xref: /openbmc/linux/fs/btrfs/super.c (revision 31b90347)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "xattr.h"
52 #include "volumes.h"
53 #include "export.h"
54 #include "compression.h"
55 #include "rcu-string.h"
56 #include "dev-replace.h"
57 #include "free-space-cache.h"
58 #include "backref.h"
59 #include "tests/btrfs-tests.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63 
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66 
67 static const char *btrfs_decode_error(int errno)
68 {
69 	char *errstr = "unknown";
70 
71 	switch (errno) {
72 	case -EIO:
73 		errstr = "IO failure";
74 		break;
75 	case -ENOMEM:
76 		errstr = "Out of memory";
77 		break;
78 	case -EROFS:
79 		errstr = "Readonly filesystem";
80 		break;
81 	case -EEXIST:
82 		errstr = "Object already exists";
83 		break;
84 	case -ENOSPC:
85 		errstr = "No space left";
86 		break;
87 	case -ENOENT:
88 		errstr = "No such entry";
89 		break;
90 	}
91 
92 	return errstr;
93 }
94 
95 static void save_error_info(struct btrfs_fs_info *fs_info)
96 {
97 	/*
98 	 * today we only save the error info into ram.  Long term we'll
99 	 * also send it down to the disk
100 	 */
101 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103 
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 	struct super_block *sb = fs_info->sb;
108 
109 	if (sb->s_flags & MS_RDONLY)
110 		return;
111 
112 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113 		sb->s_flags |= MS_RDONLY;
114 		btrfs_info(fs_info, "forced readonly");
115 		/*
116 		 * Note that a running device replace operation is not
117 		 * canceled here although there is no way to update
118 		 * the progress. It would add the risk of a deadlock,
119 		 * therefore the canceling is ommited. The only penalty
120 		 * is that some I/O remains active until the procedure
121 		 * completes. The next time when the filesystem is
122 		 * mounted writeable again, the device replace
123 		 * operation continues.
124 		 */
125 	}
126 }
127 
128 #ifdef CONFIG_PRINTK
129 /*
130  * __btrfs_std_error decodes expected errors from the caller and
131  * invokes the approciate error response.
132  */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 		       unsigned int line, int errno, const char *fmt, ...)
135 {
136 	struct super_block *sb = fs_info->sb;
137 	const char *errstr;
138 
139 	/*
140 	 * Special case: if the error is EROFS, and we're already
141 	 * under MS_RDONLY, then it is safe here.
142 	 */
143 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144   		return;
145 
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 			sb->s_id, function, line, errno, errstr, &vaf);
157 		va_end(args);
158 	} else {
159 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
160 			sb->s_id, function, line, errno, errstr);
161 	}
162 
163 	/* Don't go through full error handling during mount */
164 	save_error_info(fs_info);
165 	if (sb->s_flags & MS_BORN)
166 		btrfs_handle_error(fs_info);
167 }
168 
169 static const char * const logtypes[] = {
170 	"emergency",
171 	"alert",
172 	"critical",
173 	"error",
174 	"warning",
175 	"notice",
176 	"info",
177 	"debug",
178 };
179 
180 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
181 {
182 	struct super_block *sb = fs_info->sb;
183 	char lvl[4];
184 	struct va_format vaf;
185 	va_list args;
186 	const char *type = logtypes[4];
187 	int kern_level;
188 
189 	va_start(args, fmt);
190 
191 	kern_level = printk_get_level(fmt);
192 	if (kern_level) {
193 		size_t size = printk_skip_level(fmt) - fmt;
194 		memcpy(lvl, fmt,  size);
195 		lvl[size] = '\0';
196 		fmt += size;
197 		type = logtypes[kern_level - '0'];
198 	} else
199 		*lvl = '\0';
200 
201 	vaf.fmt = fmt;
202 	vaf.va = &args;
203 
204 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
205 
206 	va_end(args);
207 }
208 
209 #else
210 
211 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
212 		       unsigned int line, int errno, const char *fmt, ...)
213 {
214 	struct super_block *sb = fs_info->sb;
215 
216 	/*
217 	 * Special case: if the error is EROFS, and we're already
218 	 * under MS_RDONLY, then it is safe here.
219 	 */
220 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
221 		return;
222 
223 	/* Don't go through full error handling during mount */
224 	if (sb->s_flags & MS_BORN) {
225 		save_error_info(fs_info);
226 		btrfs_handle_error(fs_info);
227 	}
228 }
229 #endif
230 
231 /*
232  * We only mark the transaction aborted and then set the file system read-only.
233  * This will prevent new transactions from starting or trying to join this
234  * one.
235  *
236  * This means that error recovery at the call site is limited to freeing
237  * any local memory allocations and passing the error code up without
238  * further cleanup. The transaction should complete as it normally would
239  * in the call path but will return -EIO.
240  *
241  * We'll complete the cleanup in btrfs_end_transaction and
242  * btrfs_commit_transaction.
243  */
244 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
245 			       struct btrfs_root *root, const char *function,
246 			       unsigned int line, int errno)
247 {
248 	/*
249 	 * Report first abort since mount
250 	 */
251 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
252 				&root->fs_info->fs_state)) {
253 		WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
254 				errno);
255 	}
256 	trans->aborted = errno;
257 	/* Nothing used. The other threads that have joined this
258 	 * transaction may be able to continue. */
259 	if (!trans->blocks_used) {
260 		const char *errstr;
261 
262 		errstr = btrfs_decode_error(errno);
263 		btrfs_warn(root->fs_info,
264 		           "%s:%d: Aborting unused transaction(%s).",
265 		           function, line, errstr);
266 		return;
267 	}
268 	ACCESS_ONCE(trans->transaction->aborted) = errno;
269 	/* Wake up anybody who may be waiting on this transaction */
270 	wake_up(&root->fs_info->transaction_wait);
271 	wake_up(&root->fs_info->transaction_blocked_wait);
272 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
273 }
274 /*
275  * __btrfs_panic decodes unexpected, fatal errors from the caller,
276  * issues an alert, and either panics or BUGs, depending on mount options.
277  */
278 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
279 		   unsigned int line, int errno, const char *fmt, ...)
280 {
281 	char *s_id = "<unknown>";
282 	const char *errstr;
283 	struct va_format vaf = { .fmt = fmt };
284 	va_list args;
285 
286 	if (fs_info)
287 		s_id = fs_info->sb->s_id;
288 
289 	va_start(args, fmt);
290 	vaf.va = &args;
291 
292 	errstr = btrfs_decode_error(errno);
293 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
294 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
295 			s_id, function, line, &vaf, errno, errstr);
296 
297 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
298 	       s_id, function, line, &vaf, errno, errstr);
299 	va_end(args);
300 	/* Caller calls BUG() */
301 }
302 
303 static void btrfs_put_super(struct super_block *sb)
304 {
305 	(void)close_ctree(btrfs_sb(sb)->tree_root);
306 	/* FIXME: need to fix VFS to return error? */
307 	/* AV: return it _where_?  ->put_super() can be triggered by any number
308 	 * of async events, up to and including delivery of SIGKILL to the
309 	 * last process that kept it busy.  Or segfault in the aforementioned
310 	 * process...  Whom would you report that to?
