1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/buffer_head.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/seq_file.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/mount.h> 18 #include <linux/mpage.h> 19 #include <linux/swap.h> 20 #include <linux/writeback.h> 21 #include <linux/statfs.h> 22 #include <linux/compat.h> 23 #include <linux/parser.h> 24 #include <linux/ctype.h> 25 #include <linux/namei.h> 26 #include <linux/miscdevice.h> 27 #include <linux/magic.h> 28 #include <linux/slab.h> 29 #include <linux/cleancache.h> 30 #include <linux/ratelimit.h> 31 #include <linux/crc32c.h> 32 #include <linux/btrfs.h> 33 #include "delayed-inode.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "props.h" 40 #include "xattr.h" 41 #include "volumes.h" 42 #include "export.h" 43 #include "compression.h" 44 #include "rcu-string.h" 45 #include "dev-replace.h" 46 #include "free-space-cache.h" 47 #include "backref.h" 48 #include "tests/btrfs-tests.h" 49 50 #include "qgroup.h" 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/btrfs.h> 53 54 static const struct super_operations btrfs_super_ops; 55 56 /* 57 * Types for mounting the default subvolume and a subvolume explicitly 58 * requested by subvol=/path. That way the callchain is straightforward and we 59 * don't have to play tricks with the mount options and recursive calls to 60 * btrfs_mount. 61 * 62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 63 */ 64 static struct file_system_type btrfs_fs_type; 65 static struct file_system_type btrfs_root_fs_type; 66 67 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 68 69 const char *btrfs_decode_error(int errno) 70 { 71 char *errstr = "unknown"; 72 73 switch (errno) { 74 case -EIO: 75 errstr = "IO failure"; 76 break; 77 case -ENOMEM: 78 errstr = "Out of memory"; 79 break; 80 case -EROFS: 81 errstr = "Readonly filesystem"; 82 break; 83 case -EEXIST: 84 errstr = "Object already exists"; 85 break; 86 case -ENOSPC: 87 errstr = "No space left"; 88 break; 89 case -ENOENT: 90 errstr = "No such entry"; 91 break; 92 } 93 94 return errstr; 95 } 96 97 /* 98 * __btrfs_handle_fs_error decodes expected errors from the caller and 99 * invokes the approciate error response. 100 */ 101 __cold 102 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 103 unsigned int line, int errno, const char *fmt, ...) 104 { 105 struct super_block *sb = fs_info->sb; 106 #ifdef CONFIG_PRINTK 107 const char *errstr; 108 #endif 109 110 /* 111 * Special case: if the error is EROFS, and we're already 112 * under SB_RDONLY, then it is safe here. 113 */ 114 if (errno == -EROFS && sb_rdonly(sb)) 115 return; 116 117 #ifdef CONFIG_PRINTK 118 errstr = btrfs_decode_error(errno); 119 if (fmt) { 120 struct va_format vaf; 121 va_list args; 122 123 va_start(args, fmt); 124 vaf.fmt = fmt; 125 vaf.va = &args; 126 127 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 128 sb->s_id, function, line, errno, errstr, &vaf); 129 va_end(args); 130 } else { 131 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 132 sb->s_id, function, line, errno, errstr); 133 } 134 #endif 135 136 /* 137 * Today we only save the error info to memory. Long term we'll 138 * also send it down to the disk 139 */ 140 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 141 142 /* Don't go through full error handling during mount */ 143 if (!(sb->s_flags & SB_BORN)) 144 return; 145 146 if (sb_rdonly(sb)) 147 return; 148 149 /* btrfs handle error by forcing the filesystem readonly */ 150 sb->s_flags |= SB_RDONLY; 151 btrfs_info(fs_info, "forced readonly"); 152 /* 153 * Note that a running device replace operation is not canceled here 154 * although there is no way to update the progress. It would add the 155 * risk of a deadlock, therefore the canceling is omitted. The only 156 * penalty is that some I/O remains active until the procedure 157 * completes. The next time when the filesystem is mounted writeable 158 * again, the device replace operation continues. 159 */ 160 } 161 162 #ifdef CONFIG_PRINTK 163 static const char * const logtypes[] = { 164 "emergency", 165 "alert", 166 "critical", 167 "error", 168 "warning", 169 "notice", 170 "info", 171 "debug", 172 }; 173 174 175 /* 176 * Use one ratelimit state per log level so that a flood of less important 177 * messages doesn't cause more important ones to be dropped. 178 */ 179 static struct ratelimit_state printk_limits[] = { 180 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 181 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 182 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 183 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 184 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 185 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 186 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 187 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 188 }; 189 190 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 191 { 192 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 193 struct va_format vaf; 194 va_list args; 195 int kern_level; 196 const char *type = logtypes[4]; 197 struct ratelimit_state *ratelimit = &printk_limits[4]; 198 199 va_start(args, fmt); 200 201 while ((kern_level = printk_get_level(fmt)) != 0) { 202 size_t size = printk_skip_level(fmt) - fmt; 203 204 if (kern_level >= '0' && kern_level <= '7') { 205 memcpy(lvl, fmt, size); 206 lvl[size] = '\0'; 207 type = logtypes[kern_level - '0']; 208 ratelimit = &printk_limits[kern_level - '0']; 209 } 210 fmt += size; 211 } 212 213 vaf.fmt = fmt; 214 vaf.va = &args; 215 216 if (__ratelimit(ratelimit)) 217 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 218 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 219 220 va_end(args); 221 } 222 #endif 223 224 /* 225 * We only mark the transaction aborted and then set the file system read-only. 226 * This will prevent new transactions from starting or trying to join this 227 * one. 228 * 229 * This means that error recovery at the call site is limited to freeing 230 * any local memory allocations and passing the error code up without 231 * further cleanup. The transaction should complete as it normally would 232 * in the call path but will return -EIO. 233 * 234 * We'll complete the cleanup in btrfs_end_transaction and 235 * btrfs_commit_transaction. 236 */ 237 __cold 238 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 239 const char *function, 240 unsigned int line, int errno) 241 { 242 struct btrfs_fs_info *fs_info = trans->fs_info; 243 244 trans->aborted = errno; 245 /* Nothing used. The other threads that have joined this 246 * transaction may be able to continue. */ 247 if (!trans->dirty && list_empty(&trans->new_bgs)) { 248 const char *errstr; 249 250 errstr = btrfs_decode_error(errno); 251 btrfs_warn(fs_info, 252 "%s:%d: Aborting unused transaction(%s).", 253 function, line, errstr); 254 return; 255 } 256 WRITE_ONCE(trans->transaction->aborted, errno); 257 /* Wake up anybody who may be waiting on this transaction */ 258 wake_up(&fs_info->transaction_wait); 259 wake_up(&fs_info->transaction_blocked_wait); 260 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 261 } 262 /* 263 * __btrfs_panic decodes unexpected, fatal errors from the caller, 264 * issues an alert, and either panics or BUGs, depending on mount options. 265 */ 266 __cold 267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 268 unsigned int line, int errno, const char *fmt, ...) 269 { 270 char *s_id = "<unknown>"; 271 const char *errstr; 272 struct va_format vaf = { .fmt = fmt }; 273 va_list args; 274 275 if (fs_info) 276 s_id = fs_info->sb->s_id; 277 278 va_start(args, fmt); 279 vaf.va = &args; 280 281 errstr = btrfs_decode_error(errno); 282 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 283 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 284 s_id, function, line, &vaf, errno, errstr); 285 286 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 287 function, line, &vaf, errno, errstr); 288 va_end(args); 289 /* Caller calls BUG() */ 290 } 291 292 static void btrfs_put_super(struct super_block *sb) 293 { 294 close_ctree(btrfs_sb(sb)); 295 } 296 297 enum { 298 Opt_acl, Opt_noacl, 299 Opt_clear_cache, 300 Opt_commit_interval, 301 Opt_compress, 302 Opt_compress_force, 303 Opt_compress_force_type, 304 Opt_compress_type, 305 Opt_degraded, 306 Opt_device, 307 Opt_fatal_errors, 308 Opt_flushoncommit, Opt_noflushoncommit, 309 Opt_inode_cache, Opt_noinode_cache, 310 Opt_max_inline, 311 Opt_barrier, Opt_nobarrier, 312 Opt_datacow, Opt_nodatacow, 313 Opt_datasum, Opt_nodatasum, 314 Opt_defrag, Opt_nodefrag, 315 Opt_discard, Opt_nodiscard, 316 Opt_nologreplay, 317 Opt_norecovery, 318 Opt_ratio, 319 Opt_rescan_uuid_tree, 320 Opt_skip_balance, 321 Opt_space_cache, Opt_no_space_cache, 322 Opt_space_cache_version, 323 Opt_ssd, Opt_nossd, 324 Opt_ssd_spread, Opt_nossd_spread, 325 Opt_subvol, 326 Opt_subvolid, 327 Opt_thread_pool, 328 Opt_treelog, Opt_notreelog, 329 Opt_usebackuproot, 330 Opt_user_subvol_rm_allowed, 331 332 /* Deprecated