xref: /openbmc/linux/fs/btrfs/super.c (revision 4d2804b7)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
72 const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
100 /* btrfs handle error by forcing the filesystem readonly */
101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
102 {
103 	struct super_block *sb = fs_info->sb;
104 
105 	if (sb->s_flags & MS_RDONLY)
106 		return;
107 
108 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
109 		sb->s_flags |= MS_RDONLY;
110 		btrfs_info(fs_info, "forced readonly");
111 		/*
112 		 * Note that a running device replace operation is not
113 		 * canceled here although there is no way to update
114 		 * the progress. It would add the risk of a deadlock,
115 		 * therefore the canceling is omitted. The only penalty
116 		 * is that some I/O remains active until the procedure
117 		 * completes. The next time when the filesystem is
118 		 * mounted writeable again, the device replace
119 		 * operation continues.
120 		 */
121 	}
122 }
123 
124 /*
125  * __btrfs_handle_fs_error decodes expected errors from the caller and
126  * invokes the approciate error response.
127  */
128 __cold
129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
130 		       unsigned int line, int errno, const char *fmt, ...)
131 {
132 	struct super_block *sb = fs_info->sb;
133 #ifdef CONFIG_PRINTK
134 	const char *errstr;
135 #endif
136 
137 	/*
138 	 * Special case: if the error is EROFS, and we're already
139 	 * under MS_RDONLY, then it is safe here.
140 	 */
141 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
142   		return;
143 
144 #ifdef CONFIG_PRINTK
145 	errstr = btrfs_decode_error(errno);
146 	if (fmt) {
147 		struct va_format vaf;
148 		va_list args;
149 
150 		va_start(args, fmt);
151 		vaf.fmt = fmt;
152 		vaf.va = &args;
153 
154 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
155 			sb->s_id, function, line, errno, errstr, &vaf);
156 		va_end(args);
157 	} else {
158 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
159 			sb->s_id, function, line, errno, errstr);
160 	}
161 #endif
162 
163 	/*
164 	 * Today we only save the error info to memory.  Long term we'll
165 	 * also send it down to the disk
166 	 */
167 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
168 
169 	/* Don't go through full error handling during mount */
170 	if (sb->s_flags & MS_BORN)
171 		btrfs_handle_error(fs_info);
172 }
173 
174 #ifdef CONFIG_PRINTK
175 static const char * const logtypes[] = {
176 	"emergency",
177 	"alert",
178 	"critical",
179 	"error",
180 	"warning",
181 	"notice",
182 	"info",
183 	"debug",
184 };
185 
186 
187 /*
188  * Use one ratelimit state per log level so that a flood of less important
189  * messages doesn't cause more important ones to be dropped.
190  */
191 static struct ratelimit_state printk_limits[] = {
192 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
193 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
200 };
201 
202 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
203 {
204 	struct super_block *sb = fs_info->sb;
205 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
206 	struct va_format vaf;
207 	va_list args;
208 	int kern_level;
209 	const char *type = logtypes[4];
210 	struct ratelimit_state *ratelimit = &printk_limits[4];
211 
212 	va_start(args, fmt);
213 
214 	while ((kern_level = printk_get_level(fmt)) != 0) {
215 		size_t size = printk_skip_level(fmt) - fmt;
216 
217 		if (kern_level >= '0' && kern_level <= '7') {
218 			memcpy(lvl, fmt,  size);
219 			lvl[size] = '\0';
220 			type = logtypes[kern_level - '0'];
221 			ratelimit = &printk_limits[kern_level - '0'];
222 		}
223 		fmt += size;
224 	}
225 
226 	vaf.fmt = fmt;
227 	vaf.va = &args;
228 
229 	if (__ratelimit(ratelimit))
230 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
231 
232 	va_end(args);
233 }
234 #endif
235 
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 __cold
250 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
251 			       const char *function,
252 			       unsigned int line, int errno)
253 {
254 	struct btrfs_fs_info *fs_info = trans->fs_info;
255 
256 	trans->aborted = errno;
257 	/* Nothing used. The other threads that have joined this
258 	 * transaction may be able to continue. */
259 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
260 		const char *errstr;
261 
262 		errstr = btrfs_decode_error(errno);
263 		btrfs_warn(fs_info,
264 		           "%s:%d: Aborting unused transaction(%s).",
265 		           function, line, errstr);
266 		return;
267 	}
268 	WRITE_ONCE(trans->transaction->aborted, errno);
269 	/* Wake up anybody who may be waiting on this transaction */
270 	wake_up(&fs_info->transaction_wait);
271 	wake_up(&fs_info->transaction_blocked_wait);
272 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
273 }
274 /*
275  * __btrfs_panic decodes unexpected, fatal errors from the caller,
276  * issues an alert, and either panics or BUGs, depending on mount options.
277  */
278 __cold
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280 		   unsigned int line, int errno, const char *fmt, ...)
281 {
282 	char *s_id = "<unknown>";
283 	const char *errstr;
284 	struct va_format vaf = { .fmt = fmt };
285 	va_list args;
286 
287 	if (fs_info)
288 		s_id = fs_info->sb->s_id;
289 
290 	va_start(args, fmt);
291 	vaf.va = &args;
292 
293 	errstr = btrfs_decode_error(errno);
294 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296 			s_id, function, line, &vaf, errno, errstr);
297 
298 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299 		   function, line, &vaf, errno, errstr);
300 	va_end(args);
301 	/* Caller calls BUG() */
302 }
303 
304 static void btrfs_put_super(struct super_block *sb)
305 {
306 	close_ctree(btrfs_sb(sb));
307 }
308 
309 enum {
310 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
311 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
312 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
313 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
314 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
315 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
316 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
317 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
318 	Opt_skip_balance, Opt_check_integrity,
319 	Opt_check_integrity_including_extent_data,
320 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
321 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
322 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
323 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
324 	Opt_nologreplay, Opt_norecovery,
325 #ifdef CONFIG_BTRFS_DEBUG
326 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
327 #endif
328 	Opt_err,
329 };
330 
331 static const match_table_t tokens = {
332 	{Opt_degraded, "degraded"},
333 	{Opt_subvol, "subvol=%s"},
334 	{Opt_subvolid, "subvolid=%s"},
335 	{Opt_device, "device=%s"},
336 	{Opt_nodatasum, "nodatasum"},
337 	{Opt_datasum, "datasum"},
338 	{Opt_nodatacow, "nodatacow"},
339 	{Opt_datacow, "datacow"},
340 	{Opt_nobarrier, "nobarrier"},
341 	{Opt_barrier, "barrier"},
342 	{Opt_max_inline, "max_inline=%s"},
343 	{Opt_alloc_start, "alloc_start=%s"},
344 	{Opt_thread_pool, "thread_pool=%d"},
345 	{Opt_compress, "compress"},
346 	{Opt_compress_type, "compress=%s"},
347 	{Opt_compress_force, "compress-force"},
348 	{Opt_compress_force_type, "compress-force=%s"},
349 	{Opt_ssd, "ssd"},
350 	{Opt_ssd_spread, "ssd_spread"},
351 	{Opt_nossd, "nossd"},
352 	{Opt_acl, "acl"},
353 	{Opt_noacl, "noacl"},
354 	{Opt_notreelog, "notreelog"},
355 	{Opt_treelog, "treelog"},
356 	{Opt_nologreplay, "nologreplay"},
357 	{Opt_norecovery, "norecovery"},
358 	{Opt_flushoncommit, "flushoncommit"},
359 	{Opt_noflushoncommit, "noflushoncommit"},
360 	{Opt_ratio, "metadata_ratio=%d"},
361 	{Opt_discard, "discard"},
362 	{Opt_nodiscard, "nodiscard"},
363 	{Opt_space_cache, "space_cache"},
364 	{Opt_space_cache_version, "space_cache=%s"},
365 	{Opt_clear_cache, "clear_cache"},
366 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
367 	{Opt_enospc_debug, "enospc_debug"},
368 	{Opt_noenospc_debug, "noenospc_debug"},
369 	{Opt_subvolrootid, "subvolrootid=%d"},
370 	{Opt_defrag, "autodefrag"},
371 	{Opt_nodefrag, "noautodefrag"},
372 	{Opt_inode_cache, "inode_cache"},
373 	{Opt_noinode_cache, "noinode_cache"},
374 	{Opt_no_space_cache, "nospace_cache"},
375 	{Opt_recovery, "recovery"}, /* deprecated */
376 	{Opt_usebackuproot, "usebackuproot"},
377 	{Opt_skip_balance, "skip_balance"},
378 	{Opt_check_integrity, "check_int"},
379 	{Opt_check_integrity_including_extent_data, "check_int_data"},
380 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
381 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
382 	{Opt_fatal_errors, "fatal_errors=%s"},
383 	{Opt_commit_interval, "commit=%d"},
384 #ifdef CONFIG_BTRFS_DEBUG
385 	{Opt_fragment_data, "fragment=data"},
386 	{Opt_fragment_metadata, "fragment=metadata"},
387 	{Opt_fragment_all, "fragment=all"},
388 #endif
389 	{Opt_err, NULL},
390 };
391 
392 /*
393  * Regular mount options parser.  Everything that is needed only when
394  * reading in a new superblock is parsed here.
395  * XXX JDM: This needs to be cleaned up for remount.