311 	 */
312 }
313 
314 enum {
315 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
324 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
325 	Opt_commit_interval,
326 	Opt_err,
327 };
328 
329 static match_table_t tokens = {
330 	{Opt_degraded, "degraded"},
331 	{Opt_subvol, "subvol=%s"},
332 	{Opt_subvolid, "subvolid=%s"},
333 	{Opt_device, "device=%s"},
334 	{Opt_nodatasum, "nodatasum"},
335 	{Opt_nodatacow, "nodatacow"},
336 	{Opt_nobarrier, "nobarrier"},
337 	{Opt_max_inline, "max_inline=%s"},
338 	{Opt_alloc_start, "alloc_start=%s"},
339 	{Opt_thread_pool, "thread_pool=%d"},
340 	{Opt_compress, "compress"},
341 	{Opt_compress_type, "compress=%s"},
342 	{Opt_compress_force, "compress-force"},
343 	{Opt_compress_force_type, "compress-force=%s"},
344 	{Opt_ssd, "ssd"},
345 	{Opt_ssd_spread, "ssd_spread"},
346 	{Opt_nossd, "nossd"},
347 	{Opt_noacl, "noacl"},
348 	{Opt_notreelog, "notreelog"},
349 	{Opt_flushoncommit, "flushoncommit"},
350 	{Opt_ratio, "metadata_ratio=%d"},
351 	{Opt_discard, "discard"},
352 	{Opt_space_cache, "space_cache"},
353 	{Opt_clear_cache, "clear_cache"},
354 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
355 	{Opt_enospc_debug, "enospc_debug"},
356 	{Opt_subvolrootid, "subvolrootid=%d"},
357 	{Opt_defrag, "autodefrag"},
358 	{Opt_inode_cache, "inode_cache"},
359 	{Opt_no_space_cache, "nospace_cache"},
360 	{Opt_recovery, "recovery"},
361 	{Opt_skip_balance, "skip_balance"},
362 	{Opt_check_integrity, "check_int"},
363 	{Opt_check_integrity_including_extent_data, "check_int_data"},
364 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
365 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
366 	{Opt_fatal_errors, "fatal_errors=%s"},
367 	{Opt_commit_interval, "commit=%d"},
368 	{Opt_err, NULL},
369 };
370 
371 /*
372  * Regular mount options parser.  Everything that is needed only when
373  * reading in a new superblock is parsed here.
374  * XXX JDM: This needs to be cleaned up for remount.
375  */
376 int btrfs_parse_options(struct btrfs_root *root, char *options)
377 {
378 	struct btrfs_fs_info *info = root->fs_info;
379 	substring_t args[MAX_OPT_ARGS];
380 	char *p, *num, *orig = NULL;
381 	u64 cache_gen;
382 	int intarg;
383 	int ret = 0;
384 	char *compress_type;
385 	bool compress_force = false;
386 
387 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
388 	if (cache_gen)
389 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
390 
391 	if (!options)
392 		goto out;
393 
394 	/*
395 	 * strsep changes the string, duplicate it because parse_options
396 	 * gets called twice
397 	 */
398 	options = kstrdup(options, GFP_NOFS);
399 	if (!options)
400 		return -ENOMEM;
401 
402 	orig = options;
403 
404 	while ((p = strsep(&options, ",")) != NULL) {
405 		int token;
406 		if (!*p)
407 			continue;
408 
409 		token = match_token(p, tokens, args);
410 		switch (token) {
411 		case Opt_degraded:
412 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
413 			btrfs_set_opt(info->mount_opt, DEGRADED);
414 			break;
415 		case Opt_subvol:
416 		case Opt_subvolid:
417 		case Opt_subvolrootid:
418 		case Opt_device:
419 			/*
420 			 * These are parsed by btrfs_parse_early_options
421 			 * and can be happily ignored here.
422 			 */
423 			break;
424 		case Opt_nodatasum:
425 			printk(KERN_INFO "btrfs: setting nodatasum\n");
426 			btrfs_set_opt(info->mount_opt, NODATASUM);
427 			break;
428 		case Opt_nodatacow:
429 			if (!btrfs_test_opt(root, COMPRESS) ||
430 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
431 					printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
432 			} else {
433 				printk(KERN_INFO "btrfs: setting nodatacow\n");
434 			}
435 			btrfs_clear_opt(info->mount_opt, COMPRESS);
436 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
437 			btrfs_set_opt(info->mount_opt, NODATACOW);
438 			btrfs_set_opt(info->mount_opt, NODATASUM);
439 			break;
440 		case Opt_compress_force:
441 		case Opt_compress_force_type:
442 			compress_force = true;
443 			/* Fallthrough */
444 		case Opt_compress:
445 		case Opt_compress_type:
446 			if (token == Opt_compress ||
447 			    token == Opt_compress_force ||
448 			    strcmp(args[0].from, "zlib") == 0) {
449 				compress_type = "zlib";
450 				info->compress_type = BTRFS_COMPRESS_ZLIB;
451 				btrfs_set_opt(info->mount_opt, COMPRESS);
452 				btrfs_clear_opt(info->mount_opt, NODATACOW);
453 				btrfs_clear_opt(info->mount_opt, NODATASUM);
454 			} else if (strcmp(args[0].from, "lzo") == 0) {
455 				compress_type = "lzo";
456 				info->compress_type = BTRFS_COMPRESS_LZO;
457 				btrfs_set_opt(info->mount_opt, COMPRESS);
458 				btrfs_clear_opt(info->mount_opt, NODATACOW);
459 				btrfs_clear_opt(info->mount_opt, NODATASUM);
460 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
461 			} else if (strncmp(args[0].from, "no", 2) == 0) {
462 				compress_type = "no";
463 				btrfs_clear_opt(info->mount_opt, COMPRESS);
464 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
465 				compress_force = false;
466 			} else {
467 				ret = -EINVAL;
468 				goto out;
469 			}
470 
471 			if (compress_force) {
472 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
473 				pr_info("btrfs: force %s compression\n",
474 					compress_type);
475 			} else if (btrfs_test_opt(root, COMPRESS)) {
476 				pr_info("btrfs: use %s compression\n",
477 					compress_type);
478 			}
479 			break;
480 		case Opt_ssd:
481 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
482 			btrfs_set_opt(info->mount_opt, SSD);
483 			break;
484 		case Opt_ssd_spread:
485 			printk(KERN_INFO "btrfs: use spread ssd "
486 			       "allocation scheme\n");
487 			btrfs_set_opt(info->mount_opt, SSD);
488 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
489 			break;
490 		case Opt_nossd:
491 			printk(KERN_INFO "btrfs: not using ssd allocation "
492 			       "scheme\n");
493 			btrfs_set_opt(info->mount_opt, NOSSD);
494 			btrfs_clear_opt(info->mount_opt, SSD);
495 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
496 			break;
497 		case Opt_nobarrier:
498 			printk(KERN_INFO "btrfs: turning off barriers\n");
499 			btrfs_set_opt(info->mount_opt, NOBARRIER);
500 			break;
501 		case Opt_thread_pool:
502 			ret = match_int(&args[0], &intarg);
503 			if (ret) {
504 				goto out;
505 			} else if (intarg > 0) {
506 				info->thread_pool_size = intarg;
507 			} else {
508 				ret = -EINVAL;
509 				goto out;
510 			}
511 			break;
512 		case Opt_max_inline:
513 			num = match_strdup(&args[0]);
514 			if (num) {
515 				info->max_inline = memparse(num, NULL);
516 				kfree(num);
517 
518 				if (info->max_inline) {
519 					info->max_inline = max_t(u64,
520 						info->max_inline,
521 						root->sectorsize);
522 				}
523 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
524 					info->max_inline);
525 			} else {
526 				ret = -ENOMEM;
527 				goto out;
528 			}
529 			break;
530 		case Opt_alloc_start:
531 			num = match_strdup(&args[0]);
532 			if (num) {
533 				mutex_lock(&info->chunk_mutex);
534 				info->alloc_start = memparse(num, NULL);
535 				mutex_unlock(&info->chunk_mutex);
536 				kfree(num);
537 				printk(KERN_INFO
538 					"btrfs: allocations start at %llu\n",
539 					info->alloc_start);
540 			} else {
541 				ret = -ENOMEM;
542 				goto out;
543 			}
544 			break;
545 		case Opt_noacl:
546 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
547 			break;
548 		case Opt_notreelog:
549 			printk(KERN_INFO "btrfs: disabling tree log\n");
550 			btrfs_set_opt(info->mount_opt, NOTREELOG);
551 			break;
552 		case Opt_flushoncommit:
553 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
554 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
555 			break;
556 		case Opt_ratio:
557 			ret = match_int(&args[0], &intarg);
558 			if (ret) {
559 				goto out;
560 			} else if (intarg >= 0) {
561 				info->metadata_ratio = intarg;
562 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
563 				       info->metadata_ratio);
564 			} else {
565 				ret = -EINVAL;
566 				goto out;
567 			}
568 			break;
569 		case Opt_discard:
570 			btrfs_set_opt(info->mount_opt, DISCARD);
571 			break;
572 		case Opt_space_cache:
573 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
574 			break;
575 		case Opt_rescan_uuid_tree:
576 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
577 			break;
578 		case Opt_no_space_cache:
579 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
580 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
581 			break;
582 		case Opt_inode_cache:
583 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
584 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
585 			break;
586 		case Opt_clear_cache:
587 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
588 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
589 			break;
590 		case Opt_user_subvol_rm_allowed:
591 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
592 			break;
593 		case Opt_enospc_debug:
594 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
595 			break;
596 		case Opt_defrag:
597 			printk(KERN_INFO "btrfs: enabling auto defrag\n");
598 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
599 			break;
600 		case Opt_recovery:
601 			printk(KERN_INFO "btrfs: enabling auto recovery\n");
602 			btrfs_set_opt(info->mount_opt, RECOVERY);
603 			break;
604 		case Opt_skip_balance:
605 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
606 			break;
607 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
608 		case Opt_check_integrity_including_extent_data:
609 			printk(KERN_INFO "btrfs: enabling check integrity"
610 			       " including extent data\n");
611 			btrfs_set_opt(info->mount_opt,
612 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
613 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
614 			break;
615 		case Opt_check_integrity:
616 			printk(KERN_INFO "btrfs: enabling check integrity\n");
617 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
618 			break;
619 		case Opt_check_integrity_print_mask:
620 			ret = match_int(&args[0], &intarg);
621 			if (ret) {
622 				goto out;
623 			} else if (intarg >= 0) {
624 				info->check_integrity_print_mask = intarg;
625 				printk(KERN_INFO "btrfs:"
626 				       " check_integrity_print_mask 0x%x\n",
627 				       info->check_integrity_print_mask);
628 			} else {
629 				ret = -EINVAL;
630 				goto out;
631 			}
632 			break;
633 #else
634 		case Opt_check_integrity_including_extent_data:
635 		case Opt_check_integrity:
636 		case Opt_check_integrity_print_mask:
637 			printk(KERN_ERR "btrfs: support for check_integrity*"
638 			       " not compiled in!\n");
639 			ret = -EINVAL;
640 			goto out;
641 #endif
642 		case Opt_fatal_errors:
643 			if (strcmp(args[0].from, "panic") == 0)
644 				btrfs_set_opt(info->mount_opt,
645 					      PANIC_ON_FATAL_ERROR);
646 			else if (strcmp(args[0].from, "bug") == 0)
647 				btrfs_clear_opt(info->mount_opt,
648 					      PANIC_ON_FATAL_ERROR);
649 			else {
650 				ret = -EINVAL;
651 				goto out;
652 			}
653 			break;
654 		case Opt_commit_interval:
655 			intarg = 0;
656 			ret = match_int(&args[0], &intarg);
657 			if (ret < 0) {
658 				printk(KERN_ERR
659 					"btrfs: invalid commit interval\n");
660 				ret = -EINVAL;
661 				goto out;
662 			}
663 			if (intarg > 0) {
664 				if (intarg > 300) {
665 					printk(KERN_WARNING
666 					    "btrfs: excessive commit interval %d\n",
667 							intarg);
668 				}
669 				info->commit_interval = intarg;
670 			} else {
671 				printk(KERN_INFO
672 				    "btrfs: using default commit interval %ds\n",
673 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
674 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
675 			}
676 			break;
677 		case Opt_err:
678 			printk(KERN_INFO "btrfs: unrecognized mount option "
679 			       "'%s'\n", p);
680 			ret = -EINVAL;
681 			goto out;
682 		default:
683 			break;
684 		}
685 	}
686 out:
687 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
688 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
689 	kfree(orig);
690 	return ret;
691 }
692 
693 /*
694  * Parse mount options that are required early in the mount process.
695  *
696  * All other options will be parsed on much later in the mount process and
697  * only when we need to allocate a new super block.
698  */
699 static int btrfs_parse_early_options(const char *options, fmode_t flags,
700 		void *holder, char **subvol_name, u64 *subvol_objectid,
701 		struct btrfs_fs_devices **fs_devices)
702 {
703 	substring_t args[MAX_OPT_ARGS];
704 	char *device_name, *opts, *orig, *p;
705 	char *num = NULL;
706 	int error = 0;
707 
708 	if (!options)
709 		return 0;
710 
711 	/*
712 	 * strsep changes the string, duplicate it because parse_options
713 	 * gets called twice
714 	 */
715 	opts = kstrdup(options, GFP_KERNEL);
716 	if (!opts)
717 		return -ENOMEM;
718 	orig = opts;
719 
720 	while ((p = strsep(&opts, ",")) != NULL) {
721 		int token;
722 		if (!*p)
723 			continue;
724 
725 		token = match_token(p, tokens, args);
726 		switch (token) {
727 		case Opt_subvol:
728 			kfree(*subvol_name);
729 			*subvol_name = match_strdup(&args[0]);
730 			if (!*subvol_name) {
731 				error = -ENOMEM;
732 				goto out;
733 			}
734 			break;
735 		case Opt_subvolid:
736 			num = match_strdup(&args[0]);
737 			if (num) {
738 				*subvol_objectid = memparse(num, NULL);
739 				kfree(num);
740 				/* we want the original fs_tree */
741 				if (!*subvol_objectid)
742 					*subvol_objectid =
743 						BTRFS_FS_TREE_OBJECTID;
744 			} else {
745 				error = -EINVAL;
746 				goto out;
747 			}
748 			break;
749 		case Opt_subvolrootid:
750 			printk(KERN_WARNING
751 				"btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
752 			break;
753 		case Opt_device:
754 			device_name = match_strdup(&args[0]);
755 			if (!device_name) {
756 				error = -ENOMEM;
757 				goto out;
758 			}
759 			error = btrfs_scan_one_device(device_name,
760 					flags, holder, fs_devices);
761 			kfree(device_name);
762 			if (error)
763 				goto out;
764 			break;
765 		default:
766 			break;
767 		}
768 	}
769 
770 out:
771 	kfree(orig);
772 	return error;
773 }
774 
775 static struct dentry *get_default_root(struct super_block *sb,
776 				       u64 subvol_objectid)
777 {
778 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
779 	struct btrfs_root *root = fs_info->tree_root;
780 	struct btrfs_root *new_root;
781 	struct btrfs_dir_item *di;
782 	struct btrfs_path *path;
783 	struct btrfs_key location;
784 	struct inode *inode;
785 	u64 dir_id;
786 	int new = 0;
787 
788 	/*
789 	 * We have a specific subvol we want to mount, just setup location and
790 	 * go look up the root.