options */ 333 Opt_alloc_start, 334 Opt_recovery, 335 Opt_subvolrootid, 336 337 /* Debugging options */ 338 Opt_check_integrity, 339 Opt_check_integrity_including_extent_data, 340 Opt_check_integrity_print_mask, 341 Opt_enospc_debug, Opt_noenospc_debug, 342 #ifdef CONFIG_BTRFS_DEBUG 343 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 344 #endif 345 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 346 Opt_ref_verify, 347 #endif 348 Opt_err, 349 }; 350 351 static const match_table_t tokens = { 352 {Opt_acl, "acl"}, 353 {Opt_noacl, "noacl"}, 354 {Opt_clear_cache, "clear_cache"}, 355 {Opt_commit_interval, "commit=%u"}, 356 {Opt_compress, "compress"}, 357 {Opt_compress_type, "compress=%s"}, 358 {Opt_compress_force, "compress-force"}, 359 {Opt_compress_force_type, "compress-force=%s"}, 360 {Opt_degraded, "degraded"}, 361 {Opt_device, "device=%s"}, 362 {Opt_fatal_errors, "fatal_errors=%s"}, 363 {Opt_flushoncommit, "flushoncommit"}, 364 {Opt_noflushoncommit, "noflushoncommit"}, 365 {Opt_inode_cache, "inode_cache"}, 366 {Opt_noinode_cache, "noinode_cache"}, 367 {Opt_max_inline, "max_inline=%s"}, 368 {Opt_barrier, "barrier"}, 369 {Opt_nobarrier, "nobarrier"}, 370 {Opt_datacow, "datacow"}, 371 {Opt_nodatacow, "nodatacow"}, 372 {Opt_datasum, "datasum"}, 373 {Opt_nodatasum, "nodatasum"}, 374 {Opt_defrag, "autodefrag"}, 375 {Opt_nodefrag, "noautodefrag"}, 376 {Opt_discard, "discard"}, 377 {Opt_nodiscard, "nodiscard"}, 378 {Opt_nologreplay, "nologreplay"}, 379 {Opt_norecovery, "norecovery"}, 380 {Opt_ratio, "metadata_ratio=%u"}, 381 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 382 {Opt_skip_balance, "skip_balance"}, 383 {Opt_space_cache, "space_cache"}, 384 {Opt_no_space_cache, "nospace_cache"}, 385 {Opt_space_cache_version, "space_cache=%s"}, 386 {Opt_ssd, "ssd"}, 387 {Opt_nossd, "nossd"}, 388 {Opt_ssd_spread, "ssd_spread"}, 389 {Opt_nossd_spread, "nossd_spread"}, 390 {Opt_subvol, "subvol=%s"}, 391 {Opt_subvolid, "subvolid=%s"}, 392 {Opt_thread_pool, "thread_pool=%u"}, 393 {Opt_treelog, "treelog"}, 394 {Opt_notreelog, "notreelog"}, 395 {Opt_usebackuproot, "usebackuproot"}, 396 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 397 398 /* Deprecated options */ 399 {Opt_alloc_start, "alloc_start=%s"}, 400 {Opt_recovery, "recovery"}, 401 {Opt_subvolrootid, "subvolrootid=%d"}, 402 403 /* Debugging options */ 404 {Opt_check_integrity, "check_int"}, 405 {Opt_check_integrity_including_extent_data, "check_int_data"}, 406 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 407 {Opt_enospc_debug, "enospc_debug"}, 408 {Opt_noenospc_debug, "noenospc_debug"}, 409 #ifdef CONFIG_BTRFS_DEBUG 410 {Opt_fragment_data, "fragment=data"}, 411 {Opt_fragment_metadata, "fragment=metadata"}, 412 {Opt_fragment_all, "fragment=all"}, 413 #endif 414 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 415 {Opt_ref_verify, "ref_verify"}, 416 #endif 417 {Opt_err, NULL}, 418 }; 419 420 /* 421 * Regular mount options parser. Everything that is needed only when 422 * reading in a new superblock is parsed here. 423 * XXX JDM: This needs to be cleaned up for remount. 424 */ 425 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 426 unsigned long new_flags) 427 { 428 substring_t args[MAX_OPT_ARGS]; 429 char *p, *num; 430 u64 cache_gen; 431 int intarg; 432 int ret = 0; 433 char *compress_type; 434 bool compress_force = false; 435 enum btrfs_compression_type saved_compress_type; 436 bool saved_compress_force; 437 int no_compress = 0; 438 439 cache_gen = btrfs_super_cache_generation(info->super_copy); 440 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 441 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 442 else if (cache_gen) 443 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 444 445 /* 446 * Even the options are empty, we still need to do extra check 447 * against new flags 448 */ 449 if (!options) 450 goto check; 451 452 while ((p = strsep(&options, ",")) != NULL) { 453 int token; 454 if (!*p) 455 continue; 456 457 token = match_token(p, tokens, args); 458 switch (token) { 459 case Opt_degraded: 460 btrfs_info(info, "allowing degraded mounts"); 461 btrfs_set_opt(info->mount_opt, DEGRADED); 462 break; 463 case Opt_subvol: 464 case Opt_subvolid: 465 case Opt_subvolrootid: 466 case Opt_device: 467 /* 468 * These are parsed by btrfs_parse_subvol_options 469 * and btrfs_parse_early_options 470 * and can be happily ignored here. 471 */ 472 break; 473 case Opt_nodatasum: 474 btrfs_set_and_info(info, NODATASUM, 475 "setting nodatasum"); 476 break; 477 case Opt_datasum: 478 if (btrfs_test_opt(info, NODATASUM)) { 479 if (btrfs_test_opt(info, NODATACOW)) 480 btrfs_info(info, 481 "setting datasum, datacow enabled"); 482 else 483 btrfs_info(info, "setting datasum"); 484 } 485 btrfs_clear_opt(info->mount_opt, NODATACOW); 486 btrfs_clear_opt(info->mount_opt, NODATASUM); 487 break; 488 case Opt_nodatacow: 489 if (!btrfs_test_opt(info, NODATACOW)) { 490 if (!btrfs_test_opt(info, COMPRESS) || 491 !btrfs_test_opt(info, FORCE_COMPRESS)) { 492 btrfs_info(info, 493 "setting nodatacow, compression disabled"); 494 } else { 495 btrfs_info(info, "setting nodatacow"); 496 } 497 } 498 btrfs_clear_opt(info->mount_opt, COMPRESS); 499 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 500 btrfs_set_opt(info->mount_opt, NODATACOW); 501 btrfs_set_opt(info->mount_opt, NODATASUM); 502 break; 503 case Opt_datacow: 504 btrfs_clear_and_info(info, NODATACOW, 505 "setting datacow"); 506 break; 507 case Opt_compress_force: 508 case Opt_compress_force_type: 509 compress_force = true; 510 /* Fallthrough */ 511 case Opt_compress: 512 case Opt_compress_type: 513 saved_compress_type = btrfs_test_opt(info, 514 COMPRESS) ? 515 info->compress_type : BTRFS_COMPRESS_NONE; 516 saved_compress_force = 517 btrfs_test_opt(info, FORCE_COMPRESS); 518 if (token == Opt_compress || 519 token == Opt_compress_force || 520 strncmp(args[0].from, "zlib", 4) == 0) { 521 compress_type = "zlib"; 522 523 info->compress_type = BTRFS_COMPRESS_ZLIB; 524 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 525 /* 526 * args[0] contains uninitialized data since 527 * for these tokens we don't expect any 528 * parameter. 529 */ 530 if (token != Opt_compress && 531 token != Opt_compress_force) 532 info->compress_level = 533 btrfs_compress_str2level(args[0].from); 534 btrfs_set_opt(info->mount_opt, COMPRESS); 535 btrfs_clear_opt(info->mount_opt, NODATACOW); 536 btrfs_clear_opt(info->mount_opt, NODATASUM); 537 no_compress = 0; 538 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 539 compress_type = "lzo"; 540 info->compress_type = BTRFS_COMPRESS_LZO; 541 btrfs_set_opt(info->mount_opt, COMPRESS); 542 btrfs_clear_opt(info->mount_opt, NODATACOW); 543 btrfs_clear_opt(info->mount_opt, NODATASUM); 544 btrfs_set_fs_incompat(info, COMPRESS_LZO); 545 no_compress = 0; 546 } else if (strcmp(args[0].from, "zstd") == 0) { 547 compress_type = "zstd"; 548 info->compress_type = BTRFS_COMPRESS_ZSTD; 549 btrfs_set_opt(info->mount_opt, COMPRESS); 550 btrfs_clear_opt(info->mount_opt, NODATACOW); 551 btrfs_clear_opt(info->mount_opt, NODATASUM); 552 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 553 no_compress = 0; 554 } else if (strncmp(args[0].from, "no", 2) == 0) { 555 compress_type = "no"; 556 btrfs_clear_opt(info->mount_opt, COMPRESS); 557 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 558 compress_force = false; 559 no_compress++; 560 } else { 561 ret = -EINVAL; 562 goto out; 563 } 564 565 if (compress_force) { 566 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 567 } else { 568 /* 569 * If we remount from compress-force=xxx to 570 * compress=xxx, we need clear FORCE_COMPRESS 571 * flag, otherwise, there is no way for users 572 * to disable forcible compression separately. 