xref: /openbmc/linux/fs/btrfs/super.c (revision 36bccb11)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70 
71 static const char *btrfs_decode_error(int errno)
72 {
73 	char *errstr = "unknown";
74 
75 	switch (errno) {
76 	case -EIO:
77 		errstr = "IO failure";
78 		break;
79 	case -ENOMEM:
80 		errstr = "Out of memory";
81 		break;
82 	case -EROFS:
83 		errstr = "Readonly filesystem";
84 		break;
85 	case -EEXIST:
86 		errstr = "Object already exists";
87 		break;
88 	case -ENOSPC:
89 		errstr = "No space left";
90 		break;
91 	case -ENOENT:
92 		errstr = "No such entry";
93 		break;
94 	}
95 
96 	return errstr;
97 }
98 
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 	/*
102 	 * today we only save the error info into ram.  Long term we'll
103 	 * also send it down to the disk
104 	 */
105 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106 }
107 
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 	struct super_block *sb = fs_info->sb;
112 
113 	if (sb->s_flags & MS_RDONLY)
114 		return;
115 
116 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 		sb->s_flags |= MS_RDONLY;
118 		btrfs_info(fs_info, "forced readonly");
119 		/*
120 		 * Note that a running device replace operation is not
121 		 * canceled here although there is no way to update
122 		 * the progress. It would add the risk of a deadlock,
123 		 * therefore the canceling is ommited. The only penalty
124 		 * is that some I/O remains active until the procedure
125 		 * completes. The next time when the filesystem is
126 		 * mounted writeable again, the device replace
127 		 * operation continues.
128 		 */
129 	}
130 }
131 
132 #ifdef CONFIG_PRINTK
133 /*
134  * __btrfs_std_error decodes expected errors from the caller and
135  * invokes the approciate error response.
136  */
137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138 		       unsigned int line, int errno, const char *fmt, ...)
139 {
140 	struct super_block *sb = fs_info->sb;
141 	const char *errstr;
142 
143 	/*
144 	 * Special case: if the error is EROFS, and we're already
145 	 * under MS_RDONLY, then it is safe here.
146 	 */
147 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148   		return;
149 
150 	errstr = btrfs_decode_error(errno);
151 	if (fmt) {
152 		struct va_format vaf;
153 		va_list args;
154 
155 		va_start(args, fmt);
156 		vaf.fmt = fmt;
157 		vaf.va = &args;
158 
159 		printk(KERN_CRIT
160 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161 			sb->s_id, function, line, errno, errstr, &vaf);
162 		va_end(args);
163 	} else {
164 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165 			sb->s_id, function, line, errno, errstr);
166 	}
167 
168 	/* Don't go through full error handling during mount */
169 	save_error_info(fs_info);
170 	if (sb->s_flags & MS_BORN)
171 		btrfs_handle_error(fs_info);
172 }
173 
174 static const char * const logtypes[] = {
175 	"emergency",
176 	"alert",
177 	"critical",
178 	"error",
179 	"warning",
180 	"notice",
181 	"info",
182 	"debug",
183 };
184 
185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186 {
187 	struct super_block *sb = fs_info->sb;
188 	char lvl[4];
189 	struct va_format vaf;
190 	va_list args;
191 	const char *type = logtypes[4];
192 	int kern_level;
193 
194 	va_start(args, fmt);
195 
196 	kern_level = printk_get_level(fmt);
197 	if (kern_level) {
198 		size_t size = printk_skip_level(fmt) - fmt;
199 		memcpy(lvl, fmt,  size);
200 		lvl[size] = '\0';
201 		fmt += size;
202 		type = logtypes[kern_level - '0'];
203 	} else
204 		*lvl = '\0';
205 
206 	vaf.fmt = fmt;
207 	vaf.va = &args;
208 
209 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210 
211 	va_end(args);
212 }
213 
214 #else
215 
216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217 		       unsigned int line, int errno, const char *fmt, ...)
218 {
219 	struct super_block *sb = fs_info->sb;
220 
221 	/*
222 	 * Special case: if the error is EROFS, and we're already
223 	 * under MS_RDONLY, then it is safe here.
224 	 */
225 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226 		return;
227 
228 	/* Don't go through full error handling during mount */
229 	if (sb->s_flags & MS_BORN) {
230 		save_error_info(fs_info);
231 		btrfs_handle_error(fs_info);
232 	}
233 }
234 #endif
235 
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250 			       struct btrfs_root *root, const char *function,
251 			       unsigned int line, int errno)
252 {
253 	/*
254 	 * Report first abort since mount
255 	 */
256 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257 				&root->fs_info->fs_state)) {
258 		WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259 				errno);
260 	}
261 	trans->aborted = errno;
262 	/* Nothing used. The other threads that have joined this
263 	 * transaction may be able to continue. */
264 	if (!trans->blocks_used) {
265 		const char *errstr;
266 
267 		errstr = btrfs_decode_error(errno);
268 		btrfs_warn(root->fs_info,
269 		           "%s:%d: Aborting unused transaction(%s).",
270 		           function, line, errstr);
271 		return;
272 	}
273 	ACCESS_ONCE(trans->transaction->aborted) = errno;
274 	/* Wake up anybody who may be waiting on this transaction */
275 	wake_up(&root->fs_info->transaction_wait);
276 	wake_up(&root->fs_info->transaction_blocked_wait);
277 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
278 }
279 /*
280  * __btrfs_panic decodes unexpected, fatal errors from the caller,
281  * issues an alert, and either panics or BUGs, depending on mount options.
282  */
283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284 		   unsigned int line, int errno, const char *fmt, ...)
285 {
286 	char *s_id = "<unknown>";
287 	const char *errstr;
288 	struct va_format vaf = { .fmt = fmt };
289 	va_list args;
290 
291 	if (fs_info)
292 		s_id = fs_info->sb->s_id;
293 
294 	va_start(args, fmt);
295 	vaf.va = &args;
296 
297 	errstr = btrfs_decode_error(errno);
298 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300 			s_id, function, line, &vaf, errno, errstr);
301 
302 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303 		   function, line, &vaf, errno, errstr);
304 	va_end(args);
305 	/* Caller calls BUG() */
306 }
307 
308 static void btrfs_put_super(struct super_block *sb)
309 {
310 	(void)close_ctree(btrfs_sb(sb)->tree_root);
311 	/* FIXME: need to fix VFS to return error? */
312 	/* AV: return it _where_?  ->put_super() can be triggered by any number
313 	 * of async events, up to and including delivery of SIGKILL to the
314 	 * last process that kept it busy.  Or segfault in the aforementioned
315 	 * process...  Whom would you report that to?
