xref: /openbmc/linux/fs/btrfs/super.c (revision 2dd6532e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "delayed-inode.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "props.h"
36 #include "xattr.h"
37 #include "volumes.h"
38 #include "export.h"
39 #include "compression.h"
40 #include "rcu-string.h"
41 #include "dev-replace.h"
42 #include "free-space-cache.h"
43 #include "backref.h"
44 #include "space-info.h"
45 #include "sysfs.h"
46 #include "zoned.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 #include "discard.h"
50 #include "qgroup.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/btrfs.h>
53 
54 static const struct super_operations btrfs_super_ops;
55 
56 /*
57  * Types for mounting the default subvolume and a subvolume explicitly
58  * requested by subvol=/path. That way the callchain is straightforward and we
59  * don't have to play tricks with the mount options and recursive calls to
60  * btrfs_mount.
61  *
62  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
63  */
64 static struct file_system_type btrfs_fs_type;
65 static struct file_system_type btrfs_root_fs_type;
66 
67 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
68 
69 #ifdef CONFIG_PRINTK
70 
71 #define STATE_STRING_PREFACE	": state "
72 #define STATE_STRING_BUF_LEN	(sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT)
73 
74 /*
75  * Characters to print to indicate error conditions or uncommon filesystem sate.
76  * RO is not an error.
77  */
78 static const char fs_state_chars[] = {
79 	[BTRFS_FS_STATE_ERROR]			= 'E',
80 	[BTRFS_FS_STATE_REMOUNTING]		= 'M',
81 	[BTRFS_FS_STATE_RO]			= 0,
82 	[BTRFS_FS_STATE_TRANS_ABORTED]		= 'A',
83 	[BTRFS_FS_STATE_DEV_REPLACING]		= 'R',
84 	[BTRFS_FS_STATE_DUMMY_FS_INFO]		= 0,
85 	[BTRFS_FS_STATE_NO_CSUMS]		= 'C',
86 	[BTRFS_FS_STATE_LOG_CLEANUP_ERROR]	= 'L',
87 };
88 
89 static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf)
90 {
91 	unsigned int bit;
92 	bool states_printed = false;
93 	unsigned long fs_state = READ_ONCE(info->fs_state);
94 	char *curr = buf;
95 
96 	memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE));
97 	curr += sizeof(STATE_STRING_PREFACE) - 1;
98 
99 	for_each_set_bit(bit, &fs_state, sizeof(fs_state)) {
100 		WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT);
101 		if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) {
102 			*curr++ = fs_state_chars[bit];
103 			states_printed = true;
104 		}
105 	}
106 
107 	/* If no states were printed, reset the buffer */
108 	if (!states_printed)
109 		curr = buf;
110 
111 	*curr++ = 0;
112 }
113 #endif
114 
115 /*
116  * Generally the error codes correspond to their respective errors, but there
117  * are a few special cases.
118  *
119  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
120  *          instance will return EUCLEAN if any of the blocks are corrupted in
121  *          a way that is problematic.  We want to reserve EUCLEAN for these
122  *          sort of corruptions.
123  *
124  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
125  *        need to use EROFS for this case.  We will have no idea of the
126  *        original failure, that will have been reported at the time we tripped
127  *        over the error.  Each subsequent error that doesn't have any context
128  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
129  */
130 const char * __attribute_const__ btrfs_decode_error(int errno)
131 {
132 	char *errstr = "unknown";
133 
134 	switch (errno) {
135 	case -ENOENT:		/* -2 */
136 		errstr = "No such entry";
137 		break;
138 	case -EIO:		/* -5 */
139 		errstr = "IO failure";
140 		break;
141 	case -ENOMEM:		/* -12*/
142 		errstr = "Out of memory";
143 		break;
144 	case -EEXIST:		/* -17 */
145 		errstr = "Object already exists";
146 		break;
147 	case -ENOSPC:		/* -28 */
148 		errstr = "No space left";
149 		break;
150 	case -EROFS:		/* -30 */
151 		errstr = "Readonly filesystem";
152 		break;
153 	case -EOPNOTSUPP:	/* -95 */
154 		errstr = "Operation not supported";
155 		break;
156 	case -EUCLEAN:		/* -117 */
157 		errstr = "Filesystem corrupted";
158 		break;
159 	case -EDQUOT:		/* -122 */
160 		errstr = "Quota exceeded";
161 		break;
162 	}
163 
164 	return errstr;
165 }
166 
167 /*
168  * __btrfs_handle_fs_error decodes expected errors from the caller and
169  * invokes the appropriate error response.