573 */ 574 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 575 } 576 if ((btrfs_test_opt(info, COMPRESS) && 577 (info->compress_type != saved_compress_type || 578 compress_force != saved_compress_force)) || 579 (!btrfs_test_opt(info, COMPRESS) && 580 no_compress == 1)) { 581 btrfs_info(info, "%s %s compression, level %d", 582 (compress_force) ? "force" : "use", 583 compress_type, info->compress_level); 584 } 585 compress_force = false; 586 break; 587 case Opt_ssd: 588 btrfs_set_and_info(info, SSD, 589 "enabling ssd optimizations"); 590 btrfs_clear_opt(info->mount_opt, NOSSD); 591 break; 592 case Opt_ssd_spread: 593 btrfs_set_and_info(info, SSD, 594 "enabling ssd optimizations"); 595 btrfs_set_and_info(info, SSD_SPREAD, 596 "using spread ssd allocation scheme"); 597 btrfs_clear_opt(info->mount_opt, NOSSD); 598 break; 599 case Opt_nossd: 600 btrfs_set_opt(info->mount_opt, NOSSD); 601 btrfs_clear_and_info(info, SSD, 602 "not using ssd optimizations"); 603 /* Fallthrough */ 604 case Opt_nossd_spread: 605 btrfs_clear_and_info(info, SSD_SPREAD, 606 "not using spread ssd allocation scheme"); 607 break; 608 case Opt_barrier: 609 btrfs_clear_and_info(info, NOBARRIER, 610 "turning on barriers"); 611 break; 612 case Opt_nobarrier: 613 btrfs_set_and_info(info, NOBARRIER, 614 "turning off barriers"); 615 break; 616 case Opt_thread_pool: 617 ret = match_int(&args[0], &intarg); 618 if (ret) { 619 goto out; 620 } else if (intarg == 0) { 621 ret = -EINVAL; 622 goto out; 623 } 624 info->thread_pool_size = intarg; 625 break; 626 case Opt_max_inline: 627 num = match_strdup(&args[0]); 628 if (num) { 629 info->max_inline = memparse(num, NULL); 630 kfree(num); 631 632 if (info->max_inline) { 633 info->max_inline = min_t(u64, 634 info->max_inline, 635 info->sectorsize); 636 } 637 btrfs_info(info, "max_inline at %llu", 638 info->max_inline); 639 } else { 640 ret = -ENOMEM; 641 goto out; 642 } 643 break; 644 case Opt_alloc_start: 645 btrfs_info(info, 646 "option alloc_start is obsolete, ignored"); 647 break; 648 case Opt_acl: 649 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 650 info->sb->s_flags |= SB_POSIXACL; 651 break; 652 #else 653 btrfs_err(info, "support for ACL not compiled in!"); 654 ret = -EINVAL; 655 goto out; 656 #endif 657 case Opt_noacl: 658 info->sb->s_flags &= ~SB_POSIXACL; 659 break; 660 case Opt_notreelog: 661 btrfs_set_and_info(info, NOTREELOG, 662 "disabling tree log"); 663 break; 664 case Opt_treelog: 665 btrfs_clear_and_info(info, NOTREELOG, 666 "enabling tree log"); 667 break; 668 case Opt_norecovery: 669 case Opt_nologreplay: 670 btrfs_set_and_info(info, NOLOGREPLAY, 671 "disabling log replay at mount time"); 672 break; 673 case Opt_flushoncommit: 674 btrfs_set_and_info(info, FLUSHONCOMMIT, 675 "turning on flush-on-commit"); 676 break; 677 case Opt_noflushoncommit: 678 btrfs_clear_and_info(info, FLUSHONCOMMIT, 679 "turning off flush-on-commit"); 680 break; 681 case Opt_ratio: 682 ret = match_int(&args[0], &intarg); 683 if (ret) 684 goto out; 685 info->metadata_ratio = intarg; 686 btrfs_info(info, "metadata ratio %u", 687 info->metadata_ratio); 688 break; 689 case Opt_discard: 690 btrfs_set_and_info(info, DISCARD, 691 "turning on discard"); 692 break; 693 case Opt_nodiscard: 694 btrfs_clear_and_info(info, DISCARD, 695 "turning off discard"); 696 break; 697 case Opt_space_cache: 698 case Opt_space_cache_version: 699 if (token == Opt_space_cache || 700 strcmp(args[0].from, "v1") == 0) { 701 btrfs_clear_opt(info->mount_opt, 702 FREE_SPACE_TREE); 703 btrfs_set_and_info(info, SPACE_CACHE, 704 "enabling disk space caching"); 705 } else if (strcmp(args[0].from, "v2") == 0) { 706 btrfs_clear_opt(info->mount_opt, 707 SPACE_CACHE); 708 btrfs_set_and_info(info, FREE_SPACE_TREE, 709 "enabling free space tree"); 710 } else { 711 ret = -EINVAL; 712 goto out; 713 } 714 break; 715 case Opt_rescan_uuid_tree: 716 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 717 break; 718 case Opt_no_space_cache: 719 if (btrfs_test_opt(info, SPACE_CACHE)) { 720 btrfs_clear_and_info(info, SPACE_CACHE, 721 "disabling disk space caching"); 722 } 723 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 724 btrfs_clear_and_info(info, FREE_SPACE_TREE, 725 "disabling free space tree"); 726 } 727 break; 728 case Opt_inode_cache: 729 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 730 "enabling inode map caching"); 731 break; 732 case Opt_noinode_cache: 733 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 734 "disabling inode map caching"); 735 break; 736 case Opt_clear_cache: 737 btrfs_set_and_info(info, CLEAR_CACHE, 738 "force clearing of disk cache"); 739 break; 740 case Opt_user_subvol_rm_allowed: 741 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 742 break; 743 case Opt_enospc_debug: 744 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 745 break; 746 case Opt_noenospc_debug: 747 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 748 break; 749 case Opt_defrag: 750 btrfs_set_and_info(info, AUTO_DEFRAG, 751 "enabling auto defrag"); 752 break; 753 case Opt_nodefrag: 754 btrfs_clear_and_info(info, AUTO_DEFRAG, 755 "disabling auto defrag"); 756 break; 757 case Opt_recovery: 758 btrfs_warn(info, 759 "'recovery' is deprecated, use 'usebackuproot' instead"); 760 case Opt_usebackuproot: 761 btrfs_info(info, 762 "trying to use backup root at mount time"); 763 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 764 break; 765 case Opt_skip_balance: 766 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 767 break; 768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 769 case Opt_check_integrity_including_extent_data: 770 btrfs_info(info, 771 "enabling check integrity including extent data"); 772 btrfs_set_opt(info->mount_opt, 773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 774 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 775 break; 776 case Opt_check_integrity: 777 btrfs_info(info, "enabling check integrity"); 778 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 779 break; 780 case Opt_check_integrity_print_mask: 781 ret = match_int(&args[0], &intarg); 782 if (ret) 783 goto out; 784 info->check_integrity_print_mask = intarg; 785 btrfs_info(info, "check_integrity_print_mask 0x%x", 786 info->check_integrity_print_mask); 787 break; 788 #else 789 case Opt_check_integrity_including_extent_data: 790 case Opt_check_integrity: 791 case Opt_check_integrity_print_mask: 792 btrfs_err(info, 793 "support for check_integrity* not compiled in!"); 794 ret = -EINVAL; 795 goto out; 796 #endif 797 case Opt_fatal_errors: 798 if (strcmp(args[0].from, "panic") == 0) 799 btrfs_set_opt(info->mount_opt, 800 PANIC_ON_FATAL_ERROR); 801 else if (strcmp(args[0].from, "bug") == 0) 802 btrfs_clear_opt(info->mount_opt, 803 PANIC_ON_FATAL_ERROR); 804 else { 805 ret = -EINVAL; 806 goto out; 807 } 808 break; 809 case Opt_commit_interval: 810 intarg = 0; 811 ret = match_int(&args[0], &intarg); 812 if (ret) 813 goto out; 814 if (intarg == 0) { 815 btrfs_info(info, 816 "using default commit interval %us", 817 BTRFS_DEFAULT_COMMIT_INTERVAL); 818 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 819 } else if (intarg > 300) { 820 btrfs_warn(info, "excessive commit interval %d", 821 intarg); 822 } 823 info->commit_interval = intarg; 824 break; 825 #ifdef CONFIG_BTRFS_DEBUG 826 case Opt_fragment_all: 827 btrfs_info(info, "fragmenting all space"); 828 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 829 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 830 break; 831 case Opt_fragment_metadata: 832 btrfs_info(info, "fragmenting metadata"); 833 btrfs_set_opt(info->mount_opt, 834 FRAGMENT_METADATA); 835 break; 836 case Opt_fragment_data: 837 btrfs_info(info, "fragmenting data"); 838 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 839 break; 840 #endif 841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 842 case Opt_ref_verify: 843 btrfs_info(info, "doing ref verification"); 844 btrfs_set_opt(info->mount_opt, REF_VERIFY); 845 break; 846 #endif 847 case Opt_err: 848 btrfs_info(info, "unrecognized mount option '%s'", p); 849 ret = -EINVAL; 850 goto out; 851 default: 852 break; 853 } 854 } 855 check: 856 /* 857 * Extra check for current option against current flag 858 */ 859 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 860 btrfs_err(info, 861 "nologreplay must be used with ro mount option"); 862 ret = -EINVAL; 863 } 864 out: 865 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 866 !btrfs_test_opt(info, FREE_SPACE_TREE) && 867 !btrfs_test_opt(info, CLEAR_CACHE)) { 868 btrfs_err(info, "cannot disable free space tree"); 869 ret = -EINVAL; 870 871 } 872 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 873 btrfs_info(info, "disk space caching is enabled"); 874 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 875 btrfs_info(info, "using free space tree"); 876 return ret; 877 } 878 879 /* 880 * Parse mount options that are required early in the mount process. 881 * 882 * All other options will be parsed on much later in the mount process and 883 * only when we need to allocate a new super block. 884 */ 885 static int btrfs_parse_early_options(const char *options, fmode_t flags, 886 void *holder, struct btrfs_fs_devices **fs_devices) 887 { 888 substring_t args[MAX_OPT_ARGS]; 889 char *device_name, *opts, *orig, *p; 890 int error = 0; 891 892 if (!options) 893 return 0; 894 895 /* 896 * strsep changes the string, duplicate it because btrfs_parse_options 897 * gets called later 898 */ 899 opts = kstrdup(options, GFP_KERNEL); 900 if (!opts) 901 return -ENOMEM; 902 orig = opts; 903 904 while ((p = strsep(&opts, ",")) != NULL) { 905 int token; 906 907 if (!*p) 908 continue; 909 910 token = match_token(p, tokens, args); 911 if (token == Opt_device) { 912 device_name = match_strdup(&args[0]); 913 if (!device_name) { 914 error = -ENOMEM; 915 goto out; 916 } 917 error = btrfs_scan_one_device(device_name, 918 flags, holder, fs_devices); 919 kfree(device_name); 920 if (error) 921 goto out; 922 } 923 } 924 925 out: 926 kfree(orig); 927 return error; 928 } 929 930 /* 931 * Parse mount options that are related to subvolume id 932 * 933 * The value is later passed to mount_subvol() 934 */ 935 static int btrfs_parse_subvol_options(const char *options, fmode_t flags, 936 char **subvol_name, u64 *subvol_objectid) 937 { 938 substring_t args[MAX_OPT_ARGS]; 939 char *opts, *orig, *p; 940 int error = 0; 941 u64 subvolid; 942 943 if (!options) 944 return 0; 945 946 /* 947 * strsep changes the string, duplicate it because 948 * btrfs_parse_early_options gets called later 949 */ 950 opts = kstrdup(options, GFP_KERNEL); 951 if (!opts) 952 return -ENOMEM; 953 orig = opts; 954 955 while ((p = strsep(&opts, ",")) != NULL) { 956 int token; 957 if (!