xref: /openbmc/linux/fs/btrfs/super.c (revision 37be287c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
69 static const char *btrfs_decode_error(int errno)
70 {
71 	char *errstr = "unknown";
72 
73 	switch (errno) {
74 	case -EIO:
75 		errstr = "IO failure";
76 		break;
77 	case -ENOMEM:
78 		errstr = "Out of memory";
79 		break;
80 	case -EROFS:
81 		errstr = "Readonly filesystem";
82 		break;
83 	case -EEXIST:
84 		errstr = "Object already exists";
85 		break;
86 	case -ENOSPC:
87 		errstr = "No space left";
88 		break;
89 	case -ENOENT:
90 		errstr = "No such entry";
91 		break;
92 	}
93 
94 	return errstr;
95 }
96 
97 static void save_error_info(struct btrfs_fs_info *fs_info)
98 {
99 	/*
100 	 * today we only save the error info into ram.  Long term we'll
101 	 * also send it down to the disk
102 	 */
103 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
104 }
105 
106 /* btrfs handle error by forcing the filesystem readonly */
107 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
108 {
109 	struct super_block *sb = fs_info->sb;
110 
111 	if (sb->s_flags & MS_RDONLY)
112 		return;
113 
114 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
115 		sb->s_flags |= MS_RDONLY;
116 		btrfs_info(fs_info, "forced readonly");
117 		/*
118 		 * Note that a running device replace operation is not
119 		 * canceled here although there is no way to update
120 		 * the progress. It would add the risk of a deadlock,
121 		 * therefore the canceling is ommited. The only penalty
122 		 * is that some I/O remains active until the procedure
123 		 * completes. The next time when the filesystem is
124 		 * mounted writeable again, the device replace
125 		 * operation continues.
126 		 */
127 	}
128 }
129 
130 #ifdef CONFIG_PRINTK
131 /*
132  * __btrfs_std_error decodes expected errors from the caller and
133  * invokes the approciate error response.
134  */
135 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
136 		       unsigned int line, int errno, const char *fmt, ...)
137 {
138 	struct super_block *sb = fs_info->sb;
139 	const char *errstr;
140 
141 	/*
142 	 * Special case: if the error is EROFS, and we're already
143 	 * under MS_RDONLY, then it is safe here.
144 	 */
145 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
146   		return;
147 
148 	errstr = btrfs_decode_error(errno);
149 	if (fmt) {
150 		struct va_format vaf;
151 		va_list args;
152 
153 		va_start(args, fmt);
154 		vaf.fmt = fmt;
155 		vaf.va = &args;
156 
157 		printk(KERN_CRIT
158 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
159 			sb->s_id, function, line, errno, errstr, &vaf);
160 		va_end(args);
161 	} else {
162 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
163 			sb->s_id, function, line, errno, errstr);
164 	}
165 
166 	/* Don't go through full error handling during mount */
167 	save_error_info(fs_info);
168 	if (sb->s_flags & MS_BORN)
169 		btrfs_handle_error(fs_info);
170 }
171 
172 static const char * const logtypes[] = {
173 	"emergency",
174 	"alert",
175 	"critical",
176 	"error",
177 	"warning",
178 	"notice",
179 	"info",
180 	"debug",
181 };
182 
183 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
184 {
185 	struct super_block *sb = fs_info->sb;
186 	char lvl[4];
187 	struct va_format vaf;
188 	va_list args;
189 	const char *type = logtypes[4];
190 	int kern_level;
191 
192 	va_start(args, fmt);
193 
194 	kern_level = printk_get_level(fmt);
195 	if (kern_level) {
196 		size_t size = printk_skip_level(fmt) - fmt;
197 		memcpy(lvl, fmt,  size);
198 		lvl[size] = '\0';
199 		fmt += size;
200 		type = logtypes[kern_level - '0'];
201 	} else
202 		*lvl = '\0';
203 
204 	vaf.fmt = fmt;
205 	vaf.va = &args;
206 
207 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
208 
209 	va_end(args);
210 }
211 
212 #else
213 
214 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
215 		       unsigned int line, int errno, const char *fmt, ...)
216 {
217 	struct super_block *sb = fs_info->sb;
218 
219 	/*
220 	 * Special case: if the error is EROFS, and we're already
221 	 * under MS_RDONLY, then it is safe here.
222 	 */
223 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
224 		return;
225 
226 	/* Don't go through full error handling during mount */
227 	if (sb->s_flags & MS_BORN) {
228 		save_error_info(fs_info);
229 		btrfs_handle_error(fs_info);
230 	}
231 }
232 #endif
233 
234 /*
235  * We only mark the transaction aborted and then set the file system read-only.
236  * This will prevent new transactions from starting or trying to join this
237  * one.
238  *
239  * This means that error recovery at the call site is limited to freeing
240  * any local memory allocations and passing the error code up without
241  * further cleanup. The transaction should complete as it normally would
242  * in the call path but will return -EIO.
243  *
244  * We'll complete the cleanup in btrfs_end_transaction and
245  * btrfs_commit_transaction.
246  */
247 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
248 			       struct btrfs_root *root, const char *function,
249 			       unsigned int line, int errno)
250 {
251 	/*
252 	 * Report first abort since mount
253 	 */
254 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
255 				&root->fs_info->fs_state)) {
256 		WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
257 				errno);
258 	}
259 	trans->aborted = errno;
260 	/* Nothing used. The other threads that have joined this
261 	 * transaction may be able to continue. */
262 	if (!trans->blocks_used) {
263 		const char *errstr;
264 
265 		errstr = btrfs_decode_error(errno);
266 		btrfs_warn(root->fs_info,
267 		           "%s:%d: Aborting unused transaction(%s).",
268 		           function, line, errstr);
269 		return;
270 	}
271 	ACCESS_ONCE(trans->transaction->aborted) = errno;
272 	/* Wake up anybody who may be waiting on this transaction */
273 	wake_up(&root->fs_info->transaction_wait);
274 	wake_up(&root->fs_info->transaction_blocked_wait);
275 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
276 }
277 /*
278  * __btrfs_panic decodes unexpected, fatal errors from the caller,
279  * issues an alert, and either panics or BUGs, depending on mount options.
280  */
281 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
282 		   unsigned int line, int errno, const char *fmt, ...)
283 {
284 	char *s_id = "<unknown>";
285 	const char *errstr;
286 	struct va_format vaf = { .fmt = fmt };
287 	va_list args;
288 
289 	if (fs_info)
290 		s_id = fs_info->sb->s_id;
291 
292 	va_start(args, fmt);
293 	vaf.va = &args;
294 
295 	errstr = btrfs_decode_error(errno);
296 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
297 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
298 			s_id, function, line, &vaf, errno, errstr);
299 
300 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
301 		   function, line, &vaf, errno, errstr);
302 	va_end(args);
303 	/* Caller calls BUG() */
304 }
305 
306 static void btrfs_put_super(struct super_block *sb)
307 {
308 	(void)close_ctree(btrfs_sb(sb)->tree_root);
309 	/* FIXME: need to fix VFS to return error? */
310 	/* AV: return it _where_?  ->put_super() can be triggered by any number
311 	 * of async events, up to and including delivery of SIGKILL to the
312 	 * last process that kept it busy.  Or segfault in the aforementioned
313 	 * process...  Whom would you report that to?