791 	 */
792 	if (subvol_objectid) {
793 		location.objectid = subvol_objectid;
794 		location.type = BTRFS_ROOT_ITEM_KEY;
795 		location.offset = (u64)-1;
796 		goto find_root;
797 	}
798 
799 	path = btrfs_alloc_path();
800 	if (!path)
801 		return ERR_PTR(-ENOMEM);
802 	path->leave_spinning = 1;
803 
804 	/*
805 	 * Find the "default" dir item which points to the root item that we
806 	 * will mount by default if we haven't been given a specific subvolume
807 	 * to mount.
808 	 */
809 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
810 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
811 	if (IS_ERR(di)) {
812 		btrfs_free_path(path);
813 		return ERR_CAST(di);
814 	}
815 	if (!di) {
816 		/*
817 		 * Ok the default dir item isn't there.  This is weird since
818 		 * it's always been there, but don't freak out, just try and
819 		 * mount to root most subvolume.
820 		 */
821 		btrfs_free_path(path);
822 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
823 		new_root = fs_info->fs_root;
824 		goto setup_root;
825 	}
826 
827 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
828 	btrfs_free_path(path);
829 
830 find_root:
831 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
832 	if (IS_ERR(new_root))
833 		return ERR_CAST(new_root);
834 
835 	dir_id = btrfs_root_dirid(&new_root->root_item);
836 setup_root:
837 	location.objectid = dir_id;
838 	location.type = BTRFS_INODE_ITEM_KEY;
839 	location.offset = 0;
840 
841 	inode = btrfs_iget(sb, &location, new_root, &new);
842 	if (IS_ERR(inode))
843 		return ERR_CAST(inode);
844 
845 	/*
846 	 * If we're just mounting the root most subvol put the inode and return
847 	 * a reference to the dentry.  We will have already gotten a reference
848 	 * to the inode in btrfs_fill_super so we're good to go.
849 	 */
850 	if (!new && sb->s_root->d_inode == inode) {
851 		iput(inode);
852 		return dget(sb->s_root);
853 	}
854 
855 	return d_obtain_alias(inode);
856 }
857 
858 static int btrfs_fill_super(struct super_block *sb,
859 			    struct btrfs_fs_devices *fs_devices,
860 			    void *data, int silent)
861 {
862 	struct inode *inode;
863 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
864 	struct btrfs_key key;
865 	int err;
866 
867 	sb->s_maxbytes = MAX_LFS_FILESIZE;
868 	sb->s_magic = BTRFS_SUPER_MAGIC;
869 	sb->s_op = &btrfs_super_ops;
870 	sb->s_d_op = &btrfs_dentry_operations;
871 	sb->s_export_op = &btrfs_export_ops;
872 	sb->s_xattr = btrfs_xattr_handlers;
873 	sb->s_time_gran = 1;
874 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
875 	sb->s_flags |= MS_POSIXACL;
876 #endif
877 	sb->s_flags |= MS_I_VERSION;
878 	err = open_ctree(sb, fs_devices, (char *)data);
879 	if (err) {
880 		printk("btrfs: open_ctree failed\n");
881 		return err;
882 	}
883 
884 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
885 	key.type = BTRFS_INODE_ITEM_KEY;
886 	key.offset = 0;
887 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
888 	if (IS_ERR(inode)) {
889 		err = PTR_ERR(inode);
890 		goto fail_close;
891 	}
892 
893 	sb->s_root = d_make_root(inode);
894 	if (!sb->s_root) {
895 		err = -ENOMEM;
896 		goto fail_close;
897 	}
898 
899 	save_mount_options(sb, data);
900 	cleancache_init_fs(sb);
901 	sb->s_flags |= MS_ACTIVE;
902 	return 0;
903 
904 fail_close:
905 	close_ctree(fs_info->tree_root);
906 	return err;
907 }
908 
909 int btrfs_sync_fs(struct super_block *sb, int wait)
910 {
911 	struct btrfs_trans_handle *trans;
912 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
913 	struct btrfs_root *root = fs_info->tree_root;
914 
915 	trace_btrfs_sync_fs(wait);
916 
917 	if (!wait) {
918 		filemap_flush(fs_info->btree_inode->i_mapping);
919 		return 0;
920 	}
921 
922 	btrfs_wait_ordered_roots(fs_info, -1);
923 
924 	trans = btrfs_attach_transaction_barrier(root);
925 	if (IS_ERR(trans)) {
926 		/* no transaction, don't bother */
927 		if (PTR_ERR(trans) == -ENOENT)
928 			return 0;
929 		return PTR_ERR(trans);
930 	}
931 	return btrfs_commit_transaction(trans, root);
932 }
933 
934 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
935 {
936 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
937 	struct btrfs_root *root = info->tree_root;
938 	char *compress_type;
939 
940 	if (btrfs_test_opt(root, DEGRADED))
941 		seq_puts(seq, ",degraded");
942 	if (btrfs_test_opt(root, NODATASUM))
943 		seq_puts(seq, ",nodatasum");
944 	if (btrfs_test_opt(root, NODATACOW))
945 		seq_puts(seq, ",nodatacow");
946 	if (btrfs_test_opt(root, NOBARRIER))
947 		seq_puts(seq, ",nobarrier");
948 	if (info->max_inline != 8192 * 1024)
949 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
950 	if (info->alloc_start != 0)
951 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
952 	if (info->thread_pool_size !=  min_t(unsigned long,
953 					     num_online_cpus() + 2, 8))
954 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
955 	if (btrfs_test_opt(root, COMPRESS)) {
956 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
957 			compress_type = "zlib";
958 		else
959 			compress_type = "lzo";
960 		if (btrfs_test_opt(root, FORCE_COMPRESS))
961 			seq_printf(seq, ",compress-force=%s", compress_type);
962 		else
963 			seq_printf(seq, ",compress=%s", compress_type);
964 	}
965 	if (btrfs_test_opt(root, NOSSD))
966 		seq_puts(seq, ",nossd");
967 	if (btrfs_test_opt(root, SSD_SPREAD))
968 		seq_puts(seq, ",ssd_spread");
969 	else if (btrfs_test_opt(root, SSD))
970 		seq_puts(seq, ",ssd");
971 	if (btrfs_test_opt(root, NOTREELOG))
972 		seq_puts(seq, ",notreelog");
973 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
974 		seq_puts(seq, ",flushoncommit");
975 	if (btrfs_test_opt(root, DISCARD))
976 		seq_puts(seq, ",discard");
977 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
978 		seq_puts(seq, ",noacl");
979 	if (btrfs_test_opt(root, SPACE_CACHE))
980 		seq_puts(seq, ",space_cache");
981 	else
982 		seq_puts(seq, ",nospace_cache");
983 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
984 		seq_puts(seq, ",rescan_uuid_tree");
985 	if (btrfs_test_opt(root, CLEAR_CACHE))
986 		seq_puts(seq, ",clear_cache");
987 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
988 		seq_puts(seq, ",user_subvol_rm_allowed");
989 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
990 		seq_puts(seq, ",enospc_debug");
991 	if (btrfs_test_opt(root, AUTO_DEFRAG))
992 		seq_puts(seq, ",autodefrag");
993 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
994 		seq_puts(seq, ",inode_cache");
995 	if (btrfs_test_opt(root, SKIP_BALANCE))
996 		seq_puts(seq, ",skip_balance");
997 	if (btrfs_test_opt(root, RECOVERY))
998 		seq_puts(seq, ",recovery");
999 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1000 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1001 		seq_puts(seq, ",check_int_data");
1002 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1003 		seq_puts(seq, ",check_int");
1004 	if (info->check_integrity_print_mask)
1005 		seq_printf(seq, ",check_int_print_mask=%d",
1006 				info->check_integrity_print_mask);
1007 #endif
1008 	if (info->metadata_ratio)
1009 		seq_printf(seq, ",metadata_ratio=%d",
1010 				info->metadata_ratio);
1011 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1012 		seq_puts(seq, ",fatal_errors=panic");
1013 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1014 		seq_printf(seq, ",commit=%d", info->commit_interval);
1015 	return 0;
1016 }
1017 
1018 static int btrfs_test_super(struct super_block *s, void *data)
1019 {
1020 	struct btrfs_fs_info *p = data;
1021 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1022 
1023 	return fs_info->fs_devices == p->fs_devices;
1024 }
1025 
1026 static int btrfs_set_super(struct super_block *s, void *data)
1027 {
1028 	int err = set_anon_super(s, data);
1029 	if (!err)
1030 		s->s_fs_info = data;
1031 	return err;
1032 }
1033 
1034 /*
1035  * subvolumes are identified by ino 256
1036  */
1037 static inline int is_subvolume_inode(struct inode *inode)
1038 {
1039 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1040 		return 1;
1041 	return 0;
1042 }
1043 
1044 /*
1045  * This will strip out the subvol=%s argument for an argument string and add
1046  * subvolid=0 to make sure we get the actual tree root for path walking to the
1047  * subvol we want.