*p) 958 continue; 959 960 token = match_token(p, tokens, args); 961 switch (token) { 962 case Opt_subvol: 963 kfree(*subvol_name); 964 *subvol_name = match_strdup(&args[0]); 965 if (!*subvol_name) { 966 error = -ENOMEM; 967 goto out; 968 } 969 break; 970 case Opt_subvolid: 971 error = match_u64(&args[0], &subvolid); 972 if (error) 973 goto out; 974 975 /* we want the original fs_tree */ 976 if (subvolid == 0) 977 subvolid = BTRFS_FS_TREE_OBJECTID; 978 979 *subvol_objectid = subvolid; 980 break; 981 case Opt_subvolrootid: 982 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 983 break; 984 default: 985 break; 986 } 987 } 988 989 out: 990 kfree(orig); 991 return error; 992 } 993 994 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 995 u64 subvol_objectid) 996 { 997 struct btrfs_root *root = fs_info->tree_root; 998 struct btrfs_root *fs_root; 999 struct btrfs_root_ref *root_ref; 1000 struct btrfs_inode_ref *inode_ref; 1001 struct btrfs_key key; 1002 struct btrfs_path *path = NULL; 1003 char *name = NULL, *ptr; 1004 u64 dirid; 1005 int len; 1006 int ret; 1007 1008 path = btrfs_alloc_path(); 1009 if (!path) { 1010 ret = -ENOMEM; 1011 goto err; 1012 } 1013 path->leave_spinning = 1; 1014 1015 name = kmalloc(PATH_MAX, GFP_KERNEL); 1016 if (!name) { 1017 ret = -ENOMEM; 1018 goto err; 1019 } 1020 ptr = name + PATH_MAX - 1; 1021 ptr[0] = '\0'; 1022 1023 /* 1024 * Walk up the subvolume trees in the tree of tree roots by root 1025 * backrefs until we hit the top-level subvolume. 1026 */ 1027 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1028 key.objectid = subvol_objectid; 1029 key.type = BTRFS_ROOT_BACKREF_KEY; 1030 key.offset = (u64)-1; 1031 1032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1033 if (ret < 0) { 1034 goto err; 1035 } else if (ret > 0) { 1036 ret = btrfs_previous_item(root, path, subvol_objectid, 1037 BTRFS_ROOT_BACKREF_KEY); 1038 if (ret < 0) { 1039 goto err; 1040 } else if (ret > 0) { 1041 ret = -ENOENT; 1042 goto err; 1043 } 1044 } 1045 1046 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1047 subvol_objectid = key.offset; 1048 1049 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1050 struct btrfs_root_ref); 1051 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1052 ptr -= len + 1; 1053 if (ptr < name) { 1054 ret = -ENAMETOOLONG; 1055 goto err; 1056 } 1057 read_extent_buffer(path->nodes[0], ptr + 1, 1058 (unsigned long)(root_ref + 1), len); 1059 ptr[0] = '/'; 1060 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1061 btrfs_release_path(path); 1062 1063 key.objectid = subvol_objectid; 1064 key.type = BTRFS_ROOT_ITEM_KEY; 1065 key.offset = (u64)-1; 1066 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1067 if (IS_ERR(fs_root)) { 1068 ret = PTR_ERR(fs_root); 1069 goto err; 1070 } 1071 1072 /* 1073 * Walk up the filesystem tree by inode refs until we hit the 1074 * root directory. 1075 */ 1076 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1077 key.objectid = dirid; 1078 key.type = BTRFS_INODE_REF_KEY; 1079 key.offset = (u64)-1; 1080 1081 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1082 if (ret < 0) { 1083 goto err; 1084 } else if (ret > 0) { 1085 ret = btrfs_previous_item(fs_root, path, dirid, 1086 BTRFS_INODE_REF_KEY); 1087 if (ret < 0) { 1088 goto err; 1089 } else if (ret > 0) { 1090 ret = -ENOENT; 1091 goto err; 1092 } 1093 } 1094 1095 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1096 dirid = key.offset; 1097 1098 inode_ref = btrfs_item_ptr(path->nodes[0], 1099 path->slots[0], 1100 struct btrfs_inode_ref); 1101 len = btrfs_inode_ref_name_len(path->nodes[0], 1102 inode_ref); 1103 ptr -= len + 1; 1104 if (ptr < name) { 1105 ret = -ENAMETOOLONG; 1106 goto err; 1107 } 1108 read_extent_buffer(path->nodes[0], ptr + 1, 1109 (unsigned long)(inode_ref + 1), len); 1110 ptr[0] = '/'; 1111 btrfs_release_path(path); 1112 } 1113 } 1114 1115 btrfs_free_path(path); 1116 if (ptr == name + PATH_MAX - 1) { 1117 name[0] = '/'; 1118 name[1] = '\0'; 1119 } else { 1120 memmove(name, ptr, name + PATH_MAX - ptr); 1121 } 1122 return name; 1123 1124 err: 1125 btrfs_free_path(path); 1126 kfree(name); 1127 return ERR_PTR(ret); 1128 } 1129 1130 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1131 { 1132 struct btrfs_root *root = fs_info->tree_root; 1133 struct btrfs_dir_item *di; 1134 struct btrfs_path *path; 1135 struct btrfs_key location; 1136 u64 dir_id; 1137 1138 path = btrfs_alloc_path(); 1139 if (!path) 1140 return -ENOMEM; 1141 path->leave_spinning = 1; 1142 1143 /* 1144 * Find the "default" dir item which points to the root item that we 1145 * will mount by default if we haven't been given a specific subvolume 1146 * to mount. 1147 */ 1148 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1149 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1150 if (IS_ERR(di)) { 1151 btrfs_free_path(path); 1152 return PTR_ERR(di); 1153 } 1154 if (!di) { 1155 /* 1156 * Ok the default dir item isn't there. This is weird since 1157 * it's always been there, but don't freak out, just try and 1158 * mount the top-level subvolume. 1159 */ 1160 btrfs_free_path(path); 1161 *objectid = BTRFS_FS_TREE_OBJECTID; 1162 return 0; 1163 } 1164 1165 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1166 btrfs_free_path(path); 1167 *objectid = location.objectid; 1168 return 0; 1169 } 1170 1171 static int btrfs_fill_super(struct super_block *sb, 1172 struct btrfs_fs_devices *fs_devices, 1173 void *data) 1174 { 1175 struct inode *inode; 1176 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1177 struct btrfs_key key; 1178 int err; 1179 1180 sb->s_maxbytes = MAX_LFS_FILESIZE; 1181 sb->s_magic = BTRFS_SUPER_MAGIC; 1182 sb->s_op = &btrfs_super_ops; 1183 sb->s_d_op = &btrfs_dentry_operations; 1184 sb->s_export_op = &btrfs_export_ops; 1185 sb->s_xattr = btrfs_xattr_handlers; 1186 sb->s_time_gran = 1; 1187 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1188 sb->s_flags |= SB_POSIXACL; 1189 #endif 1190 sb->s_flags |= SB_I_VERSION; 1191 sb->s_iflags |= SB_I_CGROUPWB; 1192 1193 err = super_setup_bdi(sb); 1194 if (err) { 1195 btrfs_err(fs_info, "super_setup_bdi failed"); 1196 return err; 1197 } 1198 1199 err = open_ctree(sb, fs_devices, (char *)data); 1200 if (err) { 1201 btrfs_err(fs_info, "open_ctree failed"); 1202 return err; 1203 } 1204 1205 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1206 key.type = BTRFS_INODE_ITEM_KEY; 1207 key.offset = 0; 1208 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1209 if (IS_ERR(inode)) { 1210 err = PTR_ERR(inode); 1211 goto fail_close; 1212 } 1213 1214 sb->s_root = d_make_root(inode); 1215 if (!sb->s_root) { 1216 err = -ENOMEM; 1217 goto fail_close; 1218 } 1219 1220 cleancache_init_fs(sb); 1221 sb->s_flags |= SB_ACTIVE; 1222 return 0; 1223 1224 fail_close: 1225 close_ctree(fs_info); 1226 return err; 1227 } 1228 1229 int btrfs_sync_fs(struct super_block *sb, int wait) 1230 { 1231 struct btrfs_trans_handle *trans; 1232 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1233 struct btrfs_root *root = fs_info->tree_root; 1234 1235 trace_btrfs_sync_fs(fs_info, wait); 1236 1237 if (!wait) { 1238 filemap_flush(fs_info->btree_inode->i_mapping); 1239 return 0; 1240 } 1241 1242 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1243 1244 trans = btrfs_attach_transaction_barrier(root); 1245 if (IS_ERR(trans)) { 1246 /* no transaction, don't bother */ 1247 if (PTR_ERR(trans) == -ENOENT) { 1248 /* 1249 * Exit unless we have some pending changes 1250 * that need to go through commit 1251 */ 1252 if (fs_info->pending_changes == 0) 1253 return 0; 1254 /* 1255 * A non-blocking test if the fs is frozen. We must not 1256 * start a new transaction here otherwise a deadlock 1257 * happens. The pending operations are delayed to the 1258 * next commit after thawing. 