396  */
397 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
398 			unsigned long new_flags)
399 {
400 	substring_t args[MAX_OPT_ARGS];
401 	char *p, *num, *orig = NULL;
402 	u64 cache_gen;
403 	int intarg;
404 	int ret = 0;
405 	char *compress_type;
406 	bool compress_force = false;
407 	enum btrfs_compression_type saved_compress_type;
408 	bool saved_compress_force;
409 	int no_compress = 0;
410 
411 	cache_gen = btrfs_super_cache_generation(info->super_copy);
412 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
413 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
414 	else if (cache_gen)
415 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
416 
417 	/*
418 	 * Even the options are empty, we still need to do extra check
419 	 * against new flags
420 	 */
421 	if (!options)
422 		goto check;
423 
424 	/*
425 	 * strsep changes the string, duplicate it because parse_options
426 	 * gets called twice
427 	 */
428 	options = kstrdup(options, GFP_NOFS);
429 	if (!options)
430 		return -ENOMEM;
431 
432 	orig = options;
433 
434 	while ((p = strsep(&options, ",")) != NULL) {
435 		int token;
436 		if (!*p)
437 			continue;
438 
439 		token = match_token(p, tokens, args);
440 		switch (token) {
441 		case Opt_degraded:
442 			btrfs_info(info, "allowing degraded mounts");
443 			btrfs_set_opt(info->mount_opt, DEGRADED);
444 			break;
445 		case Opt_subvol:
446 		case Opt_subvolid:
447 		case Opt_subvolrootid:
448 		case Opt_device:
449 			/*
450 			 * These are parsed by btrfs_parse_early_options
451 			 * and can be happily ignored here.
452 			 */
453 			break;
454 		case Opt_nodatasum:
455 			btrfs_set_and_info(info, NODATASUM,
456 					   "setting nodatasum");
457 			break;
458 		case Opt_datasum:
459 			if (btrfs_test_opt(info, NODATASUM)) {
460 				if (btrfs_test_opt(info, NODATACOW))
461 					btrfs_info(info,
462 						   "setting datasum, datacow enabled");
463 				else
464 					btrfs_info(info, "setting datasum");
465 			}
466 			btrfs_clear_opt(info->mount_opt, NODATACOW);
467 			btrfs_clear_opt(info->mount_opt, NODATASUM);
468 			break;
469 		case Opt_nodatacow:
470 			if (!btrfs_test_opt(info, NODATACOW)) {
471 				if (!btrfs_test_opt(info, COMPRESS) ||
472 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
473 					btrfs_info(info,
474 						   "setting nodatacow, compression disabled");
475 				} else {
476 					btrfs_info(info, "setting nodatacow");
477 				}
478 			}
479 			btrfs_clear_opt(info->mount_opt, COMPRESS);
480 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
481 			btrfs_set_opt(info->mount_opt, NODATACOW);
482 			btrfs_set_opt(info->mount_opt, NODATASUM);
483 			break;
484 		case Opt_datacow:
485 			btrfs_clear_and_info(info, NODATACOW,
486 					     "setting datacow");
487 			break;
488 		case Opt_compress_force:
489 		case Opt_compress_force_type:
490 			compress_force = true;
491 			/* Fallthrough */
492 		case Opt_compress:
493 		case Opt_compress_type:
494 			saved_compress_type = btrfs_test_opt(info,
495 							     COMPRESS) ?
496 				info->compress_type : BTRFS_COMPRESS_NONE;
497 			saved_compress_force =
498 				btrfs_test_opt(info, FORCE_COMPRESS);
499 			if (token == Opt_compress ||
500 			    token == Opt_compress_force ||
501 			    strcmp(args[0].from, "zlib") == 0) {
502 				compress_type = "zlib";
503 				info->compress_type = BTRFS_COMPRESS_ZLIB;
504 				btrfs_set_opt(info->mount_opt, COMPRESS);
505 				btrfs_clear_opt(info->mount_opt, NODATACOW);
506 				btrfs_clear_opt(info->mount_opt, NODATASUM);
507 				no_compress = 0;
508 			} else if (strcmp(args[0].from, "lzo") == 0) {
509 				compress_type = "lzo";
510 				info->compress_type = BTRFS_COMPRESS_LZO;
511 				btrfs_set_opt(info->mount_opt, COMPRESS);
512 				btrfs_clear_opt(info->mount_opt, NODATACOW);
513 				btrfs_clear_opt(info->mount_opt, NODATASUM);
514 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
515 				no_compress = 0;
516 			} else if (strncmp(args[0].from, "no", 2) == 0) {
517 				compress_type = "no";
518 				btrfs_clear_opt(info->mount_opt, COMPRESS);
519 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
520 				compress_force = false;
521 				no_compress++;
522 			} else {
523 				ret = -EINVAL;
524 				goto out;
525 			}
526 
527 			if (compress_force) {
528 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
529 			} else {
530 				/*
531 				 * If we remount from compress-force=xxx to
532 				 * compress=xxx, we need clear FORCE_COMPRESS
533 				 * flag, otherwise, there is no way for users
534 				 * to disable forcible compression separately.
535 				 */
536 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
537 			}
538 			if ((btrfs_test_opt(info, COMPRESS) &&
539 			     (info->compress_type != saved_compress_type ||
540 			      compress_force != saved_compress_force)) ||
541 			    (!btrfs_test_opt(info, COMPRESS) &&
542 			     no_compress == 1)) {
543 				btrfs_info(info, "%s %s compression",
544 					   (compress_force) ? "force" : "use",
545 					   compress_type);
546 			}
547 			compress_force = false;
548 			break;
549 		case Opt_ssd:
550 			btrfs_set_and_info(info, SSD,
551 					   "use ssd allocation scheme");
552 			btrfs_clear_opt(info->mount_opt, NOSSD);
553 			break;
554 		case Opt_ssd_spread:
555 			btrfs_set_and_info(info, SSD_SPREAD,
556 					   "use spread ssd allocation scheme");
557 			btrfs_set_opt(info->mount_opt, SSD);
558 			btrfs_clear_opt(info->mount_opt, NOSSD);
559 			break;
560 		case Opt_nossd:
561 			btrfs_set_and_info(info, NOSSD,
562 					     "not using ssd allocation scheme");
563 			btrfs_clear_opt(info->mount_opt, SSD);
564 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
565 			break;
566 		case Opt_barrier:
567 			btrfs_clear_and_info(info, NOBARRIER,
568 					     "turning on barriers");
569 			break;
570 		case Opt_nobarrier:
571 			btrfs_set_and_info(info, NOBARRIER,
572 					   "turning off barriers");
573 			break;
574 		case Opt_thread_pool:
575 			ret = match_int(&args[0], &intarg);
576 			if (ret) {
577 				goto out;
578 			} else if (intarg > 0) {
579 				info->thread_pool_size = intarg;
580 			} else {
581 				ret = -EINVAL;
582 				goto out;
583 			}
584 			break;
585 		case Opt_max_inline:
586 			num = match_strdup(&args[0]);
587 			if (num) {
588 				info->max_inline = memparse(num, NULL);
589 				kfree(num);
590 
591 				if (info->max_inline) {
592 					info->max_inline = min_t(u64,
593 						info->max_inline,
594 						info->sectorsize);
595 				}
596 				btrfs_info(info, "max_inline at %llu",
597 					   info->max_inline);
598 			} else {
599 				ret = -ENOMEM;
600 				goto out;
601 			}
602 			break;
603 		case Opt_alloc_start:
604 			num = match_strdup(&args[0]);
605 			if (num) {
606 				mutex_lock(&info->chunk_mutex);
607 				info->alloc_start = memparse(num, NULL);
608 				mutex_unlock(&info->chunk_mutex);
609 				kfree(num);
610 				btrfs_info(info, "allocations start at %llu",
611 					   info->alloc_start);
612 			} else {
613 				ret = -ENOMEM;
614 				goto out;
615 			}
616 			break;
617 		case Opt_acl:
618 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
619 			info->sb->s_flags |= MS_POSIXACL;
620 			break;
621 #else
622 			btrfs_err(info, "support for ACL not compiled in!");
623 			ret = -EINVAL;
624 			goto out;
625 #endif
626 		case Opt_noacl:
627 			info->sb->s_flags &= ~MS_POSIXACL;
628 			break;
629 		case Opt_notreelog:
630 			btrfs_set_and_info(info, NOTREELOG,
631 					   "disabling tree log");
632 			break;
633 		case Opt_treelog:
634 			btrfs_clear_and_info(info, NOTREELOG,
635 					     "enabling tree log");
636 			break;
637 		case Opt_norecovery:
638 		case Opt_nologreplay:
639 			btrfs_set_and_info(info, NOLOGREPLAY,
640 					   "disabling log replay at mount time");
641 			break;
642 		case Opt_flushoncommit:
643 			btrfs_set_and_info(info, FLUSHONCOMMIT,
644 					   "turning on flush-on-commit");
645 			break;
646 		case Opt_noflushoncommit:
647 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
648 					     "turning off flush-on-commit");
649 			break;
650 		case Opt_ratio:
651 			ret = match_int(&args[0], &intarg);
652 			if (ret) {
653 				goto out;
654 			} else if (intarg >= 0) {
655 				info->metadata_ratio = intarg;
656 				btrfs_info(info, "metadata ratio %d",
657 					   info->metadata_ratio);
658 			} else {
659 				ret = -EINVAL;
660 				goto out;
661 			}
662 			break;
663 		case Opt_discard:
664 			btrfs_set_and_info(info, DISCARD,
665 					   "turning on discard");
666 			break;
667 		case Opt_nodiscard:
668 			btrfs_clear_and_info(info, DISCARD,
669 					     "turning off discard");
670 			break;
671 		case Opt_space_cache:
672 		case Opt_space_cache_version:
673 			if (token == Opt_space_cache ||
674 			    strcmp(args[0].from, "v1") == 0) {
675 				btrfs_clear_opt(info->mount_opt,
676 						FREE_SPACE_TREE);
677 				btrfs_set_and_info(info, SPACE_CACHE,
678 					   "enabling disk space caching");
679 			} else if (strcmp(args[0].from, "v2") == 0) {
680 				btrfs_clear_opt(info->mount_opt,
681 						SPACE_CACHE);
682 				btrfs_set_and_info(info, FREE_SPACE_TREE,
683 						   "enabling free space tree");
684 			} else {
685 				ret = -EINVAL;
686 				goto out;
687 			}
688 			break;
689 		case Opt_rescan_uuid_tree:
690 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
691 			break;
692 		case Opt_no_space_cache:
693 			if (btrfs_test_opt(info, SPACE_CACHE)) {
694 				btrfs_clear_and_info(info, SPACE_CACHE,
695 					     "disabling disk space caching");
696 			}
697 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
