1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/btrfs.h> 65 66 static const struct super_operations btrfs_super_ops; 67 static struct file_system_type btrfs_fs_type; 68 69 static const char *btrfs_decode_error(int errno) 70 { 71 char *errstr = "unknown"; 72 73 switch (errno) { 74 case -EIO: 75 errstr = "IO failure"; 76 break; 77 case -ENOMEM: 78 errstr = "Out of memory"; 79 break; 80 case -EROFS: 81 errstr = "Readonly filesystem"; 82 break; 83 case -EEXIST: 84 errstr = "Object already exists"; 85 break; 86 case -ENOSPC: 87 errstr = "No space left"; 88 break; 89 case -ENOENT: 90 errstr = "No such entry"; 91 break; 92 } 93 94 return errstr; 95 } 96 97 static void save_error_info(struct btrfs_fs_info *fs_info) 98 { 99 /* 100 * today we only save the error info into ram. Long term we'll 101 * also send it down to the disk 102 */ 103 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 104 } 105 106 /* btrfs handle error by forcing the filesystem readonly */ 107 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 108 { 109 struct super_block *sb = fs_info->sb; 110 111 if (sb->s_flags & MS_RDONLY) 112 return; 113 114 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 115 sb->s_flags |= MS_RDONLY; 116 btrfs_info(fs_info, "forced readonly"); 117 /* 118 * Note that a running device replace operation is not 119 * canceled here although there is no way to update 120 * the progress. It would add the risk of a deadlock, 121 * therefore the canceling is ommited. The only penalty 122 * is that some I/O remains active until the procedure 123 * completes. The next time when the filesystem is 124 * mounted writeable again, the device replace 125 * operation continues. 126 */ 127 } 128 } 129 130 #ifdef CONFIG_PRINTK 131 /* 132 * __btrfs_std_error decodes expected errors from the caller and 133 * invokes the approciate error response. 134 */ 135 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 136 unsigned int line, int errno, const char *fmt, ...) 137 { 138 struct super_block *sb = fs_info->sb; 139 const char *errstr; 140 141 /* 142 * Special case: if the error is EROFS, and we're already 143 * under MS_RDONLY, then it is safe here. 144 */ 145 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 146 return; 147 148 errstr = btrfs_decode_error(errno); 149 if (fmt) { 150 struct va_format vaf; 151 va_list args; 152 153 va_start(args, fmt); 154 vaf.fmt = fmt; 155 vaf.va = &args; 156 157 printk(KERN_CRIT 158 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 159 sb->s_id, function, line, errno, errstr, &vaf); 160 va_end(args); 161 } else { 162 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 163 sb->s_id, function, line, errno, errstr); 164 } 165 166 /* Don't go through full error handling during mount */ 167 save_error_info(fs_info); 168 if (sb->s_flags & MS_BORN) 169 btrfs_handle_error(fs_info); 170 } 171 172 static const char * const logtypes[] = { 173 "emergency", 174 "alert", 175 "critical", 176 "error", 177 "warning", 178 "notice", 179 "info", 180 "debug", 181 }; 182 183 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 184 { 185 struct super_block *sb = fs_info->sb; 186 char lvl[4]; 187 struct va_format vaf; 188 va_list args; 189 const char *type = logtypes[4]; 190 int kern_level; 191 192 va_start(args, fmt); 193 194 kern_level = printk_get_level(fmt); 195 if (kern_level) { 196 size_t size = printk_skip_level(fmt) - fmt; 197 memcpy(lvl, fmt, size); 198 lvl[size] = '\0'; 199 fmt += size; 200 type = logtypes[kern_level - '0']; 201 } else 202 *lvl = '\0'; 203 204 vaf.fmt = fmt; 205 vaf.va = &args; 206 207 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 208 209 va_end(args); 210 } 211 212 #else 213 214 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 215 unsigned int line, int errno, const char *fmt, ...) 216 { 217 struct super_block *sb = fs_info->sb; 218 219 /* 220 * Special case: if the error is EROFS, and we're already 221 * under MS_RDONLY, then it is safe here. 222 */ 223 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 224 return; 225 226 /* Don't go through full error handling during mount */ 227 if (sb->s_flags & MS_BORN) { 228 save_error_info(fs_info); 229 btrfs_handle_error(fs_info); 230 } 231 } 232 #endif 233 234 /* 235 * We only mark the transaction aborted and then set the file system read-only. 236 * This will prevent new transactions from starting or trying to join this 237 * one. 238 * 239 * This means that error recovery at the call site is limited to freeing 240 * any local memory allocations and passing the error code up without 241 * further cleanup. The transaction should complete as it normally would 242 * in the call path but will return -EIO. 243 * 244 * We'll complete the cleanup in btrfs_end_transaction and 245 * btrfs_commit_transaction. 246 */ 247 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 248 struct btrfs_root *root, const char *function, 249 unsigned int line, int errno) 250 { 251 /* 252 * Report first abort since mount 253 */ 254 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, 255 &root->fs_info->fs_state)) { 256 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n", 257 errno); 258 } 259 trans->aborted = errno; 260 /* Nothing used. The other threads that have joined this 261 * transaction may be able to continue. */ 262 if (!trans->blocks_used) { 263 const char *errstr; 264 265 errstr = btrfs_decode_error(errno); 266 btrfs_warn(root->fs_info, 267 "%s:%d: Aborting unused transaction(%s).", 268 function, line, errstr); 269 return; 270 } 271 ACCESS_ONCE(trans->transaction->aborted) = errno; 272 /* Wake up anybody who may be waiting on this transaction */ 273 wake_up(&root->fs_info->transaction_wait); 274 wake_up(&root->fs_info->transaction_blocked_wait); 275 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 276 } 277 /* 278 * __btrfs_panic decodes unexpected, fatal errors from the caller, 279 * issues an alert, and either panics or BUGs, depending on mount options. 280 */ 281 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 282 unsigned int line, int errno, const char *fmt, ...) 