1259 */ 1260 if (sb_start_write_trylock(sb)) 1261 sb_end_write(sb); 1262 else 1263 return 0; 1264 trans = btrfs_start_transaction(root, 0); 1265 } 1266 if (IS_ERR(trans)) 1267 return PTR_ERR(trans); 1268 } 1269 return btrfs_commit_transaction(trans); 1270 } 1271 1272 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1273 { 1274 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1275 const char *compress_type; 1276 1277 if (btrfs_test_opt(info, DEGRADED)) 1278 seq_puts(seq, ",degraded"); 1279 if (btrfs_test_opt(info, NODATASUM)) 1280 seq_puts(seq, ",nodatasum"); 1281 if (btrfs_test_opt(info, NODATACOW)) 1282 seq_puts(seq, ",nodatacow"); 1283 if (btrfs_test_opt(info, NOBARRIER)) 1284 seq_puts(seq, ",nobarrier"); 1285 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1286 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1287 if (info->thread_pool_size != min_t(unsigned long, 1288 num_online_cpus() + 2, 8)) 1289 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1290 if (btrfs_test_opt(info, COMPRESS)) { 1291 compress_type = btrfs_compress_type2str(info->compress_type); 1292 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1293 seq_printf(seq, ",compress-force=%s", compress_type); 1294 else 1295 seq_printf(seq, ",compress=%s", compress_type); 1296 if (info->compress_level) 1297 seq_printf(seq, ":%d", info->compress_level); 1298 } 1299 if (btrfs_test_opt(info, NOSSD)) 1300 seq_puts(seq, ",nossd"); 1301 if (btrfs_test_opt(info, SSD_SPREAD)) 1302 seq_puts(seq, ",ssd_spread"); 1303 else if (btrfs_test_opt(info, SSD)) 1304 seq_puts(seq, ",ssd"); 1305 if (btrfs_test_opt(info, NOTREELOG)) 1306 seq_puts(seq, ",notreelog"); 1307 if (btrfs_test_opt(info, NOLOGREPLAY)) 1308 seq_puts(seq, ",nologreplay"); 1309 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1310 seq_puts(seq, ",flushoncommit"); 1311 if (btrfs_test_opt(info, DISCARD)) 1312 seq_puts(seq, ",discard"); 1313 if (!(info->sb->s_flags & SB_POSIXACL)) 1314 seq_puts(seq, ",noacl"); 1315 if (btrfs_test_opt(info, SPACE_CACHE)) 1316 seq_puts(seq, ",space_cache"); 1317 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1318 seq_puts(seq, ",space_cache=v2"); 1319 else 1320 seq_puts(seq, ",nospace_cache"); 1321 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1322 seq_puts(seq, ",rescan_uuid_tree"); 1323 if (btrfs_test_opt(info, CLEAR_CACHE)) 1324 seq_puts(seq, ",clear_cache"); 1325 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1326 seq_puts(seq, ",user_subvol_rm_allowed"); 1327 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1328 seq_puts(seq, ",enospc_debug"); 1329 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1330 seq_puts(seq, ",autodefrag"); 1331 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1332 seq_puts(seq, ",inode_cache"); 1333 if (btrfs_test_opt(info, SKIP_BALANCE)) 1334 seq_puts(seq, ",skip_balance"); 1335 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1336 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1337 seq_puts(seq, ",check_int_data"); 1338 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1339 seq_puts(seq, ",check_int"); 1340 if (info->check_integrity_print_mask) 1341 seq_printf(seq, ",check_int_print_mask=%d", 1342 info->check_integrity_print_mask); 1343 #endif 1344 if (info->metadata_ratio) 1345 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1346 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1347 seq_puts(seq, ",fatal_errors=panic"); 1348 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1349 seq_printf(seq, ",commit=%u", info->commit_interval); 1350 #ifdef CONFIG_BTRFS_DEBUG 1351 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1352 seq_puts(seq, ",fragment=data"); 1353 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1354 seq_puts(seq, ",fragment=metadata"); 1355 #endif 1356 if (btrfs_test_opt(info, REF_VERIFY)) 1357 seq_puts(seq, ",ref_verify"); 1358 seq_printf(seq, ",subvolid=%llu", 1359 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1360 seq_puts(seq, ",subvol="); 1361 seq_dentry(seq, dentry, " \t\n\\"); 1362 return 0; 1363 } 1364 1365 static int btrfs_test_super(struct super_block *s, void *data) 1366 { 1367 struct btrfs_fs_info *p = data; 1368 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1369 1370 return fs_info->fs_devices == p->fs_devices; 1371 } 1372 1373 static int btrfs_set_super(struct super_block *s, void *data) 1374 { 1375 int err = set_anon_super(s, data); 1376 if (!err) 1377 s->s_fs_info = data; 1378 return err; 1379 } 1380 1381 /* 1382 * subvolumes are identified by ino 256 1383 */ 1384 static inline int is_subvolume_inode(struct inode *inode) 1385 { 1386 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1387 return 1; 1388 return 0; 1389 } 1390 1391 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1392 const char *device_name, struct vfsmount *mnt) 1393 { 1394 struct dentry *root; 1395 int ret; 1396 1397 if (!subvol_name) { 1398 if (!subvol_objectid) { 1399 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1400 &subvol_objectid); 1401 if (ret) { 1402 root = ERR_PTR(ret); 1403 goto out; 1404 } 1405 } 1406 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1407 subvol_objectid); 1408 if (IS_ERR(subvol_name)) { 1409 root = ERR_CAST(subvol_name); 1410 subvol_name = NULL; 1411 goto out; 1412 } 1413 1414 } 1415 1416 root = mount_subtree(mnt, subvol_name); 1417 /* mount_subtree() drops our reference on the vfsmount. */ 1418 mnt = NULL; 1419 1420 if (!IS_ERR(root)) { 1421 struct super_block *s = root->d_sb; 1422 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1423 struct inode *root_inode = d_inode(root); 1424 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1425 1426 ret = 0; 1427 if (!is_subvolume_inode(root_inode)) { 1428 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1429 subvol_name); 1430 ret = -EINVAL; 1431 } 1432 if (subvol_objectid && root_objectid != subvol_objectid) { 1433 /* 1434 * This will also catch a race condition where a 1435 * subvolume which was passed by ID is renamed and 1436 * another subvolume is renamed over the old location. 1437 */ 1438 btrfs_err(fs_info, 1439 "subvol '%s' does not match subvolid %llu", 1440 subvol_name, subvol_objectid); 1441 ret = -EINVAL; 1442 } 1443 if (ret) { 1444 dput(root); 1445 root = ERR_PTR(ret); 1446 deactivate_locked_super(s); 1447 } 1448 } 1449 1450 out: 1451 mntput(mnt); 1452 kfree(subvol_name); 1453 return root; 1454 } 1455 1456 static int parse_security_options(char *orig_opts, 1457 struct security_mnt_opts *sec_opts) 1458 { 1459 char *secdata = NULL; 1460 int ret = 0; 1461 1462 secdata = alloc_secdata(); 1463 if (!secdata) 1464 return -ENOMEM; 1465 ret = security_sb_copy_data(orig_opts, secdata); 1466 if (ret) { 1467 free_secdata(secdata); 1468 return ret; 1469 } 1470 ret = security_sb_parse_opts_str(secdata, sec_opts); 1471 free_secdata(secdata); 1472 return ret; 1473 } 1474 1475 static int setup_security_options(struct btrfs_fs_info *fs_info, 1476 struct super_block *sb, 1477 struct security_mnt_opts *sec_opts) 1478 { 1479 int ret = 0; 1480 1481 /* 1482 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1483 * is valid. 1484 */ 1485 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1486 if (ret) 1487 return ret; 1488 1489 #ifdef CONFIG_SECURITY 1490 if (!fs_info->security_opts.num_mnt_opts) { 1491 /* first time security setup, copy sec_opts to fs_info */ 1492 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1493 } else { 1494 /* 1495 * Since SELinux (the only one supporting security_mnt_opts) 1496 * does NOT support changing context during remount/mount of 1497 * the same sb, this must be the same or part of the same 1498 * security options, just free it. 1499 */ 1500 security_free_mnt_opts(sec_opts); 1501 } 1502 #endif 1503 return ret; 1504 } 1505 1506 /* 1507 * Find a superblock for the given device / mount point. 1508 * 1509 * Note: This is based on mount_bdev from fs/super.c with a few additions 1510 * for multiple device setup. Make sure to keep it in sync. 1511 */ 1512 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1513 int flags, const char *device_name, void *data) 1514 { 1515 struct block_device *bdev = NULL; 1516 struct super_block *s; 1517 struct btrfs_fs_devices *fs_devices = NULL; 1518 struct btrfs_fs_info *fs_info = NULL; 1519 struct security_mnt_opts new_sec_opts; 1520 fmode_t mode = FMODE_READ; 1521 int error = 0; 1522 1523 if (!(flags & SB_RDONLY)) 1524 mode |= FMODE_WRITE; 1525 1526 error = btrfs_parse_early_options(data, mode, fs_type, 1527 &fs_devices); 1528 if (error) { 1529 return ERR_PTR(error); 1530 } 1531 1532 security_init_mnt_opts(&new_sec_opts); 1533 if (data) { 1534 error = parse_security_options(data, &new_sec_opts); 1535 if (error) 1536 return ERR_PTR(error); 1537 } 1538 1539 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1540 if (error) 1541 goto error_sec_opts; 1542 1543 /* 1544 * Setup a dummy root and fs_info for test/set super. This is because 1545 * we don't actually fill this stuff out until open_ctree, but we need 1546 * it for searching for existing supers, so this lets us do that and 1547 * then open_ctree will properly initialize everything later. 