1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 69 70 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 71 72 const char *btrfs_decode_error(int errno) 73 { 74 char *errstr = "unknown"; 75 76 switch (errno) { 77 case -EIO: 78 errstr = "IO failure"; 79 break; 80 case -ENOMEM: 81 errstr = "Out of memory"; 82 break; 83 case -EROFS: 84 errstr = "Readonly filesystem"; 85 break; 86 case -EEXIST: 87 errstr = "Object already exists"; 88 break; 89 case -ENOSPC: 90 errstr = "No space left"; 91 break; 92 case -ENOENT: 93 errstr = "No such entry"; 94 break; 95 } 96 97 return errstr; 98 } 99 100 /* btrfs handle error by forcing the filesystem readonly */ 101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 102 { 103 struct super_block *sb = fs_info->sb; 104 105 if (sb->s_flags & MS_RDONLY) 106 return; 107 108 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 109 sb->s_flags |= MS_RDONLY; 110 btrfs_info(fs_info, "forced readonly"); 111 /* 112 * Note that a running device replace operation is not 113 * canceled here although there is no way to update 114 * the progress. It would add the risk of a deadlock, 115 * therefore the canceling is omitted. The only penalty 116 * is that some I/O remains active until the procedure 117 * completes. The next time when the filesystem is 118 * mounted writeable again, the device replace 119 * operation continues. 120 */ 121 } 122 } 123 124 /* 125 * __btrfs_handle_fs_error decodes expected errors from the caller and 126 * invokes the approciate error response. 127 */ 128 __cold 129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 130 unsigned int line, int errno, const char *fmt, ...) 131 { 132 struct super_block *sb = fs_info->sb; 133 #ifdef CONFIG_PRINTK 134 const char *errstr; 135 #endif 136 137 /* 138 * Special case: if the error is EROFS, and we're already 139 * under MS_RDONLY, then it is safe here. 140 */ 141 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 142 return; 143 144 #ifdef CONFIG_PRINTK 145 errstr = btrfs_decode_error(errno); 146 if (fmt) { 147 struct va_format vaf; 148 va_list args; 149 150 va_start(args, fmt); 151 vaf.fmt = fmt; 152 vaf.va = &args; 153 154 printk(KERN_CRIT 155 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 156 sb->s_id, function, line, errno, errstr, &vaf); 157 va_end(args); 158 } else { 159 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 160 sb->s_id, function, line, errno, errstr); 161 } 162 #endif 163 164 /* 165 * Today we only save the error info to memory. Long term we'll 166 * also send it down to the disk 167 */ 168 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 169 170 /* Don't go through full error handling during mount */ 171 if (sb->s_flags & MS_BORN) 172 btrfs_handle_error(fs_info); 173 } 174 175 #ifdef CONFIG_PRINTK 176 static const char * const logtypes[] = { 177 "emergency", 178 "alert", 179 "critical", 180 "error", 181 "warning", 182 "notice", 183 "info", 184 "debug", 185 }; 186 187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 188 { 189 struct super_block *sb = fs_info->sb; 190 char lvl[4]; 191 struct va_format vaf; 192 va_list args; 193 const char *type = logtypes[4]; 194 int kern_level; 195 196 va_start(args, fmt); 197 198 kern_level = printk_get_level(fmt); 199 if (kern_level) { 200 size_t size = printk_skip_level(fmt) - fmt; 201 memcpy(lvl, fmt, size); 202 lvl[size] = '\0'; 203 fmt += size; 204 type = logtypes[kern_level - '0']; 205 } else 206 *lvl = '\0'; 207 208 vaf.fmt = fmt; 209 vaf.va = &args; 210 211 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 212 213 va_end(args); 214 } 215 #endif 216 217 /* 218 * We only mark the transaction aborted and then set the file system read-only. 219 * This will prevent new transactions from starting or trying to join this 220 * one. 221 * 222 * This means that error recovery at the call site is limited to freeing 223 * any local memory allocations and passing the error code up without 224 * further cleanup. The transaction should complete as it normally would 225 * in the call path but will return -EIO. 226 * 227 * We'll complete the cleanup in btrfs_end_transaction and 228 * btrfs_commit_transaction. 229 */ 230 __cold 231 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 232 struct btrfs_root *root, const char *function, 233 unsigned int line, int errno) 234 { 235 trans->aborted = errno; 236 /* Nothing used. The other threads that have joined this 237 * transaction may be able to continue. */ 238 if (!trans->dirty && list_empty(&trans->new_bgs)) { 239 const char *errstr; 240 241 errstr = btrfs_decode_error(errno); 242 btrfs_warn(root->fs_info, 243 "%s:%d: Aborting unused transaction(%s).", 244 function, line, errstr); 245 return; 246 } 247 ACCESS_ONCE(trans->transaction->aborted) = errno; 248 /* Wake up anybody who may be waiting on this transaction */ 249 wake_up(&root->fs_info->transaction_wait); 250 wake_up(&root->fs_info->transaction_blocked_wait); 251 __btrfs_handle_fs_error(root->fs_info, function, line, errno, NULL); 252 } 253 /* 254 * __btrfs_panic decodes unexpected, fatal errors from the caller, 255 * issues an alert, and either panics or BUGs, depending on mount options. 256 */ 257 __cold 258 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 259 unsigned int line, int errno, const char *fmt, ...) 260 { 261 char *s_id = "<unknown>"; 262 const char *errstr; 263 struct va_format vaf = { .fmt = fmt }; 264 va_list args; 265 266 if (fs_info) 267 s_id = fs_info->sb->s_id; 268 269 va_start(args, fmt); 270 vaf.va = &args; 271 272 errstr = btrfs_decode_error(errno); 273 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 274 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 275 s_id, function, line, &vaf, errno, errstr); 276 277 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 278 function, line, &vaf, errno, errstr); 279 va_end(args); 280 /* Caller calls BUG() */ 281 } 282 283 static void btrfs_put_super(struct super_block *sb) 284 { 285 close_ctree(btrfs_sb(sb)->tree_root); 286 } 287 288 enum { 289 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 290 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 291 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 292 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 293 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 294 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, 295 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, 296 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, 297 Opt_skip_balance, Opt_check_integrity, 298 Opt_check_integrity_including_extent_data, 299 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 300 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 301 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 302 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, 303 Opt_nologreplay, Opt_norecovery, 304 #ifdef CONFIG_BTRFS_DEBUG 305 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 306 #endif 307 Opt_err, 308 }; 309 310 static const match_table_t tokens = { 311 {Opt_degraded, "degraded"}, 312 {Opt_subvol, "subvol=%s"}, 313 {Opt_subvolid, "subvolid=%s"}, 314 {Opt_device, "device=%s"}, 315 {Opt_nodatasum, "nodatasum"}, 316 {Opt_datasum, "datasum"}, 317 {Opt_nodatacow, "nodatacow"}, 318 {Opt_datacow, "datacow"}, 319 {Opt_nobarrier, "nobarrier"}, 320 {Opt_barrier, "barrier"}, 321 {Opt_max_inline, "max_inline=%s"}, 322 {Opt_alloc_start, "alloc_start=%s"}, 323 {Opt_thread_pool, "thread_pool=%d"}, 324 {Opt_compress, "compress"}, 325 {Opt_compress_type, "compress=%s"}, 326 {Opt_compress_force, "compress-force"}, 327 {Opt_compress_force_type, "compress-force=%s"}, 328 {Opt_ssd, "ssd"}, 329 {Opt_ssd_spread, "ssd_spread"}, 330 {Opt_nossd, "nossd"}, 331 {Opt_acl, "acl"}, 332 {Opt_noacl, "noacl"}, 333 {Opt_notreelog, "notreelog"}, 334 {Opt_treelog, "treelog"}, 335 {Opt_nologreplay, "nologreplay"}, 336 {Opt_norecovery, "norecovery"}, 337 {Opt_flushoncommit, "flushoncommit"}, 338 {Opt_noflushoncommit, "noflushoncommit"}, 339 {Opt_ratio, "metadata_ratio=%d"}, 340 {Opt_discard, "discard"}, 341 {Opt_nodiscard, "nodiscard"}, 342 {Opt_space_cache, "space_cache"}, 343 {Opt_space_cache_version, "space_cache=%s"}, 344 {Opt_clear_cache, "clear_cache"}, 345 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 346 {Opt_enospc_debug, "enospc_debug"}, 347 {Opt_noenospc_debug, "noenospc_debug"}, 348 {Opt_subvolrootid, "subvolrootid=%d"}, 349 {Opt_defrag, "autodefrag"}, 350 {Opt_nodefrag, "noautodefrag"}, 351 {Opt_inode_cache, "inode_cache"}, 352 {Opt_noinode_cache, "noinode_cache"}, 353 {Opt_no_space_cache, "nospace_cache"}, 354 {Opt_recovery, "recovery"}, /* deprecated */ 355 {Opt_usebackuproot, "usebackuproot"}, 356 {Opt_skip_balance, "skip_balance"}, 357 {Opt_check_integrity, "check_int"}, 358 {Opt_check_integrity_including_extent_data, "check_int_data"}, 359 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 360 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 361 {Opt_fatal_errors, "fatal_errors=%s"}, 362 {Opt_commit_interval, "commit=%d"}, 363 #ifdef CONFIG_BTRFS_DEBUG 364 {Opt_fragment_data, "fragment=data"}, 365 {Opt_fragment_metadata, "fragment=metadata"}, 366 {Opt_fragment_all, "fragment=all"}, 367 #endif 368 {Opt_err, NULL}, 369 }; 370 371 /* 372 * Regular mount options parser. Everything that is needed only when 373 * reading in a new superblock is parsed here. 374 * XXX JDM: This needs to be cleaned up for remount. 