314 	 */
315 }
316 
317 enum {
318 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
319 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
320 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
321 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
322 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
323 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
324 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
325 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
326 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
327 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
328 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
329 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
330 	Opt_datasum, Opt_treelog, Opt_noinode_cache,
331 	Opt_err,
332 };
333 
334 static match_table_t tokens = {
335 	{Opt_degraded, "degraded"},
336 	{Opt_subvol, "subvol=%s"},
337 	{Opt_subvolid, "subvolid=%s"},
338 	{Opt_device, "device=%s"},
339 	{Opt_nodatasum, "nodatasum"},
340 	{Opt_datasum, "datasum"},
341 	{Opt_nodatacow, "nodatacow"},
342 	{Opt_datacow, "datacow"},
343 	{Opt_nobarrier, "nobarrier"},
344 	{Opt_barrier, "barrier"},
345 	{Opt_max_inline, "max_inline=%s"},
346 	{Opt_alloc_start, "alloc_start=%s"},
347 	{Opt_thread_pool, "thread_pool=%d"},
348 	{Opt_compress, "compress"},
349 	{Opt_compress_type, "compress=%s"},
350 	{Opt_compress_force, "compress-force"},
351 	{Opt_compress_force_type, "compress-force=%s"},
352 	{Opt_ssd, "ssd"},
353 	{Opt_ssd_spread, "ssd_spread"},
354 	{Opt_nossd, "nossd"},
355 	{Opt_acl, "acl"},
356 	{Opt_noacl, "noacl"},
357 	{Opt_notreelog, "notreelog"},
358 	{Opt_treelog, "treelog"},
359 	{Opt_flushoncommit, "flushoncommit"},
360 	{Opt_noflushoncommit, "noflushoncommit"},
361 	{Opt_ratio, "metadata_ratio=%d"},
362 	{Opt_discard, "discard"},
363 	{Opt_nodiscard, "nodiscard"},
364 	{Opt_space_cache, "space_cache"},
365 	{Opt_clear_cache, "clear_cache"},
366 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
367 	{Opt_enospc_debug, "enospc_debug"},
368 	{Opt_noenospc_debug, "noenospc_debug"},
369 	{Opt_subvolrootid, "subvolrootid=%d"},
370 	{Opt_defrag, "autodefrag"},
371 	{Opt_nodefrag, "noautodefrag"},
372 	{Opt_inode_cache, "inode_cache"},
373 	{Opt_noinode_cache, "noinode_cache"},
374 	{Opt_no_space_cache, "nospace_cache"},
375 	{Opt_recovery, "recovery"},
376 	{Opt_skip_balance, "skip_balance"},
377 	{Opt_check_integrity, "check_int"},
378 	{Opt_check_integrity_including_extent_data, "check_int_data"},
379 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
380 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
381 	{Opt_fatal_errors, "fatal_errors=%s"},
382 	{Opt_commit_interval, "commit=%d"},
383 	{Opt_err, NULL},
384 };
385 
386 #define btrfs_set_and_info(root, opt, fmt, args...)			\
387 {									\
388 	if (!btrfs_test_opt(root, opt))					\
389 		btrfs_info(root->fs_info, fmt, ##args);			\
390 	btrfs_set_opt(root->fs_info->mount_opt, opt);			\
391 }
392 
393 #define btrfs_clear_and_info(root, opt, fmt, args...)			\
394 {									\
395 	if (btrfs_test_opt(root, opt))					\
396 		btrfs_info(root->fs_info, fmt, ##args);			\
397 	btrfs_clear_opt(root->fs_info->mount_opt, opt);			\
398 }
399 
400 /*
401  * Regular mount options parser.  Everything that is needed only when
402  * reading in a new superblock is parsed here.
403  * XXX JDM: This needs to be cleaned up for remount.
404  */
405 int btrfs_parse_options(struct btrfs_root *root, char *options)
406 {
407 	struct btrfs_fs_info *info = root->fs_info;
408 	substring_t args[MAX_OPT_ARGS];
409 	char *p, *num, *orig = NULL;
410 	u64 cache_gen;
411 	int intarg;
412 	int ret = 0;
413 	char *compress_type;
414 	bool compress_force = false;
415 	bool compress = false;
416 
417 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
418 	if (cache_gen)
419 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
420 
421 	if (!options)
422 		goto out;
423 
424 	/*
425 	 * strsep changes the string, duplicate it because parse_options
426 	 * gets called twice
427 	 */
428 	options = kstrdup(options, GFP_NOFS);
429 	if (!options)
430 		return -ENOMEM;
431 
432 	orig = options;
433 
434 	while ((p = strsep(&options, ",")) != NULL) {
435 		int token;
436 		if (!*p)
437 			continue;
438 
439 		token = match_token(p, tokens, args);
440 		switch (token) {
441 		case Opt_degraded:
442 			btrfs_info(root->fs_info, "allowing degraded mounts");
443 			btrfs_set_opt(info->mount_opt, DEGRADED);
444 			break;
445 		case Opt_subvol:
446 		case Opt_subvolid:
447 		case Opt_subvolrootid:
448 		case Opt_device:
449 			/*
450 			 * These are parsed by btrfs_parse_early_options
451 			 * and can be happily ignored here.
452 			 */
453 			break;
454 		case Opt_nodatasum:
455 			btrfs_set_and_info(root, NODATASUM,
456 					   "setting nodatasum");
457 			break;
458 		case Opt_datasum:
459 			if (btrfs_test_opt(root, NODATASUM)) {
460 				if (btrfs_test_opt(root, NODATACOW))
461 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
462 				else
463 					btrfs_info(root->fs_info, "setting datasum");
464 			}
465 			btrfs_clear_opt(info->mount_opt, NODATACOW);
466 			btrfs_clear_opt(info->mount_opt, NODATASUM);
467 			break;
468 		case Opt_nodatacow:
469 			if (!btrfs_test_opt(root, NODATACOW)) {
470 				if (!btrfs_test_opt(root, COMPRESS) ||
471 				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
472 					btrfs_info(root->fs_info,
473 						   "setting nodatacow, compression disabled");
474 				} else {
475 					btrfs_info(root->fs_info, "setting nodatacow");
476 				}
477 			}
478 			btrfs_clear_opt(info->mount_opt, COMPRESS);
479 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
480 			btrfs_set_opt(info->mount_opt, NODATACOW);
481 			btrfs_set_opt(info->mount_opt, NODATASUM);
482 			break;
483 		case Opt_datacow:
484 			btrfs_clear_and_info(root, NODATACOW,
485 					     "setting datacow");
486 			break;
487 		case Opt_compress_force:
488 		case Opt_compress_force_type:
489 			compress_force = true;
490 			/* Fallthrough */
491 		case Opt_compress:
492 		case Opt_compress_type:
493 			compress = true;
494 			if (token == Opt_compress ||
495 			    token == Opt_compress_force ||
496 			    strcmp(args[0].from, "zlib") == 0) {
497 				compress_type = "zlib";
498 				info->compress_type = BTRFS_COMPRESS_ZLIB;
499 				btrfs_set_opt(info->mount_opt, COMPRESS);
500 				btrfs_clear_opt(info->mount_opt, NODATACOW);
501 				btrfs_clear_opt(info->mount_opt, NODATASUM);
502 			} else if (strcmp(args[0].from, "lzo") == 0) {
503 				compress_type = "lzo";
504 				info->compress_type = BTRFS_COMPRESS_LZO;
505 				btrfs_set_opt(info->mount_opt, COMPRESS);
506 				btrfs_clear_opt(info->mount_opt, NODATACOW);
507 				btrfs_clear_opt(info->mount_opt, NODATASUM);
508 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
509 			} else if (strncmp(args[0].from, "no", 2) == 0) {
510 				compress_type = "no";
511 				btrfs_clear_opt(info->mount_opt, COMPRESS);
512 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
513 				compress_force = false;
514 			} else {
515 				ret = -EINVAL;
516 				goto out;
517 			}
518 
519 			if (compress_force) {
520 				btrfs_set_and_info(root, FORCE_COMPRESS,
521 						   "force %s compression",
522 						   compress_type);
523 			} else if (compress) {
524 				if (!btrfs_test_opt(root, COMPRESS))
525 					btrfs_info(root->fs_info,
526 						   "btrfs: use %s compression\n",
527 						   compress_type);