1048  */
1049 static char *setup_root_args(char *args)
1050 {
1051 	unsigned len = strlen(args) + 2 + 1;
1052 	char *src, *dst, *buf;
1053 
1054 	/*
1055 	 * We need the same args as before, but with this substitution:
1056 	 * s!subvol=[^,]+!subvolid=0!
1057 	 *
1058 	 * Since the replacement string is up to 2 bytes longer than the
1059 	 * original, allocate strlen(args) + 2 + 1 bytes.
1060 	 */
1061 
1062 	src = strstr(args, "subvol=");
1063 	/* This shouldn't happen, but just in case.. */
1064 	if (!src)
1065 		return NULL;
1066 
1067 	buf = dst = kmalloc(len, GFP_NOFS);
1068 	if (!buf)
1069 		return NULL;
1070 
1071 	/*
1072 	 * If the subvol= arg is not at the start of the string,
1073 	 * copy whatever precedes it into buf.
1074 	 */
1075 	if (src != args) {
1076 		*src++ = '\0';
1077 		strcpy(buf, args);
1078 		dst += strlen(args);
1079 	}
1080 
1081 	strcpy(dst, "subvolid=0");
1082 	dst += strlen("subvolid=0");
1083 
1084 	/*
1085 	 * If there is a "," after the original subvol=... string,
1086 	 * copy that suffix into our buffer.  Otherwise, we're done.
1087 	 */
1088 	src = strchr(src, ',');
1089 	if (src)
1090 		strcpy(dst, src);
1091 
1092 	return buf;
1093 }
1094 
1095 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1096 				   const char *device_name, char *data)
1097 {
1098 	struct dentry *root;
1099 	struct vfsmount *mnt;
1100 	char *newargs;
1101 
1102 	newargs = setup_root_args(data);
1103 	if (!newargs)
1104 		return ERR_PTR(-ENOMEM);
1105 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1106 			     newargs);
1107 	kfree(newargs);
1108 	if (IS_ERR(mnt))
1109 		return ERR_CAST(mnt);
1110 
1111 	root = mount_subtree(mnt, subvol_name);
1112 
1113 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1114 		struct super_block *s = root->d_sb;
1115 		dput(root);
1116 		root = ERR_PTR(-EINVAL);
1117 		deactivate_locked_super(s);
1118 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1119 				subvol_name);
1120 	}
1121 
1122 	return root;
1123 }
1124 
1125 /*
1126  * Find a superblock for the given device / mount point.
1127  *
1128  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1129  *	  for multiple device setup.  Make sure to keep it in sync.
1130  */
1131 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1132 		const char *device_name, void *data)
1133 {
1134 	struct block_device *bdev = NULL;
1135 	struct super_block *s;
1136 	struct dentry *root;
1137 	struct btrfs_fs_devices *fs_devices = NULL;
1138 	struct btrfs_fs_info *fs_info = NULL;
1139 	fmode_t mode = FMODE_READ;
1140 	char *subvol_name = NULL;
1141 	u64 subvol_objectid = 0;
1142 	int error = 0;
1143 
1144 	if (!(flags & MS_RDONLY))
1145 		mode |= FMODE_WRITE;
1146 
1147 	error = btrfs_parse_early_options(data, mode, fs_type,
1148 					  &subvol_name, &subvol_objectid,
1149 					  &fs_devices);
1150 	if (error) {
1151 		kfree(subvol_name);
1152 		return ERR_PTR(error);
1153 	}
1154 
1155 	if (subvol_name) {
1156 		root = mount_subvol(subvol_name, flags, device_name, data);
1157 		kfree(subvol_name);
1158 		return root;
1159 	}
1160 
1161 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1162 	if (error)
1163 		return ERR_PTR(error);
1164 
1165 	/*
1166 	 * Setup a dummy root and fs_info for test/set super.  This is because
1167 	 * we don't actually fill this stuff out until open_ctree, but we need
1168 	 * it for searching for existing supers, so this lets us do that and
1169 	 * then open_ctree will properly initialize everything later.
1170 	 */
1171 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1172 	if (!fs_info)
1173 		return ERR_PTR(-ENOMEM);
1174 
1175 	fs_info->fs_devices = fs_devices;
1176 
1177 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1178 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1179 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1180 		error = -ENOMEM;
1181 		goto error_fs_info;
1182 	}
1183 
1184 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1185 	if (error)
1186 		goto error_fs_info;
1187 
1188 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1189 		error = -EACCES;
1190 		goto error_close_devices;
1191 	}
1192 
1193 	bdev = fs_devices->latest_bdev;
1194 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1195 		 fs_info);
1196 	if (IS_ERR(s)) {
1197 		error = PTR_ERR(s);
1198 		goto error_close_devices;
1199 	}
1200 
1201 	if (s->s_root) {
1202 		btrfs_close_devices(fs_devices);
1203 		free_fs_info(fs_info);
1204 		if ((flags ^ s->s_flags) & MS_RDONLY)
1205 			error = -EBUSY;
1206 	} else {
1207 		char b[BDEVNAME_SIZE];
1208 
1209 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1210 		btrfs_sb(s)->bdev_holder = fs_type;
1211 		error = btrfs_fill_super(s, fs_devices, data,
1212 					 flags & MS_SILENT ? 1 : 0);
1213 	}
1214 
1215 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1216 	if (IS_ERR(root))
1217 		deactivate_locked_super(s);
1218 
1219 	return root;
1220 
1221 error_close_devices:
1222 	btrfs_close_devices(fs_devices);
1223 error_fs_info:
1224 	free_fs_info(fs_info);
1225 	return ERR_PTR(error);
1226 }
1227 
1228 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1229 {
1230 	spin_lock_irq(&workers->lock);
1231 	workers->max_workers = new_limit;
1232 	spin_unlock_irq(&workers->lock);
1233 }
1234 
1235 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1236 				     int new_pool_size, int old_pool_size)
1237 {
1238 	if (new_pool_size == old_pool_size)
1239 		return;
1240 
1241 	fs_info->thread_pool_size = new_pool_size;
1242 
1243 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1244 	       old_pool_size, new_pool_size);
1245 
1246 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1247 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1248 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1249 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1250 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1251 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1252 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1253 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1254 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1255 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1256 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1257 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1258 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1259 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1260 			      new_pool_size);
1261 }
1262 
1263 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1264 {
1265 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1266 }
1267 
1268 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1269 				       unsigned long old_opts, int flags)
1270 {
1271 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1272 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1273 	     (flags & MS_RDONLY))) {
1274 		/* wait for any defraggers to finish */
1275 		wait_event(fs_info->transaction_wait,
1276 			   (atomic_read(&fs_info->defrag_running) == 0));
1277 		if (flags & MS_RDONLY)
1278 			sync_filesystem(fs_info->sb);
1279 	}
1280 }
1281 
1282 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1283 					 unsigned long old_opts)
1284 {
1285 	/*
1286 	 * We need cleanup all defragable inodes if the autodefragment is
1287 	 * close or the fs is R/O.
