAL; 813 goto out; 814 } 815 break; 816 case Opt_rescan_uuid_tree: 817 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 818 break; 819 case Opt_no_space_cache: 820 if (btrfs_test_opt(info, SPACE_CACHE)) { 821 btrfs_clear_and_info(info, SPACE_CACHE, 822 "disabling disk space caching"); 823 } 824 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 825 btrfs_clear_and_info(info, FREE_SPACE_TREE, 826 "disabling free space tree"); 827 } 828 break; 829 case Opt_inode_cache: 830 btrfs_warn(info, 831 "the 'inode_cache' option is deprecated and will have no effect from 5.11"); 832 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 833 "enabling inode map caching"); 834 break; 835 case Opt_noinode_cache: 836 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 837 "disabling inode map caching"); 838 break; 839 case Opt_clear_cache: 840 btrfs_set_and_info(info, CLEAR_CACHE, 841 "force clearing of disk cache"); 842 break; 843 case Opt_user_subvol_rm_allowed: 844 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 845 break; 846 case Opt_enospc_debug: 847 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 848 break; 849 case Opt_noenospc_debug: 850 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 851 break; 852 case Opt_defrag: 853 btrfs_set_and_info(info, AUTO_DEFRAG, 854 "enabling auto defrag"); 855 break; 856 case Opt_nodefrag: 857 btrfs_clear_and_info(info, AUTO_DEFRAG, 858 "disabling auto defrag"); 859 break; 860 case Opt_recovery: 861 case Opt_usebackuproot: 862 btrfs_warn(info, 863 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 864 token == Opt_recovery ? "recovery" : 865 "usebackuproot"); 866 btrfs_info(info, 867 "trying to use backup root at mount time"); 868 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 869 break; 870 case Opt_skip_balance: 871 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 872 break; 873 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 874 case Opt_check_integrity_including_extent_data: 875 btrfs_info(info, 876 "enabling check integrity including extent data"); 877 btrfs_set_opt(info->mount_opt, 878 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 879 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 880 break; 881 case Opt_check_integrity: 882 btrfs_info(info, "enabling check integrity"); 883 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 884 break; 885 case Opt_check_integrity_print_mask: 886 ret = match_int(&args[0], &intarg); 887 if (ret) 888 goto out; 889 info->check_integrity_print_mask = intarg; 890 btrfs_info(info, "check_integrity_print_mask 0x%x", 891 info->check_integrity_print_mask); 892 break; 893 #else 894 case Opt_check_integrity_including_extent_data: 895 case Opt_check_integrity: 896 case Opt_check_integrity_print_mask: 897 btrfs_err(info, 898 "support for check_integrity* not compiled in!"); 899 ret = -EINVAL; 900 goto out; 901 #endif 902 case Opt_fatal_errors: 903 if (strcmp(args[0].from, "panic") == 0) 904 btrfs_set_opt(info->mount_opt, 905 PANIC_ON_FATAL_ERROR); 906 else if (strcmp(args[0].from, "bug") == 0) 907 btrfs_clear_opt(info->mount_opt, 908 PANIC_ON_FATAL_ERROR); 909 else { 910 ret = -EINVAL; 911 goto out; 912 } 913 break; 914 case Opt_commit_interval: 915 intarg = 0; 916 ret = match_int(&args[0], &intarg); 917 if (ret) 918 goto out; 919 if (intarg == 0) { 920 btrfs_info(info, 921 "using default commit interval %us", 922 BTRFS_DEFAULT_COMMIT_INTERVAL); 923 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 924 } else if (intarg > 300) { 925 btrfs_warn(info, "excessive commit interval %d", 926 intarg); 927 } 928 info->commit_interval = intarg; 929 break; 930 case Opt_rescue: 931 ret = parse_rescue_options(info, args[0].from); 932 if (ret < 0) 933 goto out; 934 break; 935 #ifdef CONFIG_BTRFS_DEBUG 936 case Opt_fragment_all: 937 btrfs_info(info, "fragmenting all space"); 938 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 939 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 940 break; 941 case Opt_fragment_metadata: 942 btrfs_info(info, "fragmenting metadata"); 943 btrfs_set_opt(info->mount_opt, 944 FRAGMENT_METADATA); 945 break; 946 case Opt_fragment_data: 947 btrfs_info(info, "fragmenting data"); 948 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 949 break; 950 #endif 951 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 952 case Opt_ref_verify: 953 btrfs_info(info, "doing ref verification"); 954 btrfs_set_opt(info->mount_opt, REF_VERIFY); 955 break; 956 #endif 957 case Opt_err: 958 btrfs_err(info, "unrecognized mount option '%s'", p); 959 ret = -EINVAL; 960 goto out; 961 default: 962 break; 963 } 964 } 965 check: 966 /* 967 * Extra check for current option against current flag 968 */ 969 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 970 btrfs_err(info, 971 "nologreplay must be used with ro mount option"); 972 ret = -EINVAL; 973 } 974 out: 975 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 976 !btrfs_test_opt(info, FREE_SPACE_TREE) && 977 !btrfs_test_opt(info, CLEAR_CACHE)) { 978 btrfs_err(info, "cannot disable free space tree"); 979 ret = -EINVAL; 980 981 } 982 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 983 btrfs_info(info, "disk space caching is enabled"); 984 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 985 btrfs_info(info, "using free space tree"); 986 return ret; 987 } 988 989 /* 990 * Parse mount options that are required early in the mount process. 991 * 992 * All other options will be parsed on much later in the mount process and 993 * only when we need to allocate a new super block. 994 */ 995 static int btrfs_parse_device_options(const char *options, fmode_t flags, 996 void *holder) 997 { 998 substring_t args[MAX_OPT_ARGS]; 999 char *device_name, *opts, *orig, *p; 1000 struct btrfs_device *device = NULL; 1001 int error = 0; 1002 1003 lockdep_assert_held(&uuid_mutex); 1004 1005 if (!options) 1006 return 0; 1007 1008 /* 1009 * strsep changes the string, duplicate it because btrfs_parse_options 1010 * gets called later 1011 */ 1012 opts = kstrdup(options, GFP_KERNEL); 1013 if (!opts) 1014 return -ENOMEM; 1015 orig = opts; 1016 1017 while ((p = strsep(&opts, ",")) != NULL) { 1018 int token; 1019 1020 if (!