698 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
699 					     "disabling free space tree");
700 			}
701 			break;
702 		case Opt_inode_cache:
703 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
704 					   "enabling inode map caching");
705 			break;
706 		case Opt_noinode_cache:
707 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
708 					     "disabling inode map caching");
709 			break;
710 		case Opt_clear_cache:
711 			btrfs_set_and_info(info, CLEAR_CACHE,
712 					   "force clearing of disk cache");
713 			break;
714 		case Opt_user_subvol_rm_allowed:
715 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
716 			break;
717 		case Opt_enospc_debug:
718 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
719 			break;
720 		case Opt_noenospc_debug:
721 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
722 			break;
723 		case Opt_defrag:
724 			btrfs_set_and_info(info, AUTO_DEFRAG,
725 					   "enabling auto defrag");
726 			break;
727 		case Opt_nodefrag:
728 			btrfs_clear_and_info(info, AUTO_DEFRAG,
729 					     "disabling auto defrag");
730 			break;
731 		case Opt_recovery:
732 			btrfs_warn(info,
733 				   "'recovery' is deprecated, use 'usebackuproot' instead");
734 		case Opt_usebackuproot:
735 			btrfs_info(info,
736 				   "trying to use backup root at mount time");
737 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
738 			break;
739 		case Opt_skip_balance:
740 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
741 			break;
742 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
743 		case Opt_check_integrity_including_extent_data:
744 			btrfs_info(info,
745 				   "enabling check integrity including extent data");
746 			btrfs_set_opt(info->mount_opt,
747 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
748 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
749 			break;
750 		case Opt_check_integrity:
751 			btrfs_info(info, "enabling check integrity");
752 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
753 			break;
754 		case Opt_check_integrity_print_mask:
755 			ret = match_int(&args[0], &intarg);
756 			if (ret) {
757 				goto out;
758 			} else if (intarg >= 0) {
759 				info->check_integrity_print_mask = intarg;
760 				btrfs_info(info,
761 					   "check_integrity_print_mask 0x%x",
762 					   info->check_integrity_print_mask);
763 			} else {
764 				ret = -EINVAL;
765 				goto out;
766 			}
767 			break;
768 #else
769 		case Opt_check_integrity_including_extent_data:
770 		case Opt_check_integrity:
771 		case Opt_check_integrity_print_mask:
772 			btrfs_err(info,
773 				  "support for check_integrity* not compiled in!");
774 			ret = -EINVAL;
775 			goto out;
776 #endif
777 		case Opt_fatal_errors:
778 			if (strcmp(args[0].from, "panic") == 0)
779 				btrfs_set_opt(info->mount_opt,
780 					      PANIC_ON_FATAL_ERROR);
781 			else if (strcmp(args[0].from, "bug") == 0)
782 				btrfs_clear_opt(info->mount_opt,
783 					      PANIC_ON_FATAL_ERROR);
784 			else {
785 				ret = -EINVAL;
786 				goto out;
787 			}
788 			break;
789 		case Opt_commit_interval:
790 			intarg = 0;
791 			ret = match_int(&args[0], &intarg);
792 			if (ret < 0) {
793 				btrfs_err(info, "invalid commit interval");
794 				ret = -EINVAL;
795 				goto out;
796 			}
797 			if (intarg > 0) {
798 				if (intarg > 300) {
799 					btrfs_warn(info,
800 						"excessive commit interval %d",
801 						intarg);
802 				}
803 				info->commit_interval = intarg;
804 			} else {
805 				btrfs_info(info,
806 					   "using default commit interval %ds",
807 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
808 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
809 			}
810 			break;
811 #ifdef CONFIG_BTRFS_DEBUG
812 		case Opt_fragment_all:
813 			btrfs_info(info, "fragmenting all space");
814 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
815 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
816 			break;
817 		case Opt_fragment_metadata:
818 			btrfs_info(info, "fragmenting metadata");
819 			btrfs_set_opt(info->mount_opt,
820 				      FRAGMENT_METADATA);
821 			break;
822 		case Opt_fragment_data:
823 			btrfs_info(info, "fragmenting data");
824 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
825 			break;
826 #endif
827 		case Opt_err:
828 			btrfs_info(info, "unrecognized mount option '%s'", p);
829 			ret = -EINVAL;
830 			goto out;
831 		default:
832 			break;
833 		}
834 	}
835 check:
836 	/*
837 	 * Extra check for current option against current flag
838 	 */
839 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
840 		btrfs_err(info,
841 			  "nologreplay must be used with ro mount option");
842 		ret = -EINVAL;
843 	}
844 out:
845 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
846 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
847 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
848 		btrfs_err(info, "cannot disable free space tree");
849 		ret = -EINVAL;
850 
851 	}
852 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
853 		btrfs_info(info, "disk space caching is enabled");
854 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
855 		btrfs_info(info, "using free space tree");
856 	kfree(orig);
857 	return ret;
858 }
859 
860 /*
861  * Parse mount options that are required early in the mount process.
862  *
863  * All other options will be parsed on much later in the mount process and
864  * only when we need to allocate a new super block.
865  */
866 static int btrfs_parse_early_options(const char *options, fmode_t flags,
867 		void *holder, char **subvol_name, u64 *subvol_objectid,
868 		struct btrfs_fs_devices **fs_devices)
869 {
870 	substring_t args[MAX_OPT_ARGS];
871 	char *device_name, *opts, *orig, *p;
872 	char *num = NULL;
873 	int error = 0;
874 
875 	if (!options)
876 		return 0;
877 
878 	/*
879 	 * strsep changes the string, duplicate it because parse_options
880 	 * gets called twice
881 	 */
882 	opts = kstrdup(options, GFP_KERNEL);
883 	if (!opts)
884 		return -ENOMEM;
885 	orig = opts;
886 
887 	while ((p = strsep(&opts, ",")) != NULL) {
888 		int token;
889 		if (!*p)
890 			continue;
891 
892 		token = match_token(p, tokens, args);
893 		switch (token) {
894 		case Opt_subvol:
895 			kfree(*subvol_name);
896 			*subvol_name = match_strdup(&args[0]);
897 			if (!*subvol_name) {
898 				error = -ENOMEM;
899 				goto out;
900 			}
901 			break;
902 		case Opt_subvolid:
903 			num = match_strdup(&args[0]);
904 			if (num) {
905 				*subvol_objectid = memparse(num, NULL);
906 				kfree(num);
907 				/* we want the original fs_tree */
908 				if (!*subvol_objectid)
909 					*subvol_objectid =
910 						BTRFS_FS_TREE_OBJECTID;
911 			} else {
912 				error = -EINVAL;
913 				goto out;
914 			}
915 			break;
916 		case Opt_subvolrootid:
917 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
918 			break;
919 		case Opt_device:
920 			device_name = match_strdup(&args[0]);
921 			if (!device_name) {
922 				error = -ENOMEM;
923 				goto out;
924 			}
925 			error = btrfs_scan_one_device(device_name,
926 					flags, holder, fs_devices);
927 			kfree(device_name);
928 			if (error)
929 				goto out;
930 			break;
931 		default:
932 			break;
933 		}
934 	}
935 
936 out:
937 	kfree(orig);
938 	return error;
939 }
940 
941 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
942 					   u64 subvol_objectid)
943 {
944 	struct btrfs_root *root = fs_info->tree_root;
945 	struct btrfs_root *fs_root;
946 	struct btrfs_root_ref *root_ref;
947 	struct btrfs_inode_ref *inode_ref;
948 	struct btrfs_key key;
949 	struct btrfs_path *path = NULL;
950 	char *name = NULL, *ptr;
951 	u64 dirid;
952 	int len;
953 	int ret;
954 
955 	path = btrfs_alloc_path();
956 	if (!path) {
957 		ret = -ENOMEM;
958 		goto err;
959 	}
960 	path->leave_spinning = 1;
961 
962 	name = kmalloc(PATH_MAX, GFP_NOFS);
963 	if (!name) {
964 		ret = -ENOMEM;
965 		goto err;
966 	}
967 	ptr = name + PATH_MAX - 1;
968 	ptr[0] = '\0';
969 
970 	/*
971 	 * Walk up the subvolume trees in the tree of tree roots by root
972 	 * backrefs until we hit the top-level subvolume.
973 	 */
974 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
975 		key.objectid = subvol_objectid;
976 		key.type = BTRFS_ROOT_BACKREF_KEY;
977 		key.offset = (u64)-1;
978 
979 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
980 		if (ret < 0) {
981 			goto err;
982 		} else if (ret > 0) {
983 			ret = btrfs_previous_item(root, path, subvol_objectid,
984 						  BTRFS_ROOT_BACKREF_KEY);
985 			if (ret < 0) {
986 				goto err;
987 			} else if (ret > 0) {
988 				ret = -ENOENT;
989 				goto err;
990 			}
991 		}
992 
993 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
994 		subvol_objectid = key.offset;
995 
996 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
997 					  struct btrfs_root_ref);
998 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
999 		ptr -= len + 1;
1000 		if (ptr < name) {
1001 			ret = -ENAMETOOLONG;
1002 			goto err;
1003 		}
1004 		read_extent_buffer(path->nodes[0], ptr + 1,
1005 				   (unsigned long)(root_ref + 1), len);
1006 		ptr[0] = '/';
1007 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1008 		btrfs_release_path(path);
1009 
1010 		key.objectid = subvol_objectid;
1011 		key.type = BTRFS_ROOT_ITEM_KEY;
1012 		key.offset = (u64)-1;
1013 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1014 		if (IS_ERR(fs_root)) {
1015 			ret = PTR_ERR(fs_root);
1016 			goto err;
1017 		}
1018 
1019 		/*
1020 		 * Walk up the filesystem tree by inode refs until we hit the
1021 		 * root directory.