1288 	 */
1289 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1290 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1291 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1292 		btrfs_cleanup_defrag_inodes(fs_info);
1293 	}
1294 
1295 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1296 }
1297 
1298 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1299 {
1300 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1301 	struct btrfs_root *root = fs_info->tree_root;
1302 	unsigned old_flags = sb->s_flags;
1303 	unsigned long old_opts = fs_info->mount_opt;
1304 	unsigned long old_compress_type = fs_info->compress_type;
1305 	u64 old_max_inline = fs_info->max_inline;
1306 	u64 old_alloc_start = fs_info->alloc_start;
1307 	int old_thread_pool_size = fs_info->thread_pool_size;
1308 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1309 	int ret;
1310 
1311 	btrfs_remount_prepare(fs_info);
1312 
1313 	ret = btrfs_parse_options(root, data);
1314 	if (ret) {
1315 		ret = -EINVAL;
1316 		goto restore;
1317 	}
1318 
1319 	btrfs_remount_begin(fs_info, old_opts, *flags);
1320 	btrfs_resize_thread_pool(fs_info,
1321 		fs_info->thread_pool_size, old_thread_pool_size);
1322 
1323 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1324 		goto out;
1325 
1326 	if (*flags & MS_RDONLY) {
1327 		/*
1328 		 * this also happens on 'umount -rf' or on shutdown, when
1329 		 * the filesystem is busy.
1330 		 */
1331 
1332 		/* wait for the uuid_scan task to finish */
1333 		down(&fs_info->uuid_tree_rescan_sem);
1334 		/* avoid complains from lockdep et al. */
1335 		up(&fs_info->uuid_tree_rescan_sem);
1336 
1337 		sb->s_flags |= MS_RDONLY;
1338 
1339 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1340 		btrfs_scrub_cancel(fs_info);
1341 		btrfs_pause_balance(fs_info);
1342 
1343 		ret = btrfs_commit_super(root);
1344 		if (ret)
1345 			goto restore;
1346 	} else {
1347 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1348 			btrfs_err(fs_info,
1349 				"Remounting read-write after error is not allowed\n");
1350 			ret = -EINVAL;
1351 			goto restore;
1352 		}
1353 		if (fs_info->fs_devices->rw_devices == 0) {
1354 			ret = -EACCES;
1355 			goto restore;
1356 		}
1357 
1358 		if (fs_info->fs_devices->missing_devices >
1359 		     fs_info->num_tolerated_disk_barrier_failures &&
1360 		    !(*flags & MS_RDONLY)) {
1361 			printk(KERN_WARNING
1362 			       "Btrfs: too many missing devices, writeable remount is not allowed\n");
1363 			ret = -EACCES;
1364 			goto restore;
1365 		}
1366 
1367 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1368 			ret = -EINVAL;
1369 			goto restore;
1370 		}
1371 
1372 		ret = btrfs_cleanup_fs_roots(fs_info);
1373 		if (ret)
1374 			goto restore;
1375 
1376 		/* recover relocation */
1377 		ret = btrfs_recover_relocation(root);
1378 		if (ret)
1379 			goto restore;
1380 
1381 		ret = btrfs_resume_balance_async(fs_info);
1382 		if (ret)
1383 			goto restore;
1384 
1385 		ret = btrfs_resume_dev_replace_async(fs_info);
1386 		if (ret) {
1387 			pr_warn("btrfs: failed to resume dev_replace\n");
1388 			goto restore;
1389 		}
1390 
1391 		if (!fs_info->uuid_root) {
1392 			pr_info("btrfs: creating UUID tree\n");
1393 			ret = btrfs_create_uuid_tree(fs_info);
1394 			if (ret) {
1395 				pr_warn("btrfs: failed to create the uuid tree"
1396 					"%d\n", ret);
1397 				goto restore;
1398 			}
1399 		}
1400 		sb->s_flags &= ~MS_RDONLY;
1401 	}
1402 out:
1403 	btrfs_remount_cleanup(fs_info, old_opts);
1404 	return 0;
1405 
1406 restore:
1407 	/* We've hit an error - don't reset MS_RDONLY */
1408 	if (sb->s_flags & MS_RDONLY)
1409 		old_flags |= MS_RDONLY;
1410 	sb->s_flags = old_flags;
1411 	fs_info->mount_opt = old_opts;
1412 	fs_info->compress_type = old_compress_type;
1413 	fs_info->max_inline = old_max_inline;
1414 	mutex_lock(&fs_info->chunk_mutex);
1415 	fs_info->alloc_start = old_alloc_start;
1416 	mutex_unlock(&fs_info->chunk_mutex);
1417 	btrfs_resize_thread_pool(fs_info,
1418 		old_thread_pool_size, fs_info->thread_pool_size);
1419 	fs_info->metadata_ratio = old_metadata_ratio;
1420 	btrfs_remount_cleanup(fs_info, old_opts);
1421 	return ret;
1422 }
1423 
1424 /* Used to sort the devices by max_avail(descending sort) */
1425 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1426 				       const void *dev_info2)
1427 {
1428 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1429 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1430 		return -1;
1431 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1432 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1433 		return 1;
1434 	else
1435 	return 0;
1436 }
1437 
1438 /*
1439  * sort the devices by max_avail, in which max free extent size of each device
1440  * is stored.(Descending Sort)
1441  */
1442 static inline void btrfs_descending_sort_devices(
1443 					struct btrfs_device_info *devices,
1444 					size_t nr_devices)
1445 {
1446 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1447 	     btrfs_cmp_device_free_bytes, NULL);
1448 }
1449 
1450 /*
1451  * The helper to calc the free space on the devices that can be used to store
1452  * file data.