1548 */ 1549 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1550 if (!fs_info) { 1551 error = -ENOMEM; 1552 goto error_sec_opts; 1553 } 1554 1555 fs_info->fs_devices = fs_devices; 1556 1557 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1558 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1559 security_init_mnt_opts(&fs_info->security_opts); 1560 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1561 error = -ENOMEM; 1562 goto error_fs_info; 1563 } 1564 1565 error = btrfs_open_devices(fs_devices, mode, fs_type); 1566 if (error) 1567 goto error_fs_info; 1568 1569 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1570 error = -EACCES; 1571 goto error_close_devices; 1572 } 1573 1574 bdev = fs_devices->latest_bdev; 1575 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1576 fs_info); 1577 if (IS_ERR(s)) { 1578 error = PTR_ERR(s); 1579 goto error_close_devices; 1580 } 1581 1582 if (s->s_root) { 1583 btrfs_close_devices(fs_devices); 1584 free_fs_info(fs_info); 1585 if ((flags ^ s->s_flags) & SB_RDONLY) 1586 error = -EBUSY; 1587 } else { 1588 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1589 btrfs_sb(s)->bdev_holder = fs_type; 1590 error = btrfs_fill_super(s, fs_devices, data); 1591 } 1592 if (error) { 1593 deactivate_locked_super(s); 1594 goto error_sec_opts; 1595 } 1596 1597 fs_info = btrfs_sb(s); 1598 error = setup_security_options(fs_info, s, &new_sec_opts); 1599 if (error) { 1600 deactivate_locked_super(s); 1601 goto error_sec_opts; 1602 } 1603 1604 return dget(s->s_root); 1605 1606 error_close_devices: 1607 btrfs_close_devices(fs_devices); 1608 error_fs_info: 1609 free_fs_info(fs_info); 1610 error_sec_opts: 1611 security_free_mnt_opts(&new_sec_opts); 1612 return ERR_PTR(error); 1613 } 1614 1615 /* 1616 * Mount function which is called by VFS layer. 1617 * 1618 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1619 * which needs vfsmount* of device's root (/). This means device's root has to 1620 * be mounted internally in any case. 1621 * 1622 * Operation flow: 1623 * 1. Parse subvol id related options for later use in mount_subvol(). 1624 * 1625 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1626 * 1627 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1628 * first place. In order to avoid calling btrfs_mount() again, we use 1629 * different file_system_type which is not registered to VFS by 1630 * register_filesystem() (btrfs_root_fs_type). As a result, 1631 * btrfs_mount_root() is called. The return value will be used by 1632 * mount_subtree() in mount_subvol(). 1633 * 1634 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1635 * "btrfs subvolume set-default", mount_subvol() is called always. 1636 */ 1637 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1638 const char *device_name, void *data) 1639 { 1640 struct vfsmount *mnt_root; 1641 struct dentry *root; 1642 fmode_t mode = FMODE_READ; 1643 char *subvol_name = NULL; 1644 u64 subvol_objectid = 0; 1645 int error = 0; 1646 1647 if (!(flags & SB_RDONLY)) 1648 mode |= FMODE_WRITE; 1649 1650 error = btrfs_parse_subvol_options(data, mode, 1651 &subvol_name, &subvol_objectid); 1652 if (error) { 1653 kfree(subvol_name); 1654 return ERR_PTR(error); 1655 } 1656 1657 /* mount device's root (/) */ 1658 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1659 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1660 if (flags & SB_RDONLY) { 1661 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1662 flags & ~SB_RDONLY, device_name, data); 1663 } else { 1664 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1665 flags | SB_RDONLY, device_name, data); 1666 if (IS_ERR(mnt_root)) { 1667 root = ERR_CAST(mnt_root); 1668 goto out; 1669 } 1670 1671 down_write(&mnt_root->mnt_sb->s_umount); 1672 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1673 up_write(&mnt_root->mnt_sb->s_umount); 1674 if (error < 0) { 1675 root = ERR_PTR(error); 1676 mntput(mnt_root); 1677 goto out; 1678 } 1679 } 1680 } 1681 if (IS_ERR(mnt_root)) { 1682 root = ERR_CAST(mnt_root); 1683 goto out; 1684 } 1685 1686 /* mount_subvol() will free subvol_name and mnt_root */ 1687 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root); 1688 1689 out: 1690 return root; 1691 } 1692 1693 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1694 u32 new_pool_size, u32 old_pool_size) 1695 { 1696 if (new_pool_size == old_pool_size) 1697 return; 1698 1699 fs_info->thread_pool_size = new_pool_size; 1700 1701 btrfs_info(fs_info, "resize thread pool %d -> %d", 1702 old_pool_size, new_pool_size); 1703 1704 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1705 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1706 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1707 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1708 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1709 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1710 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1711 new_pool_size); 1712 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1713 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1714 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1715 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1716 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1717 new_pool_size); 1718 } 1719 1720 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1721 { 1722 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1723 } 1724 1725 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1726 unsigned long old_opts, int flags) 1727 { 1728 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1729 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1730 (flags & SB_RDONLY))) { 1731 /* wait for any defraggers to finish */ 1732 wait_event(fs_info->transaction_wait, 1733 (atomic_read(&fs_info->defrag_running) == 0)); 1734 if (flags & SB_RDONLY) 1735 sync_filesystem(fs_info->sb); 1736 } 1737 } 1738 1739 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1740 unsigned long old_opts) 1741 { 1742 /* 1743 * We need to cleanup all defragable inodes if the autodefragment is 1744 * close or the filesystem is read only. 1745 */ 1746 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1747 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1748 btrfs_cleanup_defrag_inodes(fs_info); 1749 } 1750 1751 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1752 } 1753 1754 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1755 { 1756 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1757 struct btrfs_root *root = fs_info->tree_root; 1758 unsigned old_flags = sb->s_flags; 1759 unsigned long old_opts = fs_info->mount_opt; 1760 unsigned long old_compress_type = fs_info->compress_type; 1761 u64 old_max_inline = fs_info->max_inline; 1762 u32 old_thread_pool_size = fs_info->thread_pool_size; 1763 u32 old_metadata_ratio = fs_info->metadata_ratio; 1764 int ret; 1765 1766 sync_filesystem(sb); 1767 btrfs_remount_prepare(fs_info); 1768 1769 if (data) { 1770 struct security_mnt_opts new_sec_opts; 1771 1772 security_init_mnt_opts(&new_sec_opts); 1773 ret = parse_security_options(data, &new_sec_opts); 1774 if (ret) 1775 goto restore; 1776 ret = setup_security_options(fs_info, sb, 1777 &new_sec_opts); 1778 if (ret) { 1779 security_free_mnt_opts(&new_sec_opts); 1780 goto restore; 1781 } 1782 } 1783 1784 ret = btrfs_parse_options(fs_info, data, *flags); 1785 if (ret) { 1786 ret = -EINVAL; 1787 goto restore; 1788 } 1789 1790 btrfs_remount_begin(fs_info, old_opts, *flags); 1791 btrfs_resize_thread_pool(fs_info, 1792 fs_info->thread_pool_size, old_thread_pool_size); 1793 1794 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1795 goto out; 1796 1797 if (*flags & SB_RDONLY) { 1798 /* 1799 * this also happens on 'umount -rf' or on shutdown, when 1800 * the filesystem is busy. 1801 */ 1802 cancel_work_sync(&fs_info->async_reclaim_work); 1803 1804 /* wait for the uuid_scan task to finish */ 1805 down(&fs_info->uuid_tree_rescan_sem); 1806 /* avoid complains from lockdep et al. */ 1807 up(&fs_info->uuid_tree_rescan_sem); 1808 1809 sb->s_flags |= SB_RDONLY; 1810 1811 /* 1812 * Setting SB_RDONLY will put the cleaner thread to 1813 * sleep at the next loop if it's already active. 1814 * If it's already asleep, we'll leave unused block 1815 * groups on disk until we're mounted read-write again 1816 * unless we clean them up here. 1817 */ 1818 btrfs_delete_unused_bgs(fs_info); 1819 1820 btrfs_dev_replace_suspend_for_unmount(fs_info); 1821 btrfs_scrub_cancel(fs_info); 1822 btrfs_pause_balance(fs_info); 1823 1824 ret = btrfs_commit_super(fs_info); 1825 if (ret) 1826 goto restore; 1827 } else { 1828 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1829 btrfs_err(fs_info, 1830 "Remounting read-write after error is not allowed"); 1831 ret = -EINVAL; 1832 goto restore; 1833 } 1834 if (fs_info->fs_devices->rw_devices == 0) { 1835 ret = -EACCES; 1836 goto restore; 1837 } 1838 1839 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1840 btrfs_warn(fs_info, 1841 "too many missing devices, writeable remount is not allowed"); 1842 ret = -EACCES; 1843 goto restore; 1844 } 1845 1846 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1847 ret = -EINVAL; 1848 goto restore; 1849 } 1850 1851 ret = btrfs_cleanup_fs_roots(fs_info); 1852 if (ret) 1853 goto restore; 1854 1855 /* recover relocation */ 1856 mutex_lock(&fs_info->cleaner_mutex); 1857 ret = btrfs_recover_relocation(root); 1858 mutex_unlock(&fs_info->cleaner_mutex); 1859 if (ret) 1860 goto restore; 1861 1862 ret = btrfs_resume_balance_async(fs_info); 1863 if (ret) 1864 goto restore; 1865 1866 ret = btrfs_resume_dev_replace_async(fs_info); 1867 if (ret) { 1868 btrfs_warn(fs_info, "failed to resume