170  */
171 __cold
172 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
173 		       unsigned int line, int errno, const char *fmt, ...)
174 {
175 	struct super_block *sb = fs_info->sb;
176 #ifdef CONFIG_PRINTK
177 	char statestr[STATE_STRING_BUF_LEN];
178 	const char *errstr;
179 #endif
180 
181 	/*
182 	 * Special case: if the error is EROFS, and we're already
183 	 * under SB_RDONLY, then it is safe here.
184 	 */
185 	if (errno == -EROFS && sb_rdonly(sb))
186   		return;
187 
188 #ifdef CONFIG_PRINTK
189 	errstr = btrfs_decode_error(errno);
190 	btrfs_state_to_string(fs_info, statestr);
191 	if (fmt) {
192 		struct va_format vaf;
193 		va_list args;
194 
195 		va_start(args, fmt);
196 		vaf.fmt = fmt;
197 		vaf.va = &args;
198 
199 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n",
200 			sb->s_id, statestr, function, line, errno, errstr, &vaf);
201 		va_end(args);
202 	} else {
203 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n",
204 			sb->s_id, statestr, function, line, errno, errstr);
205 	}
206 #endif
207 
208 	/*
209 	 * Today we only save the error info to memory.  Long term we'll
210 	 * also send it down to the disk
211 	 */
212 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
213 
214 	/* Don't go through full error handling during mount */
215 	if (!(sb->s_flags & SB_BORN))
216 		return;
217 
218 	if (sb_rdonly(sb))
219 		return;
220 
221 	btrfs_discard_stop(fs_info);
222 
223 	/* btrfs handle error by forcing the filesystem readonly */
224 	btrfs_set_sb_rdonly(sb);
225 	btrfs_info(fs_info, "forced readonly");
226 	/*
227 	 * Note that a running device replace operation is not canceled here
228 	 * although there is no way to update the progress. It would add the
229 	 * risk of a deadlock, therefore the canceling is omitted. The only
230 	 * penalty is that some I/O remains active until the procedure
231 	 * completes. The next time when the filesystem is mounted writable
232 	 * again, the device replace operation continues.
233 	 */
234 }
235 
236 #ifdef CONFIG_PRINTK
237 static const char * const logtypes[] = {
238 	"emergency",
239 	"alert",
240 	"critical",
241 	"error",
242 	"warning",
243 	"notice",
244 	"info",
245 	"debug",
246 };
247 
248 
249 /*
250  * Use one ratelimit state per log level so that a flood of less important
251  * messages doesn't cause more important ones to be dropped.
252  */
253 static struct ratelimit_state printk_limits[] = {
254 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
255 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
256 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
257 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
258 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
259 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
260 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
261 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
262 };
263 
264 void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
265 {
266 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
267 	struct va_format vaf;
268 	va_list args;
269 	int kern_level;
270 	const char *type = logtypes[4];
271 	struct ratelimit_state *ratelimit = &printk_limits[4];
272 
273 	va_start(args, fmt);
274 
275 	while ((kern_level = printk_get_level(fmt)) != 0) {
276 		size_t size = printk_skip_level(fmt) - fmt;
277 
278 		if (kern_level >= '0' && kern_level <= '7') {
279 			memcpy(lvl, fmt,  size);
280 			lvl[size] = '\0';
281 			type = logtypes[kern_level - '0'];
282 			ratelimit = &printk_limits[kern_level - '0'];
283 		}
284 		fmt += size;
285 	}
286 
287 	vaf.fmt = fmt;
288 	vaf.va = &args;
289 
290 	if (__ratelimit(ratelimit)) {
291 		if (fs_info) {
292 			char statestr[STATE_STRING_BUF_LEN];
293 
294 			btrfs_state_to_string(fs_info, statestr);
295 			_printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type,
296 				fs_info->sb->s_id, statestr, &vaf);
297 		} else {
298 			_printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
299 		}
300 	}
301 
302 	va_end(args);
303 }
304 #endif
305 
306 #if BITS_PER_LONG == 32
307 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
308 {
309 	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
310 		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
311 		btrfs_warn(fs_info,
312 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
313 			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
314 		btrfs_warn(fs_info,
315 			   "please consider upgrading to 64bit kernel/hardware");
316 	}
317 }
318 
319 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
320 {
321 	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
322 		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
323 		btrfs_err(fs_info,
324 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
325 			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
326 		btrfs_err(fs_info,
327 			   "please consider upgrading to 64bit kernel/hardware");
328 	}
329 }
330 #endif
331 
332 /*
333  * We only mark the transaction aborted and then set the file system read-only.