1453  */
1454 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1455 {
1456 	struct btrfs_fs_info *fs_info = root->fs_info;
1457 	struct btrfs_device_info *devices_info;
1458 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1459 	struct btrfs_device *device;
1460 	u64 skip_space;
1461 	u64 type;
1462 	u64 avail_space;
1463 	u64 used_space;
1464 	u64 min_stripe_size;
1465 	int min_stripes = 1, num_stripes = 1;
1466 	int i = 0, nr_devices;
1467 	int ret;
1468 
1469 	nr_devices = fs_info->fs_devices->open_devices;
1470 	BUG_ON(!nr_devices);
1471 
1472 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1473 			       GFP_NOFS);
1474 	if (!devices_info)
1475 		return -ENOMEM;
1476 
1477 	/* calc min stripe number for data space alloction */
1478 	type = btrfs_get_alloc_profile(root, 1);
1479 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1480 		min_stripes = 2;
1481 		num_stripes = nr_devices;
1482 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1483 		min_stripes = 2;
1484 		num_stripes = 2;
1485 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1486 		min_stripes = 4;
1487 		num_stripes = 4;
1488 	}
1489 
1490 	if (type & BTRFS_BLOCK_GROUP_DUP)
1491 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1492 	else
1493 		min_stripe_size = BTRFS_STRIPE_LEN;
1494 
1495 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1496 		if (!device->in_fs_metadata || !device->bdev ||
1497 		    device->is_tgtdev_for_dev_replace)
1498 			continue;
1499 
1500 		avail_space = device->total_bytes - device->bytes_used;
1501 
1502 		/* align with stripe_len */
1503 		do_div(avail_space, BTRFS_STRIPE_LEN);
1504 		avail_space *= BTRFS_STRIPE_LEN;
1505 
1506 		/*
1507 		 * In order to avoid overwritting the superblock on the drive,
1508 		 * btrfs starts at an offset of at least 1MB when doing chunk
1509 		 * allocation.
1510 		 */
1511 		skip_space = 1024 * 1024;
1512 
1513 		/* user can set the offset in fs_info->alloc_start. */
1514 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1515 		    device->total_bytes)
1516 			skip_space = max(fs_info->alloc_start, skip_space);
1517 
1518 		/*
1519 		 * btrfs can not use the free space in [0, skip_space - 1],
1520 		 * we must subtract it from the total. In order to implement
1521 		 * it, we account the used space in this range first.
1522 		 */
1523 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1524 						     &used_space);
1525 		if (ret) {
1526 			kfree(devices_info);
1527 			return ret;
1528 		}
1529 
1530 		/* calc the free space in [0, skip_space - 1] */
1531 		skip_space -= used_space;
1532 
1533 		/*
1534 		 * we can use the free space in [0, skip_space - 1], subtract
1535 		 * it from the total.
1536 		 */
1537 		if (avail_space && avail_space >= skip_space)
1538 			avail_space -= skip_space;
1539 		else
1540 			avail_space = 0;
1541 
1542 		if (avail_space < min_stripe_size)
1543 			continue;
1544 
1545 		devices_info[i].dev = device;
1546 		devices_info[i].max_avail = avail_space;
1547 
1548 		i++;
1549 	}
1550 
1551 	nr_devices = i;
1552 
1553 	btrfs_descending_sort_devices(devices_info, nr_devices);
1554 
1555 	i = nr_devices - 1;
1556 	avail_space = 0;
1557 	while (nr_devices >= min_stripes) {
1558 		if (num_stripes > nr_devices)
1559 			num_stripes = nr_devices;
1560 
1561 		if (devices_info[i].max_avail >= min_stripe_size) {
1562 			int j;
1563 			u64 alloc_size;
1564 
1565 			avail_space += devices_info[i].max_avail * num_stripes;
1566 			alloc_size = devices_info[i].max_avail;
1567 			for (j = i + 1 - num_stripes; j <= i; j++)
1568 				devices_info[j].max_avail -= alloc_size;
1569 		}
1570 		i--;
1571 		nr_devices--;
1572 	}
1573 
1574 	kfree(devices_info);
1575 	*free_bytes = avail_space;
1576 	return 0;
1577 }
1578 
1579 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1580 {
1581 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1582 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1583 	struct list_head *head = &fs_info->space_info;
1584 	struct btrfs_space_info *found;
1585 	u64 total_used = 0;
1586 	u64 total_free_data = 0;
1587 	int bits = dentry->d_sb->s_blocksize_bits;
1588 	__be32 *fsid = (__be32 *)fs_info->fsid;
1589 	int ret;
1590 
1591 	/* holding chunk_muext to avoid allocating new chunks */
1592 	mutex_lock(&fs_info->chunk_mutex);
1593 	rcu_read_lock();
1594 	list_for_each_entry_rcu(found, head, list) {
1595 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1596 			total_free_data += found->disk_total - found->disk_used;
1597 			total_free_data -=
1598 				btrfs_account_ro_block_groups_free_space(found);
1599 		}
1600 
1601 		total_used += found->disk_used;
1602 	}
1603 	rcu_read_unlock();
1604 
1605 	buf->f_namelen = BTRFS_NAME_LEN;
1606 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1607 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1608 	buf->f_bsize = dentry->d_sb->s_blocksize;
1609 	buf->f_type = BTRFS_SUPER_MAGIC;
1610 	buf->f_bavail = total_free_data;
1611 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1612 	if (ret) {
1613 		mutex_unlock(&fs_info->chunk_mutex);
1614 		return ret;
1615 	}
1616 	buf->f_bavail += total_free_data;
1617 	buf->f_bavail = buf->f_bavail >> bits;
1618 	mutex_unlock(&fs_info->chunk_mutex);
1619 
1620 	/* We treat it as constant endianness (it doesn't matter _which_)
1621 	   because we want the fsid to come out the same whether mounted
1622 	   on a big-endian or little-endian host */
1623 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1624 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1625 	/* Mask in the root object ID too, to disambiguate subvols */
1626 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1627 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1628 
1629 	return 0;
1630 }
1631 
1632 static void btrfs_kill_super(struct super_block *sb)
1633 {
1634 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1635 	kill_anon_super(sb);
1636 	free_fs_info(fs_info);
1637 }
1638 
1639 static struct file_system_type btrfs_fs_type = {
1640 	.owner		= THIS_MODULE,
1641 	.name		= "btrfs",
1642 	.mount		= btrfs_mount,
1643 	.kill_sb	= btrfs_kill_super,
1644 	.fs_flags	= FS_REQUIRES_DEV,
1645 };
1646 MODULE_ALIAS_FS("btrfs");
1647 
1648 /*
1649  * used by btrfsctl to scan devices when no FS is mounted
1650  */
1651 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1652 				unsigned long arg)
1653 {
1654 	struct btrfs_ioctl_vol_args *vol;
1655 	struct btrfs_fs_devices *fs_devices;
1656 	int ret = -ENOTTY;
1657 
1658 	if (!capable(CAP_SYS_ADMIN))
1659 		return -EPERM;
1660 