316 	 */
317 }
318 
319 enum {
320 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
321 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
322 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
323 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
324 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
325 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
326 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
327 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
328 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
329 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
330 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
331 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
332 	Opt_datasum, Opt_treelog, Opt_noinode_cache,
333 	Opt_err,
334 };
335 
336 static match_table_t tokens = {
337 	{Opt_degraded, "degraded"},
338 	{Opt_subvol, "subvol=%s"},
339 	{Opt_subvolid, "subvolid=%s"},
340 	{Opt_device, "device=%s"},
341 	{Opt_nodatasum, "nodatasum"},
342 	{Opt_datasum, "datasum"},
343 	{Opt_nodatacow, "nodatacow"},
344 	{Opt_datacow, "datacow"},
345 	{Opt_nobarrier, "nobarrier"},
346 	{Opt_barrier, "barrier"},
347 	{Opt_max_inline, "max_inline=%s"},
348 	{Opt_alloc_start, "alloc_start=%s"},
349 	{Opt_thread_pool, "thread_pool=%d"},
350 	{Opt_compress, "compress"},
351 	{Opt_compress_type, "compress=%s"},
352 	{Opt_compress_force, "compress-force"},
353 	{Opt_compress_force_type, "compress-force=%s"},
354 	{Opt_ssd, "ssd"},
355 	{Opt_ssd_spread, "ssd_spread"},
356 	{Opt_nossd, "nossd"},
357 	{Opt_acl, "acl"},
358 	{Opt_noacl, "noacl"},
359 	{Opt_notreelog, "notreelog"},
360 	{Opt_treelog, "treelog"},
361 	{Opt_flushoncommit, "flushoncommit"},
362 	{Opt_noflushoncommit, "noflushoncommit"},
363 	{Opt_ratio, "metadata_ratio=%d"},
364 	{Opt_discard, "discard"},
365 	{Opt_nodiscard, "nodiscard"},
366 	{Opt_space_cache, "space_cache"},
367 	{Opt_clear_cache, "clear_cache"},
368 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369 	{Opt_enospc_debug, "enospc_debug"},
370 	{Opt_noenospc_debug, "noenospc_debug"},
371 	{Opt_subvolrootid, "subvolrootid=%d"},
372 	{Opt_defrag, "autodefrag"},
373 	{Opt_nodefrag, "noautodefrag"},
374 	{Opt_inode_cache, "inode_cache"},
375 	{Opt_noinode_cache, "noinode_cache"},
376 	{Opt_no_space_cache, "nospace_cache"},
377 	{Opt_recovery, "recovery"},
378 	{Opt_skip_balance, "skip_balance"},
379 	{Opt_check_integrity, "check_int"},
380 	{Opt_check_integrity_including_extent_data, "check_int_data"},
381 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 	{Opt_fatal_errors, "fatal_errors=%s"},
384 	{Opt_commit_interval, "commit=%d"},
385 	{Opt_err, NULL},
386 };
387 
388 /*
389  * Regular mount options parser.  Everything that is needed only when
390  * reading in a new superblock is parsed here.
391  * XXX JDM: This needs to be cleaned up for remount.
392  */
393 int btrfs_parse_options(struct btrfs_root *root, char *options)
394 {
395 	struct btrfs_fs_info *info = root->fs_info;
396 	substring_t args[MAX_OPT_ARGS];
397 	char *p, *num, *orig = NULL;
398 	u64 cache_gen;
399 	int intarg;
400 	int ret = 0;
401 	char *compress_type;
402 	bool compress_force = false;
403 	bool compress = false;
404 
405 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
406 	if (cache_gen)
407 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
408 
409 	if (!options)
410 		goto out;
411 
412 	/*
413 	 * strsep changes the string, duplicate it because parse_options
414 	 * gets called twice
415 	 */
416 	options = kstrdup(options, GFP_NOFS);
417 	if (!options)
418 		return -ENOMEM;
419 
420 	orig = options;
421 
422 	while ((p = strsep(&options, ",")) != NULL) {
423 		int token;
424 		if (!*p)
425 			continue;
426 
427 		token = match_token(p, tokens, args);
428 		switch (token) {
429 		case Opt_degraded:
430 			btrfs_info(root->fs_info, "allowing degraded mounts");
431 			btrfs_set_opt(info->mount_opt, DEGRADED);
432 			break;
433 		case Opt_subvol:
434 		case Opt_subvolid:
435 		case Opt_subvolrootid:
436 		case Opt_device:
437 			/*
438 			 * These are parsed by btrfs_parse_early_options
439 			 * and can be happily ignored here.
440 			 */
441 			break;
442 		case Opt_nodatasum:
443 			btrfs_set_and_info(root, NODATASUM,
444 					   "setting nodatasum");
445 			break;
446 		case Opt_datasum:
447 			if (btrfs_test_opt(root, NODATASUM)) {
448 				if (btrfs_test_opt(root, NODATACOW))
449 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
450 				else
451 					btrfs_info(root->fs_info, "setting datasum");
452 			}
453 			btrfs_clear_opt(info->mount_opt, NODATACOW);
454 			btrfs_clear_opt(info->mount_opt, NODATASUM);
455 			break;
456 		case Opt_nodatacow:
457 			if (!btrfs_test_opt(root, NODATACOW)) {
458 				if (!btrfs_test_opt(root, COMPRESS) ||
459 				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
460 					btrfs_info(root->fs_info,
461 						   "setting nodatacow, compression disabled");
462 				} else {
463 					btrfs_info(root->fs_info, "setting nodatacow");
464 				}
465 			}
466 			btrfs_clear_opt(info->mount_opt, COMPRESS);
467 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
468 			btrfs_set_opt(info->mount_opt, NODATACOW);
469 			btrfs_set_opt(info->mount_opt, NODATASUM);
470 			break;
471 		case Opt_datacow:
472 			btrfs_clear_and_info(root, NODATACOW,
473 					     "setting datacow");
474 			break;
475 		case Opt_compress_force:
476 		case Opt_compress_force_type:
477 			compress_force = true;
478 			/* Fallthrough */
479 		case Opt_compress:
480 		case Opt_compress_type:
481 			compress = true;
482 			if (token == Opt_compress ||
483 			    token == Opt_compress_force ||
484 			    strcmp(args[0].from, "zlib") == 0) {
485 				compress_type = "zlib";
486 				info->compress_type = BTRFS_COMPRESS_ZLIB;
487 				btrfs_set_opt(info->mount_opt, COMPRESS);
488 				btrfs_clear_opt(info->mount_opt, NODATACOW);
489 				btrfs_clear_opt(info->mount_opt, NODATASUM);
490 			} else if (strcmp(args[0].from, "lzo") == 0) {
491 				compress_type = "lzo";
492 				info->compress_type = BTRFS_COMPRESS_LZO;
493 				btrfs_set_opt(info->mount_opt, COMPRESS);
494 				btrfs_clear_opt(info->mount_opt, NODATACOW);
495 				btrfs_clear_opt(info->mount_opt, NODATASUM);
496 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
497 			} else if (strncmp(args[0].from, "no", 2) == 0) {
498 				compress_type = "no";
499 				btrfs_clear_opt(info->mount_opt, COMPRESS);
500 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
501 				compress_force = false;
502 			} else {
503 				ret = -EINVAL;
504 				goto out;
505 			}
506 
507 			if (compress_force) {
508 				btrfs_set_and_info(root, FORCE_COMPRESS,
509 						   "force %s compression",
510 						   compress_type);
511 			} else if (compress) {
512 				if (!btrfs_test_opt(root, COMPRESS))
513 					btrfs_info(root->fs_info,
514 						   "btrfs: use %s compression\n",
515 						   compress_type);
516 			}
517 			break;
518 		case Opt_ssd:
519 			btrfs_set_and_info(root, SSD,
520 					   "use ssd allocation scheme");
521 			break;
522 		case Opt_ssd_spread:
523 			btrfs_set_and_info(root, SSD_SPREAD,
524 					   "use spread ssd allocation scheme");
525 			break;