528 			}
529 			break;
530 		case Opt_ssd:
531 			btrfs_set_and_info(root, SSD,
532 					   "use ssd allocation scheme");
533 			break;
534 		case Opt_ssd_spread:
535 			btrfs_set_and_info(root, SSD_SPREAD,
536 					   "use spread ssd allocation scheme");
537 			break;
538 		case Opt_nossd:
539 			btrfs_clear_and_info(root, NOSSD,
540 					     "not using ssd allocation scheme");
541 			btrfs_clear_opt(info->mount_opt, SSD);
542 			break;
543 		case Opt_barrier:
544 			btrfs_clear_and_info(root, NOBARRIER,
545 					     "turning on barriers");
546 			break;
547 		case Opt_nobarrier:
548 			btrfs_set_and_info(root, NOBARRIER,
549 					   "turning off barriers");
550 			break;
551 		case Opt_thread_pool:
552 			ret = match_int(&args[0], &intarg);
553 			if (ret) {
554 				goto out;
555 			} else if (intarg > 0) {
556 				info->thread_pool_size = intarg;
557 			} else {
558 				ret = -EINVAL;
559 				goto out;
560 			}
561 			break;
562 		case Opt_max_inline:
563 			num = match_strdup(&args[0]);
564 			if (num) {
565 				info->max_inline = memparse(num, NULL);
566 				kfree(num);
567 
568 				if (info->max_inline) {
569 					info->max_inline = max_t(u64,
570 						info->max_inline,
571 						root->sectorsize);
572 				}
573 				btrfs_info(root->fs_info, "max_inline at %llu",
574 					info->max_inline);
575 			} else {
576 				ret = -ENOMEM;
577 				goto out;
578 			}
579 			break;
580 		case Opt_alloc_start:
581 			num = match_strdup(&args[0]);
582 			if (num) {
583 				mutex_lock(&info->chunk_mutex);
584 				info->alloc_start = memparse(num, NULL);
585 				mutex_unlock(&info->chunk_mutex);
586 				kfree(num);
587 				btrfs_info(root->fs_info, "allocations start at %llu",
588 					info->alloc_start);
589 			} else {
590 				ret = -ENOMEM;
591 				goto out;
592 			}
593 			break;
594 		case Opt_acl:
595 			root->fs_info->sb->s_flags |= MS_POSIXACL;
596 			break;
597 		case Opt_noacl:
598 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
599 			break;
600 		case Opt_notreelog:
601 			btrfs_set_and_info(root, NOTREELOG,
602 					   "disabling tree log");
603 			break;
604 		case Opt_treelog:
605 			btrfs_clear_and_info(root, NOTREELOG,
606 					     "enabling tree log");
607 			break;
608 		case Opt_flushoncommit:
609 			btrfs_set_and_info(root, FLUSHONCOMMIT,
610 					   "turning on flush-on-commit");
611 			break;
612 		case Opt_noflushoncommit:
613 			btrfs_clear_and_info(root, FLUSHONCOMMIT,
614 					     "turning off flush-on-commit");
615 			break;
616 		case Opt_ratio:
617 			ret = match_int(&args[0], &intarg);
618 			if (ret) {
619 				goto out;
620 			} else if (intarg >= 0) {
621 				info->metadata_ratio = intarg;
622 				btrfs_info(root->fs_info, "metadata ratio %d",
623 				       info->metadata_ratio);
624 			} else {
625 				ret = -EINVAL;
626 				goto out;
627 			}
628 			break;
629 		case Opt_discard:
630 			btrfs_set_and_info(root, DISCARD,
631 					   "turning on discard");
632 			break;
633 		case Opt_nodiscard:
634 			btrfs_clear_and_info(root, DISCARD,
635 					     "turning off discard");
636 			break;
637 		case Opt_space_cache:
638 			btrfs_set_and_info(root, SPACE_CACHE,
639 					   "enabling disk space caching");
640 			break;
641 		case Opt_rescan_uuid_tree:
642 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
643 			break;
644 		case Opt_no_space_cache:
645 			btrfs_clear_and_info(root, SPACE_CACHE,
646 					     "disabling disk space caching");
647 			break;
648 		case Opt_inode_cache:
649 			btrfs_set_and_info(root, CHANGE_INODE_CACHE,
650 					   "enabling inode map caching");
651 			break;
652 		case Opt_noinode_cache:
653 			btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
654 					     "disabling inode map caching");
655 			break;
656 		case Opt_clear_cache:
657 			btrfs_set_and_info(root, CLEAR_CACHE,
658 					   "force clearing of disk cache");
659 			break;
660 		case Opt_user_subvol_rm_allowed:
661 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
662 			break;
663 		case Opt_enospc_debug:
664 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
665 			break;
666 		case Opt_noenospc_debug:
667 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
668 			break;
669 		case Opt_defrag:
670 			btrfs_set_and_info(root, AUTO_DEFRAG,
671 					   "enabling auto defrag");
672 			break;
673 		case Opt_nodefrag:
674 			btrfs_clear_and_info(root, AUTO_DEFRAG,
675 					     "disabling auto defrag");
676 			break;
677 		case Opt_recovery:
678 			btrfs_info(root->fs_info, "enabling auto recovery");
679 			btrfs_set_opt(info->mount_opt, RECOVERY);
680 			break;
681 		case Opt_skip_balance:
682 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
683 			break;
684 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
685 		case Opt_check_integrity_including_extent_data:
686 			btrfs_info(root->fs_info,
687 				   "enabling check integrity including extent data");
688 			btrfs_set_opt(info->mount_opt,
689 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
690 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
691 			break;
692 		case Opt_check_integrity:
693 			btrfs_info(root->fs_info, "enabling check integrity");
694 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
695 			break;
696 		case Opt_check_integrity_print_mask:
697 			ret = match_int(&args[0], &intarg);
698 			if (ret) {
699 				goto out;
700 			} else if (intarg >= 0) {
701 				info->check_integrity_print_mask = intarg;
702 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
703 				       info->check_integrity_print_mask);
704 			} else {
705 				ret = -EINVAL;
706 				goto out;
707 			}
708 			break;
709 #else
710 		case Opt_check_integrity_including_extent_data:
711 		case Opt_check_integrity:
712 		case Opt_check_integrity_print_mask:
713 			btrfs_err(root->fs_info,
714 				"support for check_integrity* not compiled in!");
715 			ret = -EINVAL;
716 			goto out;
717 #endif
718 		case Opt_fatal_errors:
719 			if (strcmp(args[0].from, "panic") == 0)
720 				btrfs_set_opt(info->mount_opt,
721 					      PANIC_ON_FATAL_ERROR);
722 			else if (strcmp(args[0].from, "bug") == 0)
723 				btrfs_clear_opt(info->mount_opt,
724 					      PANIC_ON_FATAL_ERROR);
725 			else {
726 				ret = -EINVAL;
727 				goto out;
728 			}
729 			break;
730 		case Opt_commit_interval:
731 			intarg = 0;
732 			ret = match_int(&args[0], &intarg);
733 			if (ret < 0) {
734 				btrfs_err(root->fs_info, "invalid commit interval");
735 				ret = -EINVAL;
736 				goto out;
737 			}
738 			if (intarg > 0) {
739 				if (intarg > 300) {
740 					btrfs_warn(root->fs_info, "excessive commit interval %d",
741 							intarg);
742 				}
743 				info->commit_interval = intarg;
744 			} else {
745 				btrfs_info(root->fs_info, "using default commit interval %ds",
746 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
747 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
748 			}
749 			break;
750 		case Opt_err:
751 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
752 			ret = -EINVAL;
753 			goto out;
754 		default:
755 			break;
756 		}
757 	}
758 out:
759 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
760 		btrfs_info(root->fs_info, "disk space caching is enabled");
761 	kfree(orig);
762 	return ret;
763 }
764 
765 /*
766  * Parse mount options that are required early in the mount process.
767  *
768  * All other options will be parsed on much later in the mount process and
769  * only when we need to allocate a new super block.
