xref: /openbmc/linux/fs/btrfs/super.c (revision 4a0a1436)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "delayed-inode.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "props.h"
36 #include "xattr.h"
37 #include "volumes.h"
38 #include "export.h"
39 #include "compression.h"
40 #include "rcu-string.h"
41 #include "dev-replace.h"
42 #include "free-space-cache.h"
43 #include "backref.h"
44 #include "space-info.h"
45 #include "sysfs.h"
46 #include "zoned.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 #include "discard.h"
50 #include "qgroup.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/btrfs.h>
53 
54 static const struct super_operations btrfs_super_ops;
55 
56 /*
57  * Types for mounting the default subvolume and a subvolume explicitly
58  * requested by subvol=/path. That way the callchain is straightforward and we
59  * don't have to play tricks with the mount options and recursive calls to
60  * btrfs_mount.
61  *
62  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
63  */
64 static struct file_system_type btrfs_fs_type;
65 static struct file_system_type btrfs_root_fs_type;
66 
67 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
68 
69 /*
70  * Generally the error codes correspond to their respective errors, but there
71  * are a few special cases.
72  *
73  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
74  *          instance will return EUCLEAN if any of the blocks are corrupted in
75  *          a way that is problematic.  We want to reserve EUCLEAN for these
76  *          sort of corruptions.
77  *
78  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
79  *        need to use EROFS for this case.  We will have no idea of the
80  *        original failure, that will have been reported at the time we tripped
81  *        over the error.  Each subsequent error that doesn't have any context
82  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
83  */
84 const char * __attribute_const__ btrfs_decode_error(int errno)
85 {
86 	char *errstr = "unknown";
87 
88 	switch (errno) {
89 	case -ENOENT:		/* -2 */
90 		errstr = "No such entry";
91 		break;
92 	case -EIO:		/* -5 */
93 		errstr = "IO failure";
94 		break;
95 	case -ENOMEM:		/* -12*/
96 		errstr = "Out of memory";
97 		break;
98 	case -EEXIST:		/* -17 */
99 		errstr = "Object already exists";
100 		break;
101 	case -ENOSPC:		/* -28 */
102 		errstr = "No space left";
103 		break;
104 	case -EROFS:		/* -30 */
105 		errstr = "Readonly filesystem";
106 		break;
107 	case -EOPNOTSUPP:	/* -95 */
108 		errstr = "Operation not supported";
109 		break;
110 	case -EUCLEAN:		/* -117 */
111 		errstr = "Filesystem corrupted";
112 		break;
113 	case -EDQUOT:		/* -122 */
114 		errstr = "Quota exceeded";
115 		break;
116 	}
117 
118 	return errstr;
119 }
120 
121 /*
122  * __btrfs_handle_fs_error decodes expected errors from the caller and
123  * invokes the appropriate error response.
124  */
125 __cold
126 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
127 		       unsigned int line, int errno, const char *fmt, ...)
128 {
129 	struct super_block *sb = fs_info->sb;
130 #ifdef CONFIG_PRINTK
131 	const char *errstr;
132 #endif
133 
134 	/*
135 	 * Special case: if the error is EROFS, and we're already
136 	 * under SB_RDONLY, then it is safe here.
137 	 */
138 	if (errno == -EROFS && sb_rdonly(sb))
139   		return;
140 
141 #ifdef CONFIG_PRINTK
142 	errstr = btrfs_decode_error(errno);
143 	if (fmt) {
144 		struct va_format vaf;
145 		va_list args;
146 
147 		va_start(args, fmt);
148 		vaf.fmt = fmt;
149 		vaf.va = &args;
150 
151 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
152 			sb->s_id, function, line, errno, errstr, &vaf);
153 		va_end(args);
154 	} else {
155 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
156 			sb->s_id, function, line, errno, errstr);
157 	}
158 #endif
159 
160 	/*
161 	 * Today we only save the error info to memory.  Long term we'll
162 	 * also send it down to the disk
163 	 */
164 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
165 
166 	/* Don't go through full error handling during mount */
167 	if (!(sb->s_flags & SB_BORN))
168 		return;
169 
170 	if (sb_rdonly(sb))
171 		return;
172 
173 	btrfs_discard_stop(fs_info);
174 
175 	/* btrfs handle error by forcing the filesystem readonly */
176 	btrfs_set_sb_rdonly(sb);
177 	btrfs_info(fs_info, "forced readonly");
178 	/*
179 	 * Note that a running device replace operation is not canceled here
180 	 * although there is no way to update the progress. It would add the
181 	 * risk of a deadlock, therefore the canceling is omitted. The only
182 	 * penalty is that some I/O remains active until the procedure
183 	 * completes. The next time when the filesystem is mounted writable
184 	 * again, the device replace operation continues.
185 	 */
186 }
187 
188 #ifdef CONFIG_PRINTK
189 static const char * const logtypes[] = {
190 	"emergency",
191 	"alert",
192 	"critical",
193 	"error",
194 	"warning",
195 	"notice",
196 	"info",
197 	"debug",
198 };
199 
200 
201 /*
202  * Use one ratelimit state per log level so that a flood of less important
203  * messages doesn't cause more important ones to be dropped.
204  */
205 static struct ratelimit_state printk_limits[] = {
206 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
207 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
208 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
210 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
211 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
212 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
213 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
214 };
215 
216 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
217 {
218 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
219 	struct va_format vaf;
220 	va_list args;
221 	int kern_level;
222 	const char *type = logtypes[4];
223 	struct ratelimit_state *ratelimit = &printk_limits[4];
224 
225 	va_start(args, fmt);
226 
227 	while ((kern_level = printk_get_level(fmt)) != 0) {
228 		size_t size = printk_skip_level(fmt) - fmt;
229 
230 		if (kern_level >= '0' && kern_level <= '7') {
231 			memcpy(lvl, fmt,  size);
232 			lvl[size] = '\0';
233 			type = logtypes[kern_level - '0'];
234 			ratelimit = &printk_limits[kern_level - '0'];
235 		}
236 		fmt += size;
237 	}
238 
239 	vaf.fmt = fmt;
240 	vaf.va = &args;
241 
242 	if (__ratelimit(ratelimit)) {
243 		if (fs_info)
244 			printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
245 				fs_info->sb->s_id, &vaf);
246 		else
247 			printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
248 	}
249 
250 	va_end(args);
251 }
252 #endif
253 
254 #if BITS_PER_LONG == 32
255 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
256 {
257 	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
258 		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
259 		btrfs_warn(fs_info,
260 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
261 			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
262 		btrfs_warn(fs_info,
263 			   "please consider upgrading to 64bit kernel/hardware");
264 	}
265 }
266 
267 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
268 {
269 	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
270 		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
271 		btrfs_err(fs_info,
272 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
273 			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
274 		btrfs_err(fs_info,
275 			   "please consider upgrading to 64bit kernel/hardware");
276 	}
277 }
278 #endif
279 
280 /*
281  * We only mark the transaction aborted and then set the file system read-only.
282  * This will prevent new transactions from starting or trying to join this
283  * one.
284  *
285  * This means that error recovery at the call site is limited to freeing
286  * any local memory allocations and passing the error code up without
287  * further cleanup. The transaction should complete as it normally would
288  * in the call path but will return -EIO.
289  *
290  * We'll complete the cleanup in btrfs_end_transaction and
291  * btrfs_commit_transaction.
292  */
293 __cold
294 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
295 			       const char *function,
296 			       unsigned int line, int errno)
297 {
298 	struct btrfs_fs_info *fs_info = trans->fs_info;
299 
300 	WRITE_ONCE(trans->aborted, errno);
301 	WRITE_ONCE(trans->transaction->aborted, errno);
302 	/* Wake up anybody who may be waiting on this transaction */
303 	wake_up(&fs_info->transaction_wait);
304 	wake_up(&fs_info->transaction_blocked_wait);
305 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
306 }
307 /*
308  * __btrfs_panic decodes unexpected, fatal errors from the caller,
309  * issues an alert, and either panics or BUGs, depending on mount options.
310  */
311 __cold
312 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
313 		   unsigned int line, int errno, const char *fmt, ...)