*p) 1021 continue; 1022 1023 token = match_token(p, tokens, args); 1024 if (token == Opt_device) { 1025 device_name = match_strdup(&args[0]); 1026 if (!device_name) { 1027 error = -ENOMEM; 1028 goto out; 1029 } 1030 device = btrfs_scan_one_device(device_name, flags, 1031 holder); 1032 kfree(device_name); 1033 if (IS_ERR(device)) { 1034 error = PTR_ERR(device); 1035 goto out; 1036 } 1037 } 1038 } 1039 1040 out: 1041 kfree(orig); 1042 return error; 1043 } 1044 1045 /* 1046 * Parse mount options that are related to subvolume id 1047 * 1048 * The value is later passed to mount_subvol() 1049 */ 1050 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1051 u64 *subvol_objectid) 1052 { 1053 substring_t args[MAX_OPT_ARGS]; 1054 char *opts, *orig, *p; 1055 int error = 0; 1056 u64 subvolid; 1057 1058 if (!options) 1059 return 0; 1060 1061 /* 1062 * strsep changes the string, duplicate it because 1063 * btrfs_parse_device_options gets called later 1064 */ 1065 opts = kstrdup(options, GFP_KERNEL); 1066 if (!opts) 1067 return -ENOMEM; 1068 orig = opts; 1069 1070 while ((p = strsep(&opts, ",")) != NULL) { 1071 int token; 1072 if (!*p) 1073 continue; 1074 1075 token = match_token(p, tokens, args); 1076 switch (token) { 1077 case Opt_subvol: 1078 kfree(*subvol_name); 1079 *subvol_name = match_strdup(&args[0]); 1080 if (!*subvol_name) { 1081 error = -ENOMEM; 1082 goto out; 1083 } 1084 break; 1085 case Opt_subvolid: 1086 error = match_u64(&args[0], &subvolid); 1087 if (error) 1088 goto out; 1089 1090 /* we want the original fs_tree */ 1091 if (subvolid == 0) 1092 subvolid = BTRFS_FS_TREE_OBJECTID; 1093 1094 *subvol_objectid = subvolid; 1095 break; 1096 default: 1097 break; 1098 } 1099 } 1100 1101 out: 1102 kfree(orig); 1103 return error; 1104 } 1105 1106 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1107 u64 subvol_objectid) 1108 { 1109 struct btrfs_root *root = fs_info->tree_root; 1110 struct btrfs_root *fs_root = NULL; 1111 struct btrfs_root_ref *root_ref; 1112 struct btrfs_inode_ref *inode_ref; 1113 struct btrfs_key key; 1114 struct btrfs_path *path = NULL; 1115 char *name = NULL, *ptr; 1116 u64 dirid; 1117 int len; 1118 int ret; 1119 1120 path = btrfs_alloc_path(); 1121 if (!path) { 1122 ret = -ENOMEM; 1123 goto err; 1124 } 1125 path->leave_spinning = 1; 1126 1127 name = kmalloc(PATH_MAX, GFP_KERNEL); 1128 if (!name) { 1129 ret = -ENOMEM; 1130 goto err; 1131 } 1132 ptr = name + PATH_MAX - 1; 1133 ptr[0] = '\0'; 1134 1135 /* 1136 * Walk up the subvolume trees in the tree of tree roots by root 1137 * backrefs until we hit the top-level subvolume. 1138 */ 1139 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1140 key.objectid = subvol_objectid; 1141 key.type = BTRFS_ROOT_BACKREF_KEY; 1142 key.offset = (u64)-1; 1143 1144 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1145 if (ret < 0) { 1146 goto err; 1147 } else if (ret > 0) { 1148 ret = btrfs_previous_item(root, path, subvol_objectid, 1149 BTRFS_ROOT_BACKREF_KEY); 1150 if (ret < 0) { 1151 goto err; 1152 } else if (ret > 0) { 1153 ret = -ENOENT; 1154 goto err; 1155 } 1156 } 1157 1158 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1159 subvol_objectid = key.offset; 1160 1161 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1162 struct btrfs_root_ref); 1163 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1164 ptr -= len + 1; 1165 if (ptr < name) { 1166 ret = -ENAMETOOLONG; 1167 goto err; 1168 } 1169 read_extent_buffer(path->nodes[0], ptr + 1, 1170 (unsigned long)(root_ref + 1), len); 1171 ptr[0] = '/'; 1172 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1173 btrfs_release_path(path); 1174 1175 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1176 if (IS_ERR(fs_root)) { 1177 ret = PTR_ERR(fs_root); 1178 fs_root = NULL; 1179 goto err; 1180 } 1181 1182 /* 1183 * Walk up the filesystem tree by inode refs until we hit the 1184 * root directory. 1185 */ 1186 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1187 key.objectid = dirid; 1188 key.type = BTRFS_INODE_REF_KEY; 1189 key.offset = (u64)-1; 1190 1191 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1192 if (ret < 0) { 1193 goto err; 1194 } else if (ret > 0) { 1195 ret = btrfs_previous_item(fs_root, path, dirid, 1196 BTRFS_INODE_REF_KEY); 1197 if (ret < 0) { 1198 goto err; 1199 } else if (ret > 0) { 1200 ret = -ENOENT; 1201 goto err; 1202 } 1203 } 1204 1205 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1206 dirid = key.offset; 1207 1208 inode_ref = btrfs_item_ptr(path->nodes[0], 1209 path->slots[0], 1210 struct btrfs_inode_ref); 1211 len = btrfs_inode_ref_name_len(path->nodes[0], 1212 inode_ref); 1213 ptr -= len + 1; 1214 if (ptr < name) { 1215 ret = -ENAMETOOLONG; 1216 goto err; 1217 } 1218 read_extent_buffer(path->nodes[0], ptr + 1, 1219 (unsigned long)(inode_ref + 1), len); 1220 ptr[0] = '/'; 1221 btrfs_release_path(path); 1222 } 1223 btrfs_put_root(fs_root); 1224 fs_root = NULL; 1225 } 1226 1227 btrfs_free_path(path); 1228 if (ptr == name + PATH_MAX - 1) { 1229 name[0] = '/'; 1230 name[1] = '\0'; 1231 } else { 1232 memmove(name, ptr, name + PATH_MAX - ptr); 1233 } 1234 return name; 1235 1236 err: 1237 btrfs_put_root(fs_root); 1238 btrfs_free_path(path); 1239 kfree(name); 1240 return ERR_PTR(ret); 1241 } 1242 1243 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1244 { 1245 struct btrfs_root *root = fs_info->tree_root; 1246 struct btrfs_dir_item *di; 1247 struct btrfs_path *path; 1248 struct btrfs_key location; 1249 u64 dir_id; 1250 1251 path = btrfs_alloc_path(); 1252 if (!path) 1253 return -ENOMEM; 1254 path->leave_spinning = 1; 1255 1256 /* 1257 * Find the "default" dir item which points to the root item that we 1258 * will mount by default if we haven't been given a specific subvolume 1259 * to mount. 1260 */ 1261 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1262 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1263 if (IS_ERR(di)) { 1264 btrfs_free_path(path); 1265 return PTR_ERR(di); 1266 } 1267 if (!di) { 1268 /* 1269 * Ok the default dir item isn't there. This is weird since 1270 * it's always been there, but don't freak out, just try and 1271 * mount the top-level subvolume. 