334  * This will prevent new transactions from starting or trying to join this
335  * one.
336  *
337  * This means that error recovery at the call site is limited to freeing
338  * any local memory allocations and passing the error code up without
339  * further cleanup. The transaction should complete as it normally would
340  * in the call path but will return -EIO.
341  *
342  * We'll complete the cleanup in btrfs_end_transaction and
343  * btrfs_commit_transaction.
344  */
345 __cold
346 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
347 			       const char *function,
348 			       unsigned int line, int errno)
349 {
350 	struct btrfs_fs_info *fs_info = trans->fs_info;
351 
352 	WRITE_ONCE(trans->aborted, errno);
353 	WRITE_ONCE(trans->transaction->aborted, errno);
354 	/* Wake up anybody who may be waiting on this transaction */
355 	wake_up(&fs_info->transaction_wait);
356 	wake_up(&fs_info->transaction_blocked_wait);
357 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
358 }
359 /*
360  * __btrfs_panic decodes unexpected, fatal errors from the caller,
361  * issues an alert, and either panics or BUGs, depending on mount options.
362  */
363 __cold
364 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
365 		   unsigned int line, int errno, const char *fmt, ...)
366 {
367 	char *s_id = "<unknown>";
368 	const char *errstr;
369 	struct va_format vaf = { .fmt = fmt };
370 	va_list args;
371 
372 	if (fs_info)
373 		s_id = fs_info->sb->s_id;
374 
375 	va_start(args, fmt);
376 	vaf.va = &args;
377 
378 	errstr = btrfs_decode_error(errno);
379 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
380 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
381 			s_id, function, line, &vaf, errno, errstr);
382 
383 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
384 		   function, line, &vaf, errno, errstr);
385 	va_end(args);
386 	/* Caller calls BUG() */
387 }
388 
389 static void btrfs_put_super(struct super_block *sb)
390 {
391 	close_ctree(btrfs_sb(sb));
392 }
393 
394 enum {
395 	Opt_acl, Opt_noacl,
396 	Opt_clear_cache,
397 	Opt_commit_interval,
398 	Opt_compress,
399 	Opt_compress_force,
400 	Opt_compress_force_type,
401 	Opt_compress_type,
402 	Opt_degraded,
403 	Opt_device,
404 	Opt_fatal_errors,
405 	Opt_flushoncommit, Opt_noflushoncommit,
406 	Opt_max_inline,
407 	Opt_barrier, Opt_nobarrier,
408 	Opt_datacow, Opt_nodatacow,
409 	Opt_datasum, Opt_nodatasum,
410 	Opt_defrag, Opt_nodefrag,
411 	Opt_discard, Opt_nodiscard,
412 	Opt_discard_mode,
413 	Opt_norecovery,
414 	Opt_ratio,
415 	Opt_rescan_uuid_tree,
416 	Opt_skip_balance,
417 	Opt_space_cache, Opt_no_space_cache,
418 	Opt_space_cache_version,
419 	Opt_ssd, Opt_nossd,
420 	Opt_ssd_spread, Opt_nossd_spread,
421 	Opt_subvol,
422 	Opt_subvol_empty,
423 	Opt_subvolid,
424 	Opt_thread_pool,
425 	Opt_treelog, Opt_notreelog,
426 	Opt_user_subvol_rm_allowed,
427 
428 	/* Rescue options */
429 	Opt_rescue,
430 	Opt_usebackuproot,
431 	Opt_nologreplay,
432 	Opt_ignorebadroots,
433 	Opt_ignoredatacsums,
434 	Opt_rescue_all,
435 
436 	/* Deprecated options */
437 	Opt_recovery,
438 	Opt_inode_cache, Opt_noinode_cache,
439 
440 	/* Debugging options */
441 	Opt_check_integrity,
442 	Opt_check_integrity_including_extent_data,
443 	Opt_check_integrity_print_mask,
444 	Opt_enospc_debug, Opt_noenospc_debug,
445 #ifdef CONFIG_BTRFS_DEBUG
446 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