314 {
315 	char *s_id = "<unknown>";
316 	const char *errstr;
317 	struct va_format vaf = { .fmt = fmt };
318 	va_list args;
319 
320 	if (fs_info)
321 		s_id = fs_info->sb->s_id;
322 
323 	va_start(args, fmt);
324 	vaf.va = &args;
325 
326 	errstr = btrfs_decode_error(errno);
327 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
328 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
329 			s_id, function, line, &vaf, errno, errstr);
330 
331 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
332 		   function, line, &vaf, errno, errstr);
333 	va_end(args);
334 	/* Caller calls BUG() */
335 }
336 
337 static void btrfs_put_super(struct super_block *sb)
338 {
339 	close_ctree(btrfs_sb(sb));
340 }
341 
342 enum {
343 	Opt_acl, Opt_noacl,
344 	Opt_clear_cache,
345 	Opt_commit_interval,
346 	Opt_compress,
347 	Opt_compress_force,
348 	Opt_compress_force_type,
349 	Opt_compress_type,
350 	Opt_degraded,
351 	Opt_device,
352 	Opt_fatal_errors,
353 	Opt_flushoncommit, Opt_noflushoncommit,
354 	Opt_max_inline,
355 	Opt_barrier, Opt_nobarrier,
356 	Opt_datacow, Opt_nodatacow,
357 	Opt_datasum, Opt_nodatasum,
358 	Opt_defrag, Opt_nodefrag,
359 	Opt_discard, Opt_nodiscard,
360 	Opt_discard_mode,
361 	Opt_norecovery,
362 	Opt_ratio,
363 	Opt_rescan_uuid_tree,
364 	Opt_skip_balance,
365 	Opt_space_cache, Opt_no_space_cache,
366 	Opt_space_cache_version,
367 	Opt_ssd, Opt_nossd,
368 	Opt_ssd_spread, Opt_nossd_spread,
369 	Opt_subvol,
370 	Opt_subvol_empty,
371 	Opt_subvolid,
372 	Opt_thread_pool,
373 	Opt_treelog, Opt_notreelog,
374 	Opt_user_subvol_rm_allowed,
375 
376 	/* Rescue options */
377 	Opt_rescue,
378 	Opt_usebackuproot,
379 	Opt_nologreplay,
380 	Opt_ignorebadroots,
381 	Opt_ignoredatacsums,
382 	Opt_rescue_all,
383 
384 	/* Deprecated options */
385 	Opt_recovery,
386 	Opt_inode_cache, Opt_noinode_cache,
387 
388 	/* Debugging options */
389 	Opt_check_integrity,
390 	Opt_check_integrity_including_extent_data,
391 	Opt_check_integrity_print_mask,
392 	Opt_enospc_debug, Opt_noenospc_debug,
393 #ifdef CONFIG_BTRFS_DEBUG
394 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
395 #endif
396 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
397 	Opt_ref_verify,
398 #endif
399 	Opt_err,
400 };
401 
402 static const match_table_t tokens = {
403 	{Opt_acl, "acl"},
404 	{Opt_noacl, "noacl"},
405 	{Opt_clear_cache, "clear_cache"},
406 	{Opt_commit_interval, "commit=%u"},
407 	{Opt_compress, "compress"},
408 	{Opt_compress_type, "compress=%s"},
409 	{Opt_compress_force, "compress-force"},
410 	{Opt_compress_force_type, "compress-force=%s"},
411 	{Opt_degraded, "degraded"},
412 	{Opt_device, "device=%s"},
413 	{Opt_fatal_errors, "fatal_errors=%s"},
414 	{Opt_flushoncommit, "flushoncommit"},
415 	{Opt_noflushoncommit, "noflushoncommit"},
416 	{Opt_inode_cache, "inode_cache"},
417 	{Opt_noinode_cache, "noinode_cache"},
418 	{Opt_max_inline, "max_inline=%s"},
419 	{Opt_barrier, "barrier"},
420 	{Opt_nobarrier, "nobarrier"},
421 	{Opt_datacow, "datacow"},
422 	{Opt_nodatacow, "nodatacow"},
423 	{Opt_datasum, "datasum"},
424 	{Opt_nodatasum, "nodatasum"},
425 	{Opt_defrag, "autodefrag"},
426 	{Opt_nodefrag, "noautodefrag"},
427 	{Opt_discard, "discard"},
428 	{Opt_discard_mode, "discard=%s"},
429 	{Opt_nodiscard, "nodiscard"},
430 	{Opt_norecovery, "norecovery"},
431 	{Opt_ratio, "metadata_ratio=%u"},
432 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
433 	{Opt_skip_balance, "skip_balance"},
434 	{Opt_space_cache, "space_cache"},
435 	{Opt_no_space_cache, "nospace_cache"},
436 	{Opt_space_cache_version, "space_cache=%s"},
437 	{Opt_ssd, "ssd"},
438 	{Opt_nossd, "nossd"},
439 	{Opt_ssd_spread, "ssd_spread"},
440 	{Opt_nossd_spread, "nossd_spread"},
441 	{Opt_subvol, "subvol=%s"},
442 	{Opt_subvol_empty, "subvol="},
443 	{Opt_subvolid, "subvolid=%s"},
444 	{Opt_thread_pool, "thread_pool=%u"},
445 	{Opt_treelog, "treelog"},
446 	{Opt_notreelog, "notreelog"},
447 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
448 
449 	/* Rescue options */
450 	{Opt_rescue, "rescue=%s"},
451 	/* Deprecated, with alias rescue=nologreplay */
452 	{Opt_nologreplay, "nologreplay"},
453 	/* Deprecated, with alias rescue=usebackuproot */
454 	{Opt_usebackuproot, "usebackuproot"},
455 
456 	/* Deprecated options */
457 	{Opt_recovery, "recovery"},
458 
459 	/* Debugging options */
460 	{Opt_check_integrity, "check_int"},
461 	{Opt_check_integrity_including_extent_data, "check_int_data"},
462 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
463 	{Opt_enospc_debug, "enospc_debug"},
464 	{Opt_noenospc_debug, "noenospc_debug"},
465 #ifdef CONFIG_BTRFS_DEBUG
466 	{Opt_fragment_data, "fragment=data"},
467 	{Opt_fragment_metadata, "fragment=metadata"},
468 	{Opt_fragment_all, "fragment=all"},
469 #endif
470 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
471 	{Opt_ref_verify, "ref_verify"},
472 #endif
473 	{Opt_err, NULL},
474 };
475 
476 static const match_table_t rescue_tokens = {
477 	{Opt_usebackuproot, "usebackuproot"},
478 	{Opt_nologreplay, "nologreplay"},
479 	{Opt_ignorebadroots, "ignorebadroots"},
480 	{Opt_ignorebadroots, "ibadroots"},
481 	{Opt_ignoredatacsums, "ignoredatacsums"},
482 	{Opt_ignoredatacsums, "idatacsums"},
483 	{Opt_rescue_all, "all"},
484 	{Opt_err, NULL},
485 };
486 
487 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
488 			    const char *opt_name)
489 {
490 	if (fs_info->mount_opt & opt) {
491 		btrfs_err(fs_info, "%s must be used with ro mount option",
492 			  opt_name);
493 		return true;
494 	}
495 	return false;
496 }
497 
498 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
499 {
500 	char *opts;
501 	char *orig;
502 	char *p;
503 	substring_t args[MAX_OPT_ARGS];
504 	int ret = 0;
505 
506 	opts = kstrdup(options, GFP_KERNEL);
507 	if (!opts)
508 		return -ENOMEM;
509 	orig = opts;
510 
511 	while ((p = strsep(&opts, ":")) != NULL) {
512 		int token;
513 
514 		if (!*p)
515 			continue;
516 		token = match_token(p, rescue_tokens, args);
517 		switch (token){
518 		case Opt_usebackuproot:
519 			btrfs_info(info,
520 				   "trying to use backup root at mount time");
521 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
522 			break;
523 		case Opt_nologreplay:
524 			btrfs_set_and_info(info, NOLOGREPLAY,
525 					   "disabling log replay at mount time");
526 			break;
527 		case Opt_ignorebadroots:
528 			btrfs_set_and_info(info, IGNOREBADROOTS,
529 					   "ignoring bad roots");
530 			break;
531 		case Opt_ignoredatacsums:
532 			btrfs_set_and_info(info, IGNOREDATACSUMS,
533 					   "ignoring data csums");
534 			break;
535 		case Opt_rescue_all:
536 			btrfs_info(info, "enabling all of the rescue options");
537 			btrfs_set_and_info(info, IGNOREDATACSUMS,
538 					   "ignoring data csums");
539 			btrfs_set_and_info(info, IGNOREBADROOTS,
540 					   "ignoring bad roots");
541 			btrfs_set_and_info(info, NOLOGREPLAY,
542 					   "disabling log replay at mount time");
543 			break;
544 		case Opt_err:
545 			btrfs_info(info, "unrecognized rescue option '%s'", p);
546 			ret = -EINVAL;
547 			goto out;
548 		default:
549 			break;
550 		}
551 
552 	}
553 out:
554 	kfree(orig);
555 	return ret;
556 }
557 
558 /*
559  * Regular mount options parser.  Everything that is needed only when
560  * reading in a new superblock is parsed here.
561  * XXX JDM: This needs to be cleaned up for remount.
562  */
563 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
564 			unsigned long new_flags)
565 {
566 	substring_t args[MAX_OPT_ARGS];
567 	char *p, *num;
568 	int intarg;
569 	int ret = 0;
570 	char *compress_type;
571 	bool compress_force = false;
572 	enum btrfs_compression_type saved_compress_type;
573 	int saved_compress_level;
574 	bool saved_compress_force;
575 	int no_compress = 0;
576 
577 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
578 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
579 	else if (btrfs_free_space_cache_v1_active(info)) {
580 		if (btrfs_is_zoned(info)) {
581 			btrfs_info(info,
582 			"zoned: clearing existing space cache");
583 			btrfs_set_super_cache_generation(info->super_copy, 0);
584 		} else {
585 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
586 		}
587 	}
588 
589 	/*
590 	 * Even the options are empty, we still need to do extra check
591 	 * against new flags
592 	 */
593 	if (!options)
594 		goto check;
595 
596 	while ((p = strsep(&options, ",")) != NULL) {
597 		int token;
598 		if (!*p)
599 			continue;
600 
601 		token = match_token(p, tokens, args);
602 		switch (token) {
603 		case Opt_degraded:
604 			btrfs_info(info, "allowing degraded mounts");
605 			btrfs_set_opt(info->mount_opt, DEGRADED);
606 			break;
607 		case Opt_subvol:
608 		case Opt_subvol_empty:
609 		case Opt_subvolid:
610 		case Opt_device:
611 			/*
612 			 * These are parsed by btrfs_parse_subvol_options or
613 			 * btrfs_parse_device_options and can be ignored here.
614 			 */
615 			break;
616 		case Opt_nodatasum:
617 			btrfs_set_and_info(info, NODATASUM,
618 					   "setting nodatasum");
619 			break;
620 		case Opt_datasum:
621 			if (btrfs_test_opt(info, NODATASUM)) {
622 				if (btrfs_test_opt(info, NODATACOW))
623 					btrfs_info(info,
624 						   "setting datasum, datacow enabled");
625 				else
626 					btrfs_info(info, "setting datasum");
627 			}
628 			btrfs_clear_opt(info->mount_opt, NODATACOW);
629 			btrfs_clear_opt(info->mount_opt, NODATASUM);
630 			break;
631 		case Opt_nodatacow:
632 			if (!btrfs_test_opt(info, NODATACOW)) {
633 				if (!btrfs_test_opt(info, COMPRESS) ||
634 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
635 					btrfs_info(info,
636 						   "setting nodatacow, compression disabled");
637 				} else {
638 					btrfs_info(info, "setting nodatacow");
639 				}
640 			}
641 			btrfs_clear_opt(info->mount_opt, COMPRESS);
642 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
643 			btrfs_set_opt(info->mount_opt, NODATACOW);
644 			btrfs_set_opt(info->mount_opt, NODATASUM);
645 			break;
646 		case Opt_datacow:
647 			btrfs_clear_and_info(info, NODATACOW,
648 					     "setting datacow");
649 			break;
650 		case Opt_compress_force:
651 		case Opt_compress_force_type:
652 			compress_force = true;
653 			fallthrough;
654 		case Opt_compress:
655 		case Opt_compress_type:
656 			saved_compress_type = btrfs_test_opt(info,
657 							     COMPRESS) ?
658 				info->compress_type : BTRFS_COMPRESS_NONE;
659 			saved_compress_force =
660 				btrfs_test_opt(info, FORCE_COMPRESS);
661 			saved_compress_level = info->compress_level;
662 			if (token == Opt_compress ||
663 			    token == Opt_compress_force ||
664 			    strncmp(args[0].from, "zlib", 4) == 0) {
665 				compress_type = "zlib";
666 
667 				info->compress_type = BTRFS_COMPRESS_ZLIB;
668 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
669 				/*
670 				 * args[0] contains uninitialized data since
671 				 * for these tokens we don't expect any
672 				 * parameter.