dev_replace"); 1869 goto restore; 1870 } 1871 1872 btrfs_qgroup_rescan_resume(fs_info); 1873 1874 if (!fs_info->uuid_root) { 1875 btrfs_info(fs_info, "creating UUID tree"); 1876 ret = btrfs_create_uuid_tree(fs_info); 1877 if (ret) { 1878 btrfs_warn(fs_info, 1879 "failed to create the UUID tree %d", 1880 ret); 1881 goto restore; 1882 } 1883 } 1884 sb->s_flags &= ~SB_RDONLY; 1885 1886 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1887 } 1888 out: 1889 wake_up_process(fs_info->transaction_kthread); 1890 btrfs_remount_cleanup(fs_info, old_opts); 1891 return 0; 1892 1893 restore: 1894 /* We've hit an error - don't reset SB_RDONLY */ 1895 if (sb_rdonly(sb)) 1896 old_flags |= SB_RDONLY; 1897 sb->s_flags = old_flags; 1898 fs_info->mount_opt = old_opts; 1899 fs_info->compress_type = old_compress_type; 1900 fs_info->max_inline = old_max_inline; 1901 btrfs_resize_thread_pool(fs_info, 1902 old_thread_pool_size, fs_info->thread_pool_size); 1903 fs_info->metadata_ratio = old_metadata_ratio; 1904 btrfs_remount_cleanup(fs_info, old_opts); 1905 return ret; 1906 } 1907 1908 /* Used to sort the devices by max_avail(descending sort) */ 1909 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1910 const void *dev_info2) 1911 { 1912 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1913 ((struct btrfs_device_info *)dev_info2)->max_avail) 1914 return -1; 1915 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1916 ((struct btrfs_device_info *)dev_info2)->max_avail) 1917 return 1; 1918 else 1919 return 0; 1920 } 1921 1922 /* 1923 * sort the devices by max_avail, in which max free extent size of each device 1924 * is stored.(Descending Sort) 1925 */ 1926 static inline void btrfs_descending_sort_devices( 1927 struct btrfs_device_info *devices, 1928 size_t nr_devices) 1929 { 1930 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1931 btrfs_cmp_device_free_bytes, NULL); 1932 } 1933 1934 /* 1935 * The helper to calc the free space on the devices that can be used to store 1936 * file data. 1937 */ 1938 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1939 u64 *free_bytes) 1940 { 1941 struct btrfs_device_info *devices_info; 1942 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1943 struct btrfs_device *device; 1944 u64 skip_space; 1945 u64 type; 1946 u64 avail_space; 1947 u64 min_stripe_size; 1948 int min_stripes = 1, num_stripes = 1; 1949 int i = 0, nr_devices; 1950 1951 /* 1952 * We aren't under the device list lock, so this is racy-ish, but good 1953 * enough for our purposes. 1954 */ 1955 nr_devices = fs_info->fs_devices->open_devices; 1956 if (!nr_devices) { 1957 smp_mb(); 1958 nr_devices = fs_info->fs_devices->open_devices; 1959 ASSERT(nr_devices); 1960 if (!nr_devices) { 1961 *free_bytes = 0; 1962 return 0; 1963 } 1964 } 1965 1966 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1967 GFP_KERNEL); 1968 if (!devices_info) 1969 return -ENOMEM; 1970 1971 /* calc min stripe number for data space allocation */ 1972 type = btrfs_data_alloc_profile(fs_info); 1973 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1974 min_stripes = 2; 1975 num_stripes = nr_devices; 1976 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1977 min_stripes = 2; 1978 num_stripes = 2; 1979 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1980 min_stripes = 4; 1981 num_stripes = 4; 1982 } 1983 1984 if (type & BTRFS_BLOCK_GROUP_DUP) 1985 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1986 else 1987 min_stripe_size = BTRFS_STRIPE_LEN; 1988 1989 rcu_read_lock(); 1990 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1991 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1992 &device->dev_state) || 1993 !device->bdev || 1994 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1995 continue; 1996 1997 if (i >= nr_devices) 1998 break; 1999 2000 avail_space = device->total_bytes - device->bytes_used; 2001 2002 /* align with stripe_len */ 2003 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 2004 avail_space *= BTRFS_STRIPE_LEN; 2005 2006 /* 2007 * In order to avoid overwriting the superblock on the drive, 2008 * btrfs starts at an offset of at least 1MB when doing chunk 2009 * allocation. 2010 */ 2011 skip_space = SZ_1M; 2012 2013 /* 2014 * we can use the free space in [0, skip_space - 1], subtract 2015 * it from the total. 2016 */ 2017 if (avail_space && avail_space >= skip_space) 2018 avail_space -= skip_space; 2019 else 2020 avail_space = 0; 2021 2022 if (avail_space < min_stripe_size) 2023 continue; 2024 2025 devices_info[i].dev = device; 2026 devices_info[i].max_avail = avail_space; 2027 2028 i++; 2029 } 2030 rcu_read_unlock(); 2031 2032 nr_devices = i; 2033 2034 btrfs_descending_sort_devices(devices_info, nr_devices); 2035 2036 i = nr_devices - 1; 2037 avail_space = 0; 2038 while (nr_devices >= min_stripes) { 2039 if (num_stripes > nr_devices) 2040 num_stripes = nr_devices; 2041 2042 if (devices_info[i].max_avail >= min_stripe_size) { 2043 int j; 2044 u64 alloc_size; 2045 2046 avail_space += devices_info[i].max_avail * num_stripes; 2047 alloc_size = devices_info[i].max_avail; 2048 for (j = i + 1 - num_stripes; j <= i; j++) 2049 devices_info[j].max_avail -= alloc_size; 2050 } 2051 i--; 2052 nr_devices--; 2053 } 2054 2055 kfree(devices_info); 2056 *free_bytes = avail_space; 2057 return 0; 2058 } 2059 2060 /* 2061 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2062 * 2063 * If there's a redundant raid level at DATA block groups, use the respective 2064 * multiplier to scale the sizes. 2065 * 2066 * Unused device space usage is based on simulating the chunk allocator 2067 * algorithm that respects the device sizes and order of allocations. This is 2068 * a close approximation of the actual use but there are other factors that may 2069 * change the result (like a new metadata chunk). 2070 * 2071 * If metadata is exhausted, f_bavail will be 0. 2072 */ 2073 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2074 { 2075 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2076 struct btrfs_super_block *disk_super = fs_info->super_copy; 2077 struct list_head *head = &fs_info->space_info; 2078 struct btrfs_space_info *found; 2079 u64 total_used = 0; 2080 u64 total_free_data = 0; 2081 u64 total_free_meta = 0; 2082 int bits = dentry->d_sb->s_blocksize_bits; 2083 __be32 *fsid = (__be32 *)fs_info->fsid; 2084 unsigned factor = 1; 2085 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2086 int ret; 2087 u64 thresh = 0; 2088 int mixed = 0; 2089 2090 rcu_read_lock(); 2091 list_for_each_entry_rcu(found, head, list) { 2092 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2093 int i; 2094 2095 total_free_data += found->disk_total - found->disk_used; 2096 total_free_data -= 2097 btrfs_account_ro_block_groups_free_space(found); 2098 2099 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2100 if (!list_empty(&found->block_groups[i])) { 2101 switch (i) { 2102 case BTRFS_RAID_DUP: 2103 case BTRFS_RAID_RAID1: 2104 case BTRFS_RAID_RAID10: 2105 factor = 2; 2106 } 2107 } 2108 } 2109 } 2110 2111 /* 2112 * Metadata in mixed block goup profiles are accounted in data 2113 */ 2114 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2115 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2116 mixed = 1; 2117 else 2118 total_free_meta += found->disk_total - 2119 found->disk_used; 2120 } 2121 2122 total_used += found->disk_used; 2123 } 2124 2125 rcu_read_unlock(); 2126 2127 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2128 buf->f_blocks >>= bits; 2129 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2130 2131 /* Account global block reserve as used, it's in logical size already */ 2132 spin_lock(&block_rsv->lock); 2133 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2134 if (buf->f_bfree >= block_rsv->size >> bits) 2135 buf->f_bfree -= block_rsv->size >> bits; 2136 else 2137 buf->f_bfree = 0; 2138 spin_unlock(&block_rsv->lock); 2139 2140 buf->f_bavail = div_u64(total_free_data, factor); 2141 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2142 if (ret) 2143 return ret; 2144 buf->f_bavail += div_u64(total_free_data, factor); 2145 buf->f_bavail = buf->f_bavail >> bits; 2146 2147 /* 2148 * We calculate the remaining metadata space minus global reserve. If 2149 * this is (supposedly) smaller than zero, there's no space. But this 2150 * does not hold in practice, the exhausted state happens where's still 2151 * some positive delta. So we apply some guesswork and compare the 2152 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2153 * 2154 * We probably cannot calculate the exact threshold value because this 2155 * depends on the internal reservations requested by various 2156 * operations, so some operations that consume a few metadata will 2157 * succeed even if the Avail is zero. But this is better than the other 2158 * way around. 