447 #endif
448 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
449 	Opt_ref_verify,
450 #endif
451 	Opt_err,
452 };
453 
454 static const match_table_t tokens = {
455 	{Opt_acl, "acl"},
456 	{Opt_noacl, "noacl"},
457 	{Opt_clear_cache, "clear_cache"},
458 	{Opt_commit_interval, "commit=%u"},
459 	{Opt_compress, "compress"},
460 	{Opt_compress_type, "compress=%s"},
461 	{Opt_compress_force, "compress-force"},
462 	{Opt_compress_force_type, "compress-force=%s"},
463 	{Opt_degraded, "degraded"},
464 	{Opt_device, "device=%s"},
465 	{Opt_fatal_errors, "fatal_errors=%s"},
466 	{Opt_flushoncommit, "flushoncommit"},
467 	{Opt_noflushoncommit, "noflushoncommit"},
468 	{Opt_inode_cache, "inode_cache"},
469 	{Opt_noinode_cache, "noinode_cache"},
470 	{Opt_max_inline, "max_inline=%s"},
471 	{Opt_barrier, "barrier"},
472 	{Opt_nobarrier, "nobarrier"},
473 	{Opt_datacow, "datacow"},
474 	{Opt_nodatacow, "nodatacow"},
475 	{Opt_datasum, "datasum"},
476 	{Opt_nodatasum, "nodatasum"},
477 	{Opt_defrag, "autodefrag"},
478 	{Opt_nodefrag, "noautodefrag"},
479 	{Opt_discard, "discard"},
480 	{Opt_discard_mode, "discard=%s"},
481 	{Opt_nodiscard, "nodiscard"},
482 	{Opt_norecovery, "norecovery"},
483 	{Opt_ratio, "metadata_ratio=%u"},
484 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
485 	{Opt_skip_balance, "skip_balance"},
486 	{Opt_space_cache, "space_cache"},
487 	{Opt_no_space_cache, "nospace_cache"},
488 	{Opt_space_cache_version, "space_cache=%s"},
489 	{Opt_ssd, "ssd"},
490 	{Opt_nossd, "nossd"},
491 	{Opt_ssd_spread, "ssd_spread"},
492 	{Opt_nossd_spread, "nossd_spread"},
493 	{Opt_subvol, "subvol=%s"},
494 	{Opt_subvol_empty, "subvol="},
495 	{Opt_subvolid, "subvolid=%s"},
496 	{Opt_thread_pool, "thread_pool=%u"},
497 	{Opt_treelog, "treelog"},
498 	{Opt_notreelog, "notreelog"},
499 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
500 
501 	/* Rescue options */
502 	{Opt_rescue, "rescue=%s"},
503 	/* Deprecated, with alias rescue=nologreplay */
504 	{Opt_nologreplay, "nologreplay"},
505 	/* Deprecated, with alias rescue=usebackuproot */
506 	{Opt_usebackuproot, "usebackuproot"},
507 
508 	/* Deprecated options */
509 	{Opt_recovery, "recovery"},
510 
511 	/* Debugging options */
512 	{Opt_check_integrity, "check_int"},
513 	{Opt_check_integrity_including_extent_data, "check_int_data"},
514 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
515 	{Opt_enospc_debug, "enospc_debug"},
516 	{Opt_noenospc_debug, "noenospc_debug"},
517 #ifdef CONFIG_BTRFS_DEBUG
518 	{Opt_fragment_data, "fragment=data"},
519 	{Opt_fragment_metadata, "fragment=metadata"},
520 	{Opt_fragment_all, "fragment=all"},
521 #endif
522 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
523 	{Opt_ref_verify, "ref_verify"},
524 #endif
525 	{Opt_err, NULL},
526 };
527 
528 static const match_table_t rescue_tokens = {
529 	{Opt_usebackuproot, "usebackuproot"},
530 	{Opt_nologreplay, "nologreplay"},
531 	{Opt_ignorebadroots, "ignorebadroots"},
532 	{Opt_ignorebadroots, "ibadroots"},
533 	{Opt_ignoredatacsums, "ignoredatacsums"},
534 	{Opt_ignoredatacsums, "idatacsums"},
535 	{Opt_rescue_all, "all"},
536 	{Opt_err, NULL},
537 };
538 
539 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
540 			    const char *opt_name)
541 {
542 	if (fs_info->mount_opt & opt) {
543 		btrfs_err(fs_info, "%s must be used with ro mount option",
544 			  opt_name);