283 { 284 char *s_id = "<unknown>"; 285 const char *errstr; 286 struct va_format vaf = { .fmt = fmt }; 287 va_list args; 288 289 if (fs_info) 290 s_id = fs_info->sb->s_id; 291 292 va_start(args, fmt); 293 vaf.va = &args; 294 295 errstr = btrfs_decode_error(errno); 296 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 297 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 298 s_id, function, line, &vaf, errno, errstr); 299 300 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 301 function, line, &vaf, errno, errstr); 302 va_end(args); 303 /* Caller calls BUG() */ 304 } 305 306 static void btrfs_put_super(struct super_block *sb) 307 { 308 (void)close_ctree(btrfs_sb(sb)->tree_root); 309 /* FIXME: need to fix VFS to return error? */ 310 /* AV: return it _where_? ->put_super() can be triggered by any number 311 * of async events, up to and including delivery of SIGKILL to the 312 * last process that kept it busy. Or segfault in the aforementioned 313 * process... Whom would you report that to? 314 */ 315 } 316 317 enum { 318 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 319 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 320 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 321 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 322 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 323 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 324 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 325 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 326 Opt_check_integrity, Opt_check_integrity_including_extent_data, 327 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 328 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 329 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 330 Opt_datasum, Opt_treelog, Opt_noinode_cache, 331 Opt_err, 332 }; 333 334 static match_table_t tokens = { 335 {Opt_degraded, "degraded"}, 336 {Opt_subvol, "subvol=%s"}, 337 {Opt_subvolid, "subvolid=%s"}, 338 {Opt_device, "device=%s"}, 339 {Opt_nodatasum, "nodatasum"}, 340 {Opt_datasum, "datasum"}, 341 {Opt_nodatacow, "nodatacow"}, 342 {Opt_datacow, "datacow"}, 343 {Opt_nobarrier, "nobarrier"}, 344 {Opt_barrier, "barrier"}, 345 {Opt_max_inline, "max_inline=%s"}, 346 {Opt_alloc_start, "alloc_start=%s"}, 347 {Opt_thread_pool, "thread_pool=%d"}, 348 {Opt_compress, "compress"}, 349 {Opt_compress_type, "compress=%s"}, 350 {Opt_compress_force, "compress-force"}, 351 {Opt_compress_force_type, "compress-force=%s"}, 352 {Opt_ssd, "ssd"}, 353 {Opt_ssd_spread, "ssd_spread"}, 354 {Opt_nossd, "nossd"}, 355 {Opt_acl, "acl"}, 356 {Opt_noacl, "noacl"}, 357 {Opt_notreelog, "notreelog"}, 358 {Opt_treelog, "treelog"}, 359 {Opt_flushoncommit, "flushoncommit"}, 360 {Opt_noflushoncommit, "noflushoncommit"}, 361 {Opt_ratio, "metadata_ratio=%d"}, 362 {Opt_discard, "discard"}, 363 {Opt_nodiscard, "nodiscard"}, 364 {Opt_space_cache, "space_cache"}, 365 {Opt_clear_cache, "clear_cache"}, 366 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 367 {Opt_enospc_debug, "enospc_debug"}, 368 {Opt_noenospc_debug, "noenospc_debug"}, 369 {Opt_subvolrootid, "subvolrootid=%d"}, 370 {Opt_defrag, "autodefrag"}, 371 {Opt_nodefrag, "noautodefrag"}, 372 {Opt_inode_cache, "inode_cache"}, 373 {Opt_noinode_cache, "noinode_cache"}, 374 {Opt_no_space_cache, "nospace_cache"}, 375 {Opt_recovery, "recovery"}, 376 {Opt_skip_balance, "skip_balance"}, 377 {Opt_check_integrity, "check_int"}, 378 {Opt_check_integrity_including_extent_data, "check_int_data"}, 379 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 380 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 381 {Opt_fatal_errors, "fatal_errors=%s"}, 382 {Opt_commit_interval, "commit=%d"}, 383 {Opt_err, NULL}, 384 }; 385 386 #define btrfs_set_and_info(root, opt, fmt, args...) \ 387 { \ 388 if (!btrfs_test_opt(root, opt)) \ 389 btrfs_info(root->fs_info, fmt, ##args); \ 390 btrfs_set_opt(root->fs_info->mount_opt, opt); \ 391 } 392 393 #define btrfs_clear_and_info(root, opt, fmt, args...) \ 394 { \ 395 if (btrfs_test_opt(root, opt)) \ 396 btrfs_info(root->fs_info, fmt, ##args); \ 397 btrfs_clear_opt(root->fs_info->mount_opt, opt); \ 398 } 399 400 /* 401 * Regular mount options parser. Everything that is needed only when 402 * reading in a new superblock is parsed here. 403 * XXX JDM: This needs to be cleaned up for remount. 404 */ 405 int btrfs_parse_options(struct btrfs_root *root, char *options) 406 { 407 struct btrfs_fs_info *info = root->fs_info; 408 substring_t args[MAX_OPT_ARGS]; 409 char *p, *num, *orig = NULL; 410 u64 cache_gen; 411 int intarg; 412 int ret = 0; 413 char *compress_type; 414 bool compress_force = false; 415 bool compress = false; 416 417 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 418 if (cache_gen) 419 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 420 421 if (!options) 422 goto out; 423 424 /* 425 * strsep changes the string, duplicate it because parse_options 426 * gets called twice 427 */ 428 options = kstrdup(options, GFP_NOFS); 429 if (!options) 430 return -ENOMEM; 431 432 orig = options; 433 434 while ((p = strsep(&options, ",")) != NULL) { 435 int token; 436 if (!*p) 437 continue; 438 439 token = match_token(p, tokens, args); 440 switch (token) { 441 case Opt_degraded: 442 btrfs_info(root->fs_info, "allowing degraded mounts"); 443 btrfs_set_opt(info->mount_opt, DEGRADED); 444 break; 445 case Opt_subvol: 446 case Opt_subvolid: 447 case Opt_subvolrootid: 448 case Opt_device: 449 /* 450 * These are parsed by btrfs_parse_early_options 451 * and can be happily ignored here. 452 */ 453 break; 454 case Opt_nodatasum: 455 btrfs_set_and_info(root, NODATASUM, 456 "setting nodatasum"); 457 break; 458 case Opt_datasum: 459 if (btrfs_test_opt(root, NODATASUM)) { 460 if (btrfs_test_opt(root, NODATACOW)) 461 btrfs_info(root->fs_info, "setting datasum, datacow enabled"); 462 else 463 btrfs_info(root->fs_info, "setting datasum"); 464 } 465 btrfs_clear_opt(info->mount_opt, NODATACOW); 466 btrfs_clear_opt(info->mount_opt, NODATASUM); 467 break; 468 case Opt_nodatacow: 469 if (!btrfs_test_opt(root, NODATACOW)) { 470 if (!btrfs_test_opt(root, COMPRESS) || 471 !btrfs_test_opt(root, FORCE_COMPRESS)) { 472 btrfs_info(root->fs_info, 473 "setting nodatacow, compression disabled"); 474 } else { 475 btrfs_info(root->fs_info, "setting nodatacow"); 476 } 477 } 478 btrfs_clear_opt(info->mount_opt, COMPRESS); 479 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 480 btrfs_set_opt(info->mount_opt, NODATACOW); 481 btrfs_set_opt(info->mount_opt, NODATASUM); 482 break; 483 case Opt_datacow: 484 btrfs_clear_and_info(root, NODATACOW, 485 "setting datacow"); 486 break; 487 case Opt_compress_force: 488 case Opt_compress_force_type: 489 compress_force = true; 490 /* Fallthrough */ 491 case Opt_compress: 492 case Opt_compress_type: 493 compress = true; 494 if (token == Opt_compress || 495 token == Opt_compress_force || 496 strcmp(args[0].from, "zlib") == 0) { 497 compress_type = "zlib"; 498 info->compress_type = BTRFS_COMPRESS_ZLIB; 499 btrfs_set_opt(info->mount_opt, COMPRESS); 500 btrfs_clear_opt(info->mount_opt, NODATACOW); 501 btrfs_clear_opt(info->mount_opt, NODATASUM); 502 } else if (strcmp(args[0].from, "lzo") == 0) { 503 compress_type = "lzo"; 504 info->compress_type = BTRFS_COMPRESS_LZO; 505 btrfs_set_opt(info->mount_opt, COMPRESS); 506 btrfs_clear_opt(info->mount_opt, NODATACOW); 507 btrfs_clear_opt(info->mount_opt, NODATASUM); 508 btrfs_set_fs_incompat(info, COMPRESS_LZO); 509 } else if (strncmp(args[0].from, "no", 2) == 0) { 510 compress_type = "no"; 511 btrfs_clear_opt(info->mount_opt, COMPRESS); 512 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 513 compress_force = false; 514 } else { 515 ret = -EINVAL; 516 goto out; 517 } 518 519 if (compress_force) { 520 btrfs_set_and_info(root, FORCE_COMPRESS, 521 "force %s compression", 522 