526 		case Opt_nossd:
527 			btrfs_clear_and_info(root, NOSSD,
528 					     "not using ssd allocation scheme");
529 			btrfs_clear_opt(info->mount_opt, SSD);
530 			break;
531 		case Opt_barrier:
532 			btrfs_clear_and_info(root, NOBARRIER,
533 					     "turning on barriers");
534 			break;
535 		case Opt_nobarrier:
536 			btrfs_set_and_info(root, NOBARRIER,
537 					   "turning off barriers");
538 			break;
539 		case Opt_thread_pool:
540 			ret = match_int(&args[0], &intarg);
541 			if (ret) {
542 				goto out;
543 			} else if (intarg > 0) {
544 				info->thread_pool_size = intarg;
545 			} else {
546 				ret = -EINVAL;
547 				goto out;
548 			}
549 			break;
550 		case Opt_max_inline:
551 			num = match_strdup(&args[0]);
552 			if (num) {
553 				info->max_inline = memparse(num, NULL);
554 				kfree(num);
555 
556 				if (info->max_inline) {
557 					info->max_inline = min_t(u64,
558 						info->max_inline,
559 						root->sectorsize);
560 				}
561 				btrfs_info(root->fs_info, "max_inline at %llu",
562 					info->max_inline);
563 			} else {
564 				ret = -ENOMEM;
565 				goto out;
566 			}
567 			break;
568 		case Opt_alloc_start:
569 			num = match_strdup(&args[0]);
570 			if (num) {
571 				mutex_lock(&info->chunk_mutex);
572 				info->alloc_start = memparse(num, NULL);
573 				mutex_unlock(&info->chunk_mutex);
574 				kfree(num);
575 				btrfs_info(root->fs_info, "allocations start at %llu",
576 					info->alloc_start);
577 			} else {
578 				ret = -ENOMEM;
579 				goto out;
580 			}
581 			break;
582 		case Opt_acl:
583 			root->fs_info->sb->s_flags |= MS_POSIXACL;
584 			break;
585 		case Opt_noacl:
586 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
587 			break;
588 		case Opt_notreelog:
589 			btrfs_set_and_info(root, NOTREELOG,
590 					   "disabling tree log");
591 			break;
592 		case Opt_treelog:
593 			btrfs_clear_and_info(root, NOTREELOG,
594 					     "enabling tree log");
595 			break;
596 		case Opt_flushoncommit:
597 			btrfs_set_and_info(root, FLUSHONCOMMIT,
598 					   "turning on flush-on-commit");
599 			break;
600 		case Opt_noflushoncommit:
601 			btrfs_clear_and_info(root, FLUSHONCOMMIT,
602 					     "turning off flush-on-commit");
603 			break;
604 		case Opt_ratio:
605 			ret = match_int(&args[0], &intarg);
606 			if (ret) {
607 				goto out;
608 			} else if (intarg >= 0) {
609 				info->metadata_ratio = intarg;
610 				btrfs_info(root->fs_info, "metadata ratio %d",
611 				       info->metadata_ratio);
612 			} else {
613 				ret = -EINVAL;
614 				goto out;
615 			}
616 			break;
617 		case Opt_discard:
618 			btrfs_set_and_info(root, DISCARD,
619 					   "turning on discard");
620 			break;
621 		case Opt_nodiscard:
622 			btrfs_clear_and_info(root, DISCARD,
623 					     "turning off discard");
624 			break;
625 		case Opt_space_cache:
626 			btrfs_set_and_info(root, SPACE_CACHE,
627 					   "enabling disk space caching");
628 			break;
629 		case Opt_rescan_uuid_tree:
630 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
631 			break;
632 		case Opt_no_space_cache:
633 			btrfs_clear_and_info(root, SPACE_CACHE,
634 					     "disabling disk space caching");
635 			break;
636 		case Opt_inode_cache:
637 			btrfs_set_and_info(root, CHANGE_INODE_CACHE,
638 					   "enabling inode map caching");
639 			break;
640 		case Opt_noinode_cache:
641 			btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
642 					     "disabling inode map caching");
643 			break;
644 		case Opt_clear_cache:
645 			btrfs_set_and_info(root, CLEAR_CACHE,
646 					   "force clearing of disk cache");
647 			break;
648 		case Opt_user_subvol_rm_allowed:
649 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
650 			break;
651 		case Opt_enospc_debug:
652 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
653 			break;
654 		case Opt_noenospc_debug:
655 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
656 			break;
657 		case Opt_defrag:
658 			btrfs_set_and_info(root, AUTO_DEFRAG,
659 					   "enabling auto defrag");
660 			break;
661 		case Opt_nodefrag:
662 			btrfs_clear_and_info(root, AUTO_DEFRAG,
663 					     "disabling auto defrag");
664 			break;
665 		case Opt_recovery:
666 			btrfs_info(root->fs_info, "enabling auto recovery");
667 			btrfs_set_opt(info->mount_opt, RECOVERY);
668 			break;
669 		case Opt_skip_balance:
670 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
671 			break;
672 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
673 		case Opt_check_integrity_including_extent_data:
674 			btrfs_info(root->fs_info,
675 				   "enabling check integrity including extent data");
676 			btrfs_set_opt(info->mount_opt,
677 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
678 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
679 			break;
680 		case Opt_check_integrity:
681 			btrfs_info(root->fs_info, "enabling check integrity");
682 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
683 			break;
684 		case Opt_check_integrity_print_mask:
685 			ret = match_int(&args[0], &intarg);
686 			if (ret) {
687 				goto out;
688 			} else if (intarg >= 0) {
689 				info->check_integrity_print_mask = intarg;
690 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
691 				       info->check_integrity_print_mask);
692 			} else {
693 				ret = -EINVAL;
694 				goto out;
695 			}
696 			break;
697 #else
698 		case Opt_check_integrity_including_extent_data:
699 		case Opt_check_integrity:
700 		case Opt_check_integrity_print_mask:
701 			btrfs_err(root->fs_info,
702 				"support for check_integrity* not compiled in!");
703 			ret = -EINVAL;
704 			goto out;
705 #endif
706 		case Opt_fatal_errors:
707 			if (strcmp(args[0].from, "panic") == 0)
708 				btrfs_set_opt(info->mount_opt,
709 					      PANIC_ON_FATAL_ERROR);
710 			else if (strcmp(args[0].from, "bug") == 0)
711 				btrfs_clear_opt(info->mount_opt,
712 					      PANIC_ON_FATAL_ERROR);
713 			else {
714 				ret = -EINVAL;
715 				goto out;
716 			}
717 			break;
718 		case Opt_commit_interval:
719 			intarg = 0;
720 			ret = match_int(&args[0], &intarg);
721 			if (ret < 0) {
722 				btrfs_err(root->fs_info, "invalid commit interval");
723 				ret = -EINVAL;
724 				goto out;
725 			}
726 			if (intarg > 0) {
727 				if (intarg > 300) {
728 					btrfs_warn(root->fs_info, "excessive commit interval %d",
729 							intarg);
730 				}
731 				info->commit_interval = intarg;
732 			} else {
733 				btrfs_info(root->fs_info, "using default commit interval %ds",
734 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
735 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
736 			}
737 			break;
738 		case Opt_err:
739 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
740 			ret = -EINVAL;
741 			goto out;
742 		default:
743 			break;
744 		}
745 	}
746 out:
747 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
748 		btrfs_info(root->fs_info, "disk space caching is enabled");
749 	kfree(orig);
750 	return ret;
751 }
752 
753 /*
754  * Parse mount options that are required early in the mount process.
755  *
756  * All other options will be parsed on much later in the mount process and
757  * only when we need to allocate a new super block.