1022 		 */
1023 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1024 			key.objectid = dirid;
1025 			key.type = BTRFS_INODE_REF_KEY;
1026 			key.offset = (u64)-1;
1027 
1028 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1029 			if (ret < 0) {
1030 				goto err;
1031 			} else if (ret > 0) {
1032 				ret = btrfs_previous_item(fs_root, path, dirid,
1033 							  BTRFS_INODE_REF_KEY);
1034 				if (ret < 0) {
1035 					goto err;
1036 				} else if (ret > 0) {
1037 					ret = -ENOENT;
1038 					goto err;
1039 				}
1040 			}
1041 
1042 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1043 			dirid = key.offset;
1044 
1045 			inode_ref = btrfs_item_ptr(path->nodes[0],
1046 						   path->slots[0],
1047 						   struct btrfs_inode_ref);
1048 			len = btrfs_inode_ref_name_len(path->nodes[0],
1049 						       inode_ref);
1050 			ptr -= len + 1;
1051 			if (ptr < name) {
1052 				ret = -ENAMETOOLONG;
1053 				goto err;
1054 			}
1055 			read_extent_buffer(path->nodes[0], ptr + 1,
1056 					   (unsigned long)(inode_ref + 1), len);
1057 			ptr[0] = '/';
1058 			btrfs_release_path(path);
1059 		}
1060 	}
1061 
1062 	btrfs_free_path(path);
1063 	if (ptr == name + PATH_MAX - 1) {
1064 		name[0] = '/';
1065 		name[1] = '\0';
1066 	} else {
1067 		memmove(name, ptr, name + PATH_MAX - ptr);
1068 	}
1069 	return name;
1070 
1071 err:
1072 	btrfs_free_path(path);
1073 	kfree(name);
1074 	return ERR_PTR(ret);
1075 }
1076 
1077 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1078 {
1079 	struct btrfs_root *root = fs_info->tree_root;
1080 	struct btrfs_dir_item *di;
1081 	struct btrfs_path *path;
1082 	struct btrfs_key location;
1083 	u64 dir_id;
1084 
1085 	path = btrfs_alloc_path();
1086 	if (!path)
1087 		return -ENOMEM;
1088 	path->leave_spinning = 1;
1089 
1090 	/*
1091 	 * Find the "default" dir item which points to the root item that we
1092 	 * will mount by default if we haven't been given a specific subvolume
1093 	 * to mount.
1094 	 */
1095 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1096 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1097 	if (IS_ERR(di)) {
1098 		btrfs_free_path(path);
1099 		return PTR_ERR(di);
1100 	}
1101 	if (!di) {
1102 		/*
1103 		 * Ok the default dir item isn't there.  This is weird since
1104 		 * it's always been there, but don't freak out, just try and
1105 		 * mount the top-level subvolume.
1106 		 */
1107 		btrfs_free_path(path);
1108 		*objectid = BTRFS_FS_TREE_OBJECTID;
1109 		return 0;
1110 	}
1111 
1112 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1113 	btrfs_free_path(path);
1114 	*objectid = location.objectid;
1115 	return 0;
1116 }
1117 
1118 static int btrfs_fill_super(struct super_block *sb,
1119 			    struct btrfs_fs_devices *fs_devices,
1120 			    void *data)
1121 {
1122 	struct inode *inode;
1123 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1124 	struct btrfs_key key;
1125 	int err;
1126 
1127 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1128 	sb->s_magic = BTRFS_SUPER_MAGIC;
1129 	sb->s_op = &btrfs_super_ops;
1130 	sb->s_d_op = &btrfs_dentry_operations;
1131 	sb->s_export_op = &btrfs_export_ops;
1132 	sb->s_xattr = btrfs_xattr_handlers;
1133 	sb->s_time_gran = 1;
1134 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1135 	sb->s_flags |= MS_POSIXACL;
1136 #endif
1137 	sb->s_flags |= MS_I_VERSION;
1138 	sb->s_iflags |= SB_I_CGROUPWB;
1139 
1140 	err = super_setup_bdi(sb);
1141 	if (err) {
1142 		btrfs_err(fs_info, "super_setup_bdi failed");
1143 		return err;
1144 	}
1145 
1146 	err = open_ctree(sb, fs_devices, (char *)data);
1147 	if (err) {
1148 		btrfs_err(fs_info, "open_ctree failed");
1149 		return err;
1150 	}
1151 
1152 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1153 	key.type = BTRFS_INODE_ITEM_KEY;
1154 	key.offset = 0;
1155 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1156 	if (IS_ERR(inode)) {
1157 		err = PTR_ERR(inode);
1158 		goto fail_close;
1159 	}
1160 
1161 	sb->s_root = d_make_root(inode);
1162 	if (!sb->s_root) {
1163 		err = -ENOMEM;
1164 		goto fail_close;
1165 	}
1166 
1167 	save_mount_options(sb, data);
1168 	cleancache_init_fs(sb);
1169 	sb->s_flags |= MS_ACTIVE;
1170 	return 0;
1171 
1172 fail_close:
1173 	close_ctree(fs_info);
1174 	return err;
1175 }
1176 
1177 int btrfs_sync_fs(struct super_block *sb, int wait)
1178 {
1179 	struct btrfs_trans_handle *trans;
1180 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1181 	struct btrfs_root *root = fs_info->tree_root;
1182 
1183 	trace_btrfs_sync_fs(fs_info, wait);
1184 
1185 	if (!wait) {
1186 		filemap_flush(fs_info->btree_inode->i_mapping);
1187 		return 0;
1188 	}
1189 
1190 	btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1191 
1192 	trans = btrfs_attach_transaction_barrier(root);
1193 	if (IS_ERR(trans)) {
1194 		/* no transaction, don't bother */
1195 		if (PTR_ERR(trans) == -ENOENT) {
1196 			/*
1197 			 * Exit unless we have some pending changes
1198 			 * that need to go through commit
1199 			 */
1200 			if (fs_info->pending_changes == 0)
1201 				return 0;
1202 			/*
1203 			 * A non-blocking test if the fs is frozen. We must not
1204 			 * start a new transaction here otherwise a deadlock
1205 			 * happens. The pending operations are delayed to the
1206 			 * next commit after thawing.
1207 			 */
1208 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1209 				__sb_end_write(sb, SB_FREEZE_WRITE);
1210 			else
1211 				return 0;
1212 			trans = btrfs_start_transaction(root, 0);
1213 		}
1214 		if (IS_ERR(trans))
1215 			return PTR_ERR(trans);
1216 	}
1217 	return btrfs_commit_transaction(trans);
1218 }
1219 
1220 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1221 {
1222 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1223 	char *compress_type;
1224 
1225 	if (btrfs_test_opt(info, DEGRADED))
1226 		seq_puts(seq, ",degraded");
1227 	if (btrfs_test_opt(info, NODATASUM))
1228 		seq_puts(seq, ",nodatasum");
1229 	if (btrfs_test_opt(info, NODATACOW))
1230 		seq_puts(seq, ",nodatacow");
1231 	if (btrfs_test_opt(info, NOBARRIER))
1232 		seq_puts(seq, ",nobarrier");
1233 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1234 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1235 	if (info->alloc_start != 0)
1236 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1237 	if (info->thread_pool_size !=  min_t(unsigned long,
1238 					     num_online_cpus() + 2, 8))
1239 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1240 	if (btrfs_test_opt(info, COMPRESS)) {
1241 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1242 			compress_type = "zlib";
1243 		else
1244 			compress_type = "lzo";
1245 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1246 			seq_printf(seq, ",compress-force=%s", compress_type);
1247 		else
1248 			seq_printf(seq, ",compress=%s", compress_type);
1249 	}
1250 	if (btrfs_test_opt(info, NOSSD))
1251 		seq_puts(seq, ",nossd");
1252 	if (btrfs_test_opt(info, SSD_SPREAD))
1253 		seq_puts(seq, ",ssd_spread");
1254 	else if (btrfs_test_opt(info, SSD))
1255 		seq_puts(seq, ",ssd");
1256 	if (btrfs_test_opt(info, NOTREELOG))
1257 		seq_puts(seq, ",notreelog");
1258 	if (btrfs_test_opt(info, NOLOGREPLAY))
1259 		seq_puts(seq, ",nologreplay");
1260 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1261 		seq_puts(seq, ",flushoncommit");
1262 	if (btrfs_test_opt(info, DISCARD))
1263 		seq_puts(seq, ",discard");
1264 	if (!(info->sb->s_flags & MS_POSIXACL))
1265 		seq_puts(seq, ",noacl");
1266 	if (btrfs_test_opt(info, SPACE_CACHE))
1267 		seq_puts(seq, ",space_cache");
1268 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1269 		seq_puts(seq, ",space_cache=v2");
1270 	else
1271 		seq_puts(seq, ",nospace_cache");
1272 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1273 		seq_puts(seq, ",rescan_uuid_tree");
1274 	if (btrfs_test_opt(info, CLEAR_CACHE))
1275 		seq_puts(seq, ",clear_cache");
1276 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1277 		seq_puts(seq, ",user_subvol_rm_allowed");
1278 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1279 		seq_puts(seq, ",enospc_debug");
1280 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1281 		seq_puts(seq, ",autodefrag");
1282 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1283 		seq_puts(seq, ",inode_cache");
1284 	if (btrfs_test_opt(info, SKIP_BALANCE))
1285 		seq_puts(seq, ",skip_balance");
1286 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1287 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1288 		seq_puts(seq, ",check_int_data");
1289 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1290 		seq_puts(seq, ",check_int");
1291 	if (info->check_integrity_print_mask)
1292 		seq_printf(seq, ",check_int_print_mask=%d",
1293 				info->check_integrity_print_mask);
1294 #endif
1295 	if (info->metadata_ratio)
1296 		seq_printf(seq, ",metadata_ratio=%d",
1297 				info->metadata_ratio);
1298 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1299 		seq_puts(seq, ",fatal_errors=panic");
1300 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1301 		seq_printf(seq, ",commit=%d", info->commit_interval);
1302 #ifdef CONFIG_BTRFS_DEBUG
1303 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1304 		seq_puts(seq, ",fragment=data");
1305 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1306 		seq_puts(seq, ",fragment=metadata");
1307 #endif
1308 	seq_printf(seq, ",subvolid=%llu",
1309 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1310 	seq_puts(seq, ",subvol=");
1311 	seq_dentry(seq, dentry, " \t\n\\");
1312 	return 0;
1313 }
1314 
1315 static int btrfs_test_super(struct super_block *s, void *data)
1316 {
1317 	struct btrfs_fs_info *p = data;
1318 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1319 
1320 	return fs_info->fs_devices == p->fs_devices;
1321 }
1322 
1323 static int btrfs_set_super(struct super_block *s, void *data)
1324 {
1325 	int err = set_anon_super(s, data);
1326 	if (!err)
1327 		s->s_fs_info = data;
1328 	return err;
1329 }
1330 
1331 /*
1332  * subvolumes are identified by ino 256
1333  */
1334 static inline int is_subvolume_inode(struct inode *inode)
1335 {
1336 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1337 		return 1;
1338 	return 0;
1339 }
1340 
1341 /*
1342  * This will add subvolid=0 to the argument string while removing any subvol=
1343  * and subvolid= arguments to make sure we get the top-level root for path
1344  * walking to the subvol we want.