compress_type); 523 } else if (compress) { 524 if (!btrfs_test_opt(root, COMPRESS)) 525 btrfs_info(root->fs_info, 526 "btrfs: use %s compression\n", 527 compress_type); 528 } 529 break; 530 case Opt_ssd: 531 btrfs_set_and_info(root, SSD, 532 "use ssd allocation scheme"); 533 break; 534 case Opt_ssd_spread: 535 btrfs_set_and_info(root, SSD_SPREAD, 536 "use spread ssd allocation scheme"); 537 break; 538 case Opt_nossd: 539 btrfs_clear_and_info(root, NOSSD, 540 "not using ssd allocation scheme"); 541 btrfs_clear_opt(info->mount_opt, SSD); 542 break; 543 case Opt_barrier: 544 btrfs_clear_and_info(root, NOBARRIER, 545 "turning on barriers"); 546 break; 547 case Opt_nobarrier: 548 btrfs_set_and_info(root, NOBARRIER, 549 "turning off barriers"); 550 break; 551 case Opt_thread_pool: 552 ret = match_int(&args[0], &intarg); 553 if (ret) { 554 goto out; 555 } else if (intarg > 0) { 556 info->thread_pool_size = intarg; 557 } else { 558 ret = -EINVAL; 559 goto out; 560 } 561 break; 562 case Opt_max_inline: 563 num = match_strdup(&args[0]); 564 if (num) { 565 info->max_inline = memparse(num, NULL); 566 kfree(num); 567 568 if (info->max_inline) { 569 info->max_inline = max_t(u64, 570 info->max_inline, 571 root->sectorsize); 572 } 573 btrfs_info(root->fs_info, "max_inline at %llu", 574 info->max_inline); 575 } else { 576 ret = -ENOMEM; 577 goto out; 578 } 579 break; 580 case Opt_alloc_start: 581 num = match_strdup(&args[0]); 582 if (num) { 583 mutex_lock(&info->chunk_mutex); 584 info->alloc_start = memparse(num, NULL); 585 mutex_unlock(&info->chunk_mutex); 586 kfree(num); 587 btrfs_info(root->fs_info, "allocations start at %llu", 588 info->alloc_start); 589 } else { 590 ret = -ENOMEM; 591 goto out; 592 } 593 break; 594 case Opt_acl: 595 root->fs_info->sb->s_flags |= MS_POSIXACL; 596 break; 597 case Opt_noacl: 598 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 599 break; 600 case Opt_notreelog: 601 btrfs_set_and_info(root, NOTREELOG, 602 "disabling tree log"); 603 break; 604 case Opt_treelog: 605 btrfs_clear_and_info(root, NOTREELOG, 606 "enabling tree log"); 607 break; 608 case Opt_flushoncommit: 609 btrfs_set_and_info(root, FLUSHONCOMMIT, 610 "turning on flush-on-commit"); 611 break; 612 case Opt_noflushoncommit: 613 btrfs_clear_and_info(root, FLUSHONCOMMIT, 614 "turning off flush-on-commit"); 615 break; 616 case Opt_ratio: 617 ret = match_int(&args[0], &intarg); 618 if (ret) { 619 goto out; 620 } else if (intarg >= 0) { 621 info->metadata_ratio = intarg; 622 btrfs_info(root->fs_info, "metadata ratio %d", 623 info->metadata_ratio); 624 } else { 625 ret = -EINVAL; 626 goto out; 627 } 628 break; 629 case Opt_discard: 630 btrfs_set_and_info(root, DISCARD, 631 "turning on discard"); 632 break; 633 case Opt_nodiscard: 634 btrfs_clear_and_info(root, DISCARD, 635 "turning off discard"); 636 break; 637 case Opt_space_cache: 638 btrfs_set_and_info(root, SPACE_CACHE, 639 "enabling disk space caching"); 640 break; 641 case Opt_rescan_uuid_tree: 642 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 643 break; 644 case Opt_no_space_cache: 645 btrfs_clear_and_info(root, SPACE_CACHE, 646 "disabling disk space caching"); 647 break; 648 case Opt_inode_cache: 649 btrfs_set_and_info(root, CHANGE_INODE_CACHE, 650 "enabling inode map caching"); 651 break; 652 case Opt_noinode_cache: 653 btrfs_clear_and_info(root, CHANGE_INODE_CACHE, 654 "disabling inode map caching"); 655 break; 656 case Opt_clear_cache: 657 btrfs_set_and_info(root, CLEAR_CACHE, 658 "force clearing of disk cache"); 659 break; 660 case Opt_user_subvol_rm_allowed: 661 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 662 break; 663 case Opt_enospc_debug: 664 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 665 break; 666 case Opt_noenospc_debug: 667 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 668 break; 669 case Opt_defrag: 670 btrfs_set_and_info(root, AUTO_DEFRAG, 671 "enabling auto defrag"); 672 break; 673 case Opt_nodefrag: 674 btrfs_clear_and_info(root, AUTO_DEFRAG, 675 "disabling auto defrag"); 676 break; 677 case Opt_recovery: 678 btrfs_info(root->fs_info, "enabling auto recovery"); 679 btrfs_set_opt(info->mount_opt, RECOVERY); 680 break; 681 case Opt_skip_balance: 682 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 683 break; 684 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 685 case Opt_check_integrity_including_extent_data: 686 btrfs_info(root->fs_info, 687 "enabling check integrity including extent data"); 688 btrfs_set_opt(info->mount_opt, 689 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 690 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 691 break; 692 case Opt_check_integrity: 693 btrfs_info(root->fs_info, "enabling check integrity"); 694 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 695 break; 696 case Opt_check_integrity_print_mask: 697 ret = match_int(&args[0], &intarg); 698 if (ret) { 699 goto out; 700 } else if (intarg >= 0) { 701 info->check_integrity_print_mask = intarg; 702 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x", 703 info->check_integrity_print_mask); 704 } else { 705 ret = -EINVAL; 706 goto out; 707 } 708 break; 709 #else 710 case Opt_check_integrity_including_extent_data: 711 case Opt_check_integrity: 712 case Opt_check_integrity_print_mask: 713 btrfs_err(root->fs_info, 714 "support for check_integrity* not compiled in!"); 715 ret = -EINVAL; 716 goto out; 717 #endif 718 case Opt_fatal_errors: 719 if (strcmp(args[0].from, "panic") == 0) 720 btrfs_set_opt(info->mount_opt, 721 PANIC_ON_FATAL_ERROR); 722 else if (strcmp(args[0].from, "bug") == 0) 723 btrfs_clear_opt(info->mount_opt, 724 PANIC_ON_FATAL_ERROR); 725 else { 726 ret = -EINVAL; 727 goto out; 728 } 729 break; 730 case Opt_commit_interval: 731 intarg = 0; 732 ret = match_int(&args[0], &intarg); 733 if (ret < 0) { 734 btrfs_err(root->fs_info, "invalid commit interval"); 735 ret = -EINVAL; 736 goto out; 737 } 738 if (intarg > 0) { 739 if (intarg > 300) { 740 btrfs_warn(root->fs_info, "excessive commit interval %d", 741 intarg); 742 } 743 info->commit_interval = intarg; 744 } else { 745 btrfs_info(root->fs_info, "using default commit interval %ds", 746 BTRFS_DEFAULT_COMMIT_INTERVAL); 747 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 748 } 749 break; 750 case Opt_err: 751 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p); 752 ret = -EINVAL; 753 goto out; 754 default: 755 break; 756 } 757 } 758 out: 759 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 760 btrfs_info(root->fs_info, "disk space caching is enabled"); 761 kfree(orig); 762 return ret; 763 } 764 765 /* 766 * Parse mount options that are required early in the mount process. 767 * 768 * All other options will be parsed on much later in the mount process and 769 * only when we need to allocate a new super block. 