375 */ 376 int btrfs_parse_options(struct btrfs_root *root, char *options, 377 unsigned long new_flags) 378 { 379 struct btrfs_fs_info *info = root->fs_info; 380 substring_t args[MAX_OPT_ARGS]; 381 char *p, *num, *orig = NULL; 382 u64 cache_gen; 383 int intarg; 384 int ret = 0; 385 char *compress_type; 386 bool compress_force = false; 387 enum btrfs_compression_type saved_compress_type; 388 bool saved_compress_force; 389 int no_compress = 0; 390 391 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 392 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE)) 393 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 394 else if (cache_gen) 395 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 396 397 /* 398 * Even the options are empty, we still need to do extra check 399 * against new flags 400 */ 401 if (!options) 402 goto check; 403 404 /* 405 * strsep changes the string, duplicate it because parse_options 406 * gets called twice 407 */ 408 options = kstrdup(options, GFP_NOFS); 409 if (!options) 410 return -ENOMEM; 411 412 orig = options; 413 414 while ((p = strsep(&options, ",")) != NULL) { 415 int token; 416 if (!*p) 417 continue; 418 419 token = match_token(p, tokens, args); 420 switch (token) { 421 case Opt_degraded: 422 btrfs_info(root->fs_info, "allowing degraded mounts"); 423 btrfs_set_opt(info->mount_opt, DEGRADED); 424 break; 425 case Opt_subvol: 426 case Opt_subvolid: 427 case Opt_subvolrootid: 428 case Opt_device: 429 /* 430 * These are parsed by btrfs_parse_early_options 431 * and can be happily ignored here. 432 */ 433 break; 434 case Opt_nodatasum: 435 btrfs_set_and_info(root, NODATASUM, 436 "setting nodatasum"); 437 break; 438 case Opt_datasum: 439 if (btrfs_test_opt(root, NODATASUM)) { 440 if (btrfs_test_opt(root, NODATACOW)) 441 btrfs_info(root->fs_info, "setting datasum, datacow enabled"); 442 else 443 btrfs_info(root->fs_info, "setting datasum"); 444 } 445 btrfs_clear_opt(info->mount_opt, NODATACOW); 446 btrfs_clear_opt(info->mount_opt, NODATASUM); 447 break; 448 case Opt_nodatacow: 449 if (!btrfs_test_opt(root, NODATACOW)) { 450 if (!btrfs_test_opt(root, COMPRESS) || 451 !btrfs_test_opt(root, FORCE_COMPRESS)) { 452 btrfs_info(root->fs_info, 453 "setting nodatacow, compression disabled"); 454 } else { 455 btrfs_info(root->fs_info, "setting nodatacow"); 456 } 457 } 458 btrfs_clear_opt(info->mount_opt, COMPRESS); 459 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 460 btrfs_set_opt(info->mount_opt, NODATACOW); 461 btrfs_set_opt(info->mount_opt, NODATASUM); 462 break; 463 case Opt_datacow: 464 btrfs_clear_and_info(root, NODATACOW, 465 "setting datacow"); 466 break; 467 case Opt_compress_force: 468 case Opt_compress_force_type: 469 compress_force = true; 470 /* Fallthrough */ 471 case Opt_compress: 472 case Opt_compress_type: 473 saved_compress_type = btrfs_test_opt(root, COMPRESS) ? 474 info->compress_type : BTRFS_COMPRESS_NONE; 475 saved_compress_force = 476 btrfs_test_opt(root, FORCE_COMPRESS); 477 if (token == Opt_compress || 478 token == Opt_compress_force || 479 strcmp(args[0].from, "zlib") == 0) { 480 compress_type = "zlib"; 481 info->compress_type = BTRFS_COMPRESS_ZLIB; 482 btrfs_set_opt(info->mount_opt, COMPRESS); 483 btrfs_clear_opt(info->mount_opt, NODATACOW); 484 btrfs_clear_opt(info->mount_opt, NODATASUM); 485 no_compress = 0; 486 } else if (strcmp(args[0].from, "lzo") == 0) { 487 compress_type = "lzo"; 488 info->compress_type = BTRFS_COMPRESS_LZO; 489 btrfs_set_opt(info->mount_opt, COMPRESS); 490 btrfs_clear_opt(info->mount_opt, NODATACOW); 491 btrfs_clear_opt(info->mount_opt, NODATASUM); 492 btrfs_set_fs_incompat(info, COMPRESS_LZO); 493 no_compress = 0; 494 } else if (strncmp(args[0].from, "no", 2) == 0) { 495 compress_type = "no"; 496 btrfs_clear_opt(info->mount_opt, COMPRESS); 497 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 498 compress_force = false; 499 no_compress++; 500 } else { 501 ret = -EINVAL; 502 goto out; 503 } 504 505 if (compress_force) { 506 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 507 } else { 508 /* 509 * If we remount from compress-force=xxx to 510 * compress=xxx, we need clear FORCE_COMPRESS 511 * flag, otherwise, there is no way for users 512 * to disable forcible compression separately. 513 */ 514 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 515 } 516 if ((btrfs_test_opt(root, COMPRESS) && 517 (info->compress_type != saved_compress_type || 518 compress_force != saved_compress_force)) || 519 (!btrfs_test_opt(root, COMPRESS) && 520 no_compress == 1)) { 521 btrfs_info(root->fs_info, 522 "%s %s compression", 523 (compress_force) ? "force" : "use", 524 compress_type); 525 } 526 compress_force = false; 527 break; 528 case Opt_ssd: 529 btrfs_set_and_info(root, SSD, 530 "use ssd allocation scheme"); 531 break; 532 case Opt_ssd_spread: 533 btrfs_set_and_info(root, SSD_SPREAD, 534 "use spread ssd allocation scheme"); 535 btrfs_set_opt(info->mount_opt, SSD); 536 break; 537 case Opt_nossd: 538 btrfs_set_and_info(root, NOSSD, 539 "not using ssd allocation scheme"); 540 btrfs_clear_opt(info->mount_opt, SSD); 541 break; 542 case Opt_barrier: 543 btrfs_clear_and_info(root, NOBARRIER, 544 "turning on barriers"); 545 break; 546 case Opt_nobarrier: 547 btrfs_set_and_info(root, NOBARRIER, 548 "turning off barriers"); 549 break; 550 case Opt_thread_pool: 551 ret = match_int(&args[0], &intarg); 552 if (ret) { 553 goto out; 554 } else if (intarg > 0) { 555 info->thread_pool_size = intarg; 556 } else { 557 ret = -EINVAL; 558 goto out; 559 } 560 break; 561 case Opt_max_inline: 562 num = match_strdup(&args[0]); 563 if (num) { 564 info->max_inline = memparse(num, NULL); 565 kfree(num); 566 567 if (info->max_inline) { 568 info->max_inline = min_t(u64, 569 info->max_inline, 570 root->sectorsize); 571 } 572 btrfs_info(root->fs_info, "max_inline at %llu", 573 info->max_inline); 574 } else { 575 ret = -ENOMEM; 576 goto out; 577 } 578 break; 579 case Opt_alloc_start: 580 num = match_strdup(&args[0]); 581 if (num) { 582 mutex_lock(&info->chunk_mutex); 583 info->alloc_start = memparse(num, NULL); 584 mutex_unlock(&info->chunk_mutex); 585 kfree(num); 586 btrfs_info(root->fs_info, "allocations start at %llu", 587 info->alloc_start); 588 } else { 589 ret = -ENOMEM; 590 goto out; 591 } 592 break; 593 case Opt_acl: 594 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 595 root->fs_info->sb->s_flags |= MS_POSIXACL; 596 break; 597 #else 598 btrfs_err(root->fs_info, 599 "support for ACL not compiled in!"); 600 ret = -EINVAL; 601 goto out; 602 #endif 603 case Opt_noacl: 604 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 605 break; 606 case Opt_notreelog: 607 btrfs_set_and_info(root, NOTREELOG, 608 "disabling tree log"); 609 break; 610 case Opt_treelog: 611 btrfs_clear_and_info(root, NOTREELOG, 612 "enabling tree log"); 613 break; 614 case Opt_norecovery: 615 case Opt_nologreplay: 616 btrfs_set_and_info(root, NOLOGREPLAY, 617 "disabling log replay at mount time"); 618 break; 619 case Opt_flushoncommit: 620 btrfs_set_and_info(root, FLUSHONCOMMIT, 621 "turning on flush-on-commit"); 622 break; 623 case Opt_noflushoncommit: 624 btrfs_clear_and_info(root, FLUSHONCOMMIT, 625 "turning off flush-on-commit"); 626 break; 627 case Opt_ratio: 628 ret = match_int(&args[0], &intarg); 629 if (ret) { 630 goto out; 631 } else if (intarg >= 0) { 632 info->metadata_ratio = intarg; 633 btrfs_info(root->fs_info, "metadata ratio %d", 634 info->metadata_ratio); 635 } else { 636 ret = -EINVAL; 637 goto out; 638 } 639 break; 640 case Opt_discard: 641 btrfs_set_and_info(root, DISCARD, 642 "turning on discard"); 643 break; 644 case Opt_nodiscard: 645 btrfs_clear_and_info(root, DISCARD, 646 "turning off discard"); 647 break; 648 case Opt_space_cache: 649 case Opt_space_cache_version: 650 if (token == Opt_space_cache || 651 strcmp(args[0].from, "v1") == 0) { 652 btrfs_clear_opt(root->fs_info->mount_opt, 653 FREE_SPACE_TREE); 654 btrfs_set_and_info(root, SPACE_CACHE, 655 "enabling disk space caching"); 656 } else if (strcmp(args[0].from, "v2") == 0) { 657 