1345  */
1346 static char *setup_root_args(char *args)
1347 {
1348 	char *buf, *dst, *sep;
1349 
1350 	if (!args)
1351 		return kstrdup("subvolid=0", GFP_NOFS);
1352 
1353 	/* The worst case is that we add ",subvolid=0" to the end. */
1354 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1355 	if (!buf)
1356 		return NULL;
1357 
1358 	while (1) {
1359 		sep = strchrnul(args, ',');
1360 		if (!strstarts(args, "subvol=") &&
1361 		    !strstarts(args, "subvolid=")) {
1362 			memcpy(dst, args, sep - args);
1363 			dst += sep - args;
1364 			*dst++ = ',';
1365 		}
1366 		if (*sep)
1367 			args = sep + 1;
1368 		else
1369 			break;
1370 	}
1371 	strcpy(dst, "subvolid=0");
1372 
1373 	return buf;
1374 }
1375 
1376 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1377 				   int flags, const char *device_name,
1378 				   char *data)
1379 {
1380 	struct dentry *root;
1381 	struct vfsmount *mnt = NULL;
1382 	char *newargs;
1383 	int ret;
1384 
1385 	newargs = setup_root_args(data);
1386 	if (!newargs) {
1387 		root = ERR_PTR(-ENOMEM);
1388 		goto out;
1389 	}
1390 
1391 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1392 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1393 		if (flags & MS_RDONLY) {
1394 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1395 					     device_name, newargs);
1396 		} else {
1397 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1398 					     device_name, newargs);
1399 			if (IS_ERR(mnt)) {
1400 				root = ERR_CAST(mnt);
1401 				mnt = NULL;
1402 				goto out;
1403 			}
1404 
1405 			down_write(&mnt->mnt_sb->s_umount);
1406 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1407 			up_write(&mnt->mnt_sb->s_umount);
1408 			if (ret < 0) {
1409 				root = ERR_PTR(ret);
1410 				goto out;
1411 			}
1412 		}
1413 	}
1414 	if (IS_ERR(mnt)) {
1415 		root = ERR_CAST(mnt);
1416 		mnt = NULL;
1417 		goto out;
1418 	}
1419 
1420 	if (!subvol_name) {
1421 		if (!subvol_objectid) {
1422 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1423 							  &subvol_objectid);
1424 			if (ret) {
1425 				root = ERR_PTR(ret);
1426 				goto out;
1427 			}
1428 		}
1429 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1430 							    subvol_objectid);
1431 		if (IS_ERR(subvol_name)) {
1432 			root = ERR_CAST(subvol_name);
1433 			subvol_name = NULL;
1434 			goto out;
1435 		}
1436 
1437 	}
1438 
1439 	root = mount_subtree(mnt, subvol_name);
1440 	/* mount_subtree() drops our reference on the vfsmount. */
1441 	mnt = NULL;
1442 
1443 	if (!IS_ERR(root)) {
1444 		struct super_block *s = root->d_sb;
1445 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1446 		struct inode *root_inode = d_inode(root);
1447 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1448 
1449 		ret = 0;
1450 		if (!is_subvolume_inode(root_inode)) {
1451 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1452 			       subvol_name);
1453 			ret = -EINVAL;
1454 		}
1455 		if (subvol_objectid && root_objectid != subvol_objectid) {
1456 			/*
1457 			 * This will also catch a race condition where a
1458 			 * subvolume which was passed by ID is renamed and
1459 			 * another subvolume is renamed over the old location.
1460 			 */
1461 			btrfs_err(fs_info,
1462 				  "subvol '%s' does not match subvolid %llu",
1463 				  subvol_name, subvol_objectid);
1464 			ret = -EINVAL;
1465 		}
1466 		if (ret) {
1467 			dput(root);
1468 			root = ERR_PTR(ret);
1469 			deactivate_locked_super(s);
1470 		}
1471 	}
1472 
1473 out:
1474 	mntput(mnt);
1475 	kfree(newargs);
1476 	kfree(subvol_name);
1477 	return root;
1478 }
1479 
1480 static int parse_security_options(char *orig_opts,
1481 				  struct security_mnt_opts *sec_opts)
1482 {
1483 	char *secdata = NULL;
1484 	int ret = 0;
1485 
1486 	secdata = alloc_secdata();
1487 	if (!secdata)
1488 		return -ENOMEM;
1489 	ret = security_sb_copy_data(orig_opts, secdata);
1490 	if (ret) {
1491 		free_secdata(secdata);
1492 		return ret;
1493 	}
1494 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1495 	free_secdata(secdata);
1496 	return ret;
1497 }
1498 
1499 static int setup_security_options(struct btrfs_fs_info *fs_info,
1500 				  struct super_block *sb,
1501 				  struct security_mnt_opts *sec_opts)
1502 {
1503 	int ret = 0;
1504 
1505 	/*
1506 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1507 	 * is valid.
1508 	 */
1509 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1510 	if (ret)
1511 		return ret;
1512 
1513 #ifdef CONFIG_SECURITY
1514 	if (!fs_info->security_opts.num_mnt_opts) {
1515 		/* first time security setup, copy sec_opts to fs_info */
1516 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1517 	} else {
1518 		/*
1519 		 * Since SELinux (the only one supporting security_mnt_opts)
1520 		 * does NOT support changing context during remount/mount of
1521 		 * the same sb, this must be the same or part of the same
1522 		 * security options, just free it.
1523 		 */
1524 		security_free_mnt_opts(sec_opts);
1525 	}
1526 #endif
1527 	return ret;
1528 }
1529 
1530 /*
1531  * Find a superblock for the given device / mount point.
1532  *
1533  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1534  *	  for multiple device setup.  Make sure to keep it in sync.
1535  */
1536 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1537 		const char *device_name, void *data)
1538 {
1539 	struct block_device *bdev = NULL;
1540 	struct super_block *s;
1541 	struct btrfs_fs_devices *fs_devices = NULL;
1542 	struct btrfs_fs_info *fs_info = NULL;
1543 	struct security_mnt_opts new_sec_opts;
1544 	fmode_t mode = FMODE_READ;
1545 	char *subvol_name = NULL;
1546 	u64 subvol_objectid = 0;
1547 	int error = 0;
1548 
1549 	if (!(flags & MS_RDONLY))
1550 		mode |= FMODE_WRITE;
1551 
1552 	error = btrfs_parse_early_options(data, mode, fs_type,
1553 					  &subvol_name, &subvol_objectid,
1554 					  &fs_devices);
1555 	if (error) {
1556 		kfree(subvol_name);
1557 		return ERR_PTR(error);
1558 	}
1559 
1560 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1561 		/* mount_subvol() will free subvol_name. */
1562 		return mount_subvol(subvol_name, subvol_objectid, flags,
1563 				    device_name, data);
1564 	}
1565 
1566 	security_init_mnt_opts(&new_sec_opts);
1567 	if (data) {
1568 		error = parse_security_options(data, &new_sec_opts);
1569 		if (error)
1570 			return ERR_PTR(error);
1571 	}
1572 
1573 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1574 	if (error)
1575 		goto error_sec_opts;
1576 
1577 	/*
1578 	 * Setup a dummy root and fs_info for test/set super.  This is because
1579 	 * we don't actually fill this stuff out until open_ctree, but we need
1580 	 * it for searching for existing supers, so this lets us do that and
1581 	 * then open_ctree will properly initialize everything later.