545 		return true;
546 	}
547 	return false;
548 }
549 
550 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
551 {
552 	char *opts;
553 	char *orig;
554 	char *p;
555 	substring_t args[MAX_OPT_ARGS];
556 	int ret = 0;
557 
558 	opts = kstrdup(options, GFP_KERNEL);
559 	if (!opts)
560 		return -ENOMEM;
561 	orig = opts;
562 
563 	while ((p = strsep(&opts, ":")) != NULL) {
564 		int token;
565 
566 		if (!*p)
567 			continue;
568 		token = match_token(p, rescue_tokens, args);
569 		switch (token){
570 		case Opt_usebackuproot:
571 			btrfs_info(info,
572 				   "trying to use backup root at mount time");
573 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
574 			break;
575 		case Opt_nologreplay:
576 			btrfs_set_and_info(info, NOLOGREPLAY,
577 					   "disabling log replay at mount time");
578 			break;
579 		case Opt_ignorebadroots:
580 			btrfs_set_and_info(info, IGNOREBADROOTS,
581 					   "ignoring bad roots");
582 			break;
583 		case Opt_ignoredatacsums:
584 			btrfs_set_and_info(info, IGNOREDATACSUMS,
585 					   "ignoring data csums");
586 			break;
587 		case Opt_rescue_all:
588 			btrfs_info(info, "enabling all of the rescue options");
589 			btrfs_set_and_info(info, IGNOREDATACSUMS,
590 					   "ignoring data csums");
591 			btrfs_set_and_info(info, IGNOREBADROOTS,
592 					   "ignoring bad roots");
593 			btrfs_set_and_info(info, NOLOGREPLAY,
594 					   "disabling log replay at mount time");
595 			break;
596 		case Opt_err:
597 			btrfs_info(info, "unrecognized rescue option '%s'", p);
598 			ret = -EINVAL;
599 			goto out;
600 		default:
601 			break;
602 		}
603 
604 	}
605 out:
606 	kfree(orig);
607 	return ret;
608 }
609 
610 /*
611  * Regular mount options parser.  Everything that is needed only when
612  * reading in a new superblock is parsed here.
613  * XXX JDM: This needs to be cleaned up for remount.
614  */
615 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
616 			unsigned long new_flags)
617 {
618 	substring_t args[MAX_OPT_ARGS];
619 	char *p, *num;
620 	int intarg;
621 	int ret = 0;
622 	char *compress_type;
623 	bool compress_force = false;
624 	enum btrfs_compression_type saved_compress_type;
625 	int saved_compress_level;
626 	bool saved_compress_force;
627 	int no_compress = 0;
628 
629 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
630 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
631 	else if (btrfs_free_space_cache_v1_active(info)) {
632 		if (btrfs_is_zoned(info)) {
633 			btrfs_info(info,
634 			"zoned: clearing existing space cache");
635 			btrfs_set_super_cache_generation(info->super_copy, 0);
636 		} else {
637 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
638 		}
639 	}
640 
641 	/*
642 	 * Even the options are empty, we still need to do extra check
643 	 * against new flags
644 	 */
645 	if (!options)
646 		goto check;
647 
648 	while ((p = strsep(&options, ",")) != NULL) {
649 		int token;
650 		if (!*p)
651 			continue;
652 
653 		token = match_token(p, tokens, args);
654 		switch (token) {
655 		case Opt_degraded:
656 			btrfs_info(info, "allowing degraded mounts");
657 			btrfs_set_opt(info->mount_opt, DEGRADED);
658 			break;
659 		case Opt_subvol:
660 		case Opt_subvol_empty:
661 		case Opt_subvolid:
662 		case Opt_device:
663 			/*
664 			 * These are parsed by btrfs_parse_subvol_options or
665 			 * btrfs_parse_device_options and can be ignored here.