770  */
771 static int btrfs_parse_early_options(const char *options, fmode_t flags,
772 		void *holder, char **subvol_name, u64 *subvol_objectid,
773 		struct btrfs_fs_devices **fs_devices)
774 {
775 	substring_t args[MAX_OPT_ARGS];
776 	char *device_name, *opts, *orig, *p;
777 	char *num = NULL;
778 	int error = 0;
779 
780 	if (!options)
781 		return 0;
782 
783 	/*
784 	 * strsep changes the string, duplicate it because parse_options
785 	 * gets called twice
786 	 */
787 	opts = kstrdup(options, GFP_KERNEL);
788 	if (!opts)
789 		return -ENOMEM;
790 	orig = opts;
791 
792 	while ((p = strsep(&opts, ",")) != NULL) {
793 		int token;
794 		if (!*p)
795 			continue;
796 
797 		token = match_token(p, tokens, args);
798 		switch (token) {
799 		case Opt_subvol:
800 			kfree(*subvol_name);
801 			*subvol_name = match_strdup(&args[0]);
802 			if (!*subvol_name) {
803 				error = -ENOMEM;
804 				goto out;
805 			}
806 			break;
807 		case Opt_subvolid:
808 			num = match_strdup(&args[0]);
809 			if (num) {
810 				*subvol_objectid = memparse(num, NULL);
811 				kfree(num);
812 				/* we want the original fs_tree */
813 				if (!*subvol_objectid)
814 					*subvol_objectid =
815 						BTRFS_FS_TREE_OBJECTID;
816 			} else {
817 				error = -EINVAL;
818 				goto out;
819 			}
820 			break;
821 		case Opt_subvolrootid:
822 			printk(KERN_WARNING
823 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
824 				"no effect\n");
825 			break;
826 		case Opt_device:
827 			device_name = match_strdup(&args[0]);
828 			if (!device_name) {
829 				error = -ENOMEM;
830 				goto out;
831 			}
832 			error = btrfs_scan_one_device(device_name,
833 					flags, holder, fs_devices);
834 			kfree(device_name);
835 			if (error)
836 				goto out;
837 			break;
838 		default:
839 			break;
840 		}
841 	}
842 
843 out:
844 	kfree(orig);
845 	return error;
846 }
847 
848 static struct dentry *get_default_root(struct super_block *sb,
849 				       u64 subvol_objectid)
850 {
851 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
852 	struct btrfs_root *root = fs_info->tree_root;
853 	struct btrfs_root *new_root;
854 	struct btrfs_dir_item *di;
855 	struct btrfs_path *path;
856 	struct btrfs_key location;
857 	struct inode *inode;
858 	u64 dir_id;
859 	int new = 0;
860 
861 	/*
862 	 * We have a specific subvol we want to mount, just setup location and
863 	 * go look up the root.
864 	 */
865 	if (subvol_objectid) {
866 		location.objectid = subvol_objectid;
867 		location.type = BTRFS_ROOT_ITEM_KEY;
868 		location.offset = (u64)-1;
869 		goto find_root;
870 	}
871 
872 	path = btrfs_alloc_path();
873 	if (!path)
874 		return ERR_PTR(-ENOMEM);
875 	path->leave_spinning = 1;
876 
877 	/*
878 	 * Find the "default" dir item which points to the root item that we
879 	 * will mount by default if we haven't been given a specific subvolume
880 	 * to mount.
881 	 */
882 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
883 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
884 	if (IS_ERR(di)) {
885 		btrfs_free_path(path);
886 		return ERR_CAST(di);
887 	}
888 	if (!di) {
889 		/*
890 		 * Ok the default dir item isn't there.  This is weird since
891 		 * it's always been there, but don't freak out, just try and
892 		 * mount to root most subvolume.
893 		 */
894 		btrfs_free_path(path);
895 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
896 		new_root = fs_info->fs_root;
897 		goto setup_root;
898 	}
899 
900 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 	btrfs_free_path(path);
902 
903 find_root:
904 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
905 	if (IS_ERR(new_root))
906 		return ERR_CAST(new_root);
907 
908 	dir_id = btrfs_root_dirid(&new_root->root_item);
909 setup_root:
910 	location.objectid = dir_id;
911 	location.type = BTRFS_INODE_ITEM_KEY;
912 	location.offset = 0;
913 
914 	inode = btrfs_iget(sb, &location, new_root, &new);
915 	if (IS_ERR(inode))
916 		return ERR_CAST(inode);
917 
918 	/*
919 	 * If we're just mounting the root most subvol put the inode and return
920 	 * a reference to the dentry.  We will have already gotten a reference
921 	 * to the inode in btrfs_fill_super so we're good to go.
922 	 */
923 	if (!new && sb->s_root->d_inode == inode) {
924 		iput(inode);
925 		return dget(sb->s_root);
926 	}
927 
928 	return d_obtain_alias(inode);
929 }
930 
931 static int btrfs_fill_super(struct super_block *sb,
932 			    struct btrfs_fs_devices *fs_devices,
933 			    void *data, int silent)
934 {
935 	struct inode *inode;
936 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
937 	struct btrfs_key key;
938 	int err;
939 
940 	sb->s_maxbytes = MAX_LFS_FILESIZE;
941 	sb->s_magic = BTRFS_SUPER_MAGIC;
942 	sb->s_op = &btrfs_super_ops;
943 	sb->s_d_op = &btrfs_dentry_operations;
944 	sb->s_export_op = &btrfs_export_ops;
945 	sb->s_xattr = btrfs_xattr_handlers;
946 	sb->s_time_gran = 1;
947 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
948 	sb->s_flags |= MS_POSIXACL;
949 #endif
950 	sb->s_flags |= MS_I_VERSION;
951 	err = open_ctree(sb, fs_devices, (char *)data);
952 	if (err) {
953 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
954 		return err;
955 	}
956 
957 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
958 	key.type = BTRFS_INODE_ITEM_KEY;
959 	key.offset = 0;
960 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
961 	if (IS_ERR(inode)) {
962 		err = PTR_ERR(inode);
963 		goto fail_close;
964 	}
965 
966 	sb->s_root = d_make_root(inode);
967 	if (!sb->s_root) {
968 		err = -ENOMEM;
969 		goto fail_close;
970 	}
971 
972 	save_mount_options(sb, data);
973 	cleancache_init_fs(sb);
974 	sb->s_flags |= MS_ACTIVE;
975 	return 0;
976 
977 fail_close:
978 	close_ctree(fs_info->tree_root);
979 	return err;
980 }
981 
982 int btrfs_sync_fs(struct super_block *sb, int wait)
983 {
984 	struct btrfs_trans_handle *trans;
985 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
986 	struct btrfs_root *root = fs_info->tree_root;
987 
988 	trace_btrfs_sync_fs(wait);
989 
990 	if (!wait) {
991 		filemap_flush(fs_info->btree_inode->i_mapping);
992 		return 0;
993 	}
994 
995 	btrfs_wait_ordered_roots(fs_info, -1);
996 
997 	trans = btrfs_attach_transaction_barrier(root);
998 	if (IS_ERR(trans)) {
999 		/* no transaction, don't bother */
1000 		if (PTR_ERR(trans) == -ENOENT)
1001 			return 0;
1002 		return PTR_ERR(trans);
1003 	}
1004 	return btrfs_commit_transaction(trans, root);
1005 }
1006 
1007 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1008 {
1009 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1010 	struct btrfs_root *root = info->tree_root;
1011 	char *compress_type;
1012 
1013 	if (btrfs_test_opt(root, DEGRADED))
1014 		seq_puts(seq, ",degraded");
1015 	if (btrfs_test_opt(root, NODATASUM))
1016 		seq_puts(seq, ",nodatasum");
1017 	if (btrfs_test_opt(root, NODATACOW))
1018 		seq_puts(seq, ",nodatacow");
1019 	if (btrfs_test_opt(root, NOBARRIER))
1020 		seq_puts(seq, ",nobarrier");
1021 	if (info->max_inline != 8192 * 1024)
1022 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1023 	if (info->alloc_start != 0)