1582 	 */
1583 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1584 	if (!fs_info) {
1585 		error = -ENOMEM;
1586 		goto error_sec_opts;
1587 	}
1588 
1589 	fs_info->fs_devices = fs_devices;
1590 
1591 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1592 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1593 	security_init_mnt_opts(&fs_info->security_opts);
1594 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1595 		error = -ENOMEM;
1596 		goto error_fs_info;
1597 	}
1598 
1599 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1600 	if (error)
1601 		goto error_fs_info;
1602 
1603 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1604 		error = -EACCES;
1605 		goto error_close_devices;
1606 	}
1607 
1608 	bdev = fs_devices->latest_bdev;
1609 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1610 		 fs_info);
1611 	if (IS_ERR(s)) {
1612 		error = PTR_ERR(s);
1613 		goto error_close_devices;
1614 	}
1615 
1616 	if (s->s_root) {
1617 		btrfs_close_devices(fs_devices);
1618 		free_fs_info(fs_info);
1619 		if ((flags ^ s->s_flags) & MS_RDONLY)
1620 			error = -EBUSY;
1621 	} else {
1622 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1623 		btrfs_sb(s)->bdev_holder = fs_type;
1624 		error = btrfs_fill_super(s, fs_devices, data);
1625 	}
1626 	if (error) {
1627 		deactivate_locked_super(s);
1628 		goto error_sec_opts;
1629 	}
1630 
1631 	fs_info = btrfs_sb(s);
1632 	error = setup_security_options(fs_info, s, &new_sec_opts);
1633 	if (error) {
1634 		deactivate_locked_super(s);
1635 		goto error_sec_opts;
1636 	}
1637 
1638 	return dget(s->s_root);
1639 
1640 error_close_devices:
1641 	btrfs_close_devices(fs_devices);
1642 error_fs_info:
1643 	free_fs_info(fs_info);
1644 error_sec_opts:
1645 	security_free_mnt_opts(&new_sec_opts);
1646 	return ERR_PTR(error);
1647 }
1648 
1649 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1650 				     int new_pool_size, int old_pool_size)
1651 {
1652 	if (new_pool_size == old_pool_size)
1653 		return;
1654 
1655 	fs_info->thread_pool_size = new_pool_size;
1656 
1657 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1658 	       old_pool_size, new_pool_size);
1659 
1660 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1661 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1662 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1663 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1664 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1665 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1666 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1667 				new_pool_size);
1668 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1669 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1670 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1671 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1672 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1673 				new_pool_size);
1674 }
1675 
1676 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1677 {
1678 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1679 }
1680 
1681 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1682 				       unsigned long old_opts, int flags)
1683 {
1684 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1685 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1686 	     (flags & MS_RDONLY))) {
1687 		/* wait for any defraggers to finish */
1688 		wait_event(fs_info->transaction_wait,
1689 			   (atomic_read(&fs_info->defrag_running) == 0));
1690 		if (flags & MS_RDONLY)
1691 			sync_filesystem(fs_info->sb);
1692 	}
1693 }
1694 
1695 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1696 					 unsigned long old_opts)
1697 {
1698 	/*
1699 	 * We need to cleanup all defragable inodes if the autodefragment is
1700 	 * close or the filesystem is read only.
1701 	 */
1702 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1703 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1704 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1705 		btrfs_cleanup_defrag_inodes(fs_info);
1706 	}
1707 
1708 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1709 }
1710 
1711 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1712 {
1713 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1714 	struct btrfs_root *root = fs_info->tree_root;
1715 	unsigned old_flags = sb->s_flags;
1716 	unsigned long old_opts = fs_info->mount_opt;
1717 	unsigned long old_compress_type = fs_info->compress_type;
1718 	u64 old_max_inline = fs_info->max_inline;
1719 	u64 old_alloc_start = fs_info->alloc_start;
1720 	int old_thread_pool_size = fs_info->thread_pool_size;
1721 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1722 	int ret;
1723 
1724 	sync_filesystem(sb);
1725 	btrfs_remount_prepare(fs_info);
1726 
1727 	if (data) {
1728 		struct security_mnt_opts new_sec_opts;
1729 
1730 		security_init_mnt_opts(&new_sec_opts);
1731 		ret = parse_security_options(data, &new_sec_opts);
1732 		if (ret)
1733 			goto restore;
1734 		ret = setup_security_options(fs_info, sb,
1735 					     &new_sec_opts);
1736 		if (ret) {
1737 			security_free_mnt_opts(&new_sec_opts);
1738 			goto restore;
1739 		}
1740 	}
1741 
1742 	ret = btrfs_parse_options(fs_info, data, *flags);
1743 	if (ret) {
1744 		ret = -EINVAL;
1745 		goto restore;
1746 	}
1747 
1748 	btrfs_remount_begin(fs_info, old_opts, *flags);
1749 	btrfs_resize_thread_pool(fs_info,
1750 		fs_info->thread_pool_size, old_thread_pool_size);
1751 
1752 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1753 		goto out;
1754 
1755 	if (*flags & MS_RDONLY) {
1756 		/*
1757 		 * this also happens on 'umount -rf' or on shutdown, when
1758 		 * the filesystem is busy.
1759 		 */
1760 		cancel_work_sync(&fs_info->async_reclaim_work);
1761 
1762 		/* wait for the uuid_scan task to finish */
1763 		down(&fs_info->uuid_tree_rescan_sem);
1764 		/* avoid complains from lockdep et al. */
1765 		up(&fs_info->uuid_tree_rescan_sem);
1766 
1767 		sb->s_flags |= MS_RDONLY;
1768 
1769 		/*
1770 		 * Setting MS_RDONLY will put the cleaner thread to
1771 		 * sleep at the next loop if it's already active.
1772 		 * If it's already asleep, we'll leave unused block
1773 		 * groups on disk until we're mounted read-write again
1774 		 * unless we clean them up here.
1775 		 */
1776 		btrfs_delete_unused_bgs(fs_info);
1777 
1778 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1779 		btrfs_scrub_cancel(fs_info);
1780 		btrfs_pause_balance(fs_info);
1781 
1782 		ret = btrfs_commit_super(fs_info);
1783 		if (ret)
1784 			goto restore;
1785 	} else {
1786 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1787 			btrfs_err(fs_info,
1788 				"Remounting read-write after error is not allowed");
1789 			ret = -EINVAL;
1790 			goto restore;
1791 		}
1792 		if (fs_info->fs_devices->rw_devices == 0) {
1793 			ret = -EACCES;
1794 			goto restore;
1795 		}
1796 
1797 		if (fs_info->fs_devices->missing_devices >
1798 		     fs_info->num_tolerated_disk_barrier_failures) {
1799 			btrfs_warn(fs_info,
1800 				"too many missing devices, writeable remount is not allowed");
1801 			ret = -EACCES;
1802 			goto restore;
1803 		}
1804 
1805 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1806 			ret = -EINVAL;
1807 			goto restore;
1808 		}
1809 
1810 		ret = btrfs_cleanup_fs_roots(fs_info);
1811 		if (ret)
1812 			goto restore;
1813 
1814 		/* recover relocation */
1815 		mutex_lock(&fs_info->cleaner_mutex);
1816 		ret = btrfs_recover_relocation(root);
1817 		mutex_unlock(&fs_info->cleaner_mutex);
1818 		if (ret)
1819 			goto restore;
1820 
1821 		ret = btrfs_resume_balance_async(fs_info);
1822 		if (ret)
1823 			goto restore;
1824 
1825 		ret = btrfs_resume_dev_replace_async(fs_info);
1826 		if (ret) {
1827 			btrfs_warn(fs_info, "failed to resume dev_replace");
1828 			goto restore;
1829 		}
1830 
1831 		if (!fs_info->uuid_root) {
1832 			btrfs_info(fs_info, "creating UUID tree");
1833 			ret = btrfs_create_uuid_tree(fs_info);
1834 			if (ret) {
1835 				btrfs_warn(fs_info,
1836 					   "failed to create the UUID tree %d",
1837 					   ret);
1838 				goto restore;
1839 			}
1840 		}
1841 		sb->s_flags &= ~MS_RDONLY;
1842 
1843 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1844 	}
1845 out:
1846 	wake_up_process(fs_info->transaction_kthread);
1847 	btrfs_remount_cleanup(fs_info, old_opts);
1848 	return 0;
1849 
1850 restore:
1851 	/* We've hit an error - don't reset MS_RDONLY */
1852 	if (sb->s_flags & MS_RDONLY)
1853 		old_flags |= MS_RDONLY;
1854 	sb->s_flags = old_flags;
1855 	fs_info->mount_opt = old_opts;
1856 	fs_info->compress_type = old_compress_type;
1857 	fs_info->max_inline = old_max_inline;
1858 	mutex_lock(&fs_info->chunk_mutex);
1859 	fs_info->alloc_start = old_alloc_start;
1860 	mutex_unlock(&fs_info->chunk_mutex);
1861 	btrfs_resize_thread_pool(fs_info,
1862 		old_thread_pool_size, fs_info->thread_pool_size);
1863 	fs_info->metadata_ratio = old_metadata_ratio;
1864 	btrfs_remount_cleanup(fs_info, old_opts);
1865 	return ret;
1866 }
1867 
1868 /* Used to sort the devices by max_avail(descending sort) */
1869 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1870 				       const void *dev_info2)
1871 {
1872 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1873 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1874 		return -1;
1875 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1876 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1877 		return 1;
1878 	else
1879 	return 0;
1880 }
1881 
1882 /*
1883  * sort the devices by max_avail, in which max free extent size of each device
1884  * is stored.(Descending Sort)
1885  */
1886 static inline void btrfs_descending_sort_devices(
1887 					struct btrfs_device_info *devices,
1888 					size_t nr_devices)
1889 {
1890 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1891 	     btrfs_cmp_device_free_bytes, NULL);
1892 }
1893 
1894 /*
1895  * The helper to calc the free space on the devices that can be used to store
1896  * file data.