673 				 */
674 				if (token != Opt_compress &&
675 				    token != Opt_compress_force)
676 					info->compress_level =
677 					  btrfs_compress_str2level(
678 							BTRFS_COMPRESS_ZLIB,
679 							args[0].from + 4);
680 				btrfs_set_opt(info->mount_opt, COMPRESS);
681 				btrfs_clear_opt(info->mount_opt, NODATACOW);
682 				btrfs_clear_opt(info->mount_opt, NODATASUM);
683 				no_compress = 0;
684 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
685 				compress_type = "lzo";
686 				info->compress_type = BTRFS_COMPRESS_LZO;
687 				info->compress_level = 0;
688 				btrfs_set_opt(info->mount_opt, COMPRESS);
689 				btrfs_clear_opt(info->mount_opt, NODATACOW);
690 				btrfs_clear_opt(info->mount_opt, NODATASUM);
691 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
692 				no_compress = 0;
693 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
694 				compress_type = "zstd";
695 				info->compress_type = BTRFS_COMPRESS_ZSTD;
696 				info->compress_level =
697 					btrfs_compress_str2level(
698 							 BTRFS_COMPRESS_ZSTD,
699 							 args[0].from + 4);
700 				btrfs_set_opt(info->mount_opt, COMPRESS);
701 				btrfs_clear_opt(info->mount_opt, NODATACOW);
702 				btrfs_clear_opt(info->mount_opt, NODATASUM);
703 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
704 				no_compress = 0;
705 			} else if (strncmp(args[0].from, "no", 2) == 0) {
706 				compress_type = "no";
707 				info->compress_level = 0;
708 				info->compress_type = 0;
709 				btrfs_clear_opt(info->mount_opt, COMPRESS);
710 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
711 				compress_force = false;
712 				no_compress++;
713 			} else {
714 				ret = -EINVAL;
715 				goto out;
716 			}
717 
718 			if (compress_force) {
719 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
720 			} else {
721 				/*
722 				 * If we remount from compress-force=xxx to
723 				 * compress=xxx, we need clear FORCE_COMPRESS
724 				 * flag, otherwise, there is no way for users
725 				 * to disable forcible compression separately.
726 				 */
727 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
728 			}
729 			if (no_compress == 1) {
730 				btrfs_info(info, "use no compression");
731 			} else if ((info->compress_type != saved_compress_type) ||
732 				   (compress_force != saved_compress_force) ||
733 				   (info->compress_level != saved_compress_level)) {
734 				btrfs_info(info, "%s %s compression, level %d",
735 					   (compress_force) ? "force" : "use",
736 					   compress_type, info->compress_level);
737 			}
738 			compress_force = false;
739 			break;
740 		case Opt_ssd:
741 			btrfs_set_and_info(info, SSD,
742 					   "enabling ssd optimizations");
743 			btrfs_clear_opt(info->mount_opt, NOSSD);
744 			break;
745 		case Opt_ssd_spread:
746 			btrfs_set_and_info(info, SSD,
747 					   "enabling ssd optimizations");
748 			btrfs_set_and_info(info, SSD_SPREAD,
749 					   "using spread ssd allocation scheme");
750 			btrfs_clear_opt(info->mount_opt, NOSSD);
751 			break;
752 		case Opt_nossd:
753 			btrfs_set_opt(info->mount_opt, NOSSD);
754 			btrfs_clear_and_info(info, SSD,
755 					     "not using ssd optimizations");
756 			fallthrough;
757 		case Opt_nossd_spread:
758 			btrfs_clear_and_info(info, SSD_SPREAD,
759 					     "not using spread ssd allocation scheme");
760 			break;
761 		case Opt_barrier:
762 			btrfs_clear_and_info(info, NOBARRIER,
763 					     "turning on barriers");
764 			break;
765 		case Opt_nobarrier:
766 			btrfs_set_and_info(info, NOBARRIER,
767 					   "turning off barriers");
768 			break;
769 		case Opt_thread_pool:
770 			ret = match_int(&args[0], &intarg);
771 			if (ret) {
772 				goto out;
773 			} else if (intarg == 0) {
774 				ret = -EINVAL;
775 				goto out;
776 			}
777 			info->thread_pool_size = intarg;
778 			break;
779 		case Opt_max_inline:
780 			num = match_strdup(&args[0]);
781 			if (num) {
782 				info->max_inline = memparse(num, NULL);
783 				kfree(num);
784 
785 				if (info->max_inline) {
786 					info->max_inline = min_t(u64,
787 						info->max_inline,
788 						info->sectorsize);
789 				}
790 				btrfs_info(info, "max_inline at %llu",
791 					   info->max_inline);
792 			} else {
793 				ret = -ENOMEM;
794 				goto out;
795 			}
796 			break;
797 		case Opt_acl:
798 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
799 			info->sb->s_flags |= SB_POSIXACL;
800 			break;
801 #else
802 			btrfs_err(info, "support for ACL not compiled in!");
803 			ret = -EINVAL;
804 			goto out;
805 #endif
806 		case Opt_noacl:
807 			info->sb->s_flags &= ~SB_POSIXACL;
808 			break;
809 		case Opt_notreelog:
810 			btrfs_set_and_info(info, NOTREELOG,
811 					   "disabling tree log");
812 			break;
813 		case Opt_treelog:
814 			btrfs_clear_and_info(info, NOTREELOG,
815 					     "enabling tree log");
816 			break;
817 		case Opt_norecovery:
818 		case Opt_nologreplay:
819 			btrfs_warn(info,
820 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
821 			btrfs_set_and_info(info, NOLOGREPLAY,
822 					   "disabling log replay at mount time");
823 			break;
824 		case Opt_flushoncommit:
825 			btrfs_set_and_info(info, FLUSHONCOMMIT,
826 					   "turning on flush-on-commit");
827 			break;
828 		case Opt_noflushoncommit:
829 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
830 					     "turning off flush-on-commit");
831 			break;
832 		case Opt_ratio:
833 			ret = match_int(&args[0], &intarg);
834 			if (ret)
835 				goto out;
836 			info->metadata_ratio = intarg;
837 			btrfs_info(info, "metadata ratio %u",
838 				   info->metadata_ratio);
839 			break;
840 		case Opt_discard:
841 		case Opt_discard_mode:
842 			if (token == Opt_discard ||
843 			    strcmp(args[0].from, "sync") == 0) {
844 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
845 				btrfs_set_and_info(info, DISCARD_SYNC,
846 						   "turning on sync discard");
847 			} else if (strcmp(args[0].from, "async") == 0) {
848 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
849 				btrfs_set_and_info(info, DISCARD_ASYNC,
850 						   "turning on async discard");
851 			} else {
852 				ret = -EINVAL;
853 				goto out;
854 			}
855 			break;
856 		case Opt_nodiscard:
857 			btrfs_clear_and_info(info, DISCARD_SYNC,
858 					     "turning off discard");
859 			btrfs_clear_and_info(info, DISCARD_ASYNC,
860 					     "turning off async discard");
861 			break;
862 		case Opt_space_cache:
863 		case Opt_space_cache_version:
864 			if (token == Opt_space_cache ||
865 			    strcmp(args[0].from, "v1") == 0) {
866 				btrfs_clear_opt(info->mount_opt,
867 						FREE_SPACE_TREE);
868 				btrfs_set_and_info(info, SPACE_CACHE,
869 					   "enabling disk space caching");
870 			} else if (strcmp(args[0].from, "v2") == 0) {
871 				btrfs_clear_opt(info->mount_opt,
872 						SPACE_CACHE);
873 				btrfs_set_and_info(info, FREE_SPACE_TREE,
874 						   "enabling free space tree");
875 			} else {
876 				ret = -EINVAL;
877 				goto out;
878 			}
879 			break;
880 		case Opt_rescan_uuid_tree:
881 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
882 			break;
883 		case Opt_no_space_cache:
884 			if (btrfs_test_opt(info, SPACE_CACHE)) {
885 				btrfs_clear_and_info(info, SPACE_CACHE,
886 					     "disabling disk space caching");
887 			}
888 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
889 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
890 					     "disabling free space tree");
891 			}
892 			break;
893 		case Opt_inode_cache:
894 		case Opt_noinode_cache:
895 			btrfs_warn(info,
896 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
897 			break;
898 		case Opt_clear_cache:
899 			btrfs_set_and_info(info, CLEAR_CACHE,
900 					   "force clearing of disk cache");
901 			break;
902 		case Opt_user_subvol_rm_allowed:
903 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
904 			break;
905 		case Opt_enospc_debug:
906 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
907 			break;
908 		case Opt_noenospc_debug:
909 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
910 			break;
911 		case Opt_defrag:
912 			btrfs_set_and_info(info, AUTO_DEFRAG,
913 					   "enabling auto defrag");
914 			break;
915 		case Opt_nodefrag:
916 			btrfs_clear_and_info(info, AUTO_DEFRAG,
917 					     "disabling auto defrag");
918 			break;
919 		case Opt_recovery:
920 		case Opt_usebackuproot:
921 			btrfs_warn(info,
922 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
923 				   token == Opt_recovery ? "recovery" :
924 				   "usebackuproot");
925 			btrfs_info(info,
926 				   "trying to use backup root at mount time");
927 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
928 			break;
929 		case Opt_skip_balance:
930 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
931 			break;
932 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
933 		case Opt_check_integrity_including_extent_data:
934 			btrfs_info(info,
935 				   "enabling check integrity including extent data");
936 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
937 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
938 			break;
939 		case Opt_check_integrity:
940 			btrfs_info(info, "enabling check integrity");
941 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
942 			break;
943 		case Opt_check_integrity_print_mask:
944 			ret = match_int(&args[0], &intarg);
945 			if (ret)
946 				goto out;
947 			info->check_integrity_print_mask = intarg;
948 			btrfs_info(info, "check_integrity_print_mask 0x%x",
949 				   info->check_integrity_print_mask);
950 			break;
951 #else
952 		case Opt_check_integrity_including_extent_data:
953 		case Opt_check_integrity:
954 		case Opt_check_integrity_print_mask:
955 			btrfs_err(info,
956 				  "support for check_integrity* not compiled in!");
957 			ret = -EINVAL;
958 			goto out;
959 #endif
960 		case Opt_fatal_errors:
961 			if (strcmp(args[0].from, "panic") == 0)
962 				btrfs_set_opt(info->mount_opt,
963 					      PANIC_ON_FATAL_ERROR);
964 			else if (strcmp(args[0].from, "bug") == 0)
965 				btrfs_clear_opt(info->mount_opt,
966 					      PANIC_ON_FATAL_ERROR);
967 			else {
968 				ret = -EINVAL;
969 				goto out;
970 			}
971 			break;
972 		case Opt_commit_interval:
973 			intarg = 0;
974 			ret = match_int(&args[0], &intarg);
975 			if (ret)
976 				goto out;
977 			if (intarg == 0) {
978 				btrfs_info(info,
979 					   "using default commit interval %us",
980 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
981 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
982 			} else if (intarg > 300) {
983 				btrfs_warn(info, "excessive commit interval %d",
984 					   intarg);
985 			}
986 			info->commit_interval = intarg;
987 			break;
988 		case Opt_rescue:
989 			ret = parse_rescue_options(info, args[0].from);
990 			if (ret < 0)
991 				goto out;
992 			break;
993 #ifdef CONFIG_BTRFS_DEBUG
994 		case Opt_fragment_all:
995 			btrfs_info(info, "fragmenting all space");
996 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
997 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
998 			break;
999 		case Opt_fragment_metadata:
1000 			btrfs_info(info, "fragmenting metadata");
1001 			btrfs_set_opt(info->mount_opt,
1002 				      FRAGMENT_METADATA);
1003 			break;
1004 		case Opt_fragment_data:
1005 			btrfs_info(info, "fragmenting data");
1006 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1007 			break;
1008 #endif
1009 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1010 		case Opt_ref_verify:
1011 			btrfs_info(info, "doing ref verification");
1012 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1013 			break;
1014 #endif
1015 		case Opt_err:
1016 			btrfs_err(info, "unrecognized mount option '%s'", p);
1017 			ret = -EINVAL;
1018 			goto out;
1019 		default:
1020 			break;
1021 		}
1022 	}
1023 check:
1024 	/* We're read-only, don't have to check. */
1025 	if (new_flags & SB_RDONLY)
1026 		goto out;
1027 
1028 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1029 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1030 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1031 		ret = -EINVAL;
1032 out:
1033 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1034 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1035 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1036 		btrfs_err(info, "cannot disable free space tree");
1037 		ret = -EINVAL;
1038 
1039 	}
1040 	if (!ret)
1041 		ret = btrfs_check_mountopts_zoned(info);
1042 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1043 		btrfs_info(info, "disk space caching is enabled");
1044 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1045 		btrfs_info(info, "using free space tree");
1046 	return ret;
1047 }
1048 
1049 /*
1050  * Parse mount options that are required early in the mount process.