758  */
759 static int btrfs_parse_early_options(const char *options, fmode_t flags,
760 		void *holder, char **subvol_name, u64 *subvol_objectid,
761 		struct btrfs_fs_devices **fs_devices)
762 {
763 	substring_t args[MAX_OPT_ARGS];
764 	char *device_name, *opts, *orig, *p;
765 	char *num = NULL;
766 	int error = 0;
767 
768 	if (!options)
769 		return 0;
770 
771 	/*
772 	 * strsep changes the string, duplicate it because parse_options
773 	 * gets called twice
774 	 */
775 	opts = kstrdup(options, GFP_KERNEL);
776 	if (!opts)
777 		return -ENOMEM;
778 	orig = opts;
779 
780 	while ((p = strsep(&opts, ",")) != NULL) {
781 		int token;
782 		if (!*p)
783 			continue;
784 
785 		token = match_token(p, tokens, args);
786 		switch (token) {
787 		case Opt_subvol:
788 			kfree(*subvol_name);
789 			*subvol_name = match_strdup(&args[0]);
790 			if (!*subvol_name) {
791 				error = -ENOMEM;
792 				goto out;
793 			}
794 			break;
795 		case Opt_subvolid:
796 			num = match_strdup(&args[0]);
797 			if (num) {
798 				*subvol_objectid = memparse(num, NULL);
799 				kfree(num);
800 				/* we want the original fs_tree */
801 				if (!*subvol_objectid)
802 					*subvol_objectid =
803 						BTRFS_FS_TREE_OBJECTID;
804 			} else {
805 				error = -EINVAL;
806 				goto out;
807 			}
808 			break;
809 		case Opt_subvolrootid:
810 			printk(KERN_WARNING
811 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
812 				"no effect\n");
813 			break;
814 		case Opt_device:
815 			device_name = match_strdup(&args[0]);
816 			if (!device_name) {
817 				error = -ENOMEM;
818 				goto out;
819 			}
820 			error = btrfs_scan_one_device(device_name,
821 					flags, holder, fs_devices);
822 			kfree(device_name);
823 			if (error)
824 				goto out;
825 			break;
826 		default:
827 			break;
828 		}
829 	}
830 
831 out:
832 	kfree(orig);
833 	return error;
834 }
835 
836 static struct dentry *get_default_root(struct super_block *sb,
837 				       u64 subvol_objectid)
838 {
839 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
840 	struct btrfs_root *root = fs_info->tree_root;
841 	struct btrfs_root *new_root;
842 	struct btrfs_dir_item *di;
843 	struct btrfs_path *path;
844 	struct btrfs_key location;
845 	struct inode *inode;
846 	struct dentry *dentry;
847 	u64 dir_id;
848 	int new = 0;
849 
850 	/*
851 	 * We have a specific subvol we want to mount, just setup location and
852 	 * go look up the root.
853 	 */
854 	if (subvol_objectid) {
855 		location.objectid = subvol_objectid;
856 		location.type = BTRFS_ROOT_ITEM_KEY;
857 		location.offset = (u64)-1;
858 		goto find_root;
859 	}
860 
861 	path = btrfs_alloc_path();
862 	if (!path)
863 		return ERR_PTR(-ENOMEM);
864 	path->leave_spinning = 1;
865 
866 	/*
867 	 * Find the "default" dir item which points to the root item that we
868 	 * will mount by default if we haven't been given a specific subvolume
869 	 * to mount.
870 	 */
871 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
872 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
873 	if (IS_ERR(di)) {
874 		btrfs_free_path(path);
875 		return ERR_CAST(di);
876 	}
877 	if (!di) {
878 		/*
879 		 * Ok the default dir item isn't there.  This is weird since
880 		 * it's always been there, but don't freak out, just try and
881 		 * mount to root most subvolume.
882 		 */
883 		btrfs_free_path(path);
884 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
885 		new_root = fs_info->fs_root;
886 		goto setup_root;
887 	}
888 
889 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
890 	btrfs_free_path(path);
891 
892 find_root:
893 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
894 	if (IS_ERR(new_root))
895 		return ERR_CAST(new_root);
896 
897 	dir_id = btrfs_root_dirid(&new_root->root_item);
898 setup_root:
899 	location.objectid = dir_id;
900 	location.type = BTRFS_INODE_ITEM_KEY;
901 	location.offset = 0;
902 
903 	inode = btrfs_iget(sb, &location, new_root, &new);
904 	if (IS_ERR(inode))
905 		return ERR_CAST(inode);
906 
907 	/*
908 	 * If we're just mounting the root most subvol put the inode and return
909 	 * a reference to the dentry.  We will have already gotten a reference
910 	 * to the inode in btrfs_fill_super so we're good to go.
911 	 */
912 	if (!new && sb->s_root->d_inode == inode) {
913 		iput(inode);
914 		return dget(sb->s_root);
915 	}
916 
917 	dentry = d_obtain_alias(inode);
918 	if (!IS_ERR(dentry)) {
919 		spin_lock(&dentry->d_lock);
920 		dentry->d_flags &= ~DCACHE_DISCONNECTED;
921 		spin_unlock(&dentry->d_lock);
922 	}
923 	return dentry;
924 }
925 
926 static int btrfs_fill_super(struct super_block *sb,
927 			    struct btrfs_fs_devices *fs_devices,
928 			    void *data, int silent)
929 {
930 	struct inode *inode;
931 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
932 	struct btrfs_key key;
933 	int err;
934 
935 	sb->s_maxbytes = MAX_LFS_FILESIZE;
936 	sb->s_magic = BTRFS_SUPER_MAGIC;
937 	sb->s_op = &btrfs_super_ops;
938 	sb->s_d_op = &btrfs_dentry_operations;
939 	sb->s_export_op = &btrfs_export_ops;
940 	sb->s_xattr = btrfs_xattr_handlers;
941 	sb->s_time_gran = 1;
942 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
943 	sb->s_flags |= MS_POSIXACL;
944 #endif
945 	sb->s_flags |= MS_I_VERSION;
946 	err = open_ctree(sb, fs_devices, (char *)data);
947 	if (err) {
948 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
949 		return err;
950 	}
951 
952 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
953 	key.type = BTRFS_INODE_ITEM_KEY;
954 	key.offset = 0;
955 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
956 	if (IS_ERR(inode)) {
957 		err = PTR_ERR(inode);
958 		goto fail_close;
959 	}
960 
961 	sb->s_root = d_make_root(inode);
962 	if (!sb->s_root) {
963 		err = -ENOMEM;
964 		goto fail_close;
965 	}
966 
967 	save_mount_options(sb, data);
968 	cleancache_init_fs(sb);
969 	sb->s_flags |= MS_ACTIVE;
970 	return 0;
971 
972 fail_close:
973 	close_ctree(fs_info->tree_root);
974 	return err;
975 }
976 
977 int btrfs_sync_fs(struct super_block *sb, int wait)
978 {
979 	struct btrfs_trans_handle *trans;
980 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
981 	struct btrfs_root *root = fs_info->tree_root;
982 
983 	trace_btrfs_sync_fs(wait);
984 
985 	if (!wait) {
986 		filemap_flush(fs_info->btree_inode->i_mapping);
987 		return 0;
988 	}
989 
990 	btrfs_wait_ordered_roots(fs_info, -1);
991 
992 	trans = btrfs_attach_transaction_barrier(root);
993 	if (IS_ERR(trans)) {
994 		/* no transaction, don't bother */
995 		if (PTR_ERR(trans) == -ENOENT)
996 			return 0;
997 		return PTR_ERR(trans);
998 	}
999 	return btrfs_commit_transaction(trans, root);
1000 }
1001 
1002 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1003 {
1004 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1005 	struct btrfs_root *root = info->tree_root;
1006 	char *compress_type;
1007 
1008 	if (btrfs_test_opt(root, DEGRADED))
1009 		seq_puts(seq, ",degraded");
1010 	if (btrfs_test_opt(root, NODATASUM))
1011 		seq_puts(seq, ",nodatasum");
1012 	if (btrfs_test_opt(root, NODATACOW))
1013 		seq_puts(seq, ",nodatacow");
1014 	if (btrfs_test_opt(root, NOBARRIER))
1015 		seq_puts(seq, ",nobarrier");
1016 	if (info->max_inline != 8192 * 1024)
1017 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1018 	if (info->alloc_start != 0)
1019 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1020 	if (info->thread_pool_size !=  min_t(unsigned long,
1021 					     num_online_cpus() + 2, 8))
1022 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1023 	if (btrfs_test_opt(root, COMPRESS)) {