1272 */ 1273 btrfs_free_path(path); 1274 *objectid = BTRFS_FS_TREE_OBJECTID; 1275 return 0; 1276 } 1277 1278 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1279 btrfs_free_path(path); 1280 *objectid = location.objectid; 1281 return 0; 1282 } 1283 1284 static int btrfs_fill_super(struct super_block *sb, 1285 struct btrfs_fs_devices *fs_devices, 1286 void *data) 1287 { 1288 struct inode *inode; 1289 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1290 int err; 1291 1292 sb->s_maxbytes = MAX_LFS_FILESIZE; 1293 sb->s_magic = BTRFS_SUPER_MAGIC; 1294 sb->s_op = &btrfs_super_ops; 1295 sb->s_d_op = &btrfs_dentry_operations; 1296 sb->s_export_op = &btrfs_export_ops; 1297 sb->s_xattr = btrfs_xattr_handlers; 1298 sb->s_time_gran = 1; 1299 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1300 sb->s_flags |= SB_POSIXACL; 1301 #endif 1302 sb->s_flags |= SB_I_VERSION; 1303 sb->s_iflags |= SB_I_CGROUPWB; 1304 1305 err = super_setup_bdi(sb); 1306 if (err) { 1307 btrfs_err(fs_info, "super_setup_bdi failed"); 1308 return err; 1309 } 1310 1311 err = open_ctree(sb, fs_devices, (char *)data); 1312 if (err) { 1313 btrfs_err(fs_info, "open_ctree failed"); 1314 return err; 1315 } 1316 1317 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1318 if (IS_ERR(inode)) { 1319 err = PTR_ERR(inode); 1320 goto fail_close; 1321 } 1322 1323 sb->s_root = d_make_root(inode); 1324 if (!sb->s_root) { 1325 err = -ENOMEM; 1326 goto fail_close; 1327 } 1328 1329 cleancache_init_fs(sb); 1330 sb->s_flags |= SB_ACTIVE; 1331 return 0; 1332 1333 fail_close: 1334 close_ctree(fs_info); 1335 return err; 1336 } 1337 1338 int btrfs_sync_fs(struct super_block *sb, int wait) 1339 { 1340 struct btrfs_trans_handle *trans; 1341 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1342 struct btrfs_root *root = fs_info->tree_root; 1343 1344 trace_btrfs_sync_fs(fs_info, wait); 1345 1346 if (!wait) { 1347 filemap_flush(fs_info->btree_inode->i_mapping); 1348 return 0; 1349 } 1350 1351 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1352 1353 trans = btrfs_attach_transaction_barrier(root); 1354 if (IS_ERR(trans)) { 1355 /* no transaction, don't bother */ 1356 if (PTR_ERR(trans) == -ENOENT) { 1357 /* 1358 * Exit unless we have some pending changes 1359 * that need to go through commit 1360 */ 1361 if (fs_info->pending_changes == 0) 1362 return 0; 1363 /* 1364 * A non-blocking test if the fs is frozen. We must not 1365 * start a new transaction here otherwise a deadlock 1366 * happens. The pending operations are delayed to the 1367 * next commit after thawing. 1368 */ 1369 if (sb_start_write_trylock(sb)) 1370 sb_end_write(sb); 1371 else 1372 return 0; 1373 trans = btrfs_start_transaction(root, 0); 1374 } 1375 if (IS_ERR(trans)) 1376 return PTR_ERR(trans); 1377 } 1378 return btrfs_commit_transaction(trans); 1379 } 1380 1381 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1382 { 1383 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1384 const char *compress_type; 1385 1386 if (btrfs_test_opt(info, DEGRADED)) 1387 seq_puts(seq, ",degraded"); 1388 if (btrfs_test_opt(info, NODATASUM)) 1389 seq_puts(seq, ",nodatasum"); 1390 if (btrfs_test_opt(info, NODATACOW)) 1391 seq_puts(seq, ",nodatacow"); 1392 if (btrfs_test_opt(info, NOBARRIER)) 1393 seq_puts(seq, ",nobarrier"); 1394 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1395 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1396 if (info->thread_pool_size != min_t(unsigned long, 1397 num_online_cpus() + 2, 8)) 1398 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1399 if (btrfs_test_opt(info, COMPRESS)) { 1400 compress_type = btrfs_compress_type2str(info->compress_type); 1401 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1402 seq_printf(seq, ",compress-force=%s", compress_type); 1403 else 1404 seq_printf(seq, ",compress=%s", compress_type); 1405 if (info->compress_level) 1406 seq_printf(seq, ":%d", info->compress_level); 1407 } 1408 if (btrfs_test_opt(info, NOSSD)) 1409 seq_puts(seq, ",nossd"); 1410 if (btrfs_test_opt(info, SSD_SPREAD)) 1411 seq_puts(seq, ",ssd_spread"); 1412 else if (btrfs_test_opt(info, SSD)) 1413 seq_puts(seq, ",ssd"); 1414 if (btrfs_test_opt(info, NOTREELOG)) 1415 seq_puts(seq, ",notreelog"); 1416 if (btrfs_test_opt(info, NOLOGREPLAY)) 1417 seq_puts(seq, ",rescue=nologreplay"); 1418 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1419 seq_puts(seq, ",flushoncommit"); 1420 if (btrfs_test_opt(info, DISCARD_SYNC)) 1421 seq_puts(seq, ",discard"); 1422 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1423 seq_puts(seq, ",discard=async"); 1424 if (!(info->sb->s_flags & SB_POSIXACL)) 1425 seq_puts(seq, ",noacl"); 1426 if (btrfs_test_opt(info, SPACE_CACHE)) 1427 seq_puts(seq, ",space_cache"); 1428 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1429 seq_puts(seq, ",space_cache=v2"); 1430 else 1431 seq_puts(seq, ",nospace_cache"); 1432 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1433 seq_puts(seq, ",rescan_uuid_tree"); 1434 if (btrfs_test_opt(info, CLEAR_CACHE)) 1435 seq_puts(seq, ",clear_cache"); 1436 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1437 seq_puts(seq, ",user_subvol_rm_allowed"); 1438 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1439 seq_puts(seq, ",enospc_debug"); 1440 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1441 seq_puts(seq, ",autodefrag"); 1442 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1443 seq_puts(seq, ",inode_cache"); 1444 if (btrfs_test_opt(info, SKIP_BALANCE)) 1445 seq_puts(seq, ",skip_balance"); 1446 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1447 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1448 seq_puts(seq, ",check_int_data"); 1449 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1450 seq_puts(seq, ",check_int"); 1451 if (info->check_integrity_print_mask) 1452 seq_printf(seq, ",check_int_print_mask=%d", 1453 info->check_integrity_print_mask); 1454 #endif 1455 if (info->metadata_ratio) 1456 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1457 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1458 seq_puts(seq, ",fatal_errors=panic"); 1459 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1460 seq_printf(seq, ",commit=%u", info->commit_interval); 1461 #ifdef CONFIG_BTRFS_DEBUG 1462 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1463 seq_puts(seq, ",fragment=data"); 1464 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1465 seq_puts(seq, ",fragment=metadata"); 1466 #endif 1467 if (btrfs_test_opt(info, REF_VERIFY)) 1468 seq_puts(seq, ",ref_verify"); 1469 seq_printf(seq, ",subvolid=%llu", 1470 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1471 seq_puts(seq, ",subvol="); 1472 seq_dentry(seq, dentry, " \t\n\\"); 1473 return 0; 1474 } 1475 1476 static int btrfs_test_super(struct super_block *s, void *data) 1477 { 1478 struct btrfs_fs_info *p = data; 1479 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1480 1481 return fs_info->fs_devices == p->fs_devices; 1482 } 1483 1484 static int btrfs_set_super(struct super_block *s, void *data) 1485 { 1486 int err = set_anon_super(s, data); 1487 if (!err) 