btrfs_clear_opt(root->fs_info->mount_opt, 658 SPACE_CACHE); 659 btrfs_set_and_info(root, FREE_SPACE_TREE, 660 "enabling free space tree"); 661 } else { 662 ret = -EINVAL; 663 goto out; 664 } 665 break; 666 case Opt_rescan_uuid_tree: 667 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 668 break; 669 case Opt_no_space_cache: 670 if (btrfs_test_opt(root, SPACE_CACHE)) { 671 btrfs_clear_and_info(root, SPACE_CACHE, 672 "disabling disk space caching"); 673 } 674 if (btrfs_test_opt(root, FREE_SPACE_TREE)) { 675 btrfs_clear_and_info(root, FREE_SPACE_TREE, 676 "disabling free space tree"); 677 } 678 break; 679 case Opt_inode_cache: 680 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 681 "enabling inode map caching"); 682 break; 683 case Opt_noinode_cache: 684 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 685 "disabling inode map caching"); 686 break; 687 case Opt_clear_cache: 688 btrfs_set_and_info(root, CLEAR_CACHE, 689 "force clearing of disk cache"); 690 break; 691 case Opt_user_subvol_rm_allowed: 692 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 693 break; 694 case Opt_enospc_debug: 695 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 696 break; 697 case Opt_noenospc_debug: 698 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 699 break; 700 case Opt_defrag: 701 btrfs_set_and_info(root, AUTO_DEFRAG, 702 "enabling auto defrag"); 703 break; 704 case Opt_nodefrag: 705 btrfs_clear_and_info(root, AUTO_DEFRAG, 706 "disabling auto defrag"); 707 break; 708 case Opt_recovery: 709 btrfs_warn(root->fs_info, 710 "'recovery' is deprecated, use 'usebackuproot' instead"); 711 case Opt_usebackuproot: 712 btrfs_info(root->fs_info, 713 "trying to use backup root at mount time"); 714 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 715 break; 716 case Opt_skip_balance: 717 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 718 break; 719 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 720 case Opt_check_integrity_including_extent_data: 721 btrfs_info(root->fs_info, 722 "enabling check integrity including extent data"); 723 btrfs_set_opt(info->mount_opt, 724 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 725 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 726 break; 727 case Opt_check_integrity: 728 btrfs_info(root->fs_info, "enabling check integrity"); 729 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 730 break; 731 case Opt_check_integrity_print_mask: 732 ret = match_int(&args[0], &intarg); 733 if (ret) { 734 goto out; 735 } else if (intarg >= 0) { 736 info->check_integrity_print_mask = intarg; 737 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x", 738 info->check_integrity_print_mask); 739 } else { 740 ret = -EINVAL; 741 goto out; 742 } 743 break; 744 #else 745 case Opt_check_integrity_including_extent_data: 746 case Opt_check_integrity: 747 case Opt_check_integrity_print_mask: 748 btrfs_err(root->fs_info, 749 "support for check_integrity* not compiled in!"); 750 ret = -EINVAL; 751 goto out; 752 #endif 753 case Opt_fatal_errors: 754 if (strcmp(args[0].from, "panic") == 0) 755 btrfs_set_opt(info->mount_opt, 756 PANIC_ON_FATAL_ERROR); 757 else if (strcmp(args[0].from, "bug") == 0) 758 btrfs_clear_opt(info->mount_opt, 759 PANIC_ON_FATAL_ERROR); 760 else { 761 ret = -EINVAL; 762 goto out; 763 } 764 break; 765 case Opt_commit_interval: 766 intarg = 0; 767 ret = match_int(&args[0], &intarg); 768 if (ret < 0) { 769 btrfs_err(root->fs_info, "invalid commit interval"); 770 ret = -EINVAL; 771 goto out; 772 } 773 if (intarg > 0) { 774 if (intarg > 300) { 775 btrfs_warn(root->fs_info, "excessive commit interval %d", 776 intarg); 777 } 778 info->commit_interval = intarg; 779 } else { 780 btrfs_info(root->fs_info, "using default commit interval %ds", 781 BTRFS_DEFAULT_COMMIT_INTERVAL); 782 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 783 } 784 break; 785 #ifdef CONFIG_BTRFS_DEBUG 786 case Opt_fragment_all: 787 btrfs_info(root->fs_info, "fragmenting all space"); 788 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 789 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 790 break; 791 case Opt_fragment_metadata: 792 btrfs_info(root->fs_info, "fragmenting metadata"); 793 btrfs_set_opt(info->mount_opt, 794 FRAGMENT_METADATA); 795 break; 796 case Opt_fragment_data: 797 btrfs_info(root->fs_info, "fragmenting data"); 798 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 799 break; 800 #endif 801 case Opt_err: 802 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p); 803 ret = -EINVAL; 804 goto out; 805 default: 806 break; 807 } 808 } 809 check: 810 /* 811 * Extra check for current option against current flag 812 */ 813 if (btrfs_test_opt(root, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) { 814 btrfs_err(root->fs_info, 815 "nologreplay must be used with ro mount option"); 816 ret = -EINVAL; 817 } 818 out: 819 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) && 820 !btrfs_test_opt(root, FREE_SPACE_TREE) && 821 !btrfs_test_opt(root, CLEAR_CACHE)) { 822 btrfs_err(root->fs_info, "cannot disable free space tree"); 823 ret = -EINVAL; 824 825 } 826 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 827 btrfs_info(root->fs_info, "disk space caching is enabled"); 828 if (!ret && btrfs_test_opt(root, FREE_SPACE_TREE)) 829 btrfs_info(root->fs_info, "using free space tree"); 830 kfree(orig); 831 return ret; 832 } 833 834 /* 835 * Parse mount options that are required early in the mount process. 836 * 837 * All other options will be parsed on much later in the mount process and 838 * only when we need to allocate a new super block. 839 */ 840 static int btrfs_parse_early_options(const char *options, fmode_t flags, 841 void *holder, char **subvol_name, u64 *subvol_objectid, 842 struct btrfs_fs_devices **fs_devices) 843 { 844 substring_t args[MAX_OPT_ARGS]; 845 char *device_name, *opts, *orig, *p; 846 char *num = NULL; 847 int error = 0; 848 849 if (!options) 850 return 0; 851 852 /* 853 * strsep changes the string, duplicate it because parse_options 854 * gets called twice 855 */ 856 opts = kstrdup(options, GFP_KERNEL); 857 if (!opts) 858 return -ENOMEM; 859 orig = opts; 860 861 while ((p = strsep(&opts, ",")) != NULL) { 862 int token; 863 if (!*p) 864 continue; 865 866 token = match_token(p, tokens, args); 867 switch (token) { 868 case Opt_subvol: 869 kfree(*subvol_name); 870 *subvol_name = match_strdup(&args[0]); 871 if (!*subvol_name) { 872 error = -ENOMEM; 873 goto out; 874 } 875 break; 876 case Opt_subvolid: 877 num = match_strdup(&args[0]); 878 if (num) { 879 *subvol_objectid = memparse(num, NULL); 880 kfree(num); 881 /* we want the original fs_tree */ 882 if (!*subvol_objectid) 883 *subvol_objectid = 884 BTRFS_FS_TREE_OBJECTID; 885 } else { 886 error = -EINVAL; 887 goto out; 888 } 889 break; 890 case Opt_subvolrootid: 891 printk(KERN_WARNING 892 "BTRFS: 'subvolrootid' mount option is deprecated and has " 893 "no effect\n"); 894 break; 895 case Opt_device: 896 device_name = match_strdup(&args[0]); 897 if (!device_name) { 898 error = -ENOMEM; 899 goto out; 900 } 901 error = btrfs_scan_one_device(device_name, 902 flags, holder, fs_devices); 903 kfree(device_name); 904 if (error) 905 goto out; 906 break; 907 default: 908 break; 909 } 910 } 911 912 out: 913 kfree(orig); 914 return error; 915 } 916 917 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 918 u64 subvol_objectid) 919 { 920 struct btrfs_root *root = fs_info->tree_root; 921 struct btrfs_root *fs_root; 922 struct btrfs_root_ref *root_ref; 923 struct btrfs_inode_ref *inode_ref; 924 struct btrfs_key key; 925 struct btrfs_path *path = NULL; 926 char *name = NULL, *ptr; 927 u64 dirid; 928 int len; 929 int ret; 930 931 path = btrfs_alloc_path(); 932 if (!path) { 933 ret = -ENOMEM; 934 goto err; 935 } 936 path->leave_spinning = 1; 937 938 name = kmalloc(PATH_MAX, GFP_NOFS); 939 if (!name) { 940 ret = -ENOMEM; 941 goto err; 942 } 943 ptr = name + PATH_MAX - 1; 944 ptr[0] = '\0'; 945 946 /* 947 * Walk up the subvolume trees in the tree of tree roots by root 948 * backrefs until we hit the top-level subvolume. 