770 */ 771 static int btrfs_parse_early_options(const char *options, fmode_t flags, 772 void *holder, char **subvol_name, u64 *subvol_objectid, 773 struct btrfs_fs_devices **fs_devices) 774 { 775 substring_t args[MAX_OPT_ARGS]; 776 char *device_name, *opts, *orig, *p; 777 char *num = NULL; 778 int error = 0; 779 780 if (!options) 781 return 0; 782 783 /* 784 * strsep changes the string, duplicate it because parse_options 785 * gets called twice 786 */ 787 opts = kstrdup(options, GFP_KERNEL); 788 if (!opts) 789 return -ENOMEM; 790 orig = opts; 791 792 while ((p = strsep(&opts, ",")) != NULL) { 793 int token; 794 if (!*p) 795 continue; 796 797 token = match_token(p, tokens, args); 798 switch (token) { 799 case Opt_subvol: 800 kfree(*subvol_name); 801 *subvol_name = match_strdup(&args[0]); 802 if (!*subvol_name) { 803 error = -ENOMEM; 804 goto out; 805 } 806 break; 807 case Opt_subvolid: 808 num = match_strdup(&args[0]); 809 if (num) { 810 *subvol_objectid = memparse(num, NULL); 811 kfree(num); 812 /* we want the original fs_tree */ 813 if (!*subvol_objectid) 814 *subvol_objectid = 815 BTRFS_FS_TREE_OBJECTID; 816 } else { 817 error = -EINVAL; 818 goto out; 819 } 820 break; 821 case Opt_subvolrootid: 822 printk(KERN_WARNING 823 "BTRFS: 'subvolrootid' mount option is deprecated and has " 824 "no effect\n"); 825 break; 826 case Opt_device: 827 device_name = match_strdup(&args[0]); 828 if (!device_name) { 829 error = -ENOMEM; 830 goto out; 831 } 832 error = btrfs_scan_one_device(device_name, 833 flags, holder, fs_devices); 834 kfree(device_name); 835 if (error) 836 goto out; 837 break; 838 default: 839 break; 840 } 841 } 842 843 out: 844 kfree(orig); 845 return error; 846 } 847 848 static struct dentry *get_default_root(struct super_block *sb, 849 u64 subvol_objectid) 850 { 851 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 852 struct btrfs_root *root = fs_info->tree_root; 853 struct btrfs_root *new_root; 854 struct btrfs_dir_item *di; 855 struct btrfs_path *path; 856 struct btrfs_key location; 857 struct inode *inode; 858 u64 dir_id; 859 int new = 0; 860 861 /* 862 * We have a specific subvol we want to mount, just setup location and 863 * go look up the root. 864 */ 865 if (subvol_objectid) { 866 location.objectid = subvol_objectid; 867 location.type = BTRFS_ROOT_ITEM_KEY; 868 location.offset = (u64)-1; 869 goto find_root; 870 } 871 872 path = btrfs_alloc_path(); 873 if (!path) 874 return ERR_PTR(-ENOMEM); 875 path->leave_spinning = 1; 876 877 /* 878 * Find the "default" dir item which points to the root item that we 879 * will mount by default if we haven't been given a specific subvolume 880 * to mount. 881 */ 882 dir_id = btrfs_super_root_dir(fs_info->super_copy); 883 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 884 if (IS_ERR(di)) { 885 btrfs_free_path(path); 886 return ERR_CAST(di); 887 } 888 if (!di) { 889 /* 890 * Ok the default dir item isn't there. This is weird since 891 * it's always been there, but don't freak out, just try and 892 * mount to root most subvolume. 893 */ 894 btrfs_free_path(path); 895 dir_id = BTRFS_FIRST_FREE_OBJECTID; 896 new_root = fs_info->fs_root; 897 goto setup_root; 898 } 899 900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 901 btrfs_free_path(path); 902 903 find_root: 904 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 905 if (IS_ERR(new_root)) 906 return ERR_CAST(new_root); 907 908 dir_id = btrfs_root_dirid(&new_root->root_item); 909 setup_root: 910 location.objectid = dir_id; 911 location.type = BTRFS_INODE_ITEM_KEY; 912 location.offset = 0; 913 914 inode = btrfs_iget(sb, &location, new_root, &new); 915 if (IS_ERR(inode)) 916 return ERR_CAST(inode); 917 918 /* 919 * If we're just mounting the root most subvol put the inode and return 920 * a reference to the dentry. We will have already gotten a reference 921 * to the inode in btrfs_fill_super so we're good to go. 922 */ 923 if (!new && sb->s_root->d_inode == inode) { 924 iput(inode); 925 return dget(sb->s_root); 926 } 927 928 return d_obtain_alias(inode); 929 } 930 931 static int btrfs_fill_super(struct super_block *sb, 932 struct btrfs_fs_devices *fs_devices, 933 void *data, int silent) 934 { 935 struct inode *inode; 936 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 937 struct btrfs_key key; 938 int err; 939 940 sb->s_maxbytes = MAX_LFS_FILESIZE; 941 sb->s_magic = BTRFS_SUPER_MAGIC; 942 sb->s_op = &btrfs_super_ops; 943 sb->s_d_op = &btrfs_dentry_operations; 944 sb->s_export_op = &btrfs_export_ops; 945 sb->s_xattr = btrfs_xattr_handlers; 946 sb->s_time_gran = 1; 947 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 948 sb->s_flags |= MS_POSIXACL; 949 #endif 950 sb->s_flags |= MS_I_VERSION; 951 err = open_ctree(sb, fs_devices, (char *)data); 952 if (err) { 953 printk(KERN_ERR "BTRFS: open_ctree failed\n"); 954 return err; 955 } 956 957 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 958 key.type = BTRFS_INODE_ITEM_KEY; 959 key.offset = 0; 960 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 961 if (IS_ERR(inode)) { 962 err = PTR_ERR(inode); 963 goto fail_close; 964 } 965 966 sb->s_root = d_make_root(inode); 967 if (!sb->s_root) { 968 err = -ENOMEM; 969 goto fail_close; 970 } 971 972 save_mount_options(sb, data); 973 cleancache_init_fs(sb); 974 sb->s_flags |= MS_ACTIVE; 975 return 0; 976 977 fail_close: 978 close_ctree(fs_info->tree_root); 979 return err; 980 } 981 982 int btrfs_sync_fs(struct super_block *sb, int wait) 983 { 984 struct btrfs_trans_handle *trans; 985 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 986 struct btrfs_root *root = fs_info->tree_root; 987 988 trace_btrfs_sync_fs(wait); 989 990 if (!wait) { 991 filemap_flush(fs_info->btree_inode->i_mapping); 992 return 0; 993 } 994 995 btrfs_wait_ordered_roots(fs_info, -1); 996 997 trans = btrfs_attach_transaction_barrier(root); 998 if (IS_ERR(trans)) { 999 /* no transaction, don't bother */ 1000 if (PTR_ERR(trans) == -ENOENT) 1001 return 0; 1002 return PTR_ERR(trans); 1003 } 1004 return btrfs_commit_transaction(trans, root); 1005 } 1006 1007 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1008 { 1009 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1010 struct btrfs_root *root = info->tree_root; 1011 char *compress_type; 1012 1013 if (btrfs_test_opt(root, DEGRADED)) 1014 seq_puts(seq, ",degraded"); 1015 if (btrfs_test_opt(root, NODATASUM)) 1016 seq_puts(seq, ",nodatasum"); 1017 if (btrfs_test_opt(root, NODATACOW)) 1018 seq_puts(seq, ",nodatacow"); 1019 if (btrfs_test_opt(root, NOBARRIER)) 1020 seq_puts(seq, ",nobarrier"); 1021 if (info->max_inline != 8192 * 1024) 1022 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1023 if (info->alloc_start != 0) 1024 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1025 if (info->thread_pool_size != min_t(unsigned long, 1026 num_online_cpus() + 2, 8)) 1027 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1028 if (btrfs_test_opt(root, COMPRESS)) { 1029 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1030 compress_type = "zlib"; 1031 else 1032 compress_type = "lzo"; 1033 if (btrfs_test_opt(root, FORCE_COMPRESS)) 