1024 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1025 			compress_type = "zlib";
1026 		else
1027 			compress_type = "lzo";
1028 		if (btrfs_test_opt(root, FORCE_COMPRESS))
1029 			seq_printf(seq, ",compress-force=%s", compress_type);
1030 		else
1031 			seq_printf(seq, ",compress=%s", compress_type);
1032 	}
1033 	if (btrfs_test_opt(root, NOSSD))
1034 		seq_puts(seq, ",nossd");
1035 	if (btrfs_test_opt(root, SSD_SPREAD))
1036 		seq_puts(seq, ",ssd_spread");
1037 	else if (btrfs_test_opt(root, SSD))
1038 		seq_puts(seq, ",ssd");
1039 	if (btrfs_test_opt(root, NOTREELOG))
1040 		seq_puts(seq, ",notreelog");
1041 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1042 		seq_puts(seq, ",flushoncommit");
1043 	if (btrfs_test_opt(root, DISCARD))
1044 		seq_puts(seq, ",discard");
1045 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1046 		seq_puts(seq, ",noacl");
1047 	if (btrfs_test_opt(root, SPACE_CACHE))
1048 		seq_puts(seq, ",space_cache");
1049 	else
1050 		seq_puts(seq, ",nospace_cache");
1051 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1052 		seq_puts(seq, ",rescan_uuid_tree");
1053 	if (btrfs_test_opt(root, CLEAR_CACHE))
1054 		seq_puts(seq, ",clear_cache");
1055 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1056 		seq_puts(seq, ",user_subvol_rm_allowed");
1057 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1058 		seq_puts(seq, ",enospc_debug");
1059 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1060 		seq_puts(seq, ",autodefrag");
1061 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1062 		seq_puts(seq, ",inode_cache");
1063 	if (btrfs_test_opt(root, SKIP_BALANCE))
1064 		seq_puts(seq, ",skip_balance");
1065 	if (btrfs_test_opt(root, RECOVERY))
1066 		seq_puts(seq, ",recovery");
1067 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1068 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1069 		seq_puts(seq, ",check_int_data");
1070 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1071 		seq_puts(seq, ",check_int");
1072 	if (info->check_integrity_print_mask)
1073 		seq_printf(seq, ",check_int_print_mask=%d",
1074 				info->check_integrity_print_mask);
1075 #endif
1076 	if (info->metadata_ratio)
1077 		seq_printf(seq, ",metadata_ratio=%d",
1078 				info->metadata_ratio);
1079 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1080 		seq_puts(seq, ",fatal_errors=panic");
1081 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1082 		seq_printf(seq, ",commit=%d", info->commit_interval);
1083 	return 0;
1084 }
1085 
1086 static int btrfs_test_super(struct super_block *s, void *data)
1087 {
1088 	struct btrfs_fs_info *p = data;
1089 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1090 
1091 	return fs_info->fs_devices == p->fs_devices;
1092 }
1093 
1094 static int btrfs_set_super(struct super_block *s, void *data)
1095 {
1096 	int err = set_anon_super(s, data);
1097 	if (!err)
1098 		s->s_fs_info = data;
1099 	return err;
1100 }
1101 
1102 /*
1103  * subvolumes are identified by ino 256
1104  */
1105 static inline int is_subvolume_inode(struct inode *inode)
1106 {
1107 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1108 		return 1;
1109 	return 0;
1110 }
1111 
1112 /*
1113  * This will strip out the subvol=%s argument for an argument string and add
1114  * subvolid=0 to make sure we get the actual tree root for path walking to the
1115  * subvol we want.
1116  */
1117 static char *setup_root_args(char *args)
1118 {
1119 	unsigned len = strlen(args) + 2 + 1;
1120 	char *src, *dst, *buf;
1121 
1122 	/*
1123 	 * We need the same args as before, but with this substitution:
1124 	 * s!subvol=[^,]+!subvolid=0!
1125 	 *
1126 	 * Since the replacement string is up to 2 bytes longer than the
1127 	 * original, allocate strlen(args) + 2 + 1 bytes.
1128 	 */
1129 
1130 	src = strstr(args, "subvol=");
1131 	/* This shouldn't happen, but just in case.. */
1132 	if (!src)
1133 		return NULL;
1134 
1135 	buf = dst = kmalloc(len, GFP_NOFS);
1136 	if (!buf)
1137 		return NULL;
1138 
1139 	/*
1140 	 * If the subvol= arg is not at the start of the string,
1141 	 * copy whatever precedes it into buf.
1142 	 */
1143 	if (src != args) {
1144 		*src++ = '\0';
1145 		strcpy(buf, args);
1146 		dst += strlen(args);
1147 	}
1148 
1149 	strcpy(dst, "subvolid=0");
1150 	dst += strlen("subvolid=0");
1151 
1152 	/*
1153 	 * If there is a "," after the original subvol=... string,
1154 	 * copy that suffix into our buffer.  Otherwise, we're done.
1155 	 */
1156 	src = strchr(src, ',');
1157 	if (src)
1158 		strcpy(dst, src);
1159 
1160 	return buf;
1161 }
1162 
1163 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1164 				   const char *device_name, char *data)
1165 {
1166 	struct dentry *root;
1167 	struct vfsmount *mnt;
1168 	char *newargs;
1169 
1170 	newargs = setup_root_args(data);
1171 	if (!newargs)
1172 		return ERR_PTR(-ENOMEM);
1173 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1174 			     newargs);
1175 
1176 	if (PTR_RET(mnt) == -EBUSY) {
1177 		if (flags & MS_RDONLY) {
1178 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1179 					     newargs);
1180 		} else {
1181 			int r;
1182 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1183 					     newargs);
1184 			if (IS_ERR(mnt)) {
1185 				kfree(newargs);
1186 				return ERR_CAST(mnt);
1187 			}
1188 
1189 			r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1190 			if (r < 0) {
1191 				/* FIXME: release vfsmount mnt ??*/
1192 				kfree(newargs);
1193 				return ERR_PTR(r);
1194 			}
1195 		}
1196 	}
1197 
1198 	kfree(newargs);
1199 
1200 	if (IS_ERR(mnt))
1201 		return ERR_CAST(mnt);
1202 
1203 	root = mount_subtree(mnt, subvol_name);
1204 
1205 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1206 		struct super_block *s = root->d_sb;
1207 		dput(root);
1208 		root = ERR_PTR(-EINVAL);
1209 		deactivate_locked_super(s);
1210 		printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1211 				subvol_name);
1212 	}
1213 
1214 	return root;
1215 }
1216 
1217 /*
1218  * Find a superblock for the given device / mount point.
1219  *
1220  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1221  *	  for multiple device setup.  Make sure to keep it in sync.
1222  */
1223 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1224 		const char *device_name, void *data)
1225 {
1226 	struct block_device *bdev = NULL;
1227 	struct super_block *s;
1228 	struct dentry *root;
1229 	struct btrfs_fs_devices *fs_devices = NULL;
1230 	struct btrfs_fs_info *fs_info = NULL;
1231 	fmode_t mode = FMODE_READ;
1232 	char *subvol_name = NULL;
1233 	u64 subvol_objectid = 0;
1234 	int error = 0;
1235 
1236 	if (!(flags & MS_RDONLY))
1237 		mode |= FMODE_WRITE;
1238 
1239 	error = btrfs_parse_early_options(data, mode, fs_type,
1240 					  &subvol_name, &subvol_objectid,
1241 					  &fs_devices);
1242 	if (error) {
1243 		kfree(subvol_name);
1244 		return ERR_PTR(error);
1245 	}
1246 
1247 	if (subvol_name) {
1248 		root = mount_subvol(subvol_name, flags, device_name, data);
1249 		kfree(subvol_name);
1250 		return root;
1251 	}
1252 
1253 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1254 	if (error)
1255 		return ERR_PTR(error);
1256 
1257 	/*
1258 	 * Setup a dummy root and fs_info for test/set super.  This is because
1259 	 * we don't actually fill this stuff out until open_ctree, but we need
1260 	 * it for searching for existing supers, so this lets us do that and
1261 	 * then open_ctree will properly initialize everything later.