949 */ 950 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 951 key.objectid = subvol_objectid; 952 key.type = BTRFS_ROOT_BACKREF_KEY; 953 key.offset = (u64)-1; 954 955 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 956 if (ret < 0) { 957 goto err; 958 } else if (ret > 0) { 959 ret = btrfs_previous_item(root, path, subvol_objectid, 960 BTRFS_ROOT_BACKREF_KEY); 961 if (ret < 0) { 962 goto err; 963 } else if (ret > 0) { 964 ret = -ENOENT; 965 goto err; 966 } 967 } 968 969 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 970 subvol_objectid = key.offset; 971 972 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 973 struct btrfs_root_ref); 974 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 975 ptr -= len + 1; 976 if (ptr < name) { 977 ret = -ENAMETOOLONG; 978 goto err; 979 } 980 read_extent_buffer(path->nodes[0], ptr + 1, 981 (unsigned long)(root_ref + 1), len); 982 ptr[0] = '/'; 983 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 984 btrfs_release_path(path); 985 986 key.objectid = subvol_objectid; 987 key.type = BTRFS_ROOT_ITEM_KEY; 988 key.offset = (u64)-1; 989 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 990 if (IS_ERR(fs_root)) { 991 ret = PTR_ERR(fs_root); 992 goto err; 993 } 994 995 /* 996 * Walk up the filesystem tree by inode refs until we hit the 997 * root directory. 998 */ 999 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1000 key.objectid = dirid; 1001 key.type = BTRFS_INODE_REF_KEY; 1002 key.offset = (u64)-1; 1003 1004 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1005 if (ret < 0) { 1006 goto err; 1007 } else if (ret > 0) { 1008 ret = btrfs_previous_item(fs_root, path, dirid, 1009 BTRFS_INODE_REF_KEY); 1010 if (ret < 0) { 1011 goto err; 1012 } else if (ret > 0) { 1013 ret = -ENOENT; 1014 goto err; 1015 } 1016 } 1017 1018 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1019 dirid = key.offset; 1020 1021 inode_ref = btrfs_item_ptr(path->nodes[0], 1022 path->slots[0], 1023 struct btrfs_inode_ref); 1024 len = btrfs_inode_ref_name_len(path->nodes[0], 1025 inode_ref); 1026 ptr -= len + 1; 1027 if (ptr < name) { 1028 ret = -ENAMETOOLONG; 1029 goto err; 1030 } 1031 read_extent_buffer(path->nodes[0], ptr + 1, 1032 (unsigned long)(inode_ref + 1), len); 1033 ptr[0] = '/'; 1034 btrfs_release_path(path); 1035 } 1036 } 1037 1038 btrfs_free_path(path); 1039 if (ptr == name + PATH_MAX - 1) { 1040 name[0] = '/'; 1041 name[1] = '\0'; 1042 } else { 1043 memmove(name, ptr, name + PATH_MAX - ptr); 1044 } 1045 return name; 1046 1047 err: 1048 btrfs_free_path(path); 1049 kfree(name); 1050 return ERR_PTR(ret); 1051 } 1052 1053 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1054 { 1055 struct btrfs_root *root = fs_info->tree_root; 1056 struct btrfs_dir_item *di; 1057 struct btrfs_path *path; 1058 struct btrfs_key location; 1059 u64 dir_id; 1060 1061 path = btrfs_alloc_path(); 1062 if (!path) 1063 return -ENOMEM; 1064 path->leave_spinning = 1; 1065 1066 /* 1067 * Find the "default" dir item which points to the root item that we 1068 * will mount by default if we haven't been given a specific subvolume 1069 * to mount. 1070 */ 1071 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1072 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1073 if (IS_ERR(di)) { 1074 btrfs_free_path(path); 1075 return PTR_ERR(di); 1076 } 1077 if (!di) { 1078 /* 1079 * Ok the default dir item isn't there. This is weird since 1080 * it's always been there, but don't freak out, just try and 1081 * mount the top-level subvolume. 1082 */ 1083 btrfs_free_path(path); 1084 *objectid = BTRFS_FS_TREE_OBJECTID; 1085 return 0; 1086 } 1087 1088 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1089 btrfs_free_path(path); 1090 *objectid = location.objectid; 1091 return 0; 1092 } 1093 1094 static int btrfs_fill_super(struct super_block *sb, 1095 struct btrfs_fs_devices *fs_devices, 1096 void *data, int silent) 1097 { 1098 struct inode *inode; 1099 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1100 struct btrfs_key key; 1101 int err; 1102 1103 sb->s_maxbytes = MAX_LFS_FILESIZE; 1104 sb->s_magic = BTRFS_SUPER_MAGIC; 1105 sb->s_op = &btrfs_super_ops; 1106 sb->s_d_op = &btrfs_dentry_operations; 1107 sb->s_export_op = &btrfs_export_ops; 1108 sb->s_xattr = btrfs_xattr_handlers; 1109 sb->s_time_gran = 1; 1110 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1111 sb->s_flags |= MS_POSIXACL; 1112 #endif 1113 sb->s_flags |= MS_I_VERSION; 1114 sb->s_iflags |= SB_I_CGROUPWB; 1115 err = open_ctree(sb, fs_devices, (char *)data); 1116 if (err) { 1117 printk(KERN_ERR "BTRFS: open_ctree failed\n"); 1118 return err; 1119 } 1120 1121 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1122 key.type = BTRFS_INODE_ITEM_KEY; 1123 key.offset = 0; 1124 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1125 if (IS_ERR(inode)) { 1126 err = PTR_ERR(inode); 1127 goto fail_close; 1128 } 1129 1130 sb->s_root = d_make_root(inode); 1131 if (!sb->s_root) { 1132 err = -ENOMEM; 1133 goto fail_close; 1134 } 1135 1136 save_mount_options(sb, data); 1137 cleancache_init_fs(sb); 1138 sb->s_flags |= MS_ACTIVE; 1139 return 0; 1140 1141 fail_close: 1142 close_ctree(fs_info->tree_root); 1143 return err; 1144 } 1145 1146 int btrfs_sync_fs(struct super_block *sb, int wait) 1147 { 1148 struct btrfs_trans_handle *trans; 1149 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1150 struct btrfs_root *root = fs_info->tree_root; 1151 1152 trace_btrfs_sync_fs(wait); 1153 1154 if (!wait) { 1155 filemap_flush(fs_info->btree_inode->i_mapping); 1156 return 0; 1157 } 1158 1159 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1160 1161 trans = btrfs_attach_transaction_barrier(root); 1162 if (IS_ERR(trans)) { 1163 /* no transaction, don't bother */ 1164 if (PTR_ERR(trans) == -ENOENT) { 1165 /* 1166 * Exit unless we have some pending changes 1167 * that need to go through commit 1168 */ 1169 if (fs_info->pending_changes == 0) 1170 return 0; 1171 /* 1172 * A non-blocking test if the fs is frozen. We must not 1173 * start a new transaction here otherwise a deadlock 1174 * happens. The pending operations are delayed to the 1175 * next commit after thawing. 1176 */ 1177 if (__sb_start_write(sb, SB_FREEZE_WRITE, false)) 1178 __sb_end_write(sb, SB_FREEZE_WRITE); 1179 else 1180 return 0; 1181 trans = btrfs_start_transaction(root, 0); 1182 } 1183 if (IS_ERR(trans)) 1184 return PTR_ERR(trans); 1185 } 1186 return btrfs_commit_transaction(trans, root); 1187 } 1188 1189 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1190 { 1191 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1192 struct btrfs_root *root = info->tree_root; 1193 char *compress_type; 1194 1195 if (btrfs_test_opt(root, DEGRADED)) 1196 seq_puts(seq, ",degraded"); 1197 if (btrfs_test_opt(root, NODATASUM)) 1198 seq_puts(seq, ",nodatasum"); 1199 if (btrfs_test_opt(root, NODATACOW)) 1200 seq_puts(seq, ",nodatacow"); 1201 if (btrfs_test_opt(root, NOBARRIER)) 1202 seq_puts(seq, ",nobarrier"); 1203 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1204 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1205 if (info->alloc_start != 0) 1206 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1207 if (info->thread_pool_size != min_t(unsigned long, 1208 num_online_cpus() + 2, 8)) 1209 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1210 if (btrfs_test_opt(root, COMPRESS)) { 1211 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1212 compress_type = "zlib"; 1213 else 1214 compress_type = "lzo"; 1215 if (btrfs_test_opt(root, FORCE_COMPRESS)) 1216 seq_printf(seq, ",compress-force=%s", compress_type); 1217 else 1218 seq_printf(seq, ",compress=%s", compress_type); 1219 } 1220 if (btrfs_test_opt(root, NOSSD)) 1221 seq_puts(seq, ",nossd"); 1222 if (btrfs_test_opt(root, SSD_SPREAD)) 1223 seq_puts(seq, ",ssd_spread"); 1224 else if (btrfs_test_opt(root, SSD)) 1225 seq_puts(seq, ",ssd"); 1226 if (btrfs_test_opt(root, NOTREELOG)) 1227 seq_puts(seq, ",notreelog"); 1228 if (btrfs_test_opt(root, NOLOGREPLAY)) 1229 seq_puts(seq, ",nologreplay"); 1230 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 1231 seq_puts(seq, ",flushoncommit"); 1232 if (btrfs_test_opt(root, DISCARD)) 1233 seq_puts(seq, ",discard"); 1234 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 1235 seq_puts(seq, ",noacl"); 1236 if (btrfs_test_opt(root, SPACE_CACHE)) 1237 seq_puts(seq, ",space_cache"); 1238 else if (btrfs_test_opt(root, FREE_SPACE_TREE)) 1239 seq_puts(seq, ",space_cache=v2"); 1240 else 1241 seq_puts(seq, ",nospace_cache"); 1242 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 1243 seq_puts(seq, ",rescan_uuid_tree"); 1244 if (btrfs_test_opt(root, CLEAR_CACHE)) 1245 seq_puts(seq, ",clear_cache"); 1246 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1247 seq_puts(seq, ",user_subvol_rm_allowed"); 1248 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 1249 seq_puts(seq, ",enospc_debug"); 1250 if (btrfs_test_opt(root, AUTO_DEFRAG)) 1251 seq_puts(seq, ",autodefrag"); 1252 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 1253 seq_puts(seq, ",inode_cache"); 1254 if (btrfs_test_opt(root, SKIP_BALANCE)) 1255 seq_puts(seq, ",skip_balance"); 1256 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1257 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1258 seq_puts(seq, ",check_int_data"); 1259 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1260 