1051  *
1052  * All other options will be parsed on much later in the mount process and
1053  * only when we need to allocate a new super block.
1054  */
1055 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1056 				      void *holder)
1057 {
1058 	substring_t args[MAX_OPT_ARGS];
1059 	char *device_name, *opts, *orig, *p;
1060 	struct btrfs_device *device = NULL;
1061 	int error = 0;
1062 
1063 	lockdep_assert_held(&uuid_mutex);
1064 
1065 	if (!options)
1066 		return 0;
1067 
1068 	/*
1069 	 * strsep changes the string, duplicate it because btrfs_parse_options
1070 	 * gets called later
1071 	 */
1072 	opts = kstrdup(options, GFP_KERNEL);
1073 	if (!opts)
1074 		return -ENOMEM;
1075 	orig = opts;
1076 
1077 	while ((p = strsep(&opts, ",")) != NULL) {
1078 		int token;
1079 
1080 		if (!*p)
1081 			continue;
1082 
1083 		token = match_token(p, tokens, args);
1084 		if (token == Opt_device) {
1085 			device_name = match_strdup(&args[0]);
1086 			if (!device_name) {
1087 				error = -ENOMEM;
1088 				goto out;
1089 			}
1090 			device = btrfs_scan_one_device(device_name, flags,
1091 					holder);
1092 			kfree(device_name);
1093 			if (IS_ERR(device)) {
1094 				error = PTR_ERR(device);
1095 				goto out;
1096 			}
1097 		}
1098 	}
1099 
1100 out:
1101 	kfree(orig);
1102 	return error;
1103 }
1104 
1105 /*
1106  * Parse mount options that are related to subvolume id
1107  *
1108  * The value is later passed to mount_subvol()
1109  */
1110 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1111 		u64 *subvol_objectid)
1112 {
1113 	substring_t args[MAX_OPT_ARGS];
1114 	char *opts, *orig, *p;
1115 	int error = 0;
1116 	u64 subvolid;
1117 
1118 	if (!options)
1119 		return 0;
1120 
1121 	/*
1122 	 * strsep changes the string, duplicate it because
1123 	 * btrfs_parse_device_options gets called later
1124 	 */
1125 	opts = kstrdup(options, GFP_KERNEL);
1126 	if (!opts)
1127 		return -ENOMEM;
1128 	orig = opts;
1129 
1130 	while ((p = strsep(&opts, ",")) != NULL) {
1131 		int token;
1132 		if (!*p)
1133 			continue;
1134 
1135 		token = match_token(p, tokens, args);
1136 		switch (token) {
1137 		case Opt_subvol:
1138 			kfree(*subvol_name);
1139 			*subvol_name = match_strdup(&args[0]);
1140 			if (!*subvol_name) {
1141 				error = -ENOMEM;
1142 				goto out;
1143 			}
1144 			break;
1145 		case Opt_subvolid:
1146 			error = match_u64(&args[0], &subvolid);
1147 			if (error)
1148 				goto out;
1149 
1150 			/* we want the original fs_tree */
1151 			if (subvolid == 0)
1152 				subvolid = BTRFS_FS_TREE_OBJECTID;
1153 
1154 			*subvol_objectid = subvolid;
1155 			break;
1156 		default:
1157 			break;
1158 		}
1159 	}
1160 
1161 out:
1162 	kfree(orig);
1163 	return error;
1164 }
1165 
1166 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1167 					  u64 subvol_objectid)
1168 {
1169 	struct btrfs_root *root = fs_info->tree_root;
1170 	struct btrfs_root *fs_root = NULL;
1171 	struct btrfs_root_ref *root_ref;
1172 	struct btrfs_inode_ref *inode_ref;
1173 	struct btrfs_key key;
1174 	struct btrfs_path *path = NULL;
1175 	char *name = NULL, *ptr;
1176 	u64 dirid;
1177 	int len;
1178 	int ret;
1179 
1180 	path = btrfs_alloc_path();
1181 	if (!path) {
1182 		ret = -ENOMEM;
1183 		goto err;
1184 	}
1185 
1186 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1187 	if (!name) {
1188 		ret = -ENOMEM;
1189 		goto err;
1190 	}
1191 	ptr = name + PATH_MAX - 1;
1192 	ptr[0] = '\0';
1193 
1194 	/*
1195 	 * Walk up the subvolume trees in the tree of tree roots by root
1196 	 * backrefs until we hit the top-level subvolume.
1197 	 */
1198 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1199 		key.objectid = subvol_objectid;
1200 		key.type = BTRFS_ROOT_BACKREF_KEY;
1201 		key.offset = (u64)-1;
1202 
1203 		ret = btrfs_search_backwards(root, &key, path);
1204 		if (ret < 0) {
1205 			goto err;
1206 		} else if (ret > 0) {
1207 			ret = -ENOENT;
1208 			goto err;
1209 		}
1210 
1211 		subvol_objectid = key.offset;
1212 
1213 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1214 					  struct btrfs_root_ref);
1215 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1216 		ptr -= len + 1;
1217 		if (ptr < name) {
1218 			ret = -ENAMETOOLONG;
1219 			goto err;
1220 		}
1221 		read_extent_buffer(path->nodes[0], ptr + 1,
1222 				   (unsigned long)(root_ref + 1), len);
1223 		ptr[0] = '/';
1224 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1225 		btrfs_release_path(path);
1226 
1227 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1228 		if (IS_ERR(fs_root)) {
1229 			ret = PTR_ERR(fs_root);
1230 			fs_root = NULL;
1231 			goto err;
1232 		}
1233 
1234 		/*
1235 		 * Walk up the filesystem tree by inode refs until we hit the
1236 		 * root directory.
1237 		 */
1238 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1239 			key.objectid = dirid;
1240 			key.type = BTRFS_INODE_REF_KEY;
1241 			key.offset = (u64)-1;
1242 
1243 			ret = btrfs_search_backwards(fs_root, &key, path);
1244 			if (ret < 0) {
1245 				goto err;
1246 			} else if (ret > 0) {
1247 				ret = -ENOENT;
1248 				goto err;
1249 			}
1250 
1251 			dirid = key.offset;
1252 
1253 			inode_ref = btrfs_item_ptr(path->nodes[0],
1254 						   path->slots[0],
1255 						   struct btrfs_inode_ref);
1256 			len = btrfs_inode_ref_name_len(path->nodes[0],
1257 						       inode_ref);
1258 			ptr -= len + 1;
1259 			if (ptr < name) {
1260 				ret = -ENAMETOOLONG;
1261 				goto err;
1262 			}
1263 			read_extent_buffer(path->nodes[0], ptr + 1,
1264 					   (unsigned long)(inode_ref + 1), len);
1265 			ptr[0] = '/';
1266 			btrfs_release_path(path);
1267 		}
1268 		btrfs_put_root(fs_root);
1269 		fs_root = NULL;
1270 	}
1271 
1272 	btrfs_free_path(path);
1273 	if (ptr == name + PATH_MAX - 1) {
1274 		name[0] = '/';
1275 		name[1] = '\0';
1276 	} else {
1277 		memmove(name, ptr, name + PATH_MAX - ptr);
1278 	}
1279 	return name;
1280 
1281 err:
1282 	btrfs_put_root(fs_root);
1283 	btrfs_free_path(path);
1284 	kfree(name);
1285 	return ERR_PTR(ret);
1286 }
1287 
1288 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1289 {
1290 	struct btrfs_root *root = fs_info->tree_root;
1291 	struct btrfs_dir_item *di;
1292 	struct btrfs_path *path;
1293 	struct btrfs_key location;
1294 	u64 dir_id;
1295 
1296 	path = btrfs_alloc_path();
1297 	if (!path)
1298 		return -ENOMEM;
1299 
1300 	/*
1301 	 * Find the "default" dir item which points to the root item that we
1302 	 * will mount by default if we haven't been given a specific subvolume
1303 	 * to mount.
1304 	 */
1305 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1306 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1307 	if (IS_ERR(di)) {
1308 		btrfs_free_path(path);
1309 		return PTR_ERR(di);
1310 	}
1311 	if (!di) {
1312 		/*
1313 		 * Ok the default dir item isn't there.  This is weird since
1314 		 * it's always been there, but don't freak out, just try and
1315 		 * mount the top-level subvolume.