1034 seq_printf(seq, ",compress-force=%s", compress_type); 1035 else 1036 seq_printf(seq, ",compress=%s", compress_type); 1037 } 1038 if (btrfs_test_opt(root, NOSSD)) 1039 seq_puts(seq, ",nossd"); 1040 if (btrfs_test_opt(root, SSD_SPREAD)) 1041 seq_puts(seq, ",ssd_spread"); 1042 else if (btrfs_test_opt(root, SSD)) 1043 seq_puts(seq, ",ssd"); 1044 if (btrfs_test_opt(root, NOTREELOG)) 1045 seq_puts(seq, ",notreelog"); 1046 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 1047 seq_puts(seq, ",flushoncommit"); 1048 if (btrfs_test_opt(root, DISCARD)) 1049 seq_puts(seq, ",discard"); 1050 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 1051 seq_puts(seq, ",noacl"); 1052 if (btrfs_test_opt(root, SPACE_CACHE)) 1053 seq_puts(seq, ",space_cache"); 1054 else 1055 seq_puts(seq, ",nospace_cache"); 1056 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 1057 seq_puts(seq, ",rescan_uuid_tree"); 1058 if (btrfs_test_opt(root, CLEAR_CACHE)) 1059 seq_puts(seq, ",clear_cache"); 1060 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1061 seq_puts(seq, ",user_subvol_rm_allowed"); 1062 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 1063 seq_puts(seq, ",enospc_debug"); 1064 if (btrfs_test_opt(root, AUTO_DEFRAG)) 1065 seq_puts(seq, ",autodefrag"); 1066 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 1067 seq_puts(seq, ",inode_cache"); 1068 if (btrfs_test_opt(root, SKIP_BALANCE)) 1069 seq_puts(seq, ",skip_balance"); 1070 if (btrfs_test_opt(root, RECOVERY)) 1071 seq_puts(seq, ",recovery"); 1072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1073 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1074 seq_puts(seq, ",check_int_data"); 1075 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1076 seq_puts(seq, ",check_int"); 1077 if (info->check_integrity_print_mask) 1078 seq_printf(seq, ",check_int_print_mask=%d", 1079 info->check_integrity_print_mask); 1080 #endif 1081 if (info->metadata_ratio) 1082 seq_printf(seq, ",metadata_ratio=%d", 1083 info->metadata_ratio); 1084 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1085 seq_puts(seq, ",fatal_errors=panic"); 1086 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1087 seq_printf(seq, ",commit=%d", info->commit_interval); 1088 return 0; 1089 } 1090 1091 static int btrfs_test_super(struct super_block *s, void *data) 1092 { 1093 struct btrfs_fs_info *p = data; 1094 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1095 1096 return fs_info->fs_devices == p->fs_devices; 1097 } 1098 1099 static int btrfs_set_super(struct super_block *s, void *data) 1100 { 1101 int err = set_anon_super(s, data); 1102 if (!err) 1103 s->s_fs_info = data; 1104 return err; 1105 } 1106 1107 /* 1108 * subvolumes are identified by ino 256 1109 */ 1110 static inline int is_subvolume_inode(struct inode *inode) 1111 { 1112 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1113 return 1; 1114 return 0; 1115 } 1116 1117 /* 1118 * This will strip out the subvol=%s argument for an argument string and add 1119 * subvolid=0 to make sure we get the actual tree root for path walking to the 1120 * subvol we want. 1121 */ 1122 static char *setup_root_args(char *args) 1123 { 1124 unsigned len = strlen(args) + 2 + 1; 1125 char *src, *dst, *buf; 1126 1127 /* 1128 * We need the same args as before, but with this substitution: 1129 * s!subvol=[^,]+!subvolid=0! 1130 * 1131 * Since the replacement string is up to 2 bytes longer than the 1132 * original, allocate strlen(args) + 2 + 1 bytes. 1133 */ 1134 1135 src = strstr(args, "subvol="); 1136 /* This shouldn't happen, but just in case.. */ 1137 if (!src) 1138 return NULL; 1139 1140 buf = dst = kmalloc(len, GFP_NOFS); 1141 if (!buf) 1142 return NULL; 1143 1144 /* 1145 * If the subvol= arg is not at the start of the string, 1146 * copy whatever precedes it into buf. 1147 */ 1148 if (src != args) { 1149 *src++ = '\0'; 1150 strcpy(buf, args); 1151 dst += strlen(args); 1152 } 1153 1154 strcpy(dst, "subvolid=0"); 1155 dst += strlen("subvolid=0"); 1156 1157 /* 1158 * If there is a "," after the original subvol=... string, 1159 * copy that suffix into our buffer. Otherwise, we're done. 1160 */ 1161 src = strchr(src, ','); 1162 if (src) 1163 strcpy(dst, src); 1164 1165 return buf; 1166 } 1167 1168 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1169 const char *device_name, char *data) 1170 { 1171 struct dentry *root; 1172 struct vfsmount *mnt; 1173 char *newargs; 1174 1175 newargs = setup_root_args(data); 1176 if (!newargs) 1177 return ERR_PTR(-ENOMEM); 1178 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1179 newargs); 1180 kfree(newargs); 1181 if (IS_ERR(mnt)) 1182 return ERR_CAST(mnt); 1183 1184 root = mount_subtree(mnt, subvol_name); 1185 1186 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1187 struct super_block *s = root->d_sb; 1188 dput(root); 1189 root = ERR_PTR(-EINVAL); 1190 deactivate_locked_super(s); 1191 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n", 1192 subvol_name); 1193 } 1194 1195 return root; 1196 } 1197 1198 /* 1199 * Find a superblock for the given device / mount point. 1200 * 1201 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1202 * for multiple device setup. Make sure to keep it in sync. 1203 */ 1204 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1205 const char *device_name, void *data) 1206 { 1207 struct block_device *bdev = NULL; 1208 struct super_block *s; 1209 struct dentry *root; 1210 struct btrfs_fs_devices *fs_devices = NULL; 1211 struct btrfs_fs_info *fs_info = NULL; 1212 fmode_t mode = FMODE_READ; 1213 char *subvol_name = NULL; 1214 u64 subvol_objectid = 0; 1215 int error = 0; 1216 1217 if (!(flags & MS_RDONLY)) 1218 mode |= FMODE_WRITE; 1219 1220 error = btrfs_parse_early_options(data, mode, fs_type, 1221 &subvol_name, &subvol_objectid, 1222 &fs_devices); 1223 if (error) { 1224 kfree(subvol_name); 1225 return ERR_PTR(error); 1226 } 1227 1228 if (subvol_name) { 1229 root = mount_subvol(subvol_name, flags, device_name, data); 1230 kfree(subvol_name); 1231 return root; 1232 } 1233 1234 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1235 if (error) 1236 return ERR_PTR(error); 1237 1238 /* 1239 * Setup a dummy root and fs_info for test/set super. This is because 1240 * we don't actually fill this stuff out until open_ctree, but we need 1241 * it for searching for existing supers, so this lets us do that and 1242 * then open_ctree will properly initialize everything later. 