2159 */ 2160 thresh = SZ_4M; 2161 2162 if (!mixed && total_free_meta - thresh < block_rsv->size) 2163 buf->f_bavail = 0; 2164 2165 buf->f_type = BTRFS_SUPER_MAGIC; 2166 buf->f_bsize = dentry->d_sb->s_blocksize; 2167 buf->f_namelen = BTRFS_NAME_LEN; 2168 2169 /* We treat it as constant endianness (it doesn't matter _which_) 2170 because we want the fsid to come out the same whether mounted 2171 on a big-endian or little-endian host */ 2172 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2173 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2174 /* Mask in the root object ID too, to disambiguate subvols */ 2175 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2176 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2177 2178 return 0; 2179 } 2180 2181 static void btrfs_kill_super(struct super_block *sb) 2182 { 2183 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2184 kill_anon_super(sb); 2185 free_fs_info(fs_info); 2186 } 2187 2188 static struct file_system_type btrfs_fs_type = { 2189 .owner = THIS_MODULE, 2190 .name = "btrfs", 2191 .mount = btrfs_mount, 2192 .kill_sb = btrfs_kill_super, 2193 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2194 }; 2195 2196 static struct file_system_type btrfs_root_fs_type = { 2197 .owner = THIS_MODULE, 2198 .name = "btrfs", 2199 .mount = btrfs_mount_root, 2200 .kill_sb = btrfs_kill_super, 2201 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2202 }; 2203 2204 MODULE_ALIAS_FS("btrfs"); 2205 2206 static int btrfs_control_open(struct inode *inode, struct file *file) 2207 { 2208 /* 2209 * The control file's private_data is used to hold the 2210 * transaction when it is started and is used to keep 2211 * track of whether a transaction is already in progress. 2212 */ 2213 file->private_data = NULL; 2214 return 0; 2215 } 2216 2217 /* 2218 * used by btrfsctl to scan devices when no FS is mounted 2219 */ 2220 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2221 unsigned long arg) 2222 { 2223 struct btrfs_ioctl_vol_args *vol; 2224 struct btrfs_fs_devices *fs_devices; 2225 int ret = -ENOTTY; 2226 2227 if (!capable(CAP_SYS_ADMIN)) 2228 return -EPERM; 2229 2230 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2231 if (IS_ERR(vol)) 2232 return PTR_ERR(vol); 2233 2234 switch (cmd) { 2235 case BTRFS_IOC_SCAN_DEV: 2236 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2237 &btrfs_root_fs_type, &fs_devices); 2238 break; 2239 case BTRFS_IOC_DEVICES_READY: 2240 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2241 &btrfs_root_fs_type, &fs_devices); 2242 if (ret) 2243 break; 2244 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2245 break; 2246 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2247 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2248 break; 2249 } 2250 2251 kfree(vol); 2252 return ret; 2253 } 2254 2255 static int btrfs_freeze(struct super_block *sb) 2256 { 2257 struct btrfs_trans_handle *trans; 2258 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2259 struct btrfs_root *root = fs_info->tree_root; 2260 2261 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2262 /* 2263 * We don't need a barrier here, we'll wait for any transaction that 2264 * could be in progress on other threads (and do delayed iputs that 2265 * we want to avoid on a frozen filesystem), or do the commit 2266 * ourselves. 2267 */ 2268 trans = btrfs_attach_transaction_barrier(root); 2269 if (IS_ERR(trans)) { 2270 /* no transaction, don't bother */ 2271 if (PTR_ERR(trans) == -ENOENT) 2272 return 0; 2273 return PTR_ERR(trans); 2274 } 2275 return btrfs_commit_transaction(trans); 2276 } 2277 2278 static int btrfs_unfreeze(struct super_block *sb) 2279 { 2280 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2281 2282 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2283 return 0; 2284 } 2285 2286 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2287 { 2288 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2289 struct btrfs_fs_devices *cur_devices; 2290 struct btrfs_device *dev, *first_dev = NULL; 2291 struct list_head *head; 2292 struct rcu_string *name; 2293 2294 /* 2295 * Lightweight locking of the devices. We should not need 2296 * device_list_mutex here as we only read the device data and the list 2297 * is protected by RCU. Even if a device is deleted during the list 2298 * traversals, we'll get valid data, the freeing callback will wait at 2299 * least until until the rcu_read_unlock. 2300 */ 2301 rcu_read_lock(); 2302 cur_devices = fs_info->fs_devices; 2303 while (cur_devices) { 2304 head = &cur_devices->devices; 2305 list_for_each_entry_rcu(dev, head, dev_list) { 2306 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2307 continue; 2308 if (!dev->name) 2309 continue; 2310 if (!first_dev || dev->devid < first_dev->devid) 2311 first_dev = dev; 2312 } 2313 cur_devices = cur_devices->seed; 2314 } 2315 2316 if (first_dev) { 2317 name = rcu_dereference(first_dev->name); 2318 seq_escape(m, name->str, " \t\n\\"); 2319 } else { 2320 WARN_ON(1); 2321 } 2322 rcu_read_unlock(); 2323 return 0; 2324 } 2325 2326 static const struct super_operations btrfs_super_ops = { 2327 .drop_inode = btrfs_drop_inode, 2328 .evict_inode = btrfs_evict_inode, 2329 .put_super = btrfs_put_super, 2330 .sync_fs = btrfs_sync_fs, 2331 .show_options = btrfs_show_options, 2332 .show_devname = btrfs_show_devname, 2333 .write_inode = btrfs_write_inode, 2334 .alloc_inode = btrfs_alloc_inode, 2335 .destroy_inode = btrfs_destroy_inode, 2336 .statfs = btrfs_statfs, 2337 .remount_fs = btrfs_remount, 2338 .freeze_fs = btrfs_freeze, 2339 .unfreeze_fs = btrfs_unfreeze, 2340 }; 2341 2342 static const struct file_operations btrfs_ctl_fops = { 2343 .open = btrfs_control_open, 2344 .unlocked_ioctl = btrfs_control_ioctl, 2345 .compat_ioctl = btrfs_control_ioctl, 2346 .owner = THIS_MODULE, 2347 .llseek = noop_llseek, 2348 }; 2349 2350 static struct miscdevice btrfs_misc = { 2351 .minor = BTRFS_MINOR, 2352 .name = "btrfs-control", 2353 .fops = &btrfs_ctl_fops 2354 }; 2355 2356 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2357 MODULE_ALIAS("devname:btrfs-control"); 2358 2359 static int __init btrfs_interface_init(void) 2360 { 2361 return misc_register(&btrfs_misc); 2362 } 2363 2364 static __cold void btrfs_interface_exit(void) 2365 { 2366 misc_deregister(&btrfs_misc); 2367 } 2368 2369 static void __init btrfs_print_mod_info(void) 2370 { 2371 pr_info("Btrfs loaded, crc32c=%s" 2372 #ifdef CONFIG_BTRFS_DEBUG 2373 ", debug=on" 2374 #endif 2375 #ifdef CONFIG_BTRFS_ASSERT 2376 ", assert=on" 2377 #endif 2378 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2379 ", integrity-checker=on" 2380 #endif 2381 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2382 ", ref-verify=on" 2383 #endif 2384 "\n", 2385 crc32c_impl()); 2386 } 2387 2388 static int __init init_btrfs_fs(void) 2389 { 2390 int err; 2391 2392 btrfs_props_init(); 2393 2394 err = btrfs_init_sysfs(); 2395 if (err) 2396 return err; 2397 2398 btrfs_init_compress(); 2399 2400 err = btrfs_init_cachep(); 2401 if (err) 2402 goto free_compress; 2403 2404 err = extent_io_init(); 2405 if (err) 2406 goto free_cachep; 2407 2408 err = extent_map_init(); 2409 if (err) 2410 goto free_extent_io; 2411 2412 err = ordered_data_init(); 2413 if (err) 2414 goto free_extent_map; 2415 2416 err = btrfs_delayed_inode_init(); 2417 if (err) 2418 goto free_ordered_data; 2419 2420 err = btrfs_auto_defrag_init(); 2421 if (err) 2422 goto free_delayed_inode; 2423 2424 err = btrfs_delayed_ref_init(); 2425 if (err) 2426 goto free_auto_defrag; 2427 2428 err = btrfs_prelim_ref_init(); 2429 if (err) 2430 goto free_delayed_ref; 2431 2432 err = btrfs_end_io_wq_init(); 2433 if (err) 2434 goto free_prelim_ref; 2435 2436 err = btrfs_interface_init(); 2437 if (err) 2438 goto free_end_io_wq; 2439 2440 btrfs_init_lockdep(); 2441 2442 btrfs_print_mod_info(); 2443 2444 err = btrfs_run_sanity_tests(); 2445 if (err) 2446 goto unregister_ioctl; 2447 2448 err = register_filesystem(&btrfs_fs_type); 2449 if (err) 2450 goto unregister_ioctl; 2451 2452 return 0; 2453 2454 unregister_ioctl: 2455 btrfs_interface_exit(); 2456 free_end_io_wq: 2457 btrfs_end_io_wq_exit(); 2458 free_prelim_ref: 2459 btrfs_prelim_ref_exit(); 2460 free_delayed_ref: 2461 btrfs_delayed_ref_exit(); 2462 free_auto_defrag: 2463 btrfs_auto_defrag_exit(); 2464 free_delayed_inode: 2465 btrfs_delayed_inode_exit(); 2466 free_ordered_data: 2467 ordered_data_exit(); 2468 free_extent_map: 2469 extent_map_exit(); 2470 free_extent_io: 2471 extent_io_exit(); 2472 free_cachep: 2473 btrfs_destroy_cachep(); 2474 free_compress: 2475 btrfs_exit_compress(); 2476 btrfs_exit_sysfs(); 2477 2478 return err; 2479 } 2480 2481 static void __exit exit_btrfs_fs(void) 2482 { 2483 btrfs_destroy_cachep(); 2484 btrfs_delayed_ref_exit(); 2485 btrfs_auto_defrag_exit(); 2486 btrfs_delayed_inode_exit(); 2487 btrfs_prelim_ref_exit(); 2488 ordered_data_exit(); 2489 extent_map_exit(); 2490 extent_io_exit(); 2491 btrfs_interface_exit(); 2492 btrfs_end_io_wq_exit(); 2493 unregister_filesystem(&btrfs_fs_type); 2494 btrfs_exit_sysfs(); 2495 btrfs_cleanup_fs_uuids(); 2496 btrfs_exit_compress(); 2497 } 2498 2499 late_initcall(init_btrfs_fs); 2500 module_exit(exit_btrfs_fs) 2501 2502 MODULE_LICENSE("GPL"); 2503