1024 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1025 	if (info->thread_pool_size !=  min_t(unsigned long,
1026 					     num_online_cpus() + 2, 8))
1027 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1028 	if (btrfs_test_opt(root, COMPRESS)) {
1029 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1030 			compress_type = "zlib";
1031 		else
1032 			compress_type = "lzo";
1033 		if (btrfs_test_opt(root, FORCE_COMPRESS))
1034 			seq_printf(seq, ",compress-force=%s", compress_type);
1035 		else
1036 			seq_printf(seq, ",compress=%s", compress_type);
1037 	}
1038 	if (btrfs_test_opt(root, NOSSD))
1039 		seq_puts(seq, ",nossd");
1040 	if (btrfs_test_opt(root, SSD_SPREAD))
1041 		seq_puts(seq, ",ssd_spread");
1042 	else if (btrfs_test_opt(root, SSD))
1043 		seq_puts(seq, ",ssd");
1044 	if (btrfs_test_opt(root, NOTREELOG))
1045 		seq_puts(seq, ",notreelog");
1046 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1047 		seq_puts(seq, ",flushoncommit");
1048 	if (btrfs_test_opt(root, DISCARD))
1049 		seq_puts(seq, ",discard");
1050 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1051 		seq_puts(seq, ",noacl");
1052 	if (btrfs_test_opt(root, SPACE_CACHE))
1053 		seq_puts(seq, ",space_cache");
1054 	else
1055 		seq_puts(seq, ",nospace_cache");
1056 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1057 		seq_puts(seq, ",rescan_uuid_tree");
1058 	if (btrfs_test_opt(root, CLEAR_CACHE))
1059 		seq_puts(seq, ",clear_cache");
1060 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1061 		seq_puts(seq, ",user_subvol_rm_allowed");
1062 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1063 		seq_puts(seq, ",enospc_debug");
1064 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1065 		seq_puts(seq, ",autodefrag");
1066 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1067 		seq_puts(seq, ",inode_cache");
1068 	if (btrfs_test_opt(root, SKIP_BALANCE))
1069 		seq_puts(seq, ",skip_balance");
1070 	if (btrfs_test_opt(root, RECOVERY))
1071 		seq_puts(seq, ",recovery");
1072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1073 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1074 		seq_puts(seq, ",check_int_data");
1075 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1076 		seq_puts(seq, ",check_int");
1077 	if (info->check_integrity_print_mask)
1078 		seq_printf(seq, ",check_int_print_mask=%d",
1079 				info->check_integrity_print_mask);
1080 #endif
1081 	if (info->metadata_ratio)
1082 		seq_printf(seq, ",metadata_ratio=%d",
1083 				info->metadata_ratio);
1084 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1085 		seq_puts(seq, ",fatal_errors=panic");
1086 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1087 		seq_printf(seq, ",commit=%d", info->commit_interval);
1088 	return 0;
1089 }
1090 
1091 static int btrfs_test_super(struct super_block *s, void *data)
1092 {
1093 	struct btrfs_fs_info *p = data;
1094 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1095 
1096 	return fs_info->fs_devices == p->fs_devices;
1097 }
1098 
1099 static int btrfs_set_super(struct super_block *s, void *data)
1100 {
1101 	int err = set_anon_super(s, data);
1102 	if (!err)
1103 		s->s_fs_info = data;
1104 	return err;
1105 }
1106 
1107 /*
1108  * subvolumes are identified by ino 256
1109  */
1110 static inline int is_subvolume_inode(struct inode *inode)
1111 {
1112 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1113 		return 1;
1114 	return 0;
1115 }
1116 
1117 /*
1118  * This will strip out the subvol=%s argument for an argument string and add
1119  * subvolid=0 to make sure we get the actual tree root for path walking to the
1120  * subvol we want.
1121  */
1122 static char *setup_root_args(char *args)
1123 {
1124 	unsigned len = strlen(args) + 2 + 1;
1125 	char *src, *dst, *buf;
1126 
1127 	/*
1128 	 * We need the same args as before, but with this substitution:
1129 	 * s!subvol=[^,]+!subvolid=0!
1130 	 *
1131 	 * Since the replacement string is up to 2 bytes longer than the
1132 	 * original, allocate strlen(args) + 2 + 1 bytes.
1133 	 */
1134 
1135 	src = strstr(args, "subvol=");
1136 	/* This shouldn't happen, but just in case.. */
1137 	if (!src)
1138 		return NULL;
1139 
1140 	buf = dst = kmalloc(len, GFP_NOFS);
1141 	if (!buf)
1142 		return NULL;
1143 
1144 	/*
1145 	 * If the subvol= arg is not at the start of the string,
1146 	 * copy whatever precedes it into buf.
1147 	 */
1148 	if (src != args) {
1149 		*src++ = '\0';
1150 		strcpy(buf, args);
1151 		dst += strlen(args);
1152 	}
1153 
1154 	strcpy(dst, "subvolid=0");
1155 	dst += strlen("subvolid=0");
1156 
1157 	/*
1158 	 * If there is a "," after the original subvol=... string,
1159 	 * copy that suffix into our buffer.  Otherwise, we're done.
1160 	 */
1161 	src = strchr(src, ',');
1162 	if (src)
1163 		strcpy(dst, src);
1164 
1165 	return buf;
1166 }
1167 
1168 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1169 				   const char *device_name, char *data)
1170 {
1171 	struct dentry *root;
1172 	struct vfsmount *mnt;
1173 	char *newargs;
1174 
1175 	newargs = setup_root_args(data);
1176 	if (!newargs)
1177 		return ERR_PTR(-ENOMEM);
1178 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1179 			     newargs);
1180 	kfree(newargs);
1181 	if (IS_ERR(mnt))
1182 		return ERR_CAST(mnt);
1183 
1184 	root = mount_subtree(mnt, subvol_name);
1185 
1186 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1187 		struct super_block *s = root->d_sb;
1188 		dput(root);
1189 		root = ERR_PTR(-EINVAL);
1190 		deactivate_locked_super(s);
1191 		printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1192 				subvol_name);
1193 	}
1194 
1195 	return root;
1196 }
1197 
1198 /*
1199  * Find a superblock for the given device / mount point.
1200  *
1201  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1202  *	  for multiple device setup.  Make sure to keep it in sync.
1203  */
1204 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1205 		const char *device_name, void *data)
1206 {
1207 	struct block_device *bdev = NULL;
1208 	struct super_block *s;
1209 	struct dentry *root;
1210 	struct btrfs_fs_devices *fs_devices = NULL;
1211 	struct btrfs_fs_info *fs_info = NULL;
1212 	fmode_t mode = FMODE_READ;
1213 	char *subvol_name = NULL;
1214 	u64 subvol_objectid = 0;
1215 	int error = 0;
1216 
1217 	if (!(flags & MS_RDONLY))
1218 		mode |= FMODE_WRITE;
1219 
1220 	error = btrfs_parse_early_options(data, mode, fs_type,
1221 					  &subvol_name, &subvol_objectid,
1222 					  &fs_devices);
1223 	if (error) {
1224 		kfree(subvol_name);
1225 		return ERR_PTR(error);
1226 	}
1227 
1228 	if (subvol_name) {
1229 		root = mount_subvol(subvol_name, flags, device_name, data);
1230 		kfree(subvol_name);
1231 		return root;
1232 	}
1233 
1234 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1235 	if (error)
1236 		return ERR_PTR(error);
1237 
1238 	/*
1239 	 * Setup a dummy root and fs_info for test/set super.  This is because
1240 	 * we don't actually fill this stuff out until open_ctree, but we need
1241 	 * it for searching for existing supers, so this lets us do that and
1242 	 * then open_ctree will properly initialize everything later.