1243 */ 1244 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1245 if (!fs_info) 1246 return ERR_PTR(-ENOMEM); 1247 1248 fs_info->fs_devices = fs_devices; 1249 1250 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1251 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1252 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1253 error = -ENOMEM; 1254 goto error_fs_info; 1255 } 1256 1257 error = btrfs_open_devices(fs_devices, mode, fs_type); 1258 if (error) 1259 goto error_fs_info; 1260 1261 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1262 error = -EACCES; 1263 goto error_close_devices; 1264 } 1265 1266 bdev = fs_devices->latest_bdev; 1267 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1268 fs_info); 1269 if (IS_ERR(s)) { 1270 error = PTR_ERR(s); 1271 goto error_close_devices; 1272 } 1273 1274 if (s->s_root) { 1275 btrfs_close_devices(fs_devices); 1276 free_fs_info(fs_info); 1277 if ((flags ^ s->s_flags) & MS_RDONLY) 1278 error = -EBUSY; 1279 } else { 1280 char b[BDEVNAME_SIZE]; 1281 1282 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1283 btrfs_sb(s)->bdev_holder = fs_type; 1284 error = btrfs_fill_super(s, fs_devices, data, 1285 flags & MS_SILENT ? 1 : 0); 1286 } 1287 1288 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1289 if (IS_ERR(root)) 1290 deactivate_locked_super(s); 1291 1292 return root; 1293 1294 error_close_devices: 1295 btrfs_close_devices(fs_devices); 1296 error_fs_info: 1297 free_fs_info(fs_info); 1298 return ERR_PTR(error); 1299 } 1300 1301 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit) 1302 { 1303 spin_lock_irq(&workers->lock); 1304 workers->max_workers = new_limit; 1305 spin_unlock_irq(&workers->lock); 1306 } 1307 1308 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1309 int new_pool_size, int old_pool_size) 1310 { 1311 if (new_pool_size == old_pool_size) 1312 return; 1313 1314 fs_info->thread_pool_size = new_pool_size; 1315 1316 btrfs_info(fs_info, "resize thread pool %d -> %d", 1317 old_pool_size, new_pool_size); 1318 1319 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size); 1320 btrfs_set_max_workers(&fs_info->workers, new_pool_size); 1321 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size); 1322 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size); 1323 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size); 1324 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size); 1325 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size); 1326 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size); 1327 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size); 1328 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size); 1329 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size); 1330 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size); 1331 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size); 1332 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers, 1333 new_pool_size); 1334 } 1335 1336 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1337 { 1338 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1339 } 1340 1341 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1342 unsigned long old_opts, int flags) 1343 { 1344 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1345 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1346 (flags & MS_RDONLY))) { 1347 /* wait for any defraggers to finish */ 1348 wait_event(fs_info->transaction_wait, 1349 (atomic_read(&fs_info->defrag_running) == 0)); 1350 if (flags & MS_RDONLY) 1351 sync_filesystem(fs_info->sb); 1352 } 1353 } 1354 1355 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1356 unsigned long old_opts) 1357 { 1358 /* 1359 * We need cleanup all defragable inodes if the autodefragment is 1360 * close or the fs is R/O. 1361 */ 1362 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1363 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1364 (fs_info->sb->s_flags & MS_RDONLY))) { 1365 btrfs_cleanup_defrag_inodes(fs_info); 1366 } 1367 1368 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1369 } 1370 1371 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1372 { 1373 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1374 struct btrfs_root *root = fs_info->tree_root; 1375 unsigned old_flags = sb->s_flags; 1376 unsigned long old_opts = fs_info->mount_opt; 1377 unsigned long old_compress_type = fs_info->compress_type; 1378 u64 old_max_inline = fs_info->max_inline; 1379 u64 old_alloc_start = fs_info->alloc_start; 1380 int old_thread_pool_size = fs_info->thread_pool_size; 1381 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1382 int ret; 1383 1384 btrfs_remount_prepare(fs_info); 1385 1386 ret = btrfs_parse_options(root, data); 1387 if (ret) { 1388 ret = -EINVAL; 1389 goto restore; 1390 } 1391 1392 btrfs_remount_begin(fs_info, old_opts, *flags); 1393 btrfs_resize_thread_pool(fs_info, 1394 fs_info->thread_pool_size, old_thread_pool_size); 1395 1396 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1397 goto out; 1398 1399 if (*flags & MS_RDONLY) { 1400 /* 1401 * this also happens on 'umount -rf' or on shutdown, when 1402 * the filesystem is busy. 1403 */ 1404 1405 /* wait for the uuid_scan task to finish */ 1406 down(&fs_info->uuid_tree_rescan_sem); 1407 /* avoid complains from lockdep et al. */ 1408 up(&fs_info->uuid_tree_rescan_sem); 1409 1410 sb->s_flags |= MS_RDONLY; 1411 1412 btrfs_dev_replace_suspend_for_unmount(fs_info); 1413 btrfs_scrub_cancel(fs_info); 1414 btrfs_pause_balance(fs_info); 1415 1416 ret = btrfs_commit_super(root); 1417 if (ret) 1418 goto restore; 1419 } else { 1420 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1421 btrfs_err(fs_info, 1422 "Remounting read-write after error is not allowed"); 1423 ret = -EINVAL; 1424 goto restore; 1425 } 1426 if (fs_info->fs_devices->rw_devices == 0) { 1427 ret = -EACCES; 1428 goto restore; 1429 } 1430 1431 if (fs_info->fs_devices->missing_devices > 1432 fs_info->num_tolerated_disk_barrier_failures && 1433 !(*flags & MS_RDONLY)) { 1434 btrfs_warn(fs_info, 1435 "too many missing devices, writeable remount is not allowed"); 1436 ret = -EACCES; 1437 goto restore; 1438 } 1439 1440 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1441 ret = -EINVAL; 1442 goto restore; 1443 } 1444 1445 ret = btrfs_cleanup_fs_roots(fs_info); 1446 if (ret) 1447 goto restore; 1448 1449 /* recover relocation */ 1450 ret = btrfs_recover_relocation(root); 1451 if (ret) 1452 goto restore; 1453 1454 ret = btrfs_resume_balance_async(fs_info); 1455 if (ret) 1456 goto restore; 1457 1458 ret = btrfs_resume_dev_replace_async(fs_info); 1459 if (ret) { 1460 btrfs_warn(fs_info, "failed to resume dev_replace"); 1461 goto restore; 1462 } 1463 1464 if (!fs_info->uuid_root) { 1465 btrfs_info(fs_info, "creating UUID tree"); 1466 ret = btrfs_create_uuid_tree(fs_info); 1467 if (ret) { 1468 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret); 1469 goto restore; 1470 } 1471 } 1472 sb->s_flags &= ~MS_RDONLY; 1473 } 1474 out: 1475 btrfs_remount_cleanup(fs_info, old_opts); 1476 return 0; 1477 1478 restore: 1479 /* We've hit an error - don't reset MS_RDONLY */ 1480 if (sb->s_flags & MS_RDONLY) 1481 old_flags |= MS_RDONLY; 1482 sb->s_flags = old_flags; 1483 fs_info->mount_opt = old_opts; 1484 fs_info->compress_type = old_compress_type; 1485 fs_info->max_inline = old_max_inline; 1486 mutex_lock(&fs_info->chunk_mutex); 1487 fs_info->alloc_start = old_alloc_start; 1488 mutex_unlock(&fs_info->chunk_mutex); 1489 btrfs_resize_thread_pool(fs_info, 1490 old_thread_pool_size, fs_info->thread_pool_size); 1491 fs_info->metadata_ratio = old_metadata_ratio; 1492 btrfs_remount_cleanup(fs_info, old_opts); 1493 return ret; 1494 } 1495 1496 /* Used to sort the devices by max_avail(descending sort) */ 1497 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1498 const void *dev_info2) 1499 { 1500 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1501 ((struct btrfs_device_info *)dev_info2)->max_avail) 1502 return -1; 1503 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1504 ((struct btrfs_device_info *)dev_info2)->max_avail) 1505 return 1; 1506 else 1507 return 0; 1508 } 1509 1510 /* 1511 * sort the devices by max_avail, in which max free extent size of each device 1512 * is stored.