1488 s->s_fs_info = data; 1489 return err; 1490 } 1491 1492 /* 1493 * subvolumes are identified by ino 256 1494 */ 1495 static inline int is_subvolume_inode(struct inode *inode) 1496 { 1497 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1498 return 1; 1499 return 0; 1500 } 1501 1502 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1503 struct vfsmount *mnt) 1504 { 1505 struct dentry *root; 1506 int ret; 1507 1508 if (!subvol_name) { 1509 if (!subvol_objectid) { 1510 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1511 &subvol_objectid); 1512 if (ret) { 1513 root = ERR_PTR(ret); 1514 goto out; 1515 } 1516 } 1517 subvol_name = btrfs_get_subvol_name_from_objectid( 1518 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1519 if (IS_ERR(subvol_name)) { 1520 root = ERR_CAST(subvol_name); 1521 subvol_name = NULL; 1522 goto out; 1523 } 1524 1525 } 1526 1527 root = mount_subtree(mnt, subvol_name); 1528 /* mount_subtree() drops our reference on the vfsmount. */ 1529 mnt = NULL; 1530 1531 if (!IS_ERR(root)) { 1532 struct super_block *s = root->d_sb; 1533 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1534 struct inode *root_inode = d_inode(root); 1535 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1536 1537 ret = 0; 1538 if (!is_subvolume_inode(root_inode)) { 1539 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1540 subvol_name); 1541 ret = -EINVAL; 1542 } 1543 if (subvol_objectid && root_objectid != subvol_objectid) { 1544 /* 1545 * This will also catch a race condition where a 1546 * subvolume which was passed by ID is renamed and 1547 * another subvolume is renamed over the old location. 1548 */ 1549 btrfs_err(fs_info, 1550 "subvol '%s' does not match subvolid %llu", 1551 subvol_name, subvol_objectid); 1552 ret = -EINVAL; 1553 } 1554 if (ret) { 1555 dput(root); 1556 root = ERR_PTR(ret); 1557 deactivate_locked_super(s); 1558 } 1559 } 1560 1561 out: 1562 mntput(mnt); 1563 kfree(subvol_name); 1564 return root; 1565 } 1566 1567 /* 1568 * Find a superblock for the given device / mount point. 1569 * 1570 * Note: This is based on mount_bdev from fs/super.c with a few additions 1571 * for multiple device setup. Make sure to keep it in sync. 1572 */ 1573 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1574 int flags, const char *device_name, void *data) 1575 { 1576 struct block_device *bdev = NULL; 1577 struct super_block *s; 1578 struct btrfs_device *device = NULL; 1579 struct btrfs_fs_devices *fs_devices = NULL; 1580 struct btrfs_fs_info *fs_info = NULL; 1581 void *new_sec_opts = NULL; 1582 fmode_t mode = FMODE_READ; 1583 int error = 0; 1584 1585 if (!(flags & SB_RDONLY)) 1586 mode |= FMODE_WRITE; 1587 1588 if (data) { 1589 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1590 if (error) 1591 return ERR_PTR(error); 1592 } 1593 1594 /* 1595 * Setup a dummy root and fs_info for test/set super. This is because 1596 * we don't actually fill this stuff out until open_ctree, but we need 1597 * then open_ctree will properly initialize the file system specific 1598 * settings later. btrfs_init_fs_info initializes the static elements 1599 * of the fs_info (locks and such) to make cleanup easier if we find a 1600 * superblock with our given fs_devices later on at sget() time. 1601 */ 1602 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1603 if (!fs_info) { 1604 error = -ENOMEM; 1605 goto error_sec_opts; 1606 } 1607 btrfs_init_fs_info(fs_info); 1608 1609 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1610 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1611 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1612 error = -ENOMEM; 1613 goto error_fs_info; 1614 } 1615 1616 mutex_lock(&uuid_mutex); 1617 error = btrfs_parse_device_options(data, mode, fs_type); 1618 if (error) { 1619 mutex_unlock(&uuid_mutex); 1620 goto error_fs_info; 1621 } 1622 1623 device = btrfs_scan_one_device(device_name, mode, fs_type); 1624 if (IS_ERR(device)) { 1625 mutex_unlock(&uuid_mutex); 1626 error = PTR_ERR(device); 1627 goto error_fs_info; 1628 } 1629 1630 fs_devices = device->fs_devices; 1631 fs_info->fs_devices = fs_devices; 1632 1633 error = btrfs_open_devices(fs_devices, mode, fs_type); 1634 mutex_unlock(&uuid_mutex); 1635 if (error) 1636 goto error_fs_info; 1637 1638 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1639 error = -EACCES; 1640 goto error_close_devices; 1641 } 1642 1643 bdev = fs_devices->latest_bdev; 1644 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1645 fs_info); 1646 if (IS_ERR(s)) { 1647 error = PTR_ERR(s); 1648 goto error_close_devices; 1649 } 1650 1651 if (s->s_root) { 1652 btrfs_close_devices(fs_devices); 1653 btrfs_free_fs_info(fs_info); 1654 if ((flags ^ s->s_flags) & SB_RDONLY) 1655 error = -EBUSY; 1656 } else { 1657 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1658 btrfs_sb(s)->bdev_holder = fs_type; 1659 if (!strstr(crc32c_impl(), "generic")) 1660 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1661 error = btrfs_fill_super(s, fs_devices, data); 1662 } 1663 if (!error) 1664 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1665 security_free_mnt_opts(&new_sec_opts); 1666 if (error) { 1667 deactivate_locked_super(s); 1668 return ERR_PTR(error); 1669 } 1670 1671 return dget(s->s_root); 1672 1673 error_close_devices: 1674 btrfs_close_devices(fs_devices); 1675 error_fs_info: 1676 btrfs_free_fs_info(fs_info); 1677 error_sec_opts: 1678 security_free_mnt_opts(&new_sec_opts); 1679 return ERR_PTR(error); 1680 } 1681 1682 /* 1683 * Mount function which is called by VFS layer. 1684 * 1685 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1686 * which needs vfsmount* of device's root (/). This means device's root has to 1687 * be mounted internally in any case. 1688 * 1689 * Operation flow: 1690 * 1. Parse subvol id related options for later use in mount_subvol(). 1691 * 1692 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1693 * 1694 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1695 * first place. In order to avoid calling btrfs_mount() again, we use 1696 * different file_system_type which is not registered to VFS by 1697 * register_filesystem() (btrfs_root_fs_type). As a result, 1698 * btrfs_mount_root() is called. The return value will be used by 1699 * mount_subtree() in mount_subvol(). 1700 * 1701 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1702 * "btrfs subvolume set-default", mount_subvol() is called always. 