seq_puts(seq, ",check_int"); 1261 if (info->check_integrity_print_mask) 1262 seq_printf(seq, ",check_int_print_mask=%d", 1263 info->check_integrity_print_mask); 1264 #endif 1265 if (info->metadata_ratio) 1266 seq_printf(seq, ",metadata_ratio=%d", 1267 info->metadata_ratio); 1268 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1269 seq_puts(seq, ",fatal_errors=panic"); 1270 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1271 seq_printf(seq, ",commit=%d", info->commit_interval); 1272 #ifdef CONFIG_BTRFS_DEBUG 1273 if (btrfs_test_opt(root, FRAGMENT_DATA)) 1274 seq_puts(seq, ",fragment=data"); 1275 if (btrfs_test_opt(root, FRAGMENT_METADATA)) 1276 seq_puts(seq, ",fragment=metadata"); 1277 #endif 1278 seq_printf(seq, ",subvolid=%llu", 1279 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1280 seq_puts(seq, ",subvol="); 1281 seq_dentry(seq, dentry, " \t\n\\"); 1282 return 0; 1283 } 1284 1285 static int btrfs_test_super(struct super_block *s, void *data) 1286 { 1287 struct btrfs_fs_info *p = data; 1288 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1289 1290 return fs_info->fs_devices == p->fs_devices; 1291 } 1292 1293 static int btrfs_set_super(struct super_block *s, void *data) 1294 { 1295 int err = set_anon_super(s, data); 1296 if (!err) 1297 s->s_fs_info = data; 1298 return err; 1299 } 1300 1301 /* 1302 * subvolumes are identified by ino 256 1303 */ 1304 static inline int is_subvolume_inode(struct inode *inode) 1305 { 1306 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1307 return 1; 1308 return 0; 1309 } 1310 1311 /* 1312 * This will add subvolid=0 to the argument string while removing any subvol= 1313 * and subvolid= arguments to make sure we get the top-level root for path 1314 * walking to the subvol we want. 1315 */ 1316 static char *setup_root_args(char *args) 1317 { 1318 char *buf, *dst, *sep; 1319 1320 if (!args) 1321 return kstrdup("subvolid=0", GFP_NOFS); 1322 1323 /* The worst case is that we add ",subvolid=0" to the end. */ 1324 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS); 1325 if (!buf) 1326 return NULL; 1327 1328 while (1) { 1329 sep = strchrnul(args, ','); 1330 if (!strstarts(args, "subvol=") && 1331 !strstarts(args, "subvolid=")) { 1332 memcpy(dst, args, sep - args); 1333 dst += sep - args; 1334 *dst++ = ','; 1335 } 1336 if (*sep) 1337 args = sep + 1; 1338 else 1339 break; 1340 } 1341 strcpy(dst, "subvolid=0"); 1342 1343 return buf; 1344 } 1345 1346 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1347 int flags, const char *device_name, 1348 char *data) 1349 { 1350 struct dentry *root; 1351 struct vfsmount *mnt = NULL; 1352 char *newargs; 1353 int ret; 1354 1355 newargs = setup_root_args(data); 1356 if (!newargs) { 1357 root = ERR_PTR(-ENOMEM); 1358 goto out; 1359 } 1360 1361 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); 1362 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { 1363 if (flags & MS_RDONLY) { 1364 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, 1365 device_name, newargs); 1366 } else { 1367 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, 1368 device_name, newargs); 1369 if (IS_ERR(mnt)) { 1370 root = ERR_CAST(mnt); 1371 mnt = NULL; 1372 goto out; 1373 } 1374 1375 down_write(&mnt->mnt_sb->s_umount); 1376 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1377 up_write(&mnt->mnt_sb->s_umount); 1378 if (ret < 0) { 1379 root = ERR_PTR(ret); 1380 goto out; 1381 } 1382 } 1383 } 1384 if (IS_ERR(mnt)) { 1385 root = ERR_CAST(mnt); 1386 mnt = NULL; 1387 goto out; 1388 } 1389 1390 if (!subvol_name) { 1391 if (!subvol_objectid) { 1392 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1393 &subvol_objectid); 1394 if (ret) { 1395 root = ERR_PTR(ret); 1396 goto out; 1397 } 1398 } 1399 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1400 subvol_objectid); 1401 if (IS_ERR(subvol_name)) { 1402 root = ERR_CAST(subvol_name); 1403 subvol_name = NULL; 1404 goto out; 1405 } 1406 1407 } 1408 1409 root = mount_subtree(mnt, subvol_name); 1410 /* mount_subtree() drops our reference on the vfsmount. */ 1411 mnt = NULL; 1412 1413 if (!IS_ERR(root)) { 1414 struct super_block *s = root->d_sb; 1415 struct inode *root_inode = d_inode(root); 1416 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1417 1418 ret = 0; 1419 if (!is_subvolume_inode(root_inode)) { 1420 pr_err("BTRFS: '%s' is not a valid subvolume\n", 1421 subvol_name); 1422 ret = -EINVAL; 1423 } 1424 if (subvol_objectid && root_objectid != subvol_objectid) { 1425 /* 1426 * This will also catch a race condition where a 1427 * subvolume which was passed by ID is renamed and 1428 * another subvolume is renamed over the old location. 1429 */ 1430 pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n", 1431 subvol_name, subvol_objectid); 1432 ret = -EINVAL; 1433 } 1434 if (ret) { 1435 dput(root); 1436 root = ERR_PTR(ret); 1437 deactivate_locked_super(s); 1438 } 1439 } 1440 1441 out: 1442 mntput(mnt); 1443 kfree(newargs); 1444 kfree(subvol_name); 1445 return root; 1446 } 1447 1448 static int parse_security_options(char *orig_opts, 1449 struct security_mnt_opts *sec_opts) 1450 { 1451 char *secdata = NULL; 1452 int ret = 0; 1453 1454 secdata = alloc_secdata(); 1455 if (!secdata) 1456 return -ENOMEM; 1457 ret = security_sb_copy_data(orig_opts, secdata); 1458 if (ret) { 1459 free_secdata(secdata); 1460 return ret; 1461 } 1462 ret = security_sb_parse_opts_str(secdata, sec_opts); 1463 free_secdata(secdata); 1464 return ret; 1465 } 1466 1467 static int setup_security_options(struct btrfs_fs_info *fs_info, 1468 struct super_block *sb, 1469 struct security_mnt_opts *sec_opts) 1470 { 1471 int ret = 0; 1472 1473 /* 1474 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1475 * is valid. 1476 */ 1477 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1478 if (ret) 1479 return ret; 1480 1481 #ifdef CONFIG_SECURITY 1482 if (!fs_info->security_opts.num_mnt_opts) { 1483 /* first time security setup, copy sec_opts to fs_info */ 1484 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1485 } else { 1486 /* 1487 * Since SELinux (the only one supporting security_mnt_opts) 1488 * does NOT support changing context during remount/mount of 1489 * the same sb, this must be the same or part of the same 1490 * security options, just free it. 1491 */ 1492 security_free_mnt_opts(sec_opts); 1493 } 1494 #endif 1495 return ret; 1496 } 1497 1498 /* 1499 * Find a superblock for the given device / mount point. 1500 * 1501 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1502 * for multiple device setup. Make sure to keep it in sync. 1503 */ 1504 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1505 const char *device_name, void *data) 1506 { 1507 struct block_device *bdev = NULL; 1508 struct super_block *s; 1509 struct btrfs_fs_devices *fs_devices = NULL; 1510 struct btrfs_fs_info *fs_info = NULL; 1511 struct security_mnt_opts new_sec_opts; 1512 fmode_t mode = FMODE_READ; 1513 char *subvol_name = NULL; 1514 u64 subvol_objectid = 0; 1515 int error = 0; 1516 1517 if (!(flags & MS_RDONLY)) 1518 mode |= FMODE_WRITE; 1519 1520 error = btrfs_parse_early_options(data, mode, fs_type, 1521 &subvol_name, &subvol_objectid, 1522 &fs_devices); 1523 if (error) { 1524 kfree(subvol_name); 1525 return ERR_PTR(error); 1526 } 1527 1528 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1529 /* mount_subvol() will free subvol_name. */ 1530 return mount_subvol(subvol_name, subvol_objectid, flags, 1531 device_name, data); 1532 } 1533 1534 security_init_mnt_opts(&new_sec_opts); 1535 if (data) { 1536 error = parse_security_options(data, &new_sec_opts); 1537 if (error) 1538 return ERR_PTR(error); 1539 } 1540 1541 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1542 if (error) 1543 goto error_sec_opts; 1544 1545 /* 1546 * Setup a dummy root and fs_info for test/set super. This is because 1547 * we don't actually fill this stuff out until open_ctree, but we need 1548 * it for searching for existing supers, so this lets us do that and 1549 * then open_ctree will properly initialize everything later. 1550 */ 1551 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1552 if (!fs_info) { 1553 error = -ENOMEM; 1554 goto error_sec_opts; 1555 } 1556 1557 fs_info->fs_devices = fs_devices; 1558 1559 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1560 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1561 security_init_mnt_opts(&fs_info->security_opts); 1562 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1563 error = -ENOMEM; 1564 goto error_fs_info; 1565 } 1566 1567 error = btrfs_open_devices(fs_devices, mode, fs_type); 1568 if (error) 1569 goto error_fs_info; 1570 1571 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1572 error = -EACCES; 1573 goto error_close_devices; 1574 } 1575 1576 bdev = fs_devices->latest_bdev; 1577 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1578 fs_info); 1579 if (IS_ERR(s)) { 1580 error = PTR_ERR(s); 1581 goto error_close_devices; 1582 } 1583 1584 if (s->s_root) { 1585 btrfs_close_devices(fs_devices); 1586 free_fs_info(fs_info); 1587 if ((flags ^ s->s_flags) & MS_RDONLY) 1588 error = -EBUSY; 1589 } else { 1590 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1591 btrfs_sb(s)->bdev_holder = fs_type; 1592 error = btrfs_fill_super(s, fs_devices, data, 1593 flags & MS_SILENT ? 