1316 		 */
1317 		btrfs_free_path(path);
1318 		*objectid = BTRFS_FS_TREE_OBJECTID;
1319 		return 0;
1320 	}
1321 
1322 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1323 	btrfs_free_path(path);
1324 	*objectid = location.objectid;
1325 	return 0;
1326 }
1327 
1328 static int btrfs_fill_super(struct super_block *sb,
1329 			    struct btrfs_fs_devices *fs_devices,
1330 			    void *data)
1331 {
1332 	struct inode *inode;
1333 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1334 	int err;
1335 
1336 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1337 	sb->s_magic = BTRFS_SUPER_MAGIC;
1338 	sb->s_op = &btrfs_super_ops;
1339 	sb->s_d_op = &btrfs_dentry_operations;
1340 	sb->s_export_op = &btrfs_export_ops;
1341 #ifdef CONFIG_FS_VERITY
1342 	sb->s_vop = &btrfs_verityops;
1343 #endif
1344 	sb->s_xattr = btrfs_xattr_handlers;
1345 	sb->s_time_gran = 1;
1346 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1347 	sb->s_flags |= SB_POSIXACL;
1348 #endif
1349 	sb->s_flags |= SB_I_VERSION;
1350 	sb->s_iflags |= SB_I_CGROUPWB;
1351 
1352 	err = super_setup_bdi(sb);
1353 	if (err) {
1354 		btrfs_err(fs_info, "super_setup_bdi failed");
1355 		return err;
1356 	}
1357 
1358 	err = open_ctree(sb, fs_devices, (char *)data);
1359 	if (err) {
1360 		btrfs_err(fs_info, "open_ctree failed");
1361 		return err;
1362 	}
1363 
1364 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1365 	if (IS_ERR(inode)) {
1366 		err = PTR_ERR(inode);
1367 		goto fail_close;
1368 	}
1369 
1370 	sb->s_root = d_make_root(inode);
1371 	if (!sb->s_root) {
1372 		err = -ENOMEM;
1373 		goto fail_close;
1374 	}
1375 
1376 	sb->s_flags |= SB_ACTIVE;
1377 	return 0;
1378 
1379 fail_close:
1380 	close_ctree(fs_info);
1381 	return err;
1382 }
1383 
1384 int btrfs_sync_fs(struct super_block *sb, int wait)
1385 {
1386 	struct btrfs_trans_handle *trans;
1387 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1388 	struct btrfs_root *root = fs_info->tree_root;
1389 
1390 	trace_btrfs_sync_fs(fs_info, wait);
1391 
1392 	if (!wait) {
1393 		filemap_flush(fs_info->btree_inode->i_mapping);
1394 		return 0;
1395 	}
1396 
1397 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1398 
1399 	trans = btrfs_attach_transaction_barrier(root);
1400 	if (IS_ERR(trans)) {
1401 		/* no transaction, don't bother */
1402 		if (PTR_ERR(trans) == -ENOENT) {
1403 			/*
1404 			 * Exit unless we have some pending changes
1405 			 * that need to go through commit
1406 			 */
1407 			if (fs_info->pending_changes == 0)
1408 				return 0;
1409 			/*
1410 			 * A non-blocking test if the fs is frozen. We must not
1411 			 * start a new transaction here otherwise a deadlock
1412 			 * happens. The pending operations are delayed to the
1413 			 * next commit after thawing.
1414 			 */
1415 			if (sb_start_write_trylock(sb))
1416 				sb_end_write(sb);
1417 			else
1418 				return 0;
1419 			trans = btrfs_start_transaction(root, 0);
1420 		}
1421 		if (IS_ERR(trans))
1422 			return PTR_ERR(trans);
1423 	}
1424 	return btrfs_commit_transaction(trans);
1425 }
1426 
1427 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1428 {
1429 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1430 	*printed = true;
1431 }
1432 
1433 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1434 {
1435 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1436 	const char *compress_type;
1437 	const char *subvol_name;
1438 	bool printed = false;
1439 
1440 	if (btrfs_test_opt(info, DEGRADED))
1441 		seq_puts(seq, ",degraded");
1442 	if (btrfs_test_opt(info, NODATASUM))
1443 		seq_puts(seq, ",nodatasum");
1444 	if (btrfs_test_opt(info, NODATACOW))
1445 		seq_puts(seq, ",nodatacow");
1446 	if (btrfs_test_opt(info, NOBARRIER))
1447 		seq_puts(seq, ",nobarrier");
1448 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1449 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1450 	if (info->thread_pool_size !=  min_t(unsigned long,
1451 					     num_online_cpus() + 2, 8))
1452 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1453 	if (btrfs_test_opt(info, COMPRESS)) {
1454 		compress_type = btrfs_compress_type2str(info->compress_type);
1455 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1456 			seq_printf(seq, ",compress-force=%s", compress_type);
1457 		else
1458 			seq_printf(seq, ",compress=%s", compress_type);
1459 		if (info->compress_level)
1460 			seq_printf(seq, ":%d", info->compress_level);
1461 	}
1462 	if (btrfs_test_opt(info, NOSSD))
1463 		seq_puts(seq, ",nossd");
1464 	if (btrfs_test_opt(info, SSD_SPREAD))
1465 		seq_puts(seq, ",ssd_spread");
1466 	else if (btrfs_test_opt(info, SSD))
1467 		seq_puts(seq, ",ssd");
1468 	if (btrfs_test_opt(info, NOTREELOG))
1469 		seq_puts(seq, ",notreelog");
1470 	if (btrfs_test_opt(info, NOLOGREPLAY))
1471 		print_rescue_option(seq, "nologreplay", &printed);
1472 	if (btrfs_test_opt(info, USEBACKUPROOT))
1473 		print_rescue_option(seq, "usebackuproot", &printed);
1474 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1475 		print_rescue_option(seq, "ignorebadroots", &printed);
1476 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1477 		print_rescue_option(seq, "ignoredatacsums", &printed);
1478 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1479 		seq_puts(seq, ",flushoncommit");
1480 	if (btrfs_test_opt(info, DISCARD_SYNC))
1481 		seq_puts(seq, ",discard");
1482 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1483 		seq_puts(seq, ",discard=async");
1484 	if (!(info->sb->s_flags & SB_POSIXACL))
1485 		seq_puts(seq, ",noacl");
1486 	if (btrfs_free_space_cache_v1_active(info))
1487 		seq_puts(seq, ",space_cache");
1488 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1489 		seq_puts(seq, ",space_cache=v2");
1490 	else
1491 		seq_puts(seq, ",nospace_cache");
1492 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1493 		seq_puts(seq, ",rescan_uuid_tree");
1494 	if (btrfs_test_opt(info, CLEAR_CACHE))
1495 		seq_puts(seq, ",clear_cache");
1496 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1497 		seq_puts(seq, ",user_subvol_rm_allowed");
1498 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1499 		seq_puts(seq, ",enospc_debug");
1500 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1501 		seq_puts(seq, ",autodefrag");
1502 	if (btrfs_test_opt(info, SKIP_BALANCE))
1503 		seq_puts(seq, ",skip_balance");
1504 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1505 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1506 		seq_puts(seq, ",check_int_data");
1507 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1508 		seq_puts(seq, ",check_int");
1509 	if (info->check_integrity_print_mask)
1510 		seq_printf(seq, ",check_int_print_mask=%d",
1511 				info->check_integrity_print_mask);
1512 #endif
1513 	if (info->metadata_ratio)
1514 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1515 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1516 		seq_puts(seq, ",fatal_errors=panic");
1517 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1518 		seq_printf(seq, ",commit=%u", info->commit_interval);
1519 #ifdef CONFIG_BTRFS_DEBUG
1520 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1521 		seq_puts(seq, ",fragment=data");
1522 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1523 		seq_puts(seq, ",fragment=metadata");
1524 #endif
1525 	if (btrfs_test_opt(info, REF_VERIFY))
1526 		seq_puts(seq, ",ref_verify");
1527 	seq_printf(seq, ",subvolid=%llu",
1528 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1529 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1530 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1531 	if (!IS_ERR(subvol_name)) {
1532 		seq_puts(seq, ",subvol=");
1533 		seq_escape(seq, subvol_name, " \t\n\\");
1534 		kfree(subvol_name);
1535 	}
1536 	return 0;
1537 }
1538 
1539 static int btrfs_test_super(struct super_block *s, void *data)
1540 {
1541 	struct btrfs_fs_info *p = data;
1542 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1543 
1544 	return fs_info->fs_devices == p->fs_devices;
1545 }
1546 
1547 static int btrfs_set_super(struct super_block *s, void *data)
1548 {
1549 	int err = set_anon_super(s, data);
1550 	if (!err)
1551 		s->s_fs_info = data;
1552 	return err;
1553 }
1554 
1555 /*
1556  * subvolumes are identified by ino 256
1557  */
1558 static inline int is_subvolume_inode(struct inode *inode)
1559 {
1560 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1561 		return 1;
1562 	return 0;
1563 }
1564 
1565 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1566 				   struct vfsmount *mnt)
1567 {
1568 	struct dentry *root;
1569 	int ret;
1570 
1571 	if (!subvol_name) {
1572 		if (!subvol_objectid) {
1573 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1574 							  &subvol_objectid);
1575 			if (ret) {
1576 				root = ERR_PTR(ret);
1577 				goto out;
1578 			}
1579 		}
1580 		subvol_name = btrfs_get_subvol_name_from_objectid(
1581 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1582 		if (IS_ERR(subvol_name)) {
1583 			root = ERR_CAST(subvol_name);
1584 			subvol_name = NULL;
1585 			goto out;
1586 		}
1587 
1588 	}
1589 
1590 	root = mount_subtree(mnt, subvol_name);
1591 	/* mount_subtree() drops our reference on the vfsmount. */
1592 	mnt = NULL;
1593 
1594 	if (!IS_ERR(root)) {
1595 		struct super_block *s = root->d_sb;
1596 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1597 		struct inode *root_inode = d_inode(root);
1598 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1599 
1600 		ret = 0;
1601 		if (!is_subvolume_inode(root_inode)) {
1602 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1603 			       subvol_name);
1604 			ret = -EINVAL;
1605 		}
1606 		if (subvol_objectid && root_objectid != subvol_objectid) {
1607 			/*
1608 			 * This will also catch a race condition where a
1609 			 * subvolume which was passed by ID is renamed and
1610 			 * another subvolume is renamed over the old location.
1611 			 */
1612 			btrfs_err(fs_info,
1613 				  "subvol '%s' does not match subvolid %llu",
1614 				  subvol_name, subvol_objectid);
1615 			ret = -EINVAL;
1616 		}
1617 		if (ret) {
1618 			dput(root);
1619 			root = ERR_PTR(ret);
1620 			deactivate_locked_super(s);
1621 		}
1622 	}
1623 
1624 out:
1625 	mntput(mnt);
1626 	kfree(subvol_name);
1627 	return root;
1628 }
1629 
1630 /*
1631  * Find a superblock for the given device / mount point.
1632  *
1633  * Note: This is based on mount_bdev from fs/super.c with a few additions
1634  *       for multiple device setup.  Make sure to keep it in sync.
1635  */
1636 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1637 		int flags, const char *device_name, void *data)
1638 {
1639 	struct block_device *bdev = NULL;
1640 	struct super_block *s;
1641 	struct btrfs_device *device = NULL;
1642 	struct btrfs_fs_devices *fs_devices = NULL;
1643 	struct btrfs_fs_info *fs_info = NULL;
1644 	void *new_sec_opts = NULL;
1645 	fmode_t mode = FMODE_READ;
1646 	int error = 0;
1647 
1648 	if (!(flags & SB_RDONLY))
1649 		mode |= FMODE_WRITE;
1650 
1651 	if (data) {
1652 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1653 		if (error)
1654 			return ERR_PTR(error);
1655 	}
1656 
1657 	/*
1658 	 * Setup a dummy root and fs_info for test/set super.  This is because
1659 	 * we don't actually fill this stuff out until open_ctree, but we need
1660 	 * then open_ctree will properly initialize the file system specific
1661 	 * settings later.  btrfs_init_fs_info initializes the static elements
1662 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1663 	 * superblock with our given fs_devices later on at sget() time.