1262 	 */
1263 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1264 	if (!fs_info)
1265 		return ERR_PTR(-ENOMEM);
1266 
1267 	fs_info->fs_devices = fs_devices;
1268 
1269 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1270 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1271 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1272 		error = -ENOMEM;
1273 		goto error_fs_info;
1274 	}
1275 
1276 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1277 	if (error)
1278 		goto error_fs_info;
1279 
1280 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1281 		error = -EACCES;
1282 		goto error_close_devices;
1283 	}
1284 
1285 	bdev = fs_devices->latest_bdev;
1286 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1287 		 fs_info);
1288 	if (IS_ERR(s)) {
1289 		error = PTR_ERR(s);
1290 		goto error_close_devices;
1291 	}
1292 
1293 	if (s->s_root) {
1294 		btrfs_close_devices(fs_devices);
1295 		free_fs_info(fs_info);
1296 		if ((flags ^ s->s_flags) & MS_RDONLY)
1297 			error = -EBUSY;
1298 	} else {
1299 		char b[BDEVNAME_SIZE];
1300 
1301 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1302 		btrfs_sb(s)->bdev_holder = fs_type;
1303 		error = btrfs_fill_super(s, fs_devices, data,
1304 					 flags & MS_SILENT ? 1 : 0);
1305 	}
1306 
1307 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1308 	if (IS_ERR(root))
1309 		deactivate_locked_super(s);
1310 
1311 	return root;
1312 
1313 error_close_devices:
1314 	btrfs_close_devices(fs_devices);
1315 error_fs_info:
1316 	free_fs_info(fs_info);
1317 	return ERR_PTR(error);
1318 }
1319 
1320 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1321 				     int new_pool_size, int old_pool_size)
1322 {
1323 	if (new_pool_size == old_pool_size)
1324 		return;
1325 
1326 	fs_info->thread_pool_size = new_pool_size;
1327 
1328 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1329 	       old_pool_size, new_pool_size);
1330 
1331 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1332 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1333 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1334 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1335 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1336 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1337 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1338 				new_pool_size);
1339 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1340 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1341 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1342 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1343 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1344 				new_pool_size);
1345 }
1346 
1347 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1348 {
1349 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1350 }
1351 
1352 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1353 				       unsigned long old_opts, int flags)
1354 {
1355 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1356 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1357 	     (flags & MS_RDONLY))) {
1358 		/* wait for any defraggers to finish */
1359 		wait_event(fs_info->transaction_wait,
1360 			   (atomic_read(&fs_info->defrag_running) == 0));
1361 		if (flags & MS_RDONLY)
1362 			sync_filesystem(fs_info->sb);
1363 	}
1364 }
1365 
1366 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1367 					 unsigned long old_opts)
1368 {
1369 	/*
1370 	 * We need cleanup all defragable inodes if the autodefragment is
1371 	 * close or the fs is R/O.
1372 	 */
1373 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1374 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1375 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1376 		btrfs_cleanup_defrag_inodes(fs_info);
1377 	}
1378 
1379 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1380 }
1381 
1382 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1383 {
1384 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1385 	struct btrfs_root *root = fs_info->tree_root;
1386 	unsigned old_flags = sb->s_flags;
1387 	unsigned long old_opts = fs_info->mount_opt;
1388 	unsigned long old_compress_type = fs_info->compress_type;
1389 	u64 old_max_inline = fs_info->max_inline;
1390 	u64 old_alloc_start = fs_info->alloc_start;
1391 	int old_thread_pool_size = fs_info->thread_pool_size;
1392 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1393 	int ret;
1394 
1395 	sync_filesystem(sb);
1396 	btrfs_remount_prepare(fs_info);
1397 
1398 	ret = btrfs_parse_options(root, data);
1399 	if (ret) {
1400 		ret = -EINVAL;
1401 		goto restore;
1402 	}
1403 
1404 	btrfs_remount_begin(fs_info, old_opts, *flags);
1405 	btrfs_resize_thread_pool(fs_info,
1406 		fs_info->thread_pool_size, old_thread_pool_size);
1407 
1408 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1409 		goto out;
1410 
1411 	if (*flags & MS_RDONLY) {
1412 		/*
1413 		 * this also happens on 'umount -rf' or on shutdown, when
1414 		 * the filesystem is busy.
1415 		 */
1416 
1417 		/* wait for the uuid_scan task to finish */
1418 		down(&fs_info->uuid_tree_rescan_sem);
1419 		/* avoid complains from lockdep et al. */
1420 		up(&fs_info->uuid_tree_rescan_sem);
1421 
1422 		sb->s_flags |= MS_RDONLY;
1423 
1424 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1425 		btrfs_scrub_cancel(fs_info);
1426 		btrfs_pause_balance(fs_info);
1427 
1428 		ret = btrfs_commit_super(root);
1429 		if (ret)
1430 			goto restore;
1431 	} else {
1432 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1433 			btrfs_err(fs_info,
1434 				"Remounting read-write after error is not allowed");
1435 			ret = -EINVAL;
1436 			goto restore;
1437 		}
1438 		if (fs_info->fs_devices->rw_devices == 0) {
1439 			ret = -EACCES;
1440 			goto restore;
1441 		}
1442 
1443 		if (fs_info->fs_devices->missing_devices >
1444 		     fs_info->num_tolerated_disk_barrier_failures &&
1445 		    !(*flags & MS_RDONLY)) {
1446 			btrfs_warn(fs_info,
1447 				"too many missing devices, writeable remount is not allowed");
1448 			ret = -EACCES;
1449 			goto restore;
1450 		}
1451 
1452 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1453 			ret = -EINVAL;
1454 			goto restore;
1455 		}
1456 
1457 		ret = btrfs_cleanup_fs_roots(fs_info);
1458 		if (ret)
1459 			goto restore;
1460 
1461 		/* recover relocation */
1462 		ret = btrfs_recover_relocation(root);
1463 		if (ret)
1464 			goto restore;
1465 
1466 		ret = btrfs_resume_balance_async(fs_info);
1467 		if (ret)
1468 			goto restore;
1469 
1470 		ret = btrfs_resume_dev_replace_async(fs_info);
1471 		if (ret) {
1472 			btrfs_warn(fs_info, "failed to resume dev_replace");
1473 			goto restore;
1474 		}
1475 
1476 		if (!fs_info->uuid_root) {
1477 			btrfs_info(fs_info, "creating UUID tree");
1478 			ret = btrfs_create_uuid_tree(fs_info);
1479 			if (ret) {
1480 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1481 				goto restore;
1482 			}
1483 		}
1484 		sb->s_flags &= ~MS_RDONLY;
1485 	}
1486 out:
1487 	wake_up_process(fs_info->transaction_kthread);
1488 	btrfs_remount_cleanup(fs_info, old_opts);
1489 	return 0;
1490 
1491 restore:
1492 	/* We've hit an error - don't reset MS_RDONLY */
1493 	if (sb->s_flags & MS_RDONLY)
1494 		old_flags |= MS_RDONLY;
1495 	sb->s_flags = old_flags;
1496 	fs_info->mount_opt = old_opts;
1497 	fs_info->compress_type = old_compress_type;
1498 	fs_info->max_inline = old_max_inline;
1499 	mutex_lock(&fs_info->chunk_mutex);
1500 	fs_info->alloc_start = old_alloc_start;
1501 	mutex_unlock(&fs_info->chunk_mutex);
1502 	btrfs_resize_thread_pool(fs_info,
1503 		old_thread_pool_size, fs_info->thread_pool_size);
1504 	fs_info->metadata_ratio = old_metadata_ratio;
1505 	btrfs_remount_cleanup(fs_info, old_opts);
1506 	return ret;
1507 }
1508 
1509 /* Used to sort the devices by max_avail(descending sort) */
1510 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1511 				       const void *dev_info2)
1512 {
1513 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1514 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1515 		return -1;
1516 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1517 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1518 		return 1;
1519 	else
1520 	return 0;
1521 }
1522 
1523 /*
1524  * sort the devices by max_avail, in which max free extent size of each device
1525  * is stored.(Descending Sort)
1526  */
1527 static inline void btrfs_descending_sort_devices(
1528 					struct btrfs_device_info *devices,
1529 					size_t nr_devices)
1530 {
1531 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1532 	     btrfs_cmp_device_free_bytes, NULL);
1533 }
1534 
1535 /*
1536  * The helper to calc the free space on the devices that can be used to store
1537  * file data.