1 : 0); 1594 } 1595 if (error) { 1596 deactivate_locked_super(s); 1597 goto error_sec_opts; 1598 } 1599 1600 fs_info = btrfs_sb(s); 1601 error = setup_security_options(fs_info, s, &new_sec_opts); 1602 if (error) { 1603 deactivate_locked_super(s); 1604 goto error_sec_opts; 1605 } 1606 1607 return dget(s->s_root); 1608 1609 error_close_devices: 1610 btrfs_close_devices(fs_devices); 1611 error_fs_info: 1612 free_fs_info(fs_info); 1613 error_sec_opts: 1614 security_free_mnt_opts(&new_sec_opts); 1615 return ERR_PTR(error); 1616 } 1617 1618 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1619 int new_pool_size, int old_pool_size) 1620 { 1621 if (new_pool_size == old_pool_size) 1622 return; 1623 1624 fs_info->thread_pool_size = new_pool_size; 1625 1626 btrfs_info(fs_info, "resize thread pool %d -> %d", 1627 old_pool_size, new_pool_size); 1628 1629 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1630 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1631 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1632 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1633 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1634 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1635 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1636 new_pool_size); 1637 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1638 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1639 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1640 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1641 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1642 new_pool_size); 1643 } 1644 1645 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1646 { 1647 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1648 } 1649 1650 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1651 unsigned long old_opts, int flags) 1652 { 1653 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1654 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1655 (flags & MS_RDONLY))) { 1656 /* wait for any defraggers to finish */ 1657 wait_event(fs_info->transaction_wait, 1658 (atomic_read(&fs_info->defrag_running) == 0)); 1659 if (flags & MS_RDONLY) 1660 sync_filesystem(fs_info->sb); 1661 } 1662 } 1663 1664 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1665 unsigned long old_opts) 1666 { 1667 /* 1668 * We need to cleanup all defragable inodes if the autodefragment is 1669 * close or the filesystem is read only. 1670 */ 1671 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1672 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1673 (fs_info->sb->s_flags & MS_RDONLY))) { 1674 btrfs_cleanup_defrag_inodes(fs_info); 1675 } 1676 1677 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1678 } 1679 1680 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1681 { 1682 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1683 struct btrfs_root *root = fs_info->tree_root; 1684 unsigned old_flags = sb->s_flags; 1685 unsigned long old_opts = fs_info->mount_opt; 1686 unsigned long old_compress_type = fs_info->compress_type; 1687 u64 old_max_inline = fs_info->max_inline; 1688 u64 old_alloc_start = fs_info->alloc_start; 1689 int old_thread_pool_size = fs_info->thread_pool_size; 1690 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1691 int ret; 1692 1693 sync_filesystem(sb); 1694 btrfs_remount_prepare(fs_info); 1695 1696 if (data) { 1697 struct security_mnt_opts new_sec_opts; 1698 1699 security_init_mnt_opts(&new_sec_opts); 1700 ret = parse_security_options(data, &new_sec_opts); 1701 if (ret) 1702 goto restore; 1703 ret = setup_security_options(fs_info, sb, 1704 &new_sec_opts); 1705 if (ret) { 1706 security_free_mnt_opts(&new_sec_opts); 1707 goto restore; 1708 } 1709 } 1710 1711 ret = btrfs_parse_options(root, data, *flags); 1712 if (ret) { 1713 ret = -EINVAL; 1714 goto restore; 1715 } 1716 1717 btrfs_remount_begin(fs_info, old_opts, *flags); 1718 btrfs_resize_thread_pool(fs_info, 1719 fs_info->thread_pool_size, old_thread_pool_size); 1720 1721 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1722 goto out; 1723 1724 if (*flags & MS_RDONLY) { 1725 /* 1726 * this also happens on 'umount -rf' or on shutdown, when 1727 * the filesystem is busy. 1728 */ 1729 cancel_work_sync(&fs_info->async_reclaim_work); 1730 1731 /* wait for the uuid_scan task to finish */ 1732 down(&fs_info->uuid_tree_rescan_sem); 1733 /* avoid complains from lockdep et al. */ 1734 up(&fs_info->uuid_tree_rescan_sem); 1735 1736 sb->s_flags |= MS_RDONLY; 1737 1738 /* 1739 * Setting MS_RDONLY will put the cleaner thread to 1740 * sleep at the next loop if it's already active. 1741 * If it's already asleep, we'll leave unused block 1742 * groups on disk until we're mounted read-write again 1743 * unless we clean them up here. 1744 */ 1745 btrfs_delete_unused_bgs(fs_info); 1746 1747 btrfs_dev_replace_suspend_for_unmount(fs_info); 1748 btrfs_scrub_cancel(fs_info); 1749 btrfs_pause_balance(fs_info); 1750 1751 ret = btrfs_commit_super(root); 1752 if (ret) 1753 goto restore; 1754 } else { 1755 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1756 btrfs_err(fs_info, 1757 "Remounting read-write after error is not allowed"); 1758 ret = -EINVAL; 1759 goto restore; 1760 } 1761 if (fs_info->fs_devices->rw_devices == 0) { 1762 ret = -EACCES; 1763 goto restore; 1764 } 1765 1766 if (fs_info->fs_devices->missing_devices > 1767 fs_info->num_tolerated_disk_barrier_failures && 1768 !(*flags & MS_RDONLY)) { 1769 btrfs_warn(fs_info, 1770 "too many missing devices, writeable remount is not allowed"); 1771 ret = -EACCES; 1772 goto restore; 1773 } 1774 1775 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1776 ret = -EINVAL; 1777 goto restore; 1778 } 1779 1780 ret = btrfs_cleanup_fs_roots(fs_info); 1781 if (ret) 1782 goto restore; 1783 1784 /* recover relocation */ 1785 mutex_lock(&fs_info->cleaner_mutex); 1786 ret = btrfs_recover_relocation(root); 1787 mutex_unlock(&fs_info->cleaner_mutex); 1788 if (ret) 1789 goto restore; 1790 1791 ret = btrfs_resume_balance_async(fs_info); 1792 if (ret) 1793 goto restore; 1794 1795 ret = btrfs_resume_dev_replace_async(fs_info); 1796 if (ret) { 1797 btrfs_warn(fs_info, "failed to resume dev_replace"); 1798 goto restore; 1799 } 1800 1801 if (!fs_info->uuid_root) { 1802 btrfs_info(fs_info, "creating UUID tree"); 1803 ret = btrfs_create_uuid_tree(fs_info); 1804 if (ret) { 1805 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret); 1806 goto restore; 1807 } 1808 } 1809 sb->s_flags &= ~MS_RDONLY; 1810 1811 fs_info->open = 1; 1812 } 1813 out: 1814 wake_up_process(fs_info->transaction_kthread); 1815 btrfs_remount_cleanup(fs_info, old_opts); 1816 return 0; 1817 1818 restore: 1819 /* We've hit an error - don't reset MS_RDONLY */ 1820 if (sb->s_flags & MS_RDONLY) 1821 old_flags |= MS_RDONLY; 1822 sb->s_flags = old_flags; 1823 fs_info->mount_opt = old_opts; 1824 fs_info->compress_type = old_compress_type; 1825 fs_info->max_inline = old_max_inline; 1826 mutex_lock(&fs_info->chunk_mutex); 1827 fs_info->alloc_start = old_alloc_start; 1828 mutex_unlock(&fs_info->chunk_mutex); 1829 btrfs_resize_thread_pool(fs_info, 1830 old_thread_pool_size, fs_info->thread_pool_size); 1831 fs_info->metadata_ratio = old_metadata_ratio; 1832 btrfs_remount_cleanup(fs_info, old_opts); 1833 return ret; 1834 } 1835 1836 /* Used to sort the devices by max_avail(descending sort) */ 1837 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1838 const void *dev_info2) 1839 { 1840 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1841 ((struct btrfs_device_info *)dev_info2)->max_avail) 1842 return -1; 1843 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1844 ((struct btrfs_device_info *)dev_info2)->max_avail) 1845 return 1; 1846 else 1847 return 0; 1848 } 1849 1850 /* 1851 * sort the devices by max_avail, in which max free extent size of each device 1852 * is stored.