1664 	 */
1665 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1666 	if (!fs_info) {
1667 		error = -ENOMEM;
1668 		goto error_sec_opts;
1669 	}
1670 	btrfs_init_fs_info(fs_info);
1671 
1672 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1673 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1674 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1675 		error = -ENOMEM;
1676 		goto error_fs_info;
1677 	}
1678 
1679 	mutex_lock(&uuid_mutex);
1680 	error = btrfs_parse_device_options(data, mode, fs_type);
1681 	if (error) {
1682 		mutex_unlock(&uuid_mutex);
1683 		goto error_fs_info;
1684 	}
1685 
1686 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1687 	if (IS_ERR(device)) {
1688 		mutex_unlock(&uuid_mutex);
1689 		error = PTR_ERR(device);
1690 		goto error_fs_info;
1691 	}
1692 
1693 	fs_devices = device->fs_devices;
1694 	fs_info->fs_devices = fs_devices;
1695 
1696 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1697 	mutex_unlock(&uuid_mutex);
1698 	if (error)
1699 		goto error_fs_info;
1700 
1701 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1702 		error = -EACCES;
1703 		goto error_close_devices;
1704 	}
1705 
1706 	bdev = fs_devices->latest_dev->bdev;
1707 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1708 		 fs_info);
1709 	if (IS_ERR(s)) {
1710 		error = PTR_ERR(s);
1711 		goto error_close_devices;
1712 	}
1713 
1714 	if (s->s_root) {
1715 		btrfs_close_devices(fs_devices);
1716 		btrfs_free_fs_info(fs_info);
1717 		if ((flags ^ s->s_flags) & SB_RDONLY)
1718 			error = -EBUSY;
1719 	} else {
1720 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1721 		btrfs_sb(s)->bdev_holder = fs_type;
1722 		if (!strstr(crc32c_impl(), "generic"))
1723 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1724 		error = btrfs_fill_super(s, fs_devices, data);
1725 	}
1726 	if (!error)
1727 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1728 	security_free_mnt_opts(&new_sec_opts);
1729 	if (error) {
1730 		deactivate_locked_super(s);
1731 		return ERR_PTR(error);
1732 	}
1733 
1734 	return dget(s->s_root);
1735 
1736 error_close_devices:
1737 	btrfs_close_devices(fs_devices);
1738 error_fs_info:
1739 	btrfs_free_fs_info(fs_info);
1740 error_sec_opts:
1741 	security_free_mnt_opts(&new_sec_opts);
1742 	return ERR_PTR(error);
1743 }
1744 
1745 /*
1746  * Mount function which is called by VFS layer.
1747  *
1748  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1749  * which needs vfsmount* of device's root (/).  This means device's root has to
1750  * be mounted internally in any case.
1751  *
1752  * Operation flow:
1753  *   1. Parse subvol id related options for later use in mount_subvol().
1754  *
1755  *   2. Mount device's root (/) by calling vfs_kern_mount().
1756  *
1757  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1758  *      first place. In order to avoid calling btrfs_mount() again, we use
1759  *      different file_system_type which is not registered to VFS by
1760  *      register_filesystem() (btrfs_root_fs_type). As a result,
1761  *      btrfs_mount_root() is called. The return value will be used by
1762  *      mount_subtree() in mount_subvol().
1763  *
1764  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1765  *      "btrfs subvolume set-default", mount_subvol() is called always.
1766  */
1767 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1768 		const char *device_name, void *data)
1769 {
1770 	struct vfsmount *mnt_root;
1771 	struct dentry *root;
1772 	char *subvol_name = NULL;
1773 	u64 subvol_objectid = 0;
1774 	int error = 0;
1775 
1776 	error = btrfs_parse_subvol_options(data, &subvol_name,
1777 					&subvol_objectid);
1778 	if (error) {
1779 		kfree(subvol_name);
1780 		return ERR_PTR(error);
1781 	}
1782 
1783 	/* mount device's root (/) */
1784 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1785 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1786 		if (flags & SB_RDONLY) {
1787 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1788 				flags & ~SB_RDONLY, device_name, data);
1789 		} else {
1790 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1791 				flags | SB_RDONLY, device_name, data);
1792 			if (IS_ERR(mnt_root)) {
1793 				root = ERR_CAST(mnt_root);
1794 				kfree(subvol_name);
1795 				goto out;
1796 			}
1797 
1798 			down_write(&mnt_root->mnt_sb->s_umount);
1799 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1800 			up_write(&mnt_root->mnt_sb->s_umount);
1801 			if (error < 0) {
1802 				root = ERR_PTR(error);
1803 				mntput(mnt_root);
1804 				kfree(subvol_name);
1805 				goto out;
1806 			}
1807 		}
1808 	}
1809 	if (IS_ERR(mnt_root)) {
1810 		root = ERR_CAST(mnt_root);
1811 		kfree(subvol_name);
1812 		goto out;
1813 	}
1814 
1815 	/* mount_subvol() will free subvol_name and mnt_root */
1816 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1817 
1818 out:
1819 	return root;
1820 }
1821 
1822 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1823 				     u32 new_pool_size, u32 old_pool_size)
1824 {
1825 	if (new_pool_size == old_pool_size)
1826 		return;
1827 
1828 	fs_info->thread_pool_size = new_pool_size;
1829 
1830 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1831 	       old_pool_size, new_pool_size);
1832 
1833 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1834 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1835 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1836 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1837 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1838 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1839 				new_pool_size);
1840 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1841 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1842 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1843 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1844 				new_pool_size);
1845 }
1846 
1847 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1848 				       unsigned long old_opts, int flags)
1849 {
1850 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1851 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1852 	     (flags & SB_RDONLY))) {
1853 		/* wait for any defraggers to finish */
1854 		wait_event(fs_info->transaction_wait,
1855 			   (atomic_read(&fs_info->defrag_running) == 0));
1856 		if (flags & SB_RDONLY)
1857 			sync_filesystem(fs_info->sb);
1858 	}
1859 }
1860 
1861 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1862 					 unsigned long old_opts)
1863 {
1864 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1865 
1866 	/*
1867 	 * We need to cleanup all defragable inodes if the autodefragment is
1868 	 * close or the filesystem is read only.
1869 	 */
1870 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1871 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1872 		btrfs_cleanup_defrag_inodes(fs_info);
1873 	}
1874 
1875 	/* If we toggled discard async */
1876 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1877 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1878 		btrfs_discard_resume(fs_info);
1879 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1880 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1881 		btrfs_discard_cleanup(fs_info);
1882 
1883 	/* If we toggled space cache */
1884 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1885 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1886 }
1887 
1888 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1889 {
1890 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1891 	unsigned old_flags = sb->s_flags;
1892 	unsigned long old_opts = fs_info->mount_opt;
1893 	unsigned long old_compress_type = fs_info->compress_type;
1894 	u64 old_max_inline = fs_info->max_inline;
1895 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1896 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1897 	int ret;
1898 
1899 	sync_filesystem(sb);
1900 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1901 
1902 	if (data) {
1903 		void *new_sec_opts = NULL;
1904 
1905 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1906 		if (!ret)
1907 			ret = security_sb_remount(sb, new_sec_opts);
1908 		security_free_mnt_opts(&new_sec_opts);
1909 		if (ret)
1910 			goto restore;
1911 	}
1912 
1913 	ret = btrfs_parse_options(fs_info, data, *flags);
1914 	if (ret)
1915 		goto restore;
1916 
1917 	btrfs_remount_begin(fs_info, old_opts, *flags);
1918 	btrfs_resize_thread_pool(fs_info,
1919 		fs_info->thread_pool_size, old_thread_pool_size);
1920 
1921 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1922 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1923 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1924 		btrfs_warn(fs_info,
1925 		"remount supports changing free space tree only from ro to rw");
1926 		/* Make sure free space cache options match the state on disk */
1927 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1928 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1929 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1930 		}
1931 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1932 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1933 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1934 		}
1935 	}
1936 
1937 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1938 		goto out;
1939 
1940 	if (*flags & SB_RDONLY) {
1941 		/*
1942 		 * this also happens on 'umount -rf' or on shutdown, when
1943 		 * the filesystem is busy.
1944 		 */
1945 		cancel_work_sync(&fs_info->async_reclaim_work);
1946 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1947 
1948 		btrfs_discard_cleanup(fs_info);
1949 
1950 		/* wait for the uuid_scan task to finish */
1951 		down(&fs_info->uuid_tree_rescan_sem);
1952 		/* avoid complains from lockdep et al. */
1953 		up(&fs_info->uuid_tree_rescan_sem);
1954 
1955 		btrfs_set_sb_rdonly(sb);
1956 
1957 		/*
1958 		 * Setting SB_RDONLY will put the cleaner thread to
1959 		 * sleep at the next loop if it's already active.
1960 		 * If it's already asleep, we'll leave unused block
1961 		 * groups on disk until we're mounted read-write again
1962 		 * unless we clean them up here.
1963 		 */
1964 		btrfs_delete_unused_bgs(fs_info);
1965 
1966 		/*
1967 		 * The cleaner task could be already running before we set the
1968 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1969 		 * We must make sure that after we finish the remount, i.e. after
1970 		 * we call btrfs_commit_super(), the cleaner can no longer start
1971 		 * a transaction - either because it was dropping a dead root,
1972 		 * running delayed iputs or deleting an unused block group (the
1973 		 * cleaner picked a block group from the list of unused block
1974 		 * groups before we were able to in the previous call to
1975 		 * btrfs_delete_unused_bgs()).
1976 		 */
1977 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1978 			    TASK_UNINTERRUPTIBLE);
1979 
1980 		/*
1981 		 * We've set the superblock to RO mode, so we might have made
1982 		 * the cleaner task sleep without running all pending delayed
1983 		 * iputs. Go through all the delayed iputs here, so that if an
1984 		 * unmount happens without remounting RW we don't end up at
1985 		 * finishing close_ctree() with a non-empty list of delayed
1986 		 * iputs.
1987 		 */
1988 		btrfs_run_delayed_iputs(fs_info);
1989 
1990 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1991 		btrfs_scrub_cancel(fs_info);
1992 		btrfs_pause_balance(fs_info);
1993 
1994 		/*
1995 		 * Pause the qgroup rescan worker if it is running. We don't want
1996 		 * it to be still running after we are in RO mode, as after that,
1997 		 * by the time we unmount, it might have left a transaction open,
1998 		 * so we would leak the transaction and/or crash.