1243 	 */
1244 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1245 	if (!fs_info)
1246 		return ERR_PTR(-ENOMEM);
1247 
1248 	fs_info->fs_devices = fs_devices;
1249 
1250 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1251 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1252 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1253 		error = -ENOMEM;
1254 		goto error_fs_info;
1255 	}
1256 
1257 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1258 	if (error)
1259 		goto error_fs_info;
1260 
1261 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1262 		error = -EACCES;
1263 		goto error_close_devices;
1264 	}
1265 
1266 	bdev = fs_devices->latest_bdev;
1267 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1268 		 fs_info);
1269 	if (IS_ERR(s)) {
1270 		error = PTR_ERR(s);
1271 		goto error_close_devices;
1272 	}
1273 
1274 	if (s->s_root) {
1275 		btrfs_close_devices(fs_devices);
1276 		free_fs_info(fs_info);
1277 		if ((flags ^ s->s_flags) & MS_RDONLY)
1278 			error = -EBUSY;
1279 	} else {
1280 		char b[BDEVNAME_SIZE];
1281 
1282 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1283 		btrfs_sb(s)->bdev_holder = fs_type;
1284 		error = btrfs_fill_super(s, fs_devices, data,
1285 					 flags & MS_SILENT ? 1 : 0);
1286 	}
1287 
1288 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1289 	if (IS_ERR(root))
1290 		deactivate_locked_super(s);
1291 
1292 	return root;
1293 
1294 error_close_devices:
1295 	btrfs_close_devices(fs_devices);
1296 error_fs_info:
1297 	free_fs_info(fs_info);
1298 	return ERR_PTR(error);
1299 }
1300 
1301 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1302 {
1303 	spin_lock_irq(&workers->lock);
1304 	workers->max_workers = new_limit;
1305 	spin_unlock_irq(&workers->lock);
1306 }
1307 
1308 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1309 				     int new_pool_size, int old_pool_size)
1310 {
1311 	if (new_pool_size == old_pool_size)
1312 		return;
1313 
1314 	fs_info->thread_pool_size = new_pool_size;
1315 
1316 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1317 	       old_pool_size, new_pool_size);
1318 
1319 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1320 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1321 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1322 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1323 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1324 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1325 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1326 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1327 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1328 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1329 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1330 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1331 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1332 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1333 			      new_pool_size);
1334 }
1335 
1336 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1337 {
1338 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1339 }
1340 
1341 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1342 				       unsigned long old_opts, int flags)
1343 {
1344 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1345 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1346 	     (flags & MS_RDONLY))) {
1347 		/* wait for any defraggers to finish */
1348 		wait_event(fs_info->transaction_wait,
1349 			   (atomic_read(&fs_info->defrag_running) == 0));
1350 		if (flags & MS_RDONLY)
1351 			sync_filesystem(fs_info->sb);
1352 	}
1353 }
1354 
1355 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1356 					 unsigned long old_opts)
1357 {
1358 	/*
1359 	 * We need cleanup all defragable inodes if the autodefragment is
1360 	 * close or the fs is R/O.
1361 	 */
1362 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1363 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1364 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1365 		btrfs_cleanup_defrag_inodes(fs_info);
1366 	}
1367 
1368 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1369 }
1370 
1371 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1372 {
1373 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1374 	struct btrfs_root *root = fs_info->tree_root;
1375 	unsigned old_flags = sb->s_flags;
1376 	unsigned long old_opts = fs_info->mount_opt;
1377 	unsigned long old_compress_type = fs_info->compress_type;
1378 	u64 old_max_inline = fs_info->max_inline;
1379 	u64 old_alloc_start = fs_info->alloc_start;
1380 	int old_thread_pool_size = fs_info->thread_pool_size;
1381 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1382 	int ret;
1383 
1384 	btrfs_remount_prepare(fs_info);
1385 
1386 	ret = btrfs_parse_options(root, data);
1387 	if (ret) {
1388 		ret = -EINVAL;
1389 		goto restore;
1390 	}
1391 
1392 	btrfs_remount_begin(fs_info, old_opts, *flags);
1393 	btrfs_resize_thread_pool(fs_info,
1394 		fs_info->thread_pool_size, old_thread_pool_size);
1395 
1396 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1397 		goto out;
1398 
1399 	if (*flags & MS_RDONLY) {
1400 		/*
1401 		 * this also happens on 'umount -rf' or on shutdown, when
1402 		 * the filesystem is busy.
1403 		 */
1404 
1405 		/* wait for the uuid_scan task to finish */
1406 		down(&fs_info->uuid_tree_rescan_sem);
1407 		/* avoid complains from lockdep et al. */
1408 		up(&fs_info->uuid_tree_rescan_sem);
1409 
1410 		sb->s_flags |= MS_RDONLY;
1411 
1412 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1413 		btrfs_scrub_cancel(fs_info);
1414 		btrfs_pause_balance(fs_info);
1415 
1416 		ret = btrfs_commit_super(root);
1417 		if (ret)
1418 			goto restore;
1419 	} else {
1420 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1421 			btrfs_err(fs_info,
1422 				"Remounting read-write after error is not allowed");
1423 			ret = -EINVAL;
1424 			goto restore;
1425 		}
1426 		if (fs_info->fs_devices->rw_devices == 0) {
1427 			ret = -EACCES;
1428 			goto restore;
1429 		}
1430 
1431 		if (fs_info->fs_devices->missing_devices >
1432 		     fs_info->num_tolerated_disk_barrier_failures &&
1433 		    !(*flags & MS_RDONLY)) {
1434 			btrfs_warn(fs_info,
1435 				"too many missing devices, writeable remount is not allowed");
1436 			ret = -EACCES;
1437 			goto restore;
1438 		}
1439 
1440 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1441 			ret = -EINVAL;
1442 			goto restore;
1443 		}
1444 
1445 		ret = btrfs_cleanup_fs_roots(fs_info);
1446 		if (ret)
1447 			goto restore;
1448 
1449 		/* recover relocation */
1450 		ret = btrfs_recover_relocation(root);
1451 		if (ret)
1452 			goto restore;
1453 
1454 		ret = btrfs_resume_balance_async(fs_info);
1455 		if (ret)
1456 			goto restore;
1457 
1458 		ret = btrfs_resume_dev_replace_async(fs_info);
1459 		if (ret) {
1460 			btrfs_warn(fs_info, "failed to resume dev_replace");
1461 			goto restore;
1462 		}
1463 
1464 		if (!fs_info->uuid_root) {
1465 			btrfs_info(fs_info, "creating UUID tree");
1466 			ret = btrfs_create_uuid_tree(fs_info);
1467 			if (ret) {
1468 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1469 				goto restore;
1470 			}
1471 		}
1472 		sb->s_flags &= ~MS_RDONLY;
1473 	}
1474 out:
1475 	btrfs_remount_cleanup(fs_info, old_opts);
1476 	return 0;
1477 
1478 restore:
1479 	/* We've hit an error - don't reset MS_RDONLY */
1480 	if (sb->s_flags & MS_RDONLY)
1481 		old_flags |= MS_RDONLY;
1482 	sb->s_flags = old_flags;
1483 	fs_info->mount_opt = old_opts;
1484 	fs_info->compress_type = old_compress_type;
1485 	fs_info->max_inline = old_max_inline;
1486 	mutex_lock(&fs_info->chunk_mutex);
1487 	fs_info->alloc_start = old_alloc_start;
1488 	mutex_unlock(&fs_info->chunk_mutex);
1489 	btrfs_resize_thread_pool(fs_info,
1490 		old_thread_pool_size, fs_info->thread_pool_size);
1491 	fs_info->metadata_ratio = old_metadata_ratio;
1492 	btrfs_remount_cleanup(fs_info, old_opts);
1493 	return ret;
1494 }
1495 
1496 /* Used to sort the devices by max_avail(descending sort) */
1497 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1498 				       const void *dev_info2)
1499 {
1500 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1501 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1502 		return -1;
1503 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1504 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1505 		return 1;
1506 	else
1507 	return 0;
1508 }
1509 
1510 /*
1511  * sort the devices by max_avail, in which max free extent size of each device
1512  * is stored.(Descending Sort)
1513  */
1514 static inline void btrfs_descending_sort_devices(
1515 					struct btrfs_device_info *devices,
1516 					size_t nr_devices)
1517 {
1518 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1519 	     btrfs_cmp_device_free_bytes, NULL);
1520 }
1521 
1522 /*
1523  * The helper to calc the free space on the devices that can be used to store
1524  * file data.