1538  */
1539 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1540 {
1541 	struct btrfs_fs_info *fs_info = root->fs_info;
1542 	struct btrfs_device_info *devices_info;
1543 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1544 	struct btrfs_device *device;
1545 	u64 skip_space;
1546 	u64 type;
1547 	u64 avail_space;
1548 	u64 used_space;
1549 	u64 min_stripe_size;
1550 	int min_stripes = 1, num_stripes = 1;
1551 	int i = 0, nr_devices;
1552 	int ret;
1553 
1554 	nr_devices = fs_info->fs_devices->open_devices;
1555 	BUG_ON(!nr_devices);
1556 
1557 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1558 			       GFP_NOFS);
1559 	if (!devices_info)
1560 		return -ENOMEM;
1561 
1562 	/* calc min stripe number for data space alloction */
1563 	type = btrfs_get_alloc_profile(root, 1);
1564 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1565 		min_stripes = 2;
1566 		num_stripes = nr_devices;
1567 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1568 		min_stripes = 2;
1569 		num_stripes = 2;
1570 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1571 		min_stripes = 4;
1572 		num_stripes = 4;
1573 	}
1574 
1575 	if (type & BTRFS_BLOCK_GROUP_DUP)
1576 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1577 	else
1578 		min_stripe_size = BTRFS_STRIPE_LEN;
1579 
1580 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1581 		if (!device->in_fs_metadata || !device->bdev ||
1582 		    device->is_tgtdev_for_dev_replace)
1583 			continue;
1584 
1585 		avail_space = device->total_bytes - device->bytes_used;
1586 
1587 		/* align with stripe_len */
1588 		do_div(avail_space, BTRFS_STRIPE_LEN);
1589 		avail_space *= BTRFS_STRIPE_LEN;
1590 
1591 		/*
1592 		 * In order to avoid overwritting the superblock on the drive,
1593 		 * btrfs starts at an offset of at least 1MB when doing chunk
1594 		 * allocation.
1595 		 */
1596 		skip_space = 1024 * 1024;
1597 
1598 		/* user can set the offset in fs_info->alloc_start. */
1599 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1600 		    device->total_bytes)
1601 			skip_space = max(fs_info->alloc_start, skip_space);
1602 
1603 		/*
1604 		 * btrfs can not use the free space in [0, skip_space - 1],
1605 		 * we must subtract it from the total. In order to implement
1606 		 * it, we account the used space in this range first.
1607 		 */
1608 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1609 						     &used_space);
1610 		if (ret) {
1611 			kfree(devices_info);
1612 			return ret;
1613 		}
1614 
1615 		/* calc the free space in [0, skip_space - 1] */
1616 		skip_space -= used_space;
1617 
1618 		/*
1619 		 * we can use the free space in [0, skip_space - 1], subtract
1620 		 * it from the total.
1621 		 */
1622 		if (avail_space && avail_space >= skip_space)
1623 			avail_space -= skip_space;
1624 		else
1625 			avail_space = 0;
1626 
1627 		if (avail_space < min_stripe_size)
1628 			continue;
1629 
1630 		devices_info[i].dev = device;
1631 		devices_info[i].max_avail = avail_space;
1632 
1633 		i++;
1634 	}
1635 
1636 	nr_devices = i;
1637 
1638 	btrfs_descending_sort_devices(devices_info, nr_devices);
1639 
1640 	i = nr_devices - 1;
1641 	avail_space = 0;
1642 	while (nr_devices >= min_stripes) {
1643 		if (num_stripes > nr_devices)
1644 			num_stripes = nr_devices;
1645 
1646 		if (devices_info[i].max_avail >= min_stripe_size) {
1647 			int j;
1648 			u64 alloc_size;
1649 
1650 			avail_space += devices_info[i].max_avail * num_stripes;
1651 			alloc_size = devices_info[i].max_avail;
1652 			for (j = i + 1 - num_stripes; j <= i; j++)
1653 				devices_info[j].max_avail -= alloc_size;
1654 		}
1655 		i--;
1656 		nr_devices--;
1657 	}
1658 
1659 	kfree(devices_info);
1660 	*free_bytes = avail_space;
1661 	return 0;
1662 }
1663 
1664 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1665 {
1666 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1667 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1668 	struct list_head *head = &fs_info->space_info;
1669 	struct btrfs_space_info *found;
1670 	u64 total_used = 0;
1671 	u64 total_free_data = 0;
1672 	int bits = dentry->d_sb->s_blocksize_bits;
1673 	__be32 *fsid = (__be32 *)fs_info->fsid;
1674 	int ret;
1675 
1676 	/* holding chunk_muext to avoid allocating new chunks */
1677 	mutex_lock(&fs_info->chunk_mutex);
1678 	rcu_read_lock();
1679 	list_for_each_entry_rcu(found, head, list) {
1680 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1681 			total_free_data += found->disk_total - found->disk_used;
1682 			total_free_data -=
1683 				btrfs_account_ro_block_groups_free_space(found);
1684 		}
1685 
1686 		total_used += found->disk_used;
1687 	}
1688 	rcu_read_unlock();
1689 
1690 	buf->f_namelen = BTRFS_NAME_LEN;
1691 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1692 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1693 	buf->f_bsize = dentry->d_sb->s_blocksize;
1694 	buf->f_type = BTRFS_SUPER_MAGIC;
1695 	buf->f_bavail = total_free_data;
1696 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1697 	if (ret) {
1698 		mutex_unlock(&fs_info->chunk_mutex);
1699 		return ret;
1700 	}
1701 	buf->f_bavail += total_free_data;
1702 	buf->f_bavail = buf->f_bavail >> bits;
1703 	mutex_unlock(&fs_info->chunk_mutex);
1704 
1705 	/* We treat it as constant endianness (it doesn't matter _which_)
1706 	   because we want the fsid to come out the same whether mounted
1707 	   on a big-endian or little-endian host */
1708 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1709 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1710 	/* Mask in the root object ID too, to disambiguate subvols */
1711 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1712 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1713 
1714 	return 0;
1715 }
1716 
1717 static void btrfs_kill_super(struct super_block *sb)
1718 {
1719 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1720 	kill_anon_super(sb);
1721 	free_fs_info(fs_info);
1722 }
1723 
1724 static struct file_system_type btrfs_fs_type = {
1725 	.owner		= THIS_MODULE,
1726 	.name		= "btrfs",
1727 	.mount		= btrfs_mount,
1728 	.kill_sb	= btrfs_kill_super,
1729 	.fs_flags	= FS_REQUIRES_DEV,
1730 };
1731 MODULE_ALIAS_FS("btrfs");
1732 
1733 /*
1734  * used by btrfsctl to scan devices when no FS is mounted
1735  */
1736 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1737 				unsigned long arg)
1738 {
1739 	struct btrfs_ioctl_vol_args *vol;
1740 	struct btrfs_fs_devices *fs_devices;
1741 	int ret = -ENOTTY;
1742 
1743 	if (!capable(CAP_SYS_ADMIN))
1744 		return -EPERM;
1745 
1746 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1747 	if (IS_ERR(vol))
1748 		return PTR_ERR(vol);