1999 		 */
2000 		btrfs_qgroup_wait_for_completion(fs_info, false);
2001 
2002 		ret = btrfs_commit_super(fs_info);
2003 		if (ret)
2004 			goto restore;
2005 	} else {
2006 		if (BTRFS_FS_ERROR(fs_info)) {
2007 			btrfs_err(fs_info,
2008 				"Remounting read-write after error is not allowed");
2009 			ret = -EINVAL;
2010 			goto restore;
2011 		}
2012 		if (fs_info->fs_devices->rw_devices == 0) {
2013 			ret = -EACCES;
2014 			goto restore;
2015 		}
2016 
2017 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2018 			btrfs_warn(fs_info,
2019 		"too many missing devices, writable remount is not allowed");
2020 			ret = -EACCES;
2021 			goto restore;
2022 		}
2023 
2024 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2025 			btrfs_warn(fs_info,
2026 		"mount required to replay tree-log, cannot remount read-write");
2027 			ret = -EINVAL;
2028 			goto restore;
2029 		}
2030 
2031 		/*
2032 		 * NOTE: when remounting with a change that does writes, don't
2033 		 * put it anywhere above this point, as we are not sure to be
2034 		 * safe to write until we pass the above checks.
2035 		 */
2036 		ret = btrfs_start_pre_rw_mount(fs_info);
2037 		if (ret)
2038 			goto restore;
2039 
2040 		btrfs_clear_sb_rdonly(sb);
2041 
2042 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2043 	}
2044 out:
2045 	/*
2046 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2047 	 * since the absence of the flag means it can be toggled off by remount.
2048 	 */
2049 	*flags |= SB_I_VERSION;
2050 
2051 	wake_up_process(fs_info->transaction_kthread);
2052 	btrfs_remount_cleanup(fs_info, old_opts);
2053 	btrfs_clear_oneshot_options(fs_info);
2054 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2055 
2056 	return 0;
2057 
2058 restore:
2059 	/* We've hit an error - don't reset SB_RDONLY */
2060 	if (sb_rdonly(sb))
2061 		old_flags |= SB_RDONLY;
2062 	if (!(old_flags & SB_RDONLY))
2063 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2064 	sb->s_flags = old_flags;
2065 	fs_info->mount_opt = old_opts;
2066 	fs_info->compress_type = old_compress_type;
2067 	fs_info->max_inline = old_max_inline;
2068 	btrfs_resize_thread_pool(fs_info,
2069 		old_thread_pool_size, fs_info->thread_pool_size);
2070 	fs_info->metadata_ratio = old_metadata_ratio;
2071 	btrfs_remount_cleanup(fs_info, old_opts);
2072 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2073 
2074 	return ret;
2075 }
2076 
2077 /* Used to sort the devices by max_avail(descending sort) */
2078 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
2079 {
2080 	const struct btrfs_device_info *dev_info1 = a;
2081 	const struct btrfs_device_info *dev_info2 = b;
2082 
2083 	if (dev_info1->max_avail > dev_info2->max_avail)
2084 		return -1;
2085 	else if (dev_info1->max_avail < dev_info2->max_avail)
2086 		return 1;
2087 	return 0;
2088 }
2089 
2090 /*
2091  * sort the devices by max_avail, in which max free extent size of each device
2092  * is stored.(Descending Sort)
2093  */
2094 static inline void btrfs_descending_sort_devices(
2095 					struct btrfs_device_info *devices,
2096 					size_t nr_devices)
2097 {
2098 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2099 	     btrfs_cmp_device_free_bytes, NULL);
2100 }
2101 
2102 /*
2103  * The helper to calc the free space on the devices that can be used to store
2104  * file data.
2105  */
2106 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2107 					      u64 *free_bytes)
2108 {
2109 	struct btrfs_device_info *devices_info;
2110 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2111 	struct btrfs_device *device;
2112 	u64 type;
2113 	u64 avail_space;
2114 	u64 min_stripe_size;
2115 	int num_stripes = 1;
2116 	int i = 0, nr_devices;
2117 	const struct btrfs_raid_attr *rattr;
2118 
2119 	/*
2120 	 * We aren't under the device list lock, so this is racy-ish, but good
2121 	 * enough for our purposes.
2122 	 */
2123 	nr_devices = fs_info->fs_devices->open_devices;
2124 	if (!nr_devices) {
2125 		smp_mb();
2126 		nr_devices = fs_info->fs_devices->open_devices;
2127 		ASSERT(nr_devices);
2128 		if (!nr_devices) {
2129 			*free_bytes = 0;
2130 			return 0;
2131 		}
2132 	}
2133 
2134 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2135 			       GFP_KERNEL);
2136 	if (!devices_info)
2137 		return -ENOMEM;
2138 
2139 	/* calc min stripe number for data space allocation */
2140 	type = btrfs_data_alloc_profile(fs_info);
2141 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2142 
2143 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2144 		num_stripes = nr_devices;
2145 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2146 		num_stripes = 2;
2147 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2148 		num_stripes = 3;
2149 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2150 		num_stripes = 4;
2151 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2152 		num_stripes = 4;
2153 
2154 	/* Adjust for more than 1 stripe per device */
2155 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2156 
2157 	rcu_read_lock();
2158 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2159 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2160 						&device->dev_state) ||
2161 		    !device->bdev ||
2162 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2163 			continue;
2164 
2165 		if (i >= nr_devices)
2166 			break;
2167 
2168 		avail_space = device->total_bytes - device->bytes_used;
2169 
2170 		/* align with stripe_len */
2171 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2172 
2173 		/*
2174 		 * In order to avoid overwriting the superblock on the drive,
2175 		 * btrfs starts at an offset of at least 1MB when doing chunk
2176 		 * allocation.
2177 		 *
2178 		 * This ensures we have at least min_stripe_size free space
2179 		 * after excluding 1MB.
2180 		 */
2181 		if (avail_space <= SZ_1M + min_stripe_size)
2182 			continue;
2183 
2184 		avail_space -= SZ_1M;
2185 
2186 		devices_info[i].dev = device;
2187 		devices_info[i].max_avail = avail_space;
2188 
2189 		i++;
2190 	}
2191 	rcu_read_unlock();
2192 
2193 	nr_devices = i;
2194 
2195 	btrfs_descending_sort_devices(devices_info, nr_devices);
2196 
2197 	i = nr_devices - 1;
2198 	avail_space = 0;
2199 	while (nr_devices >= rattr->devs_min) {
2200 		num_stripes = min(num_stripes, nr_devices);
2201 
2202 		if (devices_info[i].max_avail >= min_stripe_size) {
2203 			int j;
2204 			u64 alloc_size;
2205 
2206 			avail_space += devices_info[i].max_avail * num_stripes;
2207 			alloc_size = devices_info[i].max_avail;
2208 			for (j = i + 1 - num_stripes; j <= i; j++)
2209 				devices_info[j].max_avail -= alloc_size;
2210 		}
2211 		i--;
2212 		nr_devices--;
2213 	}
2214 
2215 	kfree(devices_info);
2216 	*free_bytes = avail_space;
2217 	return 0;
2218 }
2219 
2220 /*
2221  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2222  *
2223  * If there's a redundant raid level at DATA block groups, use the respective
2224  * multiplier to scale the sizes.
2225  *
2226  * Unused device space usage is based on simulating the chunk allocator
2227  * algorithm that respects the device sizes and order of allocations.  This is
2228  * a close approximation of the actual use but there are other factors that may
2229  * change the result (like a new metadata chunk).
2230  *
2231  * If metadata is exhausted, f_bavail will be 0.
2232  */
2233 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2234 {
2235 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2236 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2237 	struct btrfs_space_info *found;
2238 	u64 total_used = 0;
2239 	u64 total_free_data = 0;
2240 	u64 total_free_meta = 0;
2241 	u32 bits = fs_info->sectorsize_bits;
2242 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2243 	unsigned factor = 1;
2244 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2245 	int ret;
2246 	u64 thresh = 0;
2247 	int mixed = 0;
2248 
2249 	list_for_each_entry(found, &fs_info->space_info, list) {
2250 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2251 			int i;
2252 
2253 			total_free_data += found->disk_total - found->disk_used;
2254 			total_free_data -=
2255 				btrfs_account_ro_block_groups_free_space(found);
2256 
2257 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2258 				if (!list_empty(&found->block_groups[i]))
2259 					factor = btrfs_bg_type_to_factor(
2260 						btrfs_raid_array[i].bg_flag);
2261 			}
2262 		}
2263 
2264 		/*
2265 		 * Metadata in mixed block goup profiles are accounted in data
2266 		 */
2267 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2268 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2269 				mixed = 1;
2270 			else
2271 				total_free_meta += found->disk_total -
2272 					found->disk_used;
2273 		}
2274 
2275 		total_used += found->disk_used;
2276 	}
2277 
2278 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2279 	buf->f_blocks >>= bits;
2280 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2281 
2282 	/* Account global block reserve as used, it's in logical size already */
2283 	spin_lock(&block_rsv->lock);
2284 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2285 	if (buf->f_bfree >= block_rsv->size >> bits)
2286 		buf->f_bfree -= block_rsv->size >> bits;
2287 	else
2288 		buf->f_bfree = 0;
2289 	spin_unlock(&block_rsv->lock);
2290 
2291 	buf->f_bavail = div_u64(total_free_data, factor);
2292 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2293 	if (ret)
2294 		return ret;
2295 	buf->f_bavail += div_u64(total_free_data, factor);
2296 	buf->f_bavail = buf->f_bavail >> bits;
2297 
2298 	/*
2299 	 * We calculate the remaining metadata space minus global reserve. If
2300 	 * this is (supposedly) smaller than zero, there's no space. But this
2301 	 * does not hold in practice, the exhausted state happens where's still
2302 	 * some positive delta. So we apply some guesswork and compare the
2303 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2304 	 *
2305 	 * We probably cannot calculate the exact threshold value because this
2306 	 * depends on the internal reservations requested by various
2307 	 * operations, so some operations that consume a few metadata will
2308 	 * succeed even if the Avail is zero. But this is better than the other
2309 	 * way around.
2310 	 */
2311 	thresh = SZ_4M;
2312 
2313 	/*
2314 	 * We only want to claim there's no available space if we can no longer
2315 	 * allocate chunks for our metadata profile and our global reserve will
2316 	 * not fit in the free metadata space.  If we aren't ->full then we
2317 	 * still can allocate chunks and thus are fine using the currently
2318 	 * calculated f_bavail.