(Descending Sort) 1853 */ 1854 static inline void btrfs_descending_sort_devices( 1855 struct btrfs_device_info *devices, 1856 size_t nr_devices) 1857 { 1858 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1859 btrfs_cmp_device_free_bytes, NULL); 1860 } 1861 1862 /* 1863 * The helper to calc the free space on the devices that can be used to store 1864 * file data. 1865 */ 1866 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1867 { 1868 struct btrfs_fs_info *fs_info = root->fs_info; 1869 struct btrfs_device_info *devices_info; 1870 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1871 struct btrfs_device *device; 1872 u64 skip_space; 1873 u64 type; 1874 u64 avail_space; 1875 u64 used_space; 1876 u64 min_stripe_size; 1877 int min_stripes = 1, num_stripes = 1; 1878 int i = 0, nr_devices; 1879 int ret; 1880 1881 /* 1882 * We aren't under the device list lock, so this is racy-ish, but good 1883 * enough for our purposes. 1884 */ 1885 nr_devices = fs_info->fs_devices->open_devices; 1886 if (!nr_devices) { 1887 smp_mb(); 1888 nr_devices = fs_info->fs_devices->open_devices; 1889 ASSERT(nr_devices); 1890 if (!nr_devices) { 1891 *free_bytes = 0; 1892 return 0; 1893 } 1894 } 1895 1896 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1897 GFP_NOFS); 1898 if (!devices_info) 1899 return -ENOMEM; 1900 1901 /* calc min stripe number for data space allocation */ 1902 type = btrfs_get_alloc_profile(root, 1); 1903 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1904 min_stripes = 2; 1905 num_stripes = nr_devices; 1906 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1907 min_stripes = 2; 1908 num_stripes = 2; 1909 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1910 min_stripes = 4; 1911 num_stripes = 4; 1912 } 1913 1914 if (type & BTRFS_BLOCK_GROUP_DUP) 1915 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1916 else 1917 min_stripe_size = BTRFS_STRIPE_LEN; 1918 1919 if (fs_info->alloc_start) 1920 mutex_lock(&fs_devices->device_list_mutex); 1921 rcu_read_lock(); 1922 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1923 if (!device->in_fs_metadata || !device->bdev || 1924 device->is_tgtdev_for_dev_replace) 1925 continue; 1926 1927 if (i >= nr_devices) 1928 break; 1929 1930 avail_space = device->total_bytes - device->bytes_used; 1931 1932 /* align with stripe_len */ 1933 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1934 avail_space *= BTRFS_STRIPE_LEN; 1935 1936 /* 1937 * In order to avoid overwriting the superblock on the drive, 1938 * btrfs starts at an offset of at least 1MB when doing chunk 1939 * allocation. 1940 */ 1941 skip_space = SZ_1M; 1942 1943 /* user can set the offset in fs_info->alloc_start. */ 1944 if (fs_info->alloc_start && 1945 fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1946 device->total_bytes) { 1947 rcu_read_unlock(); 1948 skip_space = max(fs_info->alloc_start, skip_space); 1949 1950 /* 1951 * btrfs can not use the free space in 1952 * [0, skip_space - 1], we must subtract it from the 1953 * total. In order to implement it, we account the used 1954 * space in this range first. 1955 */ 1956 ret = btrfs_account_dev_extents_size(device, 0, 1957 skip_space - 1, 1958 &used_space); 1959 if (ret) { 1960 kfree(devices_info); 1961 mutex_unlock(&fs_devices->device_list_mutex); 1962 return ret; 1963 } 1964 1965 rcu_read_lock(); 1966 1967 /* calc the free space in [0, skip_space - 1] */ 1968 skip_space -= used_space; 1969 } 1970 1971 /* 1972 * we can use the free space in [0, skip_space - 1], subtract 1973 * it from the total. 1974 */ 1975 if (avail_space && avail_space >= skip_space) 1976 avail_space -= skip_space; 1977 else 1978 avail_space = 0; 1979 1980 if (avail_space < min_stripe_size) 1981 continue; 1982 1983 devices_info[i].dev = device; 1984 devices_info[i].max_avail = avail_space; 1985 1986 i++; 1987 } 1988 rcu_read_unlock(); 1989 if (fs_info->alloc_start) 1990 mutex_unlock(&fs_devices->device_list_mutex); 1991 1992 nr_devices = i; 1993 1994 btrfs_descending_sort_devices(devices_info, nr_devices); 1995 1996 i = nr_devices - 1; 1997 avail_space = 0; 1998 while (nr_devices >= min_stripes) { 1999 if (num_stripes > nr_devices) 2000 num_stripes = nr_devices; 2001 2002 if (devices_info[i].max_avail >= min_stripe_size) { 2003 int j; 2004 u64 alloc_size; 2005 2006 avail_space += devices_info[i].max_avail * num_stripes; 2007 alloc_size = devices_info[i].max_avail; 2008 for (j = i + 1 - num_stripes; j <= i; j++) 2009 devices_info[j].max_avail -= alloc_size; 2010 } 2011 i--; 2012 nr_devices--; 2013 } 2014 2015 kfree(devices_info); 2016 *free_bytes = avail_space; 2017 return 0; 2018 } 2019 2020 /* 2021 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2022 * 2023 * If there's a redundant raid level at DATA block groups, use the respective 2024 * multiplier to scale the sizes. 2025 * 2026 * Unused device space usage is based on simulating the chunk allocator 2027 * algorithm that respects the device sizes, order of allocations and the 2028 * 'alloc_start' value, this is a close approximation of the actual use but 2029 * there are other factors that may change the result (like a new metadata 2030 * chunk). 2031 * 2032 * If metadata is exhausted, f_bavail will be 0. 2033 * 2034 * FIXME: not accurate for mixed block groups, total and free/used are ok, 2035 * available appears slightly larger. 2036 */ 2037 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2038 { 2039 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2040 struct btrfs_super_block *disk_super = fs_info->super_copy; 2041 struct list_head *head = &fs_info->space_info; 2042 struct btrfs_space_info *found; 2043 u64 total_used = 0; 2044 u64 total_free_data = 0; 2045 u64 total_free_meta = 0; 2046 int bits = dentry->d_sb->s_blocksize_bits; 2047 __be32 *fsid = (__be32 *)fs_info->fsid; 2048 unsigned factor = 1; 2049 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2050 int ret; 2051 u64 thresh = 0; 2052 int mixed = 0; 2053 2054 /* 2055 * holding chunk_mutex to avoid allocating new chunks, holding 2056 * device_list_mutex to avoid the device being removed 2057 */ 2058 rcu_read_lock(); 2059 list_for_each_entry_rcu(found, head, list) { 2060 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2061 int i; 2062 2063 total_free_data += found->disk_total - found->disk_used; 2064 total_free_data -= 2065 btrfs_account_ro_block_groups_free_space(found); 2066 2067 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2068 if (!list_empty(&found->block_groups[i])) { 2069 switch (i) { 2070 case BTRFS_RAID_DUP: 2071 case BTRFS_RAID_RAID1: 2072 case BTRFS_RAID_RAID10: 2073 factor = 2; 2074 } 2075 } 2076 } 2077 } 2078 2079 /* 2080 * Metadata in mixed block goup profiles are accounted in data 2081 */ 2082 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2083 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2084 mixed = 1; 2085 else 2086 total_free_meta += found->disk_total - 2087 found->disk_used; 2088 } 2089 2090 total_used += found->disk_used; 2091 } 2092 2093 rcu_read_unlock(); 2094 2095 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2096 buf->f_blocks >>= bits; 2097 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2098 2099 /* Account global block reserve as used, it's in logical size already */ 2100 spin_lock(&block_rsv->lock); 2101 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2102 if (buf->f_bfree >= block_rsv->size >> bits) 2103 buf->f_bfree -= block_rsv->size >> bits; 2104 else 2105 buf->f_bfree = 0; 2106 spin_unlock(&block_rsv->lock); 2107 2108 buf->f_bavail = div_u64(total_free_data, factor); 2109 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 2110 if (ret) 2111 return ret; 2112 buf->f_bavail += div_u64(total_free_data, factor); 2113 buf->f_bavail = buf->f_bavail >> bits; 2114 2115 /* 2116 * We calculate the remaining metadata space minus global reserve. If 2117 * this is (supposedly) smaller than zero, there's no space. But this 2118 * does not hold in practice, the exhausted state happens where's still 2119 * some positive delta. So we apply some guesswork and compare the 2120 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2121 * 2122 * We probably cannot calculate the exact threshold value because this 2123 * depends on the internal reservations requested by various 2124 * operations, so some operations that consume a few metadata will 2125 * succeed even if the Avail is zero. But this is better than the other 2126 * way around. 