1749 
1750 	switch (cmd) {
1751 	case BTRFS_IOC_SCAN_DEV:
1752 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1753 					    &btrfs_fs_type, &fs_devices);
1754 		break;
1755 	case BTRFS_IOC_DEVICES_READY:
1756 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1757 					    &btrfs_fs_type, &fs_devices);
1758 		if (ret)
1759 			break;
1760 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1761 		break;
1762 	}
1763 
1764 	kfree(vol);
1765 	return ret;
1766 }
1767 
1768 static int btrfs_freeze(struct super_block *sb)
1769 {
1770 	struct btrfs_trans_handle *trans;
1771 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1772 
1773 	trans = btrfs_attach_transaction_barrier(root);
1774 	if (IS_ERR(trans)) {
1775 		/* no transaction, don't bother */
1776 		if (PTR_ERR(trans) == -ENOENT)
1777 			return 0;
1778 		return PTR_ERR(trans);
1779 	}
1780 	return btrfs_commit_transaction(trans, root);
1781 }
1782 
1783 static int btrfs_unfreeze(struct super_block *sb)
1784 {
1785 	return 0;
1786 }
1787 
1788 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1789 {
1790 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1791 	struct btrfs_fs_devices *cur_devices;
1792 	struct btrfs_device *dev, *first_dev = NULL;
1793 	struct list_head *head;
1794 	struct rcu_string *name;
1795 
1796 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1797 	cur_devices = fs_info->fs_devices;
1798 	while (cur_devices) {
1799 		head = &cur_devices->devices;
1800 		list_for_each_entry(dev, head, dev_list) {
1801 			if (dev->missing)
1802 				continue;
1803 			if (!first_dev || dev->devid < first_dev->devid)
1804 				first_dev = dev;
1805 		}
1806 		cur_devices = cur_devices->seed;
1807 	}
1808 
1809 	if (first_dev) {
1810 		rcu_read_lock();
1811 		name = rcu_dereference(first_dev->name);
1812 		seq_escape(m, name->str, " \t\n\\");
1813 		rcu_read_unlock();
1814 	} else {
1815 		WARN_ON(1);
1816 	}
1817 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1818 	return 0;
1819 }
1820 
1821 static const struct super_operations btrfs_super_ops = {
1822 	.drop_inode	= btrfs_drop_inode,
1823 	.evict_inode	= btrfs_evict_inode,
1824 	.put_super	= btrfs_put_super,
1825 	.sync_fs	= btrfs_sync_fs,
1826 	.show_options	= btrfs_show_options,
1827 	.show_devname	= btrfs_show_devname,
1828 	.write_inode	= btrfs_write_inode,
1829 	.alloc_inode	= btrfs_alloc_inode,
1830 	.destroy_inode	= btrfs_destroy_inode,
1831 	.statfs		= btrfs_statfs,
1832 	.remount_fs	= btrfs_remount,
1833 	.freeze_fs	= btrfs_freeze,
1834 	.unfreeze_fs	= btrfs_unfreeze,
1835 };
1836 
1837 static const struct file_operations btrfs_ctl_fops = {
1838 	.unlocked_ioctl	 = btrfs_control_ioctl,
1839 	.compat_ioctl = btrfs_control_ioctl,
1840 	.owner	 = THIS_MODULE,
1841 	.llseek = noop_llseek,
1842 };
1843 
1844 static struct miscdevice btrfs_misc = {
1845 	.minor		= BTRFS_MINOR,
1846 	.name		= "btrfs-control",
1847 	.fops		= &btrfs_ctl_fops
1848 };
1849 
1850 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1851 MODULE_ALIAS("devname:btrfs-control");
1852 
1853 static int btrfs_interface_init(void)
1854 {
1855 	return misc_register(&btrfs_misc);
1856 }
1857 
1858 static void btrfs_interface_exit(void)
1859 {
1860 	if (misc_deregister(&btrfs_misc) < 0)
1861 		printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1862 }
1863 
1864 static void btrfs_print_info(void)
1865 {
1866 	printk(KERN_INFO "Btrfs loaded"
1867 #ifdef CONFIG_BTRFS_DEBUG
1868 			", debug=on"
1869 #endif
1870 #ifdef CONFIG_BTRFS_ASSERT
1871 			", assert=on"
1872 #endif
1873 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1874 			", integrity-checker=on"
1875 #endif
1876 			"\n");
1877 }
1878 
1879 static int btrfs_run_sanity_tests(void)
1880 {
1881 	int ret;
1882 
1883 	ret = btrfs_init_test_fs();
1884 	if (ret)
1885 		return ret;
1886 
1887 	ret = btrfs_test_free_space_cache();
1888 	if (ret)
1889 		goto out;
1890 	ret = btrfs_test_extent_buffer_operations();
1891 	if (ret)
1892 		goto out;
1893 	ret = btrfs_test_extent_io();
1894 	if (ret)
1895 		goto out;
1896 	ret = btrfs_test_inodes();
1897 out:
1898 	btrfs_destroy_test_fs();
1899 	return ret;
1900 }
1901 
1902 static int __init init_btrfs_fs(void)
1903 {
1904 	int err;
1905 
1906 	err = btrfs_hash_init();
1907 	if (err)
1908 		return err;
1909 
1910 	btrfs_props_init();
1911 
1912 	err = btrfs_init_sysfs();
1913 	if (err)
1914 		goto free_hash;
1915 
1916 	btrfs_init_compress();
1917 
1918 	err = btrfs_init_cachep();
1919 	if (err)
1920 		goto free_compress;
1921 
1922 	err = extent_io_init();
1923 	if (err)
1924 		goto free_cachep;
1925 
1926 	err = extent_map_init();
1927 	if (err)
1928 		goto free_extent_io;
1929 
1930 	err = ordered_data_init();
1931 	if (err)
1932 		goto free_extent_map;
1933 
1934 	err = btrfs_delayed_inode_init();
1935 	if (err)
1936 		goto free_ordered_data;
1937 
1938 	err = btrfs_auto_defrag_init();
1939 	if (err)
1940 		goto free_delayed_inode;
1941 
1942 	err = btrfs_delayed_ref_init();
1943 	if (err)
1944 		goto free_auto_defrag;
1945 
1946 	err = btrfs_prelim_ref_init();
1947 	if (err)
1948 		goto free_prelim_ref;
1949 
1950 	err = btrfs_interface_init();
1951 	if (err)
1952 		goto free_delayed_ref;
1953 
1954 	btrfs_init_lockdep();
1955 
1956 	btrfs_print_info();
1957 
1958 	err = btrfs_run_sanity_tests();
1959 	if (err)
1960 		goto unregister_ioctl;
1961 
1962 	err = register_filesystem(&btrfs_fs_type);
1963 	if (err)
1964 		goto unregister_ioctl;
1965 
1966 	return 0;
1967 
1968 unregister_ioctl:
1969 	btrfs_interface_exit();
1970 free_prelim_ref:
1971 	btrfs_prelim_ref_exit();
1972 free_delayed_ref:
1973 	btrfs_delayed_ref_exit();
1974 free_auto_defrag:
1975 	btrfs_auto_defrag_exit();
1976 free_delayed_inode:
1977 	btrfs_delayed_inode_exit();
1978 free_ordered_data:
1979 	ordered_data_exit();
1980 free_extent_map:
1981 	extent_map_exit();
1982 free_extent_io:
1983 	extent_io_exit();
1984 free_cachep:
1985 	btrfs_destroy_cachep();
1986 free_compress:
1987 	btrfs_exit_compress();
1988 	btrfs_exit_sysfs();
1989 free_hash:
1990 	btrfs_hash_exit();
1991 	return err;
1992 }
1993 
1994 static void __exit exit_btrfs_fs(void)
1995 {
1996 	btrfs_destroy_cachep();
1997 	btrfs_delayed_ref_exit();
1998 	btrfs_auto_defrag_exit();
1999 	btrfs_delayed_inode_exit();
2000 	btrfs_prelim_ref_exit();
2001 	ordered_data_exit();
2002 	extent_map_exit();
2003 	extent_io_exit();
2004 	btrfs_interface_exit();
2005 	unregister_filesystem(&btrfs_fs_type);
2006 	btrfs_exit_sysfs();
2007 	btrfs_cleanup_fs_uuids();
2008 	btrfs_exit_compress();
2009 	btrfs_hash_exit();
2010 }
2011 
2012 late_initcall(init_btrfs_fs);
2013 module_exit(exit_btrfs_fs)
2014 
2015 MODULE_LICENSE("GPL");
2016