1897  */
1898 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1899 				       u64 *free_bytes)
1900 {
1901 	struct btrfs_root *root = fs_info->tree_root;
1902 	struct btrfs_device_info *devices_info;
1903 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1904 	struct btrfs_device *device;
1905 	u64 skip_space;
1906 	u64 type;
1907 	u64 avail_space;
1908 	u64 used_space;
1909 	u64 min_stripe_size;
1910 	int min_stripes = 1, num_stripes = 1;
1911 	int i = 0, nr_devices;
1912 	int ret;
1913 
1914 	/*
1915 	 * We aren't under the device list lock, so this is racy-ish, but good
1916 	 * enough for our purposes.
1917 	 */
1918 	nr_devices = fs_info->fs_devices->open_devices;
1919 	if (!nr_devices) {
1920 		smp_mb();
1921 		nr_devices = fs_info->fs_devices->open_devices;
1922 		ASSERT(nr_devices);
1923 		if (!nr_devices) {
1924 			*free_bytes = 0;
1925 			return 0;
1926 		}
1927 	}
1928 
1929 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1930 			       GFP_NOFS);
1931 	if (!devices_info)
1932 		return -ENOMEM;
1933 
1934 	/* calc min stripe number for data space allocation */
1935 	type = btrfs_get_alloc_profile(root, 1);
1936 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1937 		min_stripes = 2;
1938 		num_stripes = nr_devices;
1939 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1940 		min_stripes = 2;
1941 		num_stripes = 2;
1942 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1943 		min_stripes = 4;
1944 		num_stripes = 4;
1945 	}
1946 
1947 	if (type & BTRFS_BLOCK_GROUP_DUP)
1948 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1949 	else
1950 		min_stripe_size = BTRFS_STRIPE_LEN;
1951 
1952 	if (fs_info->alloc_start)
1953 		mutex_lock(&fs_devices->device_list_mutex);
1954 	rcu_read_lock();
1955 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1956 		if (!device->in_fs_metadata || !device->bdev ||
1957 		    device->is_tgtdev_for_dev_replace)
1958 			continue;
1959 
1960 		if (i >= nr_devices)
1961 			break;
1962 
1963 		avail_space = device->total_bytes - device->bytes_used;
1964 
1965 		/* align with stripe_len */
1966 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1967 		avail_space *= BTRFS_STRIPE_LEN;
1968 
1969 		/*
1970 		 * In order to avoid overwriting the superblock on the drive,
1971 		 * btrfs starts at an offset of at least 1MB when doing chunk
1972 		 * allocation.
1973 		 */
1974 		skip_space = SZ_1M;
1975 
1976 		/* user can set the offset in fs_info->alloc_start. */
1977 		if (fs_info->alloc_start &&
1978 		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1979 		    device->total_bytes) {
1980 			rcu_read_unlock();
1981 			skip_space = max(fs_info->alloc_start, skip_space);
1982 
1983 			/*
1984 			 * btrfs can not use the free space in
1985 			 * [0, skip_space - 1], we must subtract it from the
1986 			 * total. In order to implement it, we account the used
1987 			 * space in this range first.
1988 			 */
1989 			ret = btrfs_account_dev_extents_size(device, 0,
1990 							     skip_space - 1,
1991 							     &used_space);
1992 			if (ret) {
1993 				kfree(devices_info);
1994 				mutex_unlock(&fs_devices->device_list_mutex);
1995 				return ret;
1996 			}
1997 
1998 			rcu_read_lock();
1999 
2000 			/* calc the free space in [0, skip_space - 1] */
2001 			skip_space -= used_space;
2002 		}
2003 
2004 		/*
2005 		 * we can use the free space in [0, skip_space - 1], subtract
2006 		 * it from the total.
2007 		 */
2008 		if (avail_space && avail_space >= skip_space)
2009 			avail_space -= skip_space;
2010 		else
2011 			avail_space = 0;
2012 
2013 		if (avail_space < min_stripe_size)
2014 			continue;
2015 
2016 		devices_info[i].dev = device;
2017 		devices_info[i].max_avail = avail_space;
2018 
2019 		i++;
2020 	}
2021 	rcu_read_unlock();
2022 	if (fs_info->alloc_start)
2023 		mutex_unlock(&fs_devices->device_list_mutex);
2024 
2025 	nr_devices = i;
2026 
2027 	btrfs_descending_sort_devices(devices_info, nr_devices);
2028 
2029 	i = nr_devices - 1;
2030 	avail_space = 0;
2031 	while (nr_devices >= min_stripes) {
2032 		if (num_stripes > nr_devices)
2033 			num_stripes = nr_devices;
2034 
2035 		if (devices_info[i].max_avail >= min_stripe_size) {
2036 			int j;
2037 			u64 alloc_size;
2038 
2039 			avail_space += devices_info[i].max_avail * num_stripes;
2040 			alloc_size = devices_info[i].max_avail;
2041 			for (j = i + 1 - num_stripes; j <= i; j++)
2042 				devices_info[j].max_avail -= alloc_size;
2043 		}
2044 		i--;
2045 		nr_devices--;
2046 	}
2047 
2048 	kfree(devices_info);
2049 	*free_bytes = avail_space;
2050 	return 0;
2051 }
2052 
2053 /*
2054  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2055  *
2056  * If there's a redundant raid level at DATA block groups, use the respective
2057  * multiplier to scale the sizes.
2058  *
2059  * Unused device space usage is based on simulating the chunk allocator
2060  * algorithm that respects the device sizes, order of allocations and the
2061  * 'alloc_start' value, this is a close approximation of the actual use but
2062  * there are other factors that may change the result (like a new metadata
2063  * chunk).
2064  *
2065  * If metadata is exhausted, f_bavail will be 0.
2066  */
2067 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2068 {
2069 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2070 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2071 	struct list_head *head = &fs_info->space_info;
2072 	struct btrfs_space_info *found;
2073 	u64 total_used = 0;
2074 	u64 total_free_data = 0;
2075 	u64 total_free_meta = 0;
2076 	int bits = dentry->d_sb->s_blocksize_bits;
2077 	__be32 *fsid = (__be32 *)fs_info->fsid;
2078 	unsigned factor = 1;
2079 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2080 	int ret;
2081 	u64 thresh = 0;
2082 	int mixed = 0;
2083 
2084 	rcu_read_lock();
2085 	list_for_each_entry_rcu(found, head, list) {
2086 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2087 			int i;
2088 
2089 			total_free_data += found->disk_total - found->disk_used;
2090 			total_free_data -=
2091 				btrfs_account_ro_block_groups_free_space(found);
2092 
2093 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2094 				if (!list_empty(&found->block_groups[i])) {
2095 					switch (i) {
2096 					case BTRFS_RAID_DUP:
2097 					case BTRFS_RAID_RAID1:
2098 					case BTRFS_RAID_RAID10:
2099 						factor = 2;
2100 					}
2101 				}
2102 			}
2103 		}
2104 
2105 		/*
2106 		 * Metadata in mixed block goup profiles are accounted in data
2107 		 */
2108 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2109 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2110 				mixed = 1;
2111 			else
2112 				total_free_meta += found->disk_total -
2113 					found->disk_used;
2114 		}
2115 
2116 		total_used += found->disk_used;
2117 	}
2118 
2119 	rcu_read_unlock();
2120 
2121 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2122 	buf->f_blocks >>= bits;
2123 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2124 
2125 	/* Account global block reserve as used, it's in logical size already */
2126 	spin_lock(&block_rsv->lock);
2127 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2128 	if (buf->f_bfree >= block_rsv->size >> bits)
2129 		buf->f_bfree -= block_rsv->size >> bits;
2130 	else
2131 		buf->f_bfree = 0;
2132 	spin_unlock(&block_rsv->lock);
2133 
2134 	buf->f_bavail = div_u64(total_free_data, factor);
2135 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2136 	if (ret)
2137 		return ret;
2138 	buf->f_bavail += div_u64(total_free_data, factor);
2139 	buf->f_bavail = buf->f_bavail >> bits;
2140 
2141 	/*
2142 	 * We calculate the remaining metadata space minus global reserve. If
2143 	 * this is (supposedly) smaller than zero, there's no space. But this
2144 	 * does not hold in practice, the exhausted state happens where's still
2145 	 * some positive delta. So we apply some guesswork and compare the
2146 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2147 	 *
2148 	 * We probably cannot calculate the exact threshold value because this
2149 	 * depends on the internal reservations requested by various
2150 	 * operations, so some operations that consume a few metadata will
2151 	 * succeed even if the Avail is zero. But this is better than the other
2152 	 * way around.
2153 	 */
2154 	thresh = 4 * 1024 * 1024;
2155 
2156 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2157 		buf->f_bavail = 0;
2158 
2159 	buf->f_type = BTRFS_SUPER_MAGIC;
2160 	buf->f_bsize = dentry->d_sb->s_blocksize;
2161 	buf->f_namelen = BTRFS_NAME_LEN;
2162 
2163 	/* We treat it as constant endianness (it doesn't matter _which_)
2164 	   because we want the fsid to come out the same whether mounted
2165 	   on a big-endian or little-endian host */
2166 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2167 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2168 	/* Mask in the root object ID too, to disambiguate subvols */
2169 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2170 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2171 
2172 	return 0;
2173 }
2174 
2175 static void btrfs_kill_super(struct super_block *sb)
2176 {
2177 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2178 	kill_anon_super(sb);
2179 	free_fs_info(fs_info);
2180 }
2181 
2182 static struct file_system_type btrfs_fs_type = {
2183 	.owner		= THIS_MODULE,
2184 	.name		= "btrfs",
2185 	.mount		= btrfs_mount,
2186 	.kill_sb	= btrfs_kill_super,
2187 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2188 };
2189 MODULE_ALIAS_FS("btrfs");
2190 
2191 static int btrfs_control_open(struct inode *inode, struct file *file)
2192 {
2193 	/*
2194 	 * The control file's private_data is used to hold the
2195 	 * transaction when it is started and is used to keep
2196 	 * track of whether a transaction is already in progress.