1661 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1662 	if (IS_ERR(vol))
1663 		return PTR_ERR(vol);
1664 
1665 	switch (cmd) {
1666 	case BTRFS_IOC_SCAN_DEV:
1667 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1668 					    &btrfs_fs_type, &fs_devices);
1669 		break;
1670 	case BTRFS_IOC_DEVICES_READY:
1671 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1672 					    &btrfs_fs_type, &fs_devices);
1673 		if (ret)
1674 			break;
1675 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1676 		break;
1677 	}
1678 
1679 	kfree(vol);
1680 	return ret;
1681 }
1682 
1683 static int btrfs_freeze(struct super_block *sb)
1684 {
1685 	struct btrfs_trans_handle *trans;
1686 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1687 
1688 	trans = btrfs_attach_transaction_barrier(root);
1689 	if (IS_ERR(trans)) {
1690 		/* no transaction, don't bother */
1691 		if (PTR_ERR(trans) == -ENOENT)
1692 			return 0;
1693 		return PTR_ERR(trans);
1694 	}
1695 	return btrfs_commit_transaction(trans, root);
1696 }
1697 
1698 static int btrfs_unfreeze(struct super_block *sb)
1699 {
1700 	return 0;
1701 }
1702 
1703 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1704 {
1705 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1706 	struct btrfs_fs_devices *cur_devices;
1707 	struct btrfs_device *dev, *first_dev = NULL;
1708 	struct list_head *head;
1709 	struct rcu_string *name;
1710 
1711 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1712 	cur_devices = fs_info->fs_devices;
1713 	while (cur_devices) {
1714 		head = &cur_devices->devices;
1715 		list_for_each_entry(dev, head, dev_list) {
1716 			if (dev->missing)
1717 				continue;
1718 			if (!first_dev || dev->devid < first_dev->devid)
1719 				first_dev = dev;
1720 		}
1721 		cur_devices = cur_devices->seed;
1722 	}
1723 
1724 	if (first_dev) {
1725 		rcu_read_lock();
1726 		name = rcu_dereference(first_dev->name);
1727 		seq_escape(m, name->str, " \t\n\\");
1728 		rcu_read_unlock();
1729 	} else {
1730 		WARN_ON(1);
1731 	}
1732 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1733 	return 0;
1734 }
1735 
1736 static const struct super_operations btrfs_super_ops = {
1737 	.drop_inode	= btrfs_drop_inode,
1738 	.evict_inode	= btrfs_evict_inode,
1739 	.put_super	= btrfs_put_super,
1740 	.sync_fs	= btrfs_sync_fs,
1741 	.show_options	= btrfs_show_options,
1742 	.show_devname	= btrfs_show_devname,
1743 	.write_inode	= btrfs_write_inode,
1744 	.alloc_inode	= btrfs_alloc_inode,
1745 	.destroy_inode	= btrfs_destroy_inode,
1746 	.statfs		= btrfs_statfs,
1747 	.remount_fs	= btrfs_remount,
1748 	.freeze_fs	= btrfs_freeze,
1749 	.unfreeze_fs	= btrfs_unfreeze,
1750 };
1751 
1752 static const struct file_operations btrfs_ctl_fops = {
1753 	.unlocked_ioctl	 = btrfs_control_ioctl,
1754 	.compat_ioctl = btrfs_control_ioctl,
1755 	.owner	 = THIS_MODULE,
1756 	.llseek = noop_llseek,
1757 };
1758 
1759 static struct miscdevice btrfs_misc = {
1760 	.minor		= BTRFS_MINOR,
1761 	.name		= "btrfs-control",
1762 	.fops		= &btrfs_ctl_fops
1763 };
1764 
1765 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1766 MODULE_ALIAS("devname:btrfs-control");
1767 
1768 static int btrfs_interface_init(void)
1769 {
1770 	return misc_register(&btrfs_misc);
1771 }
1772 
1773 static void btrfs_interface_exit(void)
1774 {
1775 	if (misc_deregister(&btrfs_misc) < 0)
1776 		printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1777 }
1778 
1779 static void btrfs_print_info(void)
1780 {
1781 	printk(KERN_INFO "Btrfs loaded"
1782 #ifdef CONFIG_BTRFS_DEBUG
1783 			", debug=on"
1784 #endif
1785 #ifdef CONFIG_BTRFS_ASSERT
1786 			", assert=on"
1787 #endif
1788 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1789 			", integrity-checker=on"
1790 #endif
1791 			"\n");
1792 }
1793 
1794 static int btrfs_run_sanity_tests(void)
1795 {
1796 	int ret;
1797 
1798 	ret = btrfs_init_test_fs();
1799 	if (ret)
1800 		return ret;
1801 
1802 	ret = btrfs_test_free_space_cache();
1803 	if (ret)
1804 		goto out;
1805 	ret = btrfs_test_extent_buffer_operations();
1806 	if (ret)
1807 		goto out;
1808 	ret = btrfs_test_extent_io();
1809 	if (ret)
1810 		goto out;
1811 	ret = btrfs_test_inodes();
1812 out:
1813 	btrfs_destroy_test_fs();
1814 	return ret;
1815 }
1816 
1817 static int __init init_btrfs_fs(void)
1818 {
1819 	int err;
1820 
1821 	err = btrfs_init_sysfs();
1822 	if (err)
1823 		return err;
1824 
1825 	btrfs_init_compress();
1826 
1827 	err = btrfs_init_cachep();
1828 	if (err)
1829 		goto free_compress;
1830 
1831 	err = extent_io_init();
1832 	if (err)
1833 		goto free_cachep;
1834 
1835 	err = extent_map_init();
1836 	if (err)
1837 		goto free_extent_io;
1838 
1839 	err = ordered_data_init();
1840 	if (err)
1841 		goto free_extent_map;
1842 
1843 	err = btrfs_delayed_inode_init();
1844 	if (err)
1845 		goto free_ordered_data;
1846 
1847 	err = btrfs_auto_defrag_init();
1848 	if (err)
1849 		goto free_delayed_inode;
1850 
1851 	err = btrfs_delayed_ref_init();
1852 	if (err)
1853 		goto free_auto_defrag;
1854 
1855 	err = btrfs_prelim_ref_init();
1856 	if (err)
1857 		goto free_prelim_ref;
1858 
1859 	err = btrfs_interface_init();
1860 	if (err)
1861 		goto free_delayed_ref;
1862 
1863 	btrfs_init_lockdep();
1864 
1865 	btrfs_print_info();
1866 
1867 	err = btrfs_run_sanity_tests();
1868 	if (err)
1869 		goto unregister_ioctl;
1870 
1871 	err = register_filesystem(&btrfs_fs_type);
1872 	if (err)
1873 		goto unregister_ioctl;
1874 
1875 	return 0;
1876 
1877 unregister_ioctl:
1878 	btrfs_interface_exit();
1879 free_prelim_ref:
1880 	btrfs_prelim_ref_exit();
1881 free_delayed_ref:
1882 	btrfs_delayed_ref_exit();
1883 free_auto_defrag:
1884 	btrfs_auto_defrag_exit();
1885 free_delayed_inode:
1886 	btrfs_delayed_inode_exit();
1887 free_ordered_data:
1888 	ordered_data_exit();
1889 free_extent_map:
1890 	extent_map_exit();
1891 free_extent_io:
1892 	extent_io_exit();
1893 free_cachep:
1894 	btrfs_destroy_cachep();
1895 free_compress:
1896 	btrfs_exit_compress();
1897 	btrfs_exit_sysfs();
1898 	return err;
1899 }
1900 
1901 static void __exit exit_btrfs_fs(void)
1902 {
1903 	btrfs_destroy_cachep();
1904 	btrfs_delayed_ref_exit();
1905 	btrfs_auto_defrag_exit();
1906 	btrfs_delayed_inode_exit();
1907 	btrfs_prelim_ref_exit();
1908 	ordered_data_exit();
1909 	extent_map_exit();
1910 	extent_io_exit();
1911 	btrfs_interface_exit();
1912 	unregister_filesystem(&btrfs_fs_type);
1913 	btrfs_exit_sysfs();
1914 	btrfs_cleanup_fs_uuids();
1915 	btrfs_exit_compress();
1916 }
1917 
1918 module_init(init_btrfs_fs)
1919 module_exit(exit_btrfs_fs)
1920 
1921 MODULE_LICENSE("GPL");
1922