2319 	 */
2320 	if (!mixed && block_rsv->space_info->full &&
2321 	    total_free_meta - thresh < block_rsv->size)
2322 		buf->f_bavail = 0;
2323 
2324 	buf->f_type = BTRFS_SUPER_MAGIC;
2325 	buf->f_bsize = dentry->d_sb->s_blocksize;
2326 	buf->f_namelen = BTRFS_NAME_LEN;
2327 
2328 	/* We treat it as constant endianness (it doesn't matter _which_)
2329 	   because we want the fsid to come out the same whether mounted
2330 	   on a big-endian or little-endian host */
2331 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2332 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2333 	/* Mask in the root object ID too, to disambiguate subvols */
2334 	buf->f_fsid.val[0] ^=
2335 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2336 	buf->f_fsid.val[1] ^=
2337 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2338 
2339 	return 0;
2340 }
2341 
2342 static void btrfs_kill_super(struct super_block *sb)
2343 {
2344 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2345 	kill_anon_super(sb);
2346 	btrfs_free_fs_info(fs_info);
2347 }
2348 
2349 static struct file_system_type btrfs_fs_type = {
2350 	.owner		= THIS_MODULE,
2351 	.name		= "btrfs",
2352 	.mount		= btrfs_mount,
2353 	.kill_sb	= btrfs_kill_super,
2354 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2355 };
2356 
2357 static struct file_system_type btrfs_root_fs_type = {
2358 	.owner		= THIS_MODULE,
2359 	.name		= "btrfs",
2360 	.mount		= btrfs_mount_root,
2361 	.kill_sb	= btrfs_kill_super,
2362 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2363 };
2364 
2365 MODULE_ALIAS_FS("btrfs");
2366 
2367 static int btrfs_control_open(struct inode *inode, struct file *file)
2368 {
2369 	/*
2370 	 * The control file's private_data is used to hold the
2371 	 * transaction when it is started and is used to keep
2372 	 * track of whether a transaction is already in progress.
2373 	 */
2374 	file->private_data = NULL;
2375 	return 0;
2376 }
2377 
2378 /*
2379  * Used by /dev/btrfs-control for devices ioctls.
2380  */
2381 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2382 				unsigned long arg)
2383 {
2384 	struct btrfs_ioctl_vol_args *vol;
2385 	struct btrfs_device *device = NULL;
2386 	int ret = -ENOTTY;
2387 
2388 	if (!capable(CAP_SYS_ADMIN))
2389 		return -EPERM;
2390 
2391 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2392 	if (IS_ERR(vol))
2393 		return PTR_ERR(vol);
2394 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2395 
2396 	switch (cmd) {
2397 	case BTRFS_IOC_SCAN_DEV:
2398 		mutex_lock(&uuid_mutex);
2399 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2400 					       &btrfs_root_fs_type);
2401 		ret = PTR_ERR_OR_ZERO(device);
2402 		mutex_unlock(&uuid_mutex);
2403 		break;
2404 	case BTRFS_IOC_FORGET_DEV:
2405 		ret = btrfs_forget_devices(vol->name);
2406 		break;
2407 	case BTRFS_IOC_DEVICES_READY:
2408 		mutex_lock(&uuid_mutex);
2409 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2410 					       &btrfs_root_fs_type);
2411 		if (IS_ERR(device)) {
2412 			mutex_unlock(&uuid_mutex);
2413 			ret = PTR_ERR(device);
2414 			break;
2415 		}
2416 		ret = !(device->fs_devices->num_devices ==
2417 			device->fs_devices->total_devices);
2418 		mutex_unlock(&uuid_mutex);
2419 		break;
2420 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2421 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2422 		break;
2423 	}
2424 
2425 	kfree(vol);
2426 	return ret;
2427 }
2428 
2429 static int btrfs_freeze(struct super_block *sb)
2430 {
2431 	struct btrfs_trans_handle *trans;
2432 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2433 	struct btrfs_root *root = fs_info->tree_root;
2434 
2435 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2436 	/*
2437 	 * We don't need a barrier here, we'll wait for any transaction that
2438 	 * could be in progress on other threads (and do delayed iputs that
2439 	 * we want to avoid on a frozen filesystem), or do the commit
2440 	 * ourselves.
2441 	 */
2442 	trans = btrfs_attach_transaction_barrier(root);
2443 	if (IS_ERR(trans)) {
2444 		/* no transaction, don't bother */
2445 		if (PTR_ERR(trans) == -ENOENT)
2446 			return 0;
2447 		return PTR_ERR(trans);
2448 	}
2449 	return btrfs_commit_transaction(trans);
2450 }
2451 
2452 static int btrfs_unfreeze(struct super_block *sb)
2453 {
2454 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2455 
2456 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2457 	return 0;
2458 }
2459 
2460 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2461 {
2462 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2463 
2464 	/*
2465 	 * There should be always a valid pointer in latest_dev, it may be stale
2466 	 * for a short moment in case it's being deleted but still valid until
2467 	 * the end of RCU grace period.
2468 	 */
2469 	rcu_read_lock();
2470 	seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\");
2471 	rcu_read_unlock();
2472 
2473 	return 0;
2474 }
2475 
2476 static const struct super_operations btrfs_super_ops = {
2477 	.drop_inode	= btrfs_drop_inode,
2478 	.evict_inode	= btrfs_evict_inode,
2479 	.put_super	= btrfs_put_super,
2480 	.sync_fs	= btrfs_sync_fs,
2481 	.show_options	= btrfs_show_options,
2482 	.show_devname	= btrfs_show_devname,
2483 	.alloc_inode	= btrfs_alloc_inode,
2484 	.destroy_inode	= btrfs_destroy_inode,
2485 	.free_inode	= btrfs_free_inode,
2486 	.statfs		= btrfs_statfs,
2487 	.remount_fs	= btrfs_remount,
2488 	.freeze_fs	= btrfs_freeze,
2489 	.unfreeze_fs	= btrfs_unfreeze,
2490 };
2491 
2492 static const struct file_operations btrfs_ctl_fops = {
2493 	.open = btrfs_control_open,
2494 	.unlocked_ioctl	 = btrfs_control_ioctl,
2495 	.compat_ioctl = compat_ptr_ioctl,
2496 	.owner	 = THIS_MODULE,
2497 	.llseek = noop_llseek,
2498 };
2499 
2500 static struct miscdevice btrfs_misc = {
2501 	.minor		= BTRFS_MINOR,
2502 	.name		= "btrfs-control",
2503 	.fops		= &btrfs_ctl_fops
2504 };
2505 
2506 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2507 MODULE_ALIAS("devname:btrfs-control");
2508 
2509 static int __init btrfs_interface_init(void)
2510 {
2511 	return misc_register(&btrfs_misc);
2512 }
2513 
2514 static __cold void btrfs_interface_exit(void)
2515 {
2516 	misc_deregister(&btrfs_misc);
2517 }
2518 
2519 static void __init btrfs_print_mod_info(void)
2520 {
2521 	static const char options[] = ""
2522 #ifdef CONFIG_BTRFS_DEBUG
2523 			", debug=on"
2524 #endif
2525 #ifdef CONFIG_BTRFS_ASSERT
2526 			", assert=on"
2527 #endif
2528 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2529 			", integrity-checker=on"
2530 #endif
2531 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2532 			", ref-verify=on"
2533 #endif
2534 #ifdef CONFIG_BLK_DEV_ZONED
2535 			", zoned=yes"
2536 #else
2537 			", zoned=no"
2538 #endif
2539 #ifdef CONFIG_FS_VERITY
2540 			", fsverity=yes"
2541 #else
2542 			", fsverity=no"
2543 #endif
2544 			;
2545 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2546 }
2547 
2548 static int __init init_btrfs_fs(void)
2549 {
2550 	int err;
2551 
2552 	btrfs_props_init();
2553 
2554 	err = btrfs_init_sysfs();
2555 	if (err)
2556 		return err;
2557 
2558 	btrfs_init_compress();
2559 
2560 	err = btrfs_init_cachep();
2561 	if (err)
2562 		goto free_compress;
2563 
2564 	err = extent_io_init();
2565 	if (err)
2566 		goto free_cachep;
2567 
2568 	err = extent_state_cache_init();
2569 	if (err)
2570 		goto free_extent_io;
2571 
2572 	err = extent_map_init();
2573 	if (err)
2574 		goto free_extent_state_cache;
2575 
2576 	err = ordered_data_init();
2577 	if (err)
2578 		goto free_extent_map;
2579 
2580 	err = btrfs_delayed_inode_init();
2581 	if (err)
2582 		goto free_ordered_data;
2583 
2584 	err = btrfs_auto_defrag_init();
2585 	if (err)
2586 		goto free_delayed_inode;
2587 
2588 	err = btrfs_delayed_ref_init();
2589 	if (err)
2590 		goto free_auto_defrag;
2591 
2592 	err = btrfs_prelim_ref_init();
2593 	if (err)
2594 		goto free_delayed_ref;
2595 
2596 	err = btrfs_end_io_wq_init();
2597 	if (err)
2598 		goto free_prelim_ref;
2599 
2600 	err = btrfs_interface_init();
2601 	if (err)
2602 		goto free_end_io_wq;
2603 
2604 	btrfs_print_mod_info();
2605 
2606 	err = btrfs_run_sanity_tests();
2607 	if (err)
2608 		goto unregister_ioctl;
2609 
2610 	err = register_filesystem(&btrfs_fs_type);
2611 	if (err)
2612 		goto unregister_ioctl;
2613 
2614 	return 0;
2615 
2616 unregister_ioctl:
2617 	btrfs_interface_exit();
2618 free_end_io_wq:
2619 	btrfs_end_io_wq_exit();
2620 free_prelim_ref:
2621 	btrfs_prelim_ref_exit();
2622 free_delayed_ref:
2623 	btrfs_delayed_ref_exit();
2624 free_auto_defrag:
2625 	btrfs_auto_defrag_exit();
2626 free_delayed_inode:
2627 	btrfs_delayed_inode_exit();
2628 free_ordered_data:
2629 	ordered_data_exit();
2630 free_extent_map:
2631 	extent_map_exit();
2632 free_extent_state_cache:
2633 	extent_state_cache_exit();
2634 free_extent_io:
2635 	extent_io_exit();
2636 free_cachep:
2637 	btrfs_destroy_cachep();
2638 free_compress:
2639 	btrfs_exit_compress();
2640 	btrfs_exit_sysfs();
2641 
2642 	return err;
2643 }
2644 
2645 static void __exit exit_btrfs_fs(void)
2646 {
2647 	btrfs_destroy_cachep();
2648 	btrfs_delayed_ref_exit();
2649 	btrfs_auto_defrag_exit();
2650 	btrfs_delayed_inode_exit();
2651 	btrfs_prelim_ref_exit();
2652 	ordered_data_exit();
2653 	extent_map_exit();
2654 	extent_state_cache_exit();
2655 	extent_io_exit();
2656 	btrfs_interface_exit();
2657 	btrfs_end_io_wq_exit();
2658 	unregister_filesystem(&btrfs_fs_type);
2659 	btrfs_exit_sysfs();
2660 	btrfs_cleanup_fs_uuids();
2661 	btrfs_exit_compress();
2662 }
2663 
2664 late_initcall(init_btrfs_fs);
2665 module_exit(exit_btrfs_fs)
2666 
2667 MODULE_LICENSE("GPL");
2668 MODULE_SOFTDEP("pre: crc32c");
2669 MODULE_SOFTDEP("pre: xxhash64");
2670 MODULE_SOFTDEP("pre: sha256");
2671 MODULE_SOFTDEP("pre: blake2b-256");
2672