(Descending Sort) 1513 */ 1514 static inline void btrfs_descending_sort_devices( 1515 struct btrfs_device_info *devices, 1516 size_t nr_devices) 1517 { 1518 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1519 btrfs_cmp_device_free_bytes, NULL); 1520 } 1521 1522 /* 1523 * The helper to calc the free space on the devices that can be used to store 1524 * file data. 1525 */ 1526 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1527 { 1528 struct btrfs_fs_info *fs_info = root->fs_info; 1529 struct btrfs_device_info *devices_info; 1530 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1531 struct btrfs_device *device; 1532 u64 skip_space; 1533 u64 type; 1534 u64 avail_space; 1535 u64 used_space; 1536 u64 min_stripe_size; 1537 int min_stripes = 1, num_stripes = 1; 1538 int i = 0, nr_devices; 1539 int ret; 1540 1541 nr_devices = fs_info->fs_devices->open_devices; 1542 BUG_ON(!nr_devices); 1543 1544 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1545 GFP_NOFS); 1546 if (!devices_info) 1547 return -ENOMEM; 1548 1549 /* calc min stripe number for data space alloction */ 1550 type = btrfs_get_alloc_profile(root, 1); 1551 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1552 min_stripes = 2; 1553 num_stripes = nr_devices; 1554 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1555 min_stripes = 2; 1556 num_stripes = 2; 1557 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1558 min_stripes = 4; 1559 num_stripes = 4; 1560 } 1561 1562 if (type & BTRFS_BLOCK_GROUP_DUP) 1563 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1564 else 1565 min_stripe_size = BTRFS_STRIPE_LEN; 1566 1567 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1568 if (!device->in_fs_metadata || !device->bdev || 1569 device->is_tgtdev_for_dev_replace) 1570 continue; 1571 1572 avail_space = device->total_bytes - device->bytes_used; 1573 1574 /* align with stripe_len */ 1575 do_div(avail_space, BTRFS_STRIPE_LEN); 1576 avail_space *= BTRFS_STRIPE_LEN; 1577 1578 /* 1579 * In order to avoid overwritting the superblock on the drive, 1580 * btrfs starts at an offset of at least 1MB when doing chunk 1581 * allocation. 1582 */ 1583 skip_space = 1024 * 1024; 1584 1585 /* user can set the offset in fs_info->alloc_start. */ 1586 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1587 device->total_bytes) 1588 skip_space = max(fs_info->alloc_start, skip_space); 1589 1590 /* 1591 * btrfs can not use the free space in [0, skip_space - 1], 1592 * we must subtract it from the total. In order to implement 1593 * it, we account the used space in this range first. 1594 */ 1595 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1596 &used_space); 1597 if (ret) { 1598 kfree(devices_info); 1599 return ret; 1600 } 1601 1602 /* calc the free space in [0, skip_space - 1] */ 1603 skip_space -= used_space; 1604 1605 /* 1606 * we can use the free space in [0, skip_space - 1], subtract 1607 * it from the total. 1608 */ 1609 if (avail_space && avail_space >= skip_space) 1610 avail_space -= skip_space; 1611 else 1612 avail_space = 0; 1613 1614 if (avail_space < min_stripe_size) 1615 continue; 1616 1617 devices_info[i].dev = device; 1618 devices_info[i].max_avail = avail_space; 1619 1620 i++; 1621 } 1622 1623 nr_devices = i; 1624 1625 btrfs_descending_sort_devices(devices_info, nr_devices); 1626 1627 i = nr_devices - 1; 1628 avail_space = 0; 1629 while (nr_devices >= min_stripes) { 1630 if (num_stripes > nr_devices) 1631 num_stripes = nr_devices; 1632 1633 if (devices_info[i].max_avail >= min_stripe_size) { 1634 int j; 1635 u64 alloc_size; 1636 1637 avail_space += devices_info[i].max_avail * num_stripes; 1638 alloc_size = devices_info[i].max_avail; 1639 for (j = i + 1 - num_stripes; j <= i; j++) 1640 devices_info[j].max_avail -= alloc_size; 1641 } 1642 i--; 1643 nr_devices--; 1644 } 1645 1646 kfree(devices_info); 1647 *free_bytes = avail_space; 1648 return 0; 1649 } 1650 1651 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1652 { 1653 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1654 struct btrfs_super_block *disk_super = fs_info->super_copy; 1655 struct list_head *head = &fs_info->space_info; 1656 struct btrfs_space_info *found; 1657 u64 total_used = 0; 1658 u64 total_free_data = 0; 1659 int bits = dentry->d_sb->s_blocksize_bits; 1660 __be32 *fsid = (__be32 *)fs_info->fsid; 1661 int ret; 1662 1663 /* holding chunk_muext to avoid allocating new chunks */ 1664 mutex_lock(&fs_info->chunk_mutex); 1665 rcu_read_lock(); 1666 list_for_each_entry_rcu(found, head, list) { 1667 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1668 total_free_data += found->disk_total - found->disk_used; 1669 total_free_data -= 1670 btrfs_account_ro_block_groups_free_space(found); 1671 } 1672 1673 total_used += found->disk_used; 1674 } 1675 rcu_read_unlock(); 1676 1677 buf->f_namelen = BTRFS_NAME_LEN; 1678 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1679 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1680 buf->f_bsize = dentry->d_sb->s_blocksize; 1681 buf->f_type = BTRFS_SUPER_MAGIC; 1682 buf->f_bavail = total_free_data; 1683 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1684 if (ret) { 1685 mutex_unlock(&fs_info->chunk_mutex); 1686 return ret; 1687 } 1688 buf->f_bavail += total_free_data; 1689 buf->f_bavail = buf->f_bavail >> bits; 1690 mutex_unlock(&fs_info->chunk_mutex); 1691 1692 /* We treat it as constant endianness (it doesn't matter _which_) 1693 because we want the fsid to come out the same whether mounted 1694 on a big-endian or little-endian host */ 1695 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1696 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1697 /* Mask in the root object ID too, to disambiguate subvols */ 1698 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1699 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1700 1701 return 0; 1702 } 1703 1704 static void btrfs_kill_super(struct super_block *sb) 1705 { 1706 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1707 kill_anon_super(sb); 1708 free_fs_info(fs_info); 1709 } 1710 1711 static struct file_system_type btrfs_fs_type = { 1712 .owner = THIS_MODULE, 1713 .name = "btrfs", 1714 .mount = btrfs_mount, 