1525  */
1526 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1527 {
1528 	struct btrfs_fs_info *fs_info = root->fs_info;
1529 	struct btrfs_device_info *devices_info;
1530 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1531 	struct btrfs_device *device;
1532 	u64 skip_space;
1533 	u64 type;
1534 	u64 avail_space;
1535 	u64 used_space;
1536 	u64 min_stripe_size;
1537 	int min_stripes = 1, num_stripes = 1;
1538 	int i = 0, nr_devices;
1539 	int ret;
1540 
1541 	nr_devices = fs_info->fs_devices->open_devices;
1542 	BUG_ON(!nr_devices);
1543 
1544 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1545 			       GFP_NOFS);
1546 	if (!devices_info)
1547 		return -ENOMEM;
1548 
1549 	/* calc min stripe number for data space alloction */
1550 	type = btrfs_get_alloc_profile(root, 1);
1551 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1552 		min_stripes = 2;
1553 		num_stripes = nr_devices;
1554 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1555 		min_stripes = 2;
1556 		num_stripes = 2;
1557 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1558 		min_stripes = 4;
1559 		num_stripes = 4;
1560 	}
1561 
1562 	if (type & BTRFS_BLOCK_GROUP_DUP)
1563 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1564 	else
1565 		min_stripe_size = BTRFS_STRIPE_LEN;
1566 
1567 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1568 		if (!device->in_fs_metadata || !device->bdev ||
1569 		    device->is_tgtdev_for_dev_replace)
1570 			continue;
1571 
1572 		avail_space = device->total_bytes - device->bytes_used;
1573 
1574 		/* align with stripe_len */
1575 		do_div(avail_space, BTRFS_STRIPE_LEN);
1576 		avail_space *= BTRFS_STRIPE_LEN;
1577 
1578 		/*
1579 		 * In order to avoid overwritting the superblock on the drive,
1580 		 * btrfs starts at an offset of at least 1MB when doing chunk
1581 		 * allocation.
1582 		 */
1583 		skip_space = 1024 * 1024;
1584 
1585 		/* user can set the offset in fs_info->alloc_start. */
1586 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1587 		    device->total_bytes)
1588 			skip_space = max(fs_info->alloc_start, skip_space);
1589 
1590 		/*
1591 		 * btrfs can not use the free space in [0, skip_space - 1],
1592 		 * we must subtract it from the total. In order to implement
1593 		 * it, we account the used space in this range first.
1594 		 */
1595 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1596 						     &used_space);
1597 		if (ret) {
1598 			kfree(devices_info);
1599 			return ret;
1600 		}
1601 
1602 		/* calc the free space in [0, skip_space - 1] */
1603 		skip_space -= used_space;
1604 
1605 		/*
1606 		 * we can use the free space in [0, skip_space - 1], subtract
1607 		 * it from the total.
1608 		 */
1609 		if (avail_space && avail_space >= skip_space)
1610 			avail_space -= skip_space;
1611 		else
1612 			avail_space = 0;
1613 
1614 		if (avail_space < min_stripe_size)
1615 			continue;
1616 
1617 		devices_info[i].dev = device;
1618 		devices_info[i].max_avail = avail_space;
1619 
1620 		i++;
1621 	}
1622 
1623 	nr_devices = i;
1624 
1625 	btrfs_descending_sort_devices(devices_info, nr_devices);
1626 
1627 	i = nr_devices - 1;
1628 	avail_space = 0;
1629 	while (nr_devices >= min_stripes) {
1630 		if (num_stripes > nr_devices)
1631 			num_stripes = nr_devices;
1632 
1633 		if (devices_info[i].max_avail >= min_stripe_size) {
1634 			int j;
1635 			u64 alloc_size;
1636 
1637 			avail_space += devices_info[i].max_avail * num_stripes;
1638 			alloc_size = devices_info[i].max_avail;
1639 			for (j = i + 1 - num_stripes; j <= i; j++)
1640 				devices_info[j].max_avail -= alloc_size;
1641 		}
1642 		i--;
1643 		nr_devices--;
1644 	}
1645 
1646 	kfree(devices_info);
1647 	*free_bytes = avail_space;
1648 	return 0;
1649 }
1650 
1651 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1652 {
1653 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1654 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1655 	struct list_head *head = &fs_info->space_info;
1656 	struct btrfs_space_info *found;
1657 	u64 total_used = 0;
1658 	u64 total_free_data = 0;
1659 	int bits = dentry->d_sb->s_blocksize_bits;
1660 	__be32 *fsid = (__be32 *)fs_info->fsid;
1661 	int ret;
1662 
1663 	/* holding chunk_muext to avoid allocating new chunks */
1664 	mutex_lock(&fs_info->chunk_mutex);
1665 	rcu_read_lock();
1666 	list_for_each_entry_rcu(found, head, list) {
1667 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1668 			total_free_data += found->disk_total - found->disk_used;
1669 			total_free_data -=
1670 				btrfs_account_ro_block_groups_free_space(found);
1671 		}
1672 
1673 		total_used += found->disk_used;
1674 	}
1675 	rcu_read_unlock();
1676 
1677 	buf->f_namelen = BTRFS_NAME_LEN;
1678 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1679 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1680 	buf->f_bsize = dentry->d_sb->s_blocksize;
1681 	buf->f_type = BTRFS_SUPER_MAGIC;
1682 	buf->f_bavail = total_free_data;
1683 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1684 	if (ret) {
1685 		mutex_unlock(&fs_info->chunk_mutex);
1686 		return ret;
1687 	}
1688 	buf->f_bavail += total_free_data;
1689 	buf->f_bavail = buf->f_bavail >> bits;
1690 	mutex_unlock(&fs_info->chunk_mutex);
1691 
1692 	/* We treat it as constant endianness (it doesn't matter _which_)
1693 	   because we want the fsid to come out the same whether mounted
1694 	   on a big-endian or little-endian host */
1695 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1696 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1697 	/* Mask in the root object ID too, to disambiguate subvols */
1698 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1699 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1700 
1701 	return 0;
1702 }
1703 
1704 static void btrfs_kill_super(struct super_block *sb)
1705 {
1706 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1707 	kill_anon_super(sb);
1708 	free_fs_info(fs_info);
1709 }
1710 
1711 static struct file_system_type btrfs_fs_type = {
1712 	.owner		= THIS_MODULE,
1713 	.name		= "btrfs",
1714 	.mount		= btrfs_mount,
1715 	.kill_sb	= btrfs_kill_super,
1716 	.fs_flags	= FS_REQUIRES_DEV,
1717 };
1718 MODULE_ALIAS_FS("btrfs");
1719 
1720 /*
1721  * used by btrfsctl to scan devices when no FS is mounted
1722  */
1723 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1724 				unsigned long arg)
1725 {
1726 	struct btrfs_ioctl_vol_args *vol;
1727 	struct btrfs_fs_devices *fs_devices;
1728 	int ret = -ENOTTY;
1729 
1730 	if (!capable(CAP_SYS_ADMIN))
1731 		return -EPERM;
1732 
1733 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1734 	if (IS_ERR(vol))
1735 		return PTR_ERR(vol);