1703 */ 1704 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1705 const char *device_name, void *data) 1706 { 1707 struct vfsmount *mnt_root; 1708 struct dentry *root; 1709 char *subvol_name = NULL; 1710 u64 subvol_objectid = 0; 1711 int error = 0; 1712 1713 error = btrfs_parse_subvol_options(data, &subvol_name, 1714 &subvol_objectid); 1715 if (error) { 1716 kfree(subvol_name); 1717 return ERR_PTR(error); 1718 } 1719 1720 /* mount device's root (/) */ 1721 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1722 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1723 if (flags & SB_RDONLY) { 1724 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1725 flags & ~SB_RDONLY, device_name, data); 1726 } else { 1727 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1728 flags | SB_RDONLY, device_name, data); 1729 if (IS_ERR(mnt_root)) { 1730 root = ERR_CAST(mnt_root); 1731 kfree(subvol_name); 1732 goto out; 1733 } 1734 1735 down_write(&mnt_root->mnt_sb->s_umount); 1736 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1737 up_write(&mnt_root->mnt_sb->s_umount); 1738 if (error < 0) { 1739 root = ERR_PTR(error); 1740 mntput(mnt_root); 1741 kfree(subvol_name); 1742 goto out; 1743 } 1744 } 1745 } 1746 if (IS_ERR(mnt_root)) { 1747 root = ERR_CAST(mnt_root); 1748 kfree(subvol_name); 1749 goto out; 1750 } 1751 1752 /* mount_subvol() will free subvol_name and mnt_root */ 1753 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1754 1755 out: 1756 return root; 1757 } 1758 1759 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1760 u32 new_pool_size, u32 old_pool_size) 1761 { 1762 if (new_pool_size == old_pool_size) 1763 return; 1764 1765 fs_info->thread_pool_size = new_pool_size; 1766 1767 btrfs_info(fs_info, "resize thread pool %d -> %d", 1768 old_pool_size, new_pool_size); 1769 1770 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1771 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1772 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1773 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1774 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1775 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1776 new_pool_size); 1777 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1778 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1779 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1780 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1781 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1782 new_pool_size); 1783 } 1784 1785 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1786 unsigned long old_opts, int flags) 1787 { 1788 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1789 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1790 (flags & SB_RDONLY))) { 1791 /* wait for any defraggers to finish */ 1792 wait_event(fs_info->transaction_wait, 1793 (atomic_read(&fs_info->defrag_running) == 0)); 1794 if (flags & SB_RDONLY) 1795 sync_filesystem(fs_info->sb); 1796 } 1797 } 1798 1799 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1800 unsigned long old_opts) 1801 { 1802 /* 1803 * We need to cleanup all defragable inodes if the autodefragment is 1804 * close or the filesystem is read only. 1805 */ 1806 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1807 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1808 btrfs_cleanup_defrag_inodes(fs_info); 1809 } 1810 1811 /* If we toggled discard async */ 1812 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1813 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1814 btrfs_discard_resume(fs_info); 1815 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1816 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1817 btrfs_discard_cleanup(fs_info); 1818 } 1819 1820 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1821 { 1822 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1823 struct btrfs_root *root = fs_info->tree_root; 1824 unsigned old_flags = sb->s_flags; 1825 unsigned long old_opts = fs_info->mount_opt; 1826 unsigned long old_compress_type = fs_info->compress_type; 1827 u64 old_max_inline = fs_info->max_inline; 1828 u32 old_thread_pool_size = fs_info->thread_pool_size; 1829 u32 old_metadata_ratio = fs_info->metadata_ratio; 1830 int ret; 1831 1832 sync_filesystem(sb); 1833 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1834 1835 if (data) { 1836 void *new_sec_opts = NULL; 1837 1838 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1839 if (!ret) 1840 ret = security_sb_remount(sb, new_sec_opts); 1841 security_free_mnt_opts(&new_sec_opts); 1842 if (ret) 1843 goto restore; 1844 } 1845 1846 ret = btrfs_parse_options(fs_info, data, *flags); 1847 if (ret) 1848 goto restore; 1849 1850 btrfs_remount_begin(fs_info, old_opts, *flags); 1851 btrfs_resize_thread_pool(fs_info, 1852 fs_info->thread_pool_size, old_thread_pool_size); 1853 1854 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1855 goto out; 1856 1857 if (*flags & SB_RDONLY) { 1858 /* 1859 * this also happens on 'umount -rf' or on shutdown, when 1860 * the filesystem is busy. 1861 */ 1862 cancel_work_sync(&fs_info->async_reclaim_work); 1863 1864 btrfs_discard_cleanup(fs_info); 1865 1866 /* wait for the uuid_scan task to finish */ 1867 down(&fs_info->uuid_tree_rescan_sem); 1868 /* avoid complains from lockdep et al. */ 1869 up(&fs_info->uuid_tree_rescan_sem); 1870 1871 sb->s_flags |= SB_RDONLY; 1872 1873 /* 1874 * Setting SB_RDONLY will put the cleaner thread to 1875 * sleep at the next loop if it's already active. 1876 * If it's already asleep, we'll leave unused block 1877 * groups on disk until we're mounted read-write again 1878 * unless we clean them up here. 1879 */ 1880 btrfs_delete_unused_bgs(fs_info); 1881 1882 btrfs_dev_replace_suspend_for_unmount(fs_info); 1883 btrfs_scrub_cancel(fs_info); 1884 btrfs_pause_balance(fs_info); 1885 1886 ret = btrfs_commit_super(fs_info); 1887 if (ret) 1888 goto restore; 1889 } else { 1890 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1891 btrfs_err(fs_info, 1892 "Remounting read-write after error is not allowed"); 1893 ret = -EINVAL; 1894 goto restore; 1895 } 1896 if (fs_info->fs_devices->rw_devices == 0) { 1897 ret = -EACCES; 1898 goto restore; 1899 } 1900 1901 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1902 btrfs_warn(fs_info, 1903 "too many missing devices, writable remount is not allowed"); 1904 ret = -EACCES; 1905 goto restore; 1906 } 1907 1908 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1909 btrfs_warn(fs_info, 1910 "mount required to replay tree-log, cannot remount