1715 .kill_sb = btrfs_kill_super, 1716 .fs_flags = FS_REQUIRES_DEV, 1717 }; 1718 MODULE_ALIAS_FS("btrfs"); 1719 1720 /* 1721 * used by btrfsctl to scan devices when no FS is mounted 1722 */ 1723 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1724 unsigned long arg) 1725 { 1726 struct btrfs_ioctl_vol_args *vol; 1727 struct btrfs_fs_devices *fs_devices; 1728 int ret = -ENOTTY; 1729 1730 if (!capable(CAP_SYS_ADMIN)) 1731 return -EPERM; 1732 1733 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1734 if (IS_ERR(vol)) 1735 return PTR_ERR(vol); 1736 1737 switch (cmd) { 1738 case BTRFS_IOC_SCAN_DEV: 1739 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1740 &btrfs_fs_type, &fs_devices); 1741 break; 1742 case BTRFS_IOC_DEVICES_READY: 1743 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1744 &btrfs_fs_type, &fs_devices); 1745 if (ret) 1746 break; 1747 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1748 break; 1749 } 1750 1751 kfree(vol); 1752 return ret; 1753 } 1754 1755 static int btrfs_freeze(struct super_block *sb) 1756 { 1757 struct btrfs_trans_handle *trans; 1758 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1759 1760 trans = btrfs_attach_transaction_barrier(root); 1761 if (IS_ERR(trans)) { 1762 /* no transaction, don't bother */ 1763 if (PTR_ERR(trans) == -ENOENT) 1764 return 0; 1765 return PTR_ERR(trans); 1766 } 1767 return btrfs_commit_transaction(trans, root); 1768 } 1769 1770 static int btrfs_unfreeze(struct super_block *sb) 1771 { 1772 return 0; 1773 } 1774 1775 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1776 { 1777 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1778 struct btrfs_fs_devices *cur_devices; 1779 struct btrfs_device *dev, *first_dev = NULL; 1780 struct list_head *head; 1781 struct rcu_string *name; 1782 1783 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1784 cur_devices = fs_info->fs_devices; 1785 while (cur_devices) { 1786 head = &cur_devices->devices; 1787 list_for_each_entry(dev, head, dev_list) { 1788 if (dev->missing) 1789 continue; 1790 if (!first_dev || dev->devid < first_dev->devid) 1791 first_dev = dev; 1792 } 1793 cur_devices = cur_devices->seed; 1794 } 1795 1796 if (first_dev) { 1797 rcu_read_lock(); 1798 name = rcu_dereference(first_dev->name); 1799 seq_escape(m, name->str, " \t\n\\"); 1800 rcu_read_unlock(); 1801 } else { 1802 WARN_ON(1); 1803 } 1804 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1805 return 0; 1806 } 1807 1808 static const struct super_operations btrfs_super_ops = { 1809 .drop_inode = btrfs_drop_inode, 1810 .evict_inode = btrfs_evict_inode, 1811 .put_super = btrfs_put_super, 1812 .sync_fs = btrfs_sync_fs, 1813 .show_options = btrfs_show_options, 1814 .show_devname = btrfs_show_devname, 1815 .write_inode = btrfs_write_inode, 1816 .alloc_inode = btrfs_alloc_inode, 1817 .destroy_inode = btrfs_destroy_inode, 1818 .statfs = btrfs_statfs, 1819 .remount_fs = btrfs_remount, 1820 .freeze_fs = btrfs_freeze, 1821 .unfreeze_fs = btrfs_unfreeze, 1822 }; 1823 1824 static const struct file_operations btrfs_ctl_fops = { 1825 .unlocked_ioctl = btrfs_control_ioctl, 1826 .compat_ioctl = btrfs_control_ioctl, 1827 .owner = THIS_MODULE, 1828 .llseek = noop_llseek, 1829 }; 1830 1831 static struct miscdevice btrfs_misc = { 1832 .minor = BTRFS_MINOR, 1833 .name = "btrfs-control", 1834 .fops = &btrfs_ctl_fops 1835 }; 1836 1837 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1838 MODULE_ALIAS("devname:btrfs-control"); 1839 1840 static int btrfs_interface_init(void) 1841 { 1842 return misc_register(&btrfs_misc); 1843 } 1844 1845 static void btrfs_interface_exit(void) 1846 { 1847 if (misc_deregister(&btrfs_misc) < 0) 1848 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n"); 1849 } 1850 1851 static void btrfs_print_info(void) 1852 { 1853 printk(KERN_INFO "Btrfs loaded" 1854 #ifdef CONFIG_BTRFS_DEBUG 1855 ", debug=on" 1856 #endif 1857 #ifdef CONFIG_BTRFS_ASSERT 1858 ", assert=on" 1859 #endif 1860 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1861 ", integrity-checker=on" 1862 #endif 1863 "\n"); 1864 } 1865 1866 static int btrfs_run_sanity_tests(void) 1867 { 1868 int ret; 1869 1870 ret = btrfs_init_test_fs(); 1871 if (ret) 1872 return ret; 1873 1874 ret = btrfs_test_free_space_cache(); 1875 if (ret) 1876 goto out; 1877 ret = btrfs_test_extent_buffer_operations(); 1878 if (ret) 1879 goto out; 1880 ret = btrfs_test_extent_io(); 1881 if (ret) 1882 goto out; 1883 ret = btrfs_test_inodes(); 1884 out: 1885 btrfs_destroy_test_fs(); 1886 return ret; 1887 } 1888 1889 static int __init init_btrfs_fs(void) 1890 { 1891 int err; 1892 1893 err = btrfs_hash_init(); 1894 if (err) 1895 return err; 1896 1897 btrfs_props_init(); 1898 1899 err = btrfs_init_sysfs(); 1900 if (err) 1901 goto free_hash; 1902 1903 btrfs_init_compress(); 1904 1905 err = btrfs_init_cachep(); 1906 if (err) 1907 goto free_compress; 1908 1909 err = extent_io_init(); 1910 if (err) 1911 goto free_cachep; 1912 1913 err = extent_map_init(); 1914 if (err) 1915 goto free_extent_io; 1916 1917 err = ordered_data_init(); 1918 if (err) 1919 goto free_extent_map; 1920 1921 err = btrfs_delayed_inode_init(); 1922 if (err) 1923 goto free_ordered_data; 1924 1925 err = btrfs_auto_defrag_init(); 1926 if (err) 1927 goto free_delayed_inode; 1928 1929 err = btrfs_delayed_ref_init(); 1930 if (err) 1931 goto free_auto_defrag; 1932 1933 err = btrfs_prelim_ref_init(); 1934 if (err) 1935 goto free_prelim_ref; 1936 1937 err = btrfs_interface_init(); 1938 if (err) 1939 goto free_delayed_ref; 1940 1941 btrfs_init_lockdep(); 1942 1943 btrfs_print_info(); 1944 1945 err = btrfs_run_sanity_tests(); 1946 if (err) 1947 goto unregister_ioctl; 1948 1949 err = register_filesystem(&btrfs_fs_type); 1950 if (err) 1951 goto unregister_ioctl; 1952 1953 return 0; 1954 1955 unregister_ioctl: 1956 btrfs_interface_exit(); 1957 free_prelim_ref: 1958 btrfs_prelim_ref_exit(); 1959 free_delayed_ref: 1960 btrfs_delayed_ref_exit(); 1961 free_auto_defrag: 1962 btrfs_auto_defrag_exit(); 1963 free_delayed_inode: 1964 btrfs_delayed_inode_exit(); 1965 free_ordered_data: 1966 ordered_data_exit(); 1967 free_extent_map: 1968 extent_map_exit(); 1969 free_extent_io: 1970 extent_io_exit(); 1971 free_cachep: 1972 btrfs_destroy_cachep(); 1973 free_compress: 1974 btrfs_exit_compress(); 1975 btrfs_exit_sysfs(); 1976 free_hash: 1977 btrfs_hash_exit(); 1978 return err; 1979 } 1980 1981 static void __exit exit_btrfs_fs(void) 1982 { 1983 btrfs_destroy_cachep(); 1984 btrfs_delayed_ref_exit(); 1985 btrfs_auto_defrag_exit(); 1986 btrfs_delayed_inode_exit(); 1987 btrfs_prelim_ref_exit(); 1988 ordered_data_exit(); 1989 extent_map_exit(); 1990 extent_io_exit(); 1991 btrfs_interface_exit(); 1992 unregister_filesystem(&btrfs_fs_type); 1993 btrfs_exit_sysfs(); 1994 btrfs_cleanup_fs_uuids(); 1995 btrfs_exit_compress(); 1996 btrfs_hash_exit(); 1997 } 1998 1999 module_init(init_btrfs_fs) 2000 module_exit(exit_btrfs_fs) 2001 2002 MODULE_LICENSE("GPL"); 2003