1736 
1737 	switch (cmd) {
1738 	case BTRFS_IOC_SCAN_DEV:
1739 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1740 					    &btrfs_fs_type, &fs_devices);
1741 		break;
1742 	case BTRFS_IOC_DEVICES_READY:
1743 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1744 					    &btrfs_fs_type, &fs_devices);
1745 		if (ret)
1746 			break;
1747 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1748 		break;
1749 	}
1750 
1751 	kfree(vol);
1752 	return ret;
1753 }
1754 
1755 static int btrfs_freeze(struct super_block *sb)
1756 {
1757 	struct btrfs_trans_handle *trans;
1758 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1759 
1760 	trans = btrfs_attach_transaction_barrier(root);
1761 	if (IS_ERR(trans)) {
1762 		/* no transaction, don't bother */
1763 		if (PTR_ERR(trans) == -ENOENT)
1764 			return 0;
1765 		return PTR_ERR(trans);
1766 	}
1767 	return btrfs_commit_transaction(trans, root);
1768 }
1769 
1770 static int btrfs_unfreeze(struct super_block *sb)
1771 {
1772 	return 0;
1773 }
1774 
1775 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1776 {
1777 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1778 	struct btrfs_fs_devices *cur_devices;
1779 	struct btrfs_device *dev, *first_dev = NULL;
1780 	struct list_head *head;
1781 	struct rcu_string *name;
1782 
1783 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1784 	cur_devices = fs_info->fs_devices;
1785 	while (cur_devices) {
1786 		head = &cur_devices->devices;
1787 		list_for_each_entry(dev, head, dev_list) {
1788 			if (dev->missing)
1789 				continue;
1790 			if (!first_dev || dev->devid < first_dev->devid)
1791 				first_dev = dev;
1792 		}
1793 		cur_devices = cur_devices->seed;
1794 	}
1795 
1796 	if (first_dev) {
1797 		rcu_read_lock();
1798 		name = rcu_dereference(first_dev->name);
1799 		seq_escape(m, name->str, " \t\n\\");
1800 		rcu_read_unlock();
1801 	} else {
1802 		WARN_ON(1);
1803 	}
1804 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1805 	return 0;
1806 }
1807 
1808 static const struct super_operations btrfs_super_ops = {
1809 	.drop_inode	= btrfs_drop_inode,
1810 	.evict_inode	= btrfs_evict_inode,
1811 	.put_super	= btrfs_put_super,
1812 	.sync_fs	= btrfs_sync_fs,
1813 	.show_options	= btrfs_show_options,
1814 	.show_devname	= btrfs_show_devname,
1815 	.write_inode	= btrfs_write_inode,
1816 	.alloc_inode	= btrfs_alloc_inode,
1817 	.destroy_inode	= btrfs_destroy_inode,
1818 	.statfs		= btrfs_statfs,
1819 	.remount_fs	= btrfs_remount,
1820 	.freeze_fs	= btrfs_freeze,
1821 	.unfreeze_fs	= btrfs_unfreeze,
1822 };
1823 
1824 static const struct file_operations btrfs_ctl_fops = {
1825 	.unlocked_ioctl	 = btrfs_control_ioctl,
1826 	.compat_ioctl = btrfs_control_ioctl,
1827 	.owner	 = THIS_MODULE,
1828 	.llseek = noop_llseek,
1829 };
1830 
1831 static struct miscdevice btrfs_misc = {
1832 	.minor		= BTRFS_MINOR,
1833 	.name		= "btrfs-control",
1834 	.fops		= &btrfs_ctl_fops
1835 };
1836 
1837 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1838 MODULE_ALIAS("devname:btrfs-control");
1839 
1840 static int btrfs_interface_init(void)
1841 {
1842 	return misc_register(&btrfs_misc);
1843 }
1844 
1845 static void btrfs_interface_exit(void)
1846 {
1847 	if (misc_deregister(&btrfs_misc) < 0)
1848 		printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1849 }
1850 
1851 static void btrfs_print_info(void)
1852 {
1853 	printk(KERN_INFO "Btrfs loaded"
1854 #ifdef CONFIG_BTRFS_DEBUG
1855 			", debug=on"
1856 #endif
1857 #ifdef CONFIG_BTRFS_ASSERT
1858 			", assert=on"
1859 #endif
1860 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1861 			", integrity-checker=on"
1862 #endif
1863 			"\n");
1864 }
1865 
1866 static int btrfs_run_sanity_tests(void)
1867 {
1868 	int ret;
1869 
1870 	ret = btrfs_init_test_fs();
1871 	if (ret)
1872 		return ret;
1873 
1874 	ret = btrfs_test_free_space_cache();
1875 	if (ret)
1876 		goto out;
1877 	ret = btrfs_test_extent_buffer_operations();
1878 	if (ret)
1879 		goto out;
1880 	ret = btrfs_test_extent_io();
1881 	if (ret)
1882 		goto out;
1883 	ret = btrfs_test_inodes();
1884 out:
1885 	btrfs_destroy_test_fs();
1886 	return ret;
1887 }
1888 
1889 static int __init init_btrfs_fs(void)
1890 {
1891 	int err;
1892 
1893 	err = btrfs_hash_init();
1894 	if (err)
1895 		return err;
1896 
1897 	btrfs_props_init();
1898 
1899 	err = btrfs_init_sysfs();
1900 	if (err)
1901 		goto free_hash;
1902 
1903 	btrfs_init_compress();
1904 
1905 	err = btrfs_init_cachep();
1906 	if (err)
1907 		goto free_compress;
1908 
1909 	err = extent_io_init();
1910 	if (err)
1911 		goto free_cachep;
1912 
1913 	err = extent_map_init();
1914 	if (err)
1915 		goto free_extent_io;
1916 
1917 	err = ordered_data_init();
1918 	if (err)
1919 		goto free_extent_map;
1920 
1921 	err = btrfs_delayed_inode_init();
1922 	if (err)
1923 		goto free_ordered_data;
1924 
1925 	err = btrfs_auto_defrag_init();
1926 	if (err)
1927 		goto free_delayed_inode;
1928 
1929 	err = btrfs_delayed_ref_init();
1930 	if (err)
1931 		goto free_auto_defrag;
1932 
1933 	err = btrfs_prelim_ref_init();
1934 	if (err)
1935 		goto free_prelim_ref;
1936 
1937 	err = btrfs_interface_init();
1938 	if (err)
1939 		goto free_delayed_ref;
1940 
1941 	btrfs_init_lockdep();
1942 
1943 	btrfs_print_info();
1944 
1945 	err = btrfs_run_sanity_tests();
1946 	if (err)
1947 		goto unregister_ioctl;
1948 
1949 	err = register_filesystem(&btrfs_fs_type);
1950 	if (err)
1951 		goto unregister_ioctl;
1952 
1953 	return 0;
1954 
1955 unregister_ioctl:
1956 	btrfs_interface_exit();
1957 free_prelim_ref:
1958 	btrfs_prelim_ref_exit();
1959 free_delayed_ref:
1960 	btrfs_delayed_ref_exit();
1961 free_auto_defrag:
1962 	btrfs_auto_defrag_exit();
1963 free_delayed_inode:
1964 	btrfs_delayed_inode_exit();
1965 free_ordered_data:
1966 	ordered_data_exit();
1967 free_extent_map:
1968 	extent_map_exit();
1969 free_extent_io:
1970 	extent_io_exit();
1971 free_cachep:
1972 	btrfs_destroy_cachep();
1973 free_compress:
1974 	btrfs_exit_compress();
1975 	btrfs_exit_sysfs();
1976 free_hash:
1977 	btrfs_hash_exit();
1978 	return err;
1979 }
1980 
1981 static void __exit exit_btrfs_fs(void)
1982 {
1983 	btrfs_destroy_cachep();
1984 	btrfs_delayed_ref_exit();
1985 	btrfs_auto_defrag_exit();
1986 	btrfs_delayed_inode_exit();
1987 	btrfs_prelim_ref_exit();
1988 	ordered_data_exit();
1989 	extent_map_exit();
1990 	extent_io_exit();
1991 	btrfs_interface_exit();
1992 	unregister_filesystem(&btrfs_fs_type);
1993 	btrfs_exit_sysfs();
1994 	btrfs_cleanup_fs_uuids();
1995 	btrfs_exit_compress();
1996 	btrfs_hash_exit();
1997 }
1998 
1999 module_init(init_btrfs_fs)
2000 module_exit(exit_btrfs_fs)
2001 
2002 MODULE_LICENSE("GPL");
2003