read-write"); 1911 ret = -EINVAL; 1912 goto restore; 1913 } 1914 1915 ret = btrfs_cleanup_fs_roots(fs_info); 1916 if (ret) 1917 goto restore; 1918 1919 /* recover relocation */ 1920 mutex_lock(&fs_info->cleaner_mutex); 1921 ret = btrfs_recover_relocation(root); 1922 mutex_unlock(&fs_info->cleaner_mutex); 1923 if (ret) 1924 goto restore; 1925 1926 ret = btrfs_resume_balance_async(fs_info); 1927 if (ret) 1928 goto restore; 1929 1930 ret = btrfs_resume_dev_replace_async(fs_info); 1931 if (ret) { 1932 btrfs_warn(fs_info, "failed to resume dev_replace"); 1933 goto restore; 1934 } 1935 1936 btrfs_qgroup_rescan_resume(fs_info); 1937 1938 if (!fs_info->uuid_root) { 1939 btrfs_info(fs_info, "creating UUID tree"); 1940 ret = btrfs_create_uuid_tree(fs_info); 1941 if (ret) { 1942 btrfs_warn(fs_info, 1943 "failed to create the UUID tree %d", 1944 ret); 1945 goto restore; 1946 } 1947 } 1948 sb->s_flags &= ~SB_RDONLY; 1949 1950 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1951 } 1952 out: 1953 wake_up_process(fs_info->transaction_kthread); 1954 btrfs_remount_cleanup(fs_info, old_opts); 1955 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1956 1957 return 0; 1958 1959 restore: 1960 /* We've hit an error - don't reset SB_RDONLY */ 1961 if (sb_rdonly(sb)) 1962 old_flags |= SB_RDONLY; 1963 sb->s_flags = old_flags; 1964 fs_info->mount_opt = old_opts; 1965 fs_info->compress_type = old_compress_type; 1966 fs_info->max_inline = old_max_inline; 1967 btrfs_resize_thread_pool(fs_info, 1968 old_thread_pool_size, fs_info->thread_pool_size); 1969 fs_info->metadata_ratio = old_metadata_ratio; 1970 btrfs_remount_cleanup(fs_info, old_opts); 1971 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1972 1973 return ret; 1974 } 1975 1976 /* Used to sort the devices by max_avail(descending sort) */ 1977 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 1978 const void *dev_info2) 1979 { 1980 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1981 ((struct btrfs_device_info *)dev_info2)->max_avail) 1982 return -1; 1983 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1984 ((struct btrfs_device_info *)dev_info2)->max_avail) 1985 return 1; 1986 else 1987 return 0; 1988 } 1989 1990 /* 1991 * sort the devices by max_avail, in which max free extent size of each device 1992 * is stored.(Descending Sort) 1993 */ 1994 static inline void btrfs_descending_sort_devices( 1995 struct btrfs_device_info *devices, 1996 size_t nr_devices) 1997 { 1998 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1999 btrfs_cmp_device_free_bytes, NULL); 2000 } 2001 2002 /* 2003 * The helper to calc the free space on the devices that can be used to store 2004 * file data. 2005 */ 2006 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2007 u64 *free_bytes) 2008 { 2009 struct btrfs_device_info *devices_info; 2010 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2011 struct btrfs_device *device; 2012 u64 type; 2013 u64 avail_space; 2014 u64 min_stripe_size; 2015 int num_stripes = 1; 2016 int i = 0, nr_devices; 2017 const struct btrfs_raid_attr *rattr; 2018 2019 /* 2020 * We aren't under the device list lock, so this is racy-ish, but good 2021 * enough for our purposes. 2022 */ 2023 nr_devices = fs_info->fs_devices->open_devices; 2024 if (!nr_devices) { 2025 smp_mb(); 2026 nr_devices = fs_info->fs_devices->open_devices; 2027 ASSERT(nr_devices); 2028 if (!nr_devices) { 2029 *free_bytes = 0; 2030 return 0; 2031 } 2032 } 2033 2034 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2035 GFP_KERNEL); 2036 if (!devices_info) 2037 return -ENOMEM; 2038 2039 /* calc min stripe number for data space allocation */ 2040 type = btrfs_data_alloc_profile(fs_info); 2041 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2042 2043 if (type & BTRFS_BLOCK_GROUP_RAID0) 2044 num_stripes = nr_devices; 2045 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2046 num_stripes = 2; 2047 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2048 num_stripes = 3; 2049 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2050 num_stripes = 4; 2051 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2052 num_stripes = 4; 2053 2054 /* Adjust for more than 1 stripe per device */ 2055 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2056 2057 rcu_read_lock(); 2058 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2059 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2060 &device->dev_state) || 2061 !device->bdev || 2062 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2063 continue; 2064 2065 if (i >= nr_devices) 2066 break; 2067 2068 avail_space = device->total_bytes - device->bytes_used; 2069 2070 /* align with stripe_len */ 2071 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2072 2073 /* 2074 * In order to avoid overwriting the superblock on the drive, 2075 * btrfs starts at an offset of at least 1MB when doing chunk 2076 * allocation. 2077 * 2078 * This ensures we have at least min_stripe_size free space 2079 * after excluding 1MB. 2080 */ 2081 if (avail_space <= SZ_1M + min_stripe_size) 2082 continue; 2083 2084 avail_space -= SZ_1M; 2085 2086 devices_info[i].dev = device; 2087 devices_info[i].max_avail = avail_space; 2088 2089 i++; 2090 } 2091 rcu_read_unlock(); 2092 2093 nr_devices = i; 2094 2095 btrfs_descending_sort_devices(devices_info, nr_devices); 2096 2097 i = nr_devices - 1; 2098 avail_space = 0; 2099 while (nr_devices >= rattr->devs_min) { 2100 num_stripes = min(num_stripes, nr_devices); 2101 2102 if (devices_info[i].max_avail >= min_stripe_size) { 2103 int j; 2104 u64 alloc_size; 2105 2106 avail_space += devices_info[i].max_avail * num_stripes; 2107 alloc_size = devices_info[i].max_avail; 2108 for (j = i + 1 - num_stripes; j <= i; j++) 2109 devices_info[j].max_avail -= alloc_size; 2110 } 2111 i--; 2112 nr_devices--; 2113 } 2114 2115 kfree(devices_info); 2116 *free_bytes = avail_space; 2117 return 0; 2118 } 2119 2120 /* 2121 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2122 * 2123 * If there's a redundant raid level at DATA block groups, use the respective 2124 * multiplier to scale the sizes. 2125 * 2126 * Unused device space usage is based on simulating the chunk allocator 2127 * algorithm that respects the device sizes and order of allocations. This is 2128 * a close approximation of the actual use but there are other factors that may 2129 * change the result (like a new metadata chunk). 2130 * 2131 * If metadata is exhausted, f_bavail will be 0. 