2127 */ 2128 thresh = 4 * 1024 * 1024; 2129 2130 if (!mixed && total_free_meta - thresh < block_rsv->size) 2131 buf->f_bavail = 0; 2132 2133 buf->f_type = BTRFS_SUPER_MAGIC; 2134 buf->f_bsize = dentry->d_sb->s_blocksize; 2135 buf->f_namelen = BTRFS_NAME_LEN; 2136 2137 /* We treat it as constant endianness (it doesn't matter _which_) 2138 because we want the fsid to come out the same whether mounted 2139 on a big-endian or little-endian host */ 2140 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2141 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2142 /* Mask in the root object ID too, to disambiguate subvols */ 2143 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2144 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2145 2146 return 0; 2147 } 2148 2149 static void btrfs_kill_super(struct super_block *sb) 2150 { 2151 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2152 kill_anon_super(sb); 2153 free_fs_info(fs_info); 2154 } 2155 2156 static struct file_system_type btrfs_fs_type = { 2157 .owner = THIS_MODULE, 2158 .name = "btrfs", 2159 .mount = btrfs_mount, 2160 .kill_sb = btrfs_kill_super, 2161 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2162 }; 2163 MODULE_ALIAS_FS("btrfs"); 2164 2165 static int btrfs_control_open(struct inode *inode, struct file *file) 2166 { 2167 /* 2168 * The control file's private_data is used to hold the 2169 * transaction when it is started and is used to keep 2170 * track of whether a transaction is already in progress. 2171 */ 2172 file->private_data = NULL; 2173 return 0; 2174 } 2175 2176 /* 2177 * used by btrfsctl to scan devices when no FS is mounted 2178 */ 2179 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2180 unsigned long arg) 2181 { 2182 struct btrfs_ioctl_vol_args *vol; 2183 struct btrfs_fs_devices *fs_devices; 2184 int ret = -ENOTTY; 2185 2186 if (!capable(CAP_SYS_ADMIN)) 2187 return -EPERM; 2188 2189 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2190 if (IS_ERR(vol)) 2191 return PTR_ERR(vol); 2192 2193 switch (cmd) { 2194 case BTRFS_IOC_SCAN_DEV: 2195 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2196 &btrfs_fs_type, &fs_devices); 2197 break; 2198 case BTRFS_IOC_DEVICES_READY: 2199 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2200 &btrfs_fs_type, &fs_devices); 2201 if (ret) 2202 break; 2203 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2204 break; 2205 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2206 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2207 break; 2208 } 2209 2210 kfree(vol); 2211 return ret; 2212 } 2213 2214 static int btrfs_freeze(struct super_block *sb) 2215 { 2216 struct btrfs_trans_handle *trans; 2217 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 2218 2219 trans = btrfs_attach_transaction_barrier(root); 2220 if (IS_ERR(trans)) { 2221 /* no transaction, don't bother */ 2222 if (PTR_ERR(trans) == -ENOENT) 2223 return 0; 2224 return PTR_ERR(trans); 2225 } 2226 return btrfs_commit_transaction(trans, root); 2227 } 2228 2229 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2230 { 2231 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2232 struct btrfs_fs_devices *cur_devices; 2233 struct btrfs_device *dev, *first_dev = NULL; 2234 struct list_head *head; 2235 struct rcu_string *name; 2236 2237 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2238 cur_devices = fs_info->fs_devices; 2239 while (cur_devices) { 2240 head = &cur_devices->devices; 2241 list_for_each_entry(dev, head, dev_list) { 2242 if (dev->missing) 2243 continue; 2244 if (!dev->name) 2245 continue; 2246 if (!first_dev || dev->devid < first_dev->devid) 2247 first_dev = dev; 2248 } 2249 cur_devices = cur_devices->seed; 2250 } 2251 2252 if (first_dev) { 2253 rcu_read_lock(); 2254 name = rcu_dereference(first_dev->name); 2255 seq_escape(m, name->str, " \t\n\\"); 2256 rcu_read_unlock(); 2257 } else { 2258 WARN_ON(1); 2259 } 2260 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2261 return 0; 2262 } 2263 2264 static const struct super_operations btrfs_super_ops = { 2265 .drop_inode = btrfs_drop_inode, 2266 .evict_inode = btrfs_evict_inode, 2267 .put_super = btrfs_put_super, 2268 .sync_fs = btrfs_sync_fs, 2269 .show_options = btrfs_show_options, 2270 .show_devname = btrfs_show_devname, 2271 .write_inode = btrfs_write_inode, 2272 .alloc_inode = btrfs_alloc_inode, 2273 .destroy_inode = btrfs_destroy_inode, 2274 .statfs = btrfs_statfs, 2275 .remount_fs = btrfs_remount, 2276 .freeze_fs = btrfs_freeze, 2277 }; 2278 2279 static const struct file_operations btrfs_ctl_fops = { 2280 .open = btrfs_control_open, 2281 .unlocked_ioctl = btrfs_control_ioctl, 2282 .compat_ioctl = btrfs_control_ioctl, 2283 .owner = THIS_MODULE, 2284 .llseek = noop_llseek, 2285 }; 2286 2287 static struct miscdevice btrfs_misc = { 2288 .minor = BTRFS_MINOR, 2289 .name = "btrfs-control", 2290 .fops = &btrfs_ctl_fops 2291 }; 2292 2293 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2294 MODULE_ALIAS("devname:btrfs-control"); 2295 2296 static int btrfs_interface_init(void) 2297 { 2298 return misc_register(&btrfs_misc); 2299 } 2300 2301 static void btrfs_interface_exit(void) 2302 { 2303 misc_deregister(&btrfs_misc); 2304 } 2305 2306 static void btrfs_print_mod_info(void) 2307 { 2308 printk(KERN_INFO "Btrfs loaded, crc32c=%s" 2309 #ifdef CONFIG_BTRFS_DEBUG 2310 ", debug=on" 2311 #endif 2312 #ifdef CONFIG_BTRFS_ASSERT 2313 ", assert=on" 2314 #endif 2315 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2316 ", integrity-checker=on" 2317 #endif 2318 "\n", 2319 btrfs_crc32c_impl()); 2320 } 2321 2322 static int btrfs_run_sanity_tests(void) 2323 { 2324 int ret, i; 2325 u32 sectorsize, nodesize; 2326 u32 test_sectorsize[] = { 2327 PAGE_SIZE, 2328 }; 2329 ret = btrfs_init_test_fs(); 2330 if (ret) 2331 return ret; 2332 for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) { 2333 sectorsize = test_sectorsize[i]; 2334 for (nodesize = sectorsize; 2335 nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE; 2336 nodesize <<= 1) { 2337 pr_info("BTRFS: selftest: sectorsize: %u nodesize: %u\n", 2338 sectorsize, nodesize); 2339 ret = btrfs_test_free_space_cache(sectorsize, nodesize); 2340 if (ret) 2341 goto out; 2342 ret = btrfs_test_extent_buffer_operations(sectorsize, 2343 nodesize); 2344 if (ret) 2345 goto out; 2346 ret = btrfs_test_extent_io(sectorsize, nodesize); 2347 if (ret) 2348 goto out; 2349 ret = btrfs_test_inodes(sectorsize, nodesize); 2350 if (ret) 2351 goto out; 2352 ret = btrfs_test_qgroups(sectorsize, nodesize); 2353 if (ret) 2354 goto out; 2355 ret = btrfs_test_free_space_tree(sectorsize, nodesize); 2356 if (ret) 2357 goto out; 2358 } 2359 } 2360 out: 2361 btrfs_destroy_test_fs(); 2362 return ret; 2363 } 2364 2365 static int __init init_btrfs_fs(void) 2366 { 2367 int err; 2368 2369 err = btrfs_hash_init(); 2370 if (err) 2371 return err; 2372 2373 btrfs_props_init(); 2374 2375 err = btrfs_init_sysfs(); 2376 if (err) 2377 goto free_hash; 2378 2379 btrfs_init_compress(); 2380 2381 err = btrfs_init_cachep(); 2382 if (err) 2383 goto free_compress; 2384 2385 err = extent_io_init(); 2386 if (err) 2387 goto free_cachep; 2388 2389 err = extent_map_init(); 2390 if (err) 2391 goto free_extent_io; 2392 2393 err = ordered_data_init(); 2394 if (err) 2395 goto free_extent_map; 2396 2397 err = btrfs_delayed_inode_init(); 2398 if (err) 2399 goto free_ordered_data; 2400 2401 err = btrfs_auto_defrag_init(); 2402 if (err) 2403 goto free_delayed_inode; 2404 2405 err = btrfs_delayed_ref_init(); 2406 if (err) 2407 goto free_auto_defrag; 2408 2409 err = btrfs_prelim_ref_init(); 2410 if (err) 2411 goto free_delayed_ref; 2412 2413 err = btrfs_end_io_wq_init(); 2414 if (err) 2415 goto free_prelim_ref; 2416 2417 err = btrfs_interface_init(); 2418 if (err) 2419 goto free_end_io_wq; 2420 2421 btrfs_init_lockdep(); 2422 2423 btrfs_print_mod_info(); 2424 2425 err = btrfs_run_sanity_tests(); 2426 if (err) 2427 goto unregister_ioctl; 2428 2429 err = register_filesystem(&btrfs_fs_type); 2430 if (err) 2431 goto unregister_ioctl; 2432 2433 return 0; 2434 2435 unregister_ioctl: 2436 btrfs_interface_exit(); 2437 free_end_io_wq: 2438 btrfs_end_io_wq_exit(); 2439 free_prelim_ref: 2440 btrfs_prelim_ref_exit(); 2441 free_delayed_ref: 2442 btrfs_delayed_ref_exit(); 2443 free_auto_defrag: 2444 btrfs_auto_defrag_exit(); 2445 free_delayed_inode: 2446 btrfs_delayed_inode_exit(); 2447 free_ordered_data: 2448 ordered_data_exit(); 2449 free_extent_map: 2450 extent_map_exit(); 2451 free_extent_io: 2452 extent_io_exit(); 2453 free_cachep: 2454 btrfs_destroy_cachep(); 2455 free_compress: 2456 btrfs_exit_compress(); 2457 btrfs_exit_sysfs(); 2458 free_hash: 2459 btrfs_hash_exit(); 2460 return err; 2461 } 2462 2463 static void __exit exit_btrfs_fs(void) 2464 { 2465 btrfs_destroy_cachep(); 2466 btrfs_delayed_ref_exit(); 2467 btrfs_auto_defrag_exit(); 2468 btrfs_delayed_inode_exit(); 2469 btrfs_prelim_ref_exit(); 2470 ordered_data_exit(); 2471 extent_map_exit(); 2472 extent_io_exit(); 2473 btrfs_interface_exit(); 2474 btrfs_end_io_wq_exit(); 2475 unregister_filesystem(&btrfs_fs_type); 2476 btrfs_exit_sysfs(); 2477 btrfs_cleanup_fs_uuids(); 2478 btrfs_exit_compress(); 2479 btrfs_hash_exit(); 2480 } 2481 2482 late_initcall(init_btrfs_fs); 2483 module_exit(exit_btrfs_fs) 2484 2485 MODULE_LICENSE("GPL"); 2486