2197 	 */
2198 	file->private_data = NULL;
2199 	return 0;
2200 }
2201 
2202 /*
2203  * used by btrfsctl to scan devices when no FS is mounted
2204  */
2205 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2206 				unsigned long arg)
2207 {
2208 	struct btrfs_ioctl_vol_args *vol;
2209 	struct btrfs_fs_devices *fs_devices;
2210 	int ret = -ENOTTY;
2211 
2212 	if (!capable(CAP_SYS_ADMIN))
2213 		return -EPERM;
2214 
2215 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2216 	if (IS_ERR(vol))
2217 		return PTR_ERR(vol);
2218 
2219 	switch (cmd) {
2220 	case BTRFS_IOC_SCAN_DEV:
2221 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2222 					    &btrfs_fs_type, &fs_devices);
2223 		break;
2224 	case BTRFS_IOC_DEVICES_READY:
2225 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2226 					    &btrfs_fs_type, &fs_devices);
2227 		if (ret)
2228 			break;
2229 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2230 		break;
2231 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2232 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2233 		break;
2234 	}
2235 
2236 	kfree(vol);
2237 	return ret;
2238 }
2239 
2240 static int btrfs_freeze(struct super_block *sb)
2241 {
2242 	struct btrfs_trans_handle *trans;
2243 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2244 	struct btrfs_root *root = fs_info->tree_root;
2245 
2246 	fs_info->fs_frozen = 1;
2247 	/*
2248 	 * We don't need a barrier here, we'll wait for any transaction that
2249 	 * could be in progress on other threads (and do delayed iputs that
2250 	 * we want to avoid on a frozen filesystem), or do the commit
2251 	 * ourselves.
2252 	 */
2253 	trans = btrfs_attach_transaction_barrier(root);
2254 	if (IS_ERR(trans)) {
2255 		/* no transaction, don't bother */
2256 		if (PTR_ERR(trans) == -ENOENT)
2257 			return 0;
2258 		return PTR_ERR(trans);
2259 	}
2260 	return btrfs_commit_transaction(trans);
2261 }
2262 
2263 static int btrfs_unfreeze(struct super_block *sb)
2264 {
2265 	btrfs_sb(sb)->fs_frozen = 0;
2266 	return 0;
2267 }
2268 
2269 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2270 {
2271 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2272 	struct btrfs_fs_devices *cur_devices;
2273 	struct btrfs_device *dev, *first_dev = NULL;
2274 	struct list_head *head;
2275 	struct rcu_string *name;
2276 
2277 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2278 	cur_devices = fs_info->fs_devices;
2279 	while (cur_devices) {
2280 		head = &cur_devices->devices;
2281 		list_for_each_entry(dev, head, dev_list) {
2282 			if (dev->missing)
2283 				continue;
2284 			if (!dev->name)
2285 				continue;
2286 			if (!first_dev || dev->devid < first_dev->devid)
2287 				first_dev = dev;
2288 		}
2289 		cur_devices = cur_devices->seed;
2290 	}
2291 
2292 	if (first_dev) {
2293 		rcu_read_lock();
2294 		name = rcu_dereference(first_dev->name);
2295 		seq_escape(m, name->str, " \t\n\\");
2296 		rcu_read_unlock();
2297 	} else {
2298 		WARN_ON(1);
2299 	}
2300 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2301 	return 0;
2302 }
2303 
2304 static const struct super_operations btrfs_super_ops = {
2305 	.drop_inode	= btrfs_drop_inode,
2306 	.evict_inode	= btrfs_evict_inode,
2307 	.put_super	= btrfs_put_super,
2308 	.sync_fs	= btrfs_sync_fs,
2309 	.show_options	= btrfs_show_options,
2310 	.show_devname	= btrfs_show_devname,
2311 	.write_inode	= btrfs_write_inode,
2312 	.alloc_inode	= btrfs_alloc_inode,
2313 	.destroy_inode	= btrfs_destroy_inode,
2314 	.statfs		= btrfs_statfs,
2315 	.remount_fs	= btrfs_remount,
2316 	.freeze_fs	= btrfs_freeze,
2317 	.unfreeze_fs	= btrfs_unfreeze,
2318 };
2319 
2320 static const struct file_operations btrfs_ctl_fops = {
2321 	.open = btrfs_control_open,
2322 	.unlocked_ioctl	 = btrfs_control_ioctl,
2323 	.compat_ioctl = btrfs_control_ioctl,
2324 	.owner	 = THIS_MODULE,
2325 	.llseek = noop_llseek,
2326 };
2327 
2328 static struct miscdevice btrfs_misc = {
2329 	.minor		= BTRFS_MINOR,
2330 	.name		= "btrfs-control",
2331 	.fops		= &btrfs_ctl_fops
2332 };
2333 
2334 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2335 MODULE_ALIAS("devname:btrfs-control");
2336 
2337 static int btrfs_interface_init(void)
2338 {
2339 	return misc_register(&btrfs_misc);
2340 }
2341 
2342 static void btrfs_interface_exit(void)
2343 {
2344 	misc_deregister(&btrfs_misc);
2345 }
2346 
2347 static void btrfs_print_mod_info(void)
2348 {
2349 	pr_info("Btrfs loaded, crc32c=%s"
2350 #ifdef CONFIG_BTRFS_DEBUG
2351 			", debug=on"
2352 #endif
2353 #ifdef CONFIG_BTRFS_ASSERT
2354 			", assert=on"
2355 #endif
2356 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2357 			", integrity-checker=on"
2358 #endif
2359 			"\n",
2360 			btrfs_crc32c_impl());
2361 }
2362 
2363 static int __init init_btrfs_fs(void)
2364 {
2365 	int err;
2366 
2367 	err = btrfs_hash_init();
2368 	if (err)
2369 		return err;
2370 
2371 	btrfs_props_init();
2372 
2373 	err = btrfs_init_sysfs();
2374 	if (err)
2375 		goto free_hash;
2376 
2377 	btrfs_init_compress();
2378 
2379 	err = btrfs_init_cachep();
2380 	if (err)
2381 		goto free_compress;
2382 
2383 	err = extent_io_init();
2384 	if (err)
2385 		goto free_cachep;
2386 
2387 	err = extent_map_init();
2388 	if (err)
2389 		goto free_extent_io;
2390 
2391 	err = ordered_data_init();
2392 	if (err)
2393 		goto free_extent_map;
2394 
2395 	err = btrfs_delayed_inode_init();
2396 	if (err)
2397 		goto free_ordered_data;
2398 
2399 	err = btrfs_auto_defrag_init();
2400 	if (err)
2401 		goto free_delayed_inode;
2402 
2403 	err = btrfs_delayed_ref_init();
2404 	if (err)
2405 		goto free_auto_defrag;
2406 
2407 	err = btrfs_prelim_ref_init();
2408 	if (err)
2409 		goto free_delayed_ref;
2410 
2411 	err = btrfs_end_io_wq_init();
2412 	if (err)
2413 		goto free_prelim_ref;
2414 
2415 	err = btrfs_interface_init();
2416 	if (err)
2417 		goto free_end_io_wq;
2418 
2419 	btrfs_init_lockdep();
2420 
2421 	btrfs_print_mod_info();
2422 
2423 	err = btrfs_run_sanity_tests();
2424 	if (err)
2425 		goto unregister_ioctl;
2426 
2427 	err = register_filesystem(&btrfs_fs_type);
2428 	if (err)
2429 		goto unregister_ioctl;
2430 
2431 	return 0;
2432 
2433 unregister_ioctl:
2434 	btrfs_interface_exit();
2435 free_end_io_wq:
2436 	btrfs_end_io_wq_exit();
2437 free_prelim_ref:
2438 	btrfs_prelim_ref_exit();
2439 free_delayed_ref:
2440 	btrfs_delayed_ref_exit();
2441 free_auto_defrag:
2442 	btrfs_auto_defrag_exit();
2443 free_delayed_inode:
2444 	btrfs_delayed_inode_exit();
2445 free_ordered_data:
2446 	ordered_data_exit();
2447 free_extent_map:
2448 	extent_map_exit();
2449 free_extent_io:
2450 	extent_io_exit();
2451 free_cachep:
2452 	btrfs_destroy_cachep();
2453 free_compress:
2454 	btrfs_exit_compress();
2455 	btrfs_exit_sysfs();
2456 free_hash:
2457 	btrfs_hash_exit();
2458 	return err;
2459 }
2460 
2461 static void __exit exit_btrfs_fs(void)
2462 {
2463 	btrfs_destroy_cachep();
2464 	btrfs_delayed_ref_exit();
2465 	btrfs_auto_defrag_exit();
2466 	btrfs_delayed_inode_exit();
2467 	btrfs_prelim_ref_exit();
2468 	ordered_data_exit();
2469 	extent_map_exit();
2470 	extent_io_exit();
2471 	btrfs_interface_exit();
2472 	btrfs_end_io_wq_exit();
2473 	unregister_filesystem(&btrfs_fs_type);
2474 	btrfs_exit_sysfs();
2475 	btrfs_cleanup_fs_uuids();
2476 	btrfs_exit_compress();
2477 	btrfs_hash_exit();
2478 }
2479 
2480 late_initcall(init_btrfs_fs);
2481 module_exit(exit_btrfs_fs)
2482 
2483 MODULE_LICENSE("GPL");
2484