2132 */ 2133 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2134 { 2135 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2136 struct btrfs_super_block *disk_super = fs_info->super_copy; 2137 struct btrfs_space_info *found; 2138 u64 total_used = 0; 2139 u64 total_free_data = 0; 2140 u64 total_free_meta = 0; 2141 int bits = dentry->d_sb->s_blocksize_bits; 2142 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2143 unsigned factor = 1; 2144 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2145 int ret; 2146 u64 thresh = 0; 2147 int mixed = 0; 2148 2149 rcu_read_lock(); 2150 list_for_each_entry_rcu(found, &fs_info->space_info, list) { 2151 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2152 int i; 2153 2154 total_free_data += found->disk_total - found->disk_used; 2155 total_free_data -= 2156 btrfs_account_ro_block_groups_free_space(found); 2157 2158 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2159 if (!list_empty(&found->block_groups[i])) 2160 factor = btrfs_bg_type_to_factor( 2161 btrfs_raid_array[i].bg_flag); 2162 } 2163 } 2164 2165 /* 2166 * Metadata in mixed block goup profiles are accounted in data 2167 */ 2168 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2169 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2170 mixed = 1; 2171 else 2172 total_free_meta += found->disk_total - 2173 found->disk_used; 2174 } 2175 2176 total_used += found->disk_used; 2177 } 2178 2179 rcu_read_unlock(); 2180 2181 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2182 buf->f_blocks >>= bits; 2183 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2184 2185 /* Account global block reserve as used, it's in logical size already */ 2186 spin_lock(&block_rsv->lock); 2187 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2188 if (buf->f_bfree >= block_rsv->size >> bits) 2189 buf->f_bfree -= block_rsv->size >> bits; 2190 else 2191 buf->f_bfree = 0; 2192 spin_unlock(&block_rsv->lock); 2193 2194 buf->f_bavail = div_u64(total_free_data, factor); 2195 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2196 if (ret) 2197 return ret; 2198 buf->f_bavail += div_u64(total_free_data, factor); 2199 buf->f_bavail = buf->f_bavail >> bits; 2200 2201 /* 2202 * We calculate the remaining metadata space minus global reserve. If 2203 * this is (supposedly) smaller than zero, there's no space. But this 2204 * does not hold in practice, the exhausted state happens where's still 2205 * some positive delta. So we apply some guesswork and compare the 2206 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2207 * 2208 * We probably cannot calculate the exact threshold value because this 2209 * depends on the internal reservations requested by various 2210 * operations, so some operations that consume a few metadata will 2211 * succeed even if the Avail is zero. But this is better than the other 2212 * way around. 2213 */ 2214 thresh = SZ_4M; 2215 2216 /* 2217 * We only want to claim there's no available space if we can no longer 2218 * allocate chunks for our metadata profile and our global reserve will 2219 * not fit in the free metadata space. If we aren't ->full then we 2220 * still can allocate chunks and thus are fine using the currently 2221 * calculated f_bavail. 2222 */ 2223 if (!mixed && block_rsv->space_info->full && 2224 total_free_meta - thresh < block_rsv->size) 2225 buf->f_bavail = 0; 2226 2227 buf->f_type = BTRFS_SUPER_MAGIC; 2228 buf->f_bsize = dentry->d_sb->s_blocksize; 2229 buf->f_namelen = BTRFS_NAME_LEN; 2230 2231 /* We treat it as constant endianness (it doesn't matter _which_) 2232 because we want the fsid to come out the same whether mounted 2233 on a big-endian or little-endian host */ 2234 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2235 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2236 /* Mask in the root object ID too, to disambiguate subvols */ 2237 buf->f_fsid.val[0] ^= 2238 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2239 buf->f_fsid.val[1] ^= 2240 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2241 2242 return 0; 2243 } 2244 2245 static void btrfs_kill_super(struct super_block *sb) 2246 { 2247 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2248 kill_anon_super(sb); 2249 btrfs_free_fs_info(fs_info); 2250 } 2251 2252 static struct file_system_type btrfs_fs_type = { 2253 .owner = THIS_MODULE, 2254 .name = "btrfs", 2255 .mount = btrfs_mount, 2256 .kill_sb = btrfs_kill_super, 2257 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2258 }; 2259 2260 static struct file_system_type btrfs_root_fs_type = { 2261 .owner = THIS_MODULE, 2262 .name = "btrfs", 2263 .mount = btrfs_mount_root, 2264 .kill_sb = btrfs_kill_super, 2265 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2266 }; 2267 2268 MODULE_ALIAS_FS("btrfs"); 2269 2270 static int btrfs_control_open(struct inode *inode, struct file *file) 2271 { 2272 /* 2273 * The control file's private_data is used to hold the 2274 * transaction when it is started and is used to keep 2275 * track of whether a transaction is already in progress. 2276 */ 2277 file->private_data = NULL; 2278 return 0; 2279 } 2280 2281 /* 2282 * Used by /dev/btrfs-control for devices ioctls. 2283 */ 2284 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2285 unsigned long arg) 2286 { 2287 struct btrfs_ioctl_vol_args *vol; 2288 struct btrfs_device *device = NULL; 2289 int ret = -ENOTTY; 2290 2291 if (!capable(CAP_SYS_ADMIN)) 2292 return -EPERM; 2293 2294 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2295 if (IS_ERR(vol)) 2296 return PTR_ERR(vol); 2297 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2298 2299 switch (cmd) { 2300 case BTRFS_IOC_SCAN_DEV: 2301 mutex_lock(&uuid_mutex); 2302 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2303 &btrfs_root_fs_type); 2304 ret = PTR_ERR_OR_ZERO(device); 2305 mutex_unlock(&uuid_mutex); 2306 break; 2307 case BTRFS_IOC_FORGET_DEV: 2308 ret = btrfs_forget_devices(vol->name); 2309 break; 2310 case BTRFS_IOC_DEVICES_READY: 2311 mutex_lock(&uuid_mutex); 2312 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2313 &btrfs_root_fs_type); 2314 if (IS_ERR(device)) { 2315 mutex_unlock(&uuid_mutex); 2316 ret = PTR_ERR(device); 2317 break; 2318 } 2319 ret = !(device->fs_devices->num_devices == 2320 device->fs_devices->total_devices); 2321 mutex_unlock(&uuid_mutex); 2322 break; 2323 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2324 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2325 break; 2326 } 2327 2328 kfree(vol); 2329 return ret; 2330 } 2331 2332 static int btrfs_freeze(struct super_block *sb) 2333 { 2334 struct btrfs_trans_handle *trans; 2335 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2336 struct btrfs_root *root = fs_info->tree_root; 2337 2338 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2339 /* 2340 * We don't need a barrier here, we'll wait for any transaction that 2341 * could be in progress on other threads (and do delayed iputs that 2342 * we want to avoid on a frozen filesystem), or do the commit 2343 * ourselves. 2344 */ 2345 trans = btrfs_attach_transaction_barrier(root); 2346 if (IS_ERR(trans)) { 2347 /* no transaction, don't bother */ 2348 if (PTR_ERR(trans) == -ENOENT) 2349 return 0; 2350 return PTR_ERR(trans); 2351 } 2352 return btrfs_commit_transaction(trans); 2353 } 2354 2355 static int btrfs_unfreeze(struct super_block *sb) 2356 { 2357 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2358 2359 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2360 return 0; 2361 } 2362 2363 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2364 { 2365 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2366 struct btrfs_device *dev, *first_dev = NULL; 2367 2368 /* 2369 * Lightweight locking of the devices. We should not need 2370 * device_list_mutex here as we only read the device data and the list 2371 * is protected by RCU. Even if a device is deleted during the list 2372 * traversals, we'll get valid data, the freeing callback will wait at 2373 * least until the rcu_read_unlock. 2374 */ 2375 rcu_read_lock(); 2376 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) { 2377 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2378 continue; 2379 if (!dev->name) 2380 continue; 2381 if (!first_dev || dev->devid < first_dev->devid) 2382 first_dev = dev; 2383 } 2384 2385 if (first_dev) 2386 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2387 else 2388 WARN_ON(1); 2389 rcu_read_unlock(); 2390 return 0; 2391 } 2392 2393 static const struct super_operations btrfs_super_ops = { 2394 .drop_inode = btrfs_drop_inode, 2395 .evict_inode = btrfs_evict_inode, 2396 .put_super = btrfs_put_super, 2397 .sync_fs = btrfs_sync_fs, 2398 .show_options = btrfs_show_options, 2399 .show_devname = btrfs_show_devname, 2400 .alloc_inode = btrfs_alloc_inode, 2401 .destroy_inode = btrfs_destroy_inode, 2402 .free_inode = btrfs_free_inode, 2403 .statfs = btrfs_statfs, 2404 .remount_fs = btrfs_remount, 2405 .freeze_fs = btrfs_freeze, 2406 .unfreeze_fs = btrfs_unfreeze, 2407 }; 2408 2409 static const struct file_operations btrfs_ctl_fops = { 2410 .open = btrfs_control_open, 2411 .unlocked_ioctl = btrfs_control_ioctl, 2412 .compat_ioctl = compat_ptr_ioctl, 2413 .owner = THIS_MODULE, 2414 .llseek = noop_llseek, 2415 }; 2416 2417 static struct miscdevice btrfs_misc = { 2418 .minor = BTRFS_MINOR, 2419 .name = "btrfs-control", 2420 .fops = &btrfs_ctl_fops 2421 }; 2422 2423 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2424 MODULE_ALIAS("devname:btrfs-control"); 2425 2426 static int __init btrfs_interface_init(void) 2427 { 2428 return misc_register(&btrfs_misc); 2429 } 2430 2431 static __cold void btrfs_interface_exit(void) 2432 { 2433 misc_deregister(&btrfs_misc); 2434 } 2435 2436 static void __init btrfs_print_mod_info(void) 2437 { 2438 static const char options[] = "" 2439 #ifdef CONFIG_BTRFS_DEBUG 2440 ", debug=on" 2441 #endif 2442 #ifdef CONFIG_BTRFS_ASSERT 2443 ", assert=on" 2444 #endif 2445 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2446 ", integrity-checker=on" 2447 #endif 2448 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2449 ", ref-verify=on" 2450 #endif 2451 ; 2452 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2453 } 2454 2455 static int __init init_btrfs_fs(void) 2456 { 2457 int err; 2458 2459 btrfs_props_init(); 2460 2461 err = btrfs_init_sysfs(); 2462 if (err) 2463 return err; 2464 2465 btrfs_init_compress(); 2466 2467 err = btrfs_init_cachep(); 2468 if (err) 2469 goto free_compress; 2470 2471 err = extent_io_init(); 2472 if (err) 2473 goto free_cachep; 2474 2475 err = extent_state_cache_init(); 2476 if (err) 2477 goto free_extent_io; 2478 2479 err = extent_map_init(); 2480 if (err) 2481 goto free_extent_state_cache; 2482 2483 err = ordered_data_init(); 2484 if (err) 2485 goto free_extent_map; 2486 2487 err = btrfs_delayed_inode_init(); 2488 if (err) 2489 goto free_ordered_data; 2490 2491 err = btrfs_auto_defrag_init(); 2492 if (err) 2493 goto free_delayed_inode; 2494 2495 err = btrfs_delayed_ref_init(); 2496 if (err) 2497 goto free_auto_defrag; 2498 2499 err = btrfs_prelim_ref_init(); 2500 if (err) 2501 goto free_delayed_ref; 2502 2503 err = btrfs_end_io_wq_init(); 2504 if (err) 2505 goto free_prelim_ref; 2506 2507 err = btrfs_interface_init(); 2508 if (err) 2509 goto free_end_io_wq; 2510 2511 btrfs_init_lockdep(); 2512 2513 btrfs_print_mod_info(); 2514 2515 err = btrfs_run_sanity_tests(); 2516 if (err) 2517 goto unregister_ioctl; 2518 2519 err = register_filesystem(&btrfs_fs_type); 2520 if (err) 2521 goto unregister_ioctl; 2522 2523 return 0; 2524 2525 unregister_ioctl: 2526 btrfs_interface_exit(); 2527 free_end_io_wq: 2528 btrfs_end_io_wq_exit(); 2529 free_prelim_ref: 2530 btrfs_prelim_ref_exit(); 2531 free_delayed_ref: 2532 btrfs_delayed_ref_exit(); 2533 free_auto_defrag: 2534 btrfs_auto_defrag_exit(); 2535 free_delayed_inode: 2536 btrfs_delayed_inode_exit(); 2537 free_ordered_data: 2538 ordered_data_exit(); 2539 free_extent_map: 2540 extent_map_exit(); 2541 free_extent_state_cache: 2542 extent_state_cache_exit(); 2543 free_extent_io: 2544 extent_io_exit(); 2545 free_cachep: 2546 btrfs_destroy_cachep(); 2547 free_compress: 2548 btrfs_exit_compress(); 2549 btrfs_exit_sysfs(); 2550 2551 return err; 2552 } 2553 2554 static void __exit exit_btrfs_fs(void) 2555 { 2556 btrfs_destroy_cachep(); 2557 btrfs_delayed_ref_exit(); 2558 btrfs_auto_defrag_exit(); 2559 btrfs_delayed_inode_exit(); 2560 btrfs_prelim_ref_exit(); 2561 ordered_data_exit(); 2562 extent_map_exit(); 2563 extent_state_cache_exit(); 2564 extent_io_exit(); 2565 btrfs_interface_exit(); 2566 btrfs_end_io_wq_exit(); 2567 unregister_filesystem(&btrfs_fs_type); 2568 btrfs_exit_sysfs(); 2569 btrfs_cleanup_fs_uuids(); 2570 btrfs_exit_compress(); 2571 } 2572 2573 late_initcall(init_btrfs_fs); 2574 module_exit(exit_btrfs_fs) 2575 2576 MODULE_LICENSE("GPL"); 2577 MODULE_SOFTDEP("pre: crc32c"); 2578 MODULE_SOFTDEP("pre: xxhash64"); 2579 MODULE_SOFTDEP("pre: sha256"); 2580 MODULE_SOFTDEP("pre: blake2b-256"); 2581