666 			 */
667 			break;
668 		case Opt_nodatasum:
669 			btrfs_set_and_info(info, NODATASUM,
670 					   "setting nodatasum");
671 			break;
672 		case Opt_datasum:
673 			if (btrfs_test_opt(info, NODATASUM)) {
674 				if (btrfs_test_opt(info, NODATACOW))
675 					btrfs_info(info,
676 						   "setting datasum, datacow enabled");
677 				else
678 					btrfs_info(info, "setting datasum");
679 			}
680 			btrfs_clear_opt(info->mount_opt, NODATACOW);
681 			btrfs_clear_opt(info->mount_opt, NODATASUM);
682 			break;
683 		case Opt_nodatacow:
684 			if (!btrfs_test_opt(info, NODATACOW)) {
685 				if (!btrfs_test_opt(info, COMPRESS) ||
686 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
687 					btrfs_info(info,
688 						   "setting nodatacow, compression disabled");
689 				} else {
690 					btrfs_info(info, "setting nodatacow");
691 				}
692 			}
693 			btrfs_clear_opt(info->mount_opt, COMPRESS);
694 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
695 			btrfs_set_opt(info->mount_opt, NODATACOW);
696 			btrfs_set_opt(info->mount_opt, NODATASUM);
697 			break;
698 		case Opt_datacow:
699 			btrfs_clear_and_info(info, NODATACOW,
700 					     "setting datacow");
701 			break;
702 		case Opt_compress_force:
703 		case Opt_compress_force_type:
704 			compress_force = true;
705 			fallthrough;
706 		case Opt_compress:
707 		case Opt_compress_type:
708 			saved_compress_type = btrfs_test_opt(info,
709 							     COMPRESS) ?
710 				info->compress_type : BTRFS_COMPRESS_NONE;
711 			saved_compress_force =
712 				btrfs_test_opt(info, FORCE_COMPRESS);
713 			saved_compress_level = info->compress_level;
714 			if (token == Opt_compress ||
715 			    token == Opt_compress_force ||
716 			    strncmp(args[0].from, "zlib", 4) == 0) {
717 				compress_type = "zlib";
718 
719 				info->compress_type = BTRFS_COMPRESS_ZLIB;
720 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
721 				/*
722 				 * args[0] contains uninitialized data since
723 				 * for these tokens we don't expect any
724 				 * parameter.
725 				 */
726 				if (token != Opt_compress &&
727 				    token != Opt_compress_force)
728 					info->compress_level =
729 					  btrfs_compress_str2level(
730 							BTRFS_COMPRESS_ZLIB,
731 							args[0].from + 4);
732 				btrfs_set_opt(info->mount_opt, COMPRESS);
733 				btrfs_clear_opt(info->mount_opt, NODATACOW);
734 				btrfs_clear_opt(info->mount_opt, NODATASUM);
735 				no_compress = 0;
736 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
737 				compress_type = "lzo";
738 				info->compress_type = BTRFS_COMPRESS_LZO;
739 				info->compress_level = 0;
740 				btrfs_set_opt(info->mount_opt, COMPRESS);
741 				btrfs_clear_opt(info->mount_opt, NODATACOW);
742 				btrfs_clear_opt(info->mount_opt, NODATASUM);
743 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
744 				no_compress = 0;
745 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
746 				compress_type = "zstd";
747 				info->compress_type = BTRFS_COMPRESS_ZSTD;
748 				info->compress_level =
749 					btrfs_compress_str2level(
750 							 BTRFS_COMPRESS_ZSTD,
751 							 args[0].from + 4);
752 				btrfs_set_opt(info->mount_opt, COMPRESS);
753 				btrfs_clear_opt(info->mount_opt, NODATACOW);
754 				btrfs_clear_opt(info->mount_opt, NODATASUM);
755 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
756 				no_compress = 0;
757 			} else if (strncmp(args[0].from, "no", 2) == 0) {
758 				compress_type = "no";
759 				info->compress_level = 0;
760 				info->compress_type = 0;
761 				btrfs_clear_opt(info->mount_opt, COMPRESS);
762 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
763 				compress_force = false;
764 				no_compress++;
765 			} else {
766 				btrfs_err(info, "unrecognized compression value %s",
767 					  args[0].from);
768 				ret = -EINVAL;
769 				goto out;
770 			}
771 
772 			if (compress_force) {
773 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
774 			} else {
775 				/*
776 				 * If we remount from compress-force=xxx to
777 				 * compress=xxx, we need clear FORCE_COMPRESS
778 				 * flag, otherwise, there is no way for users
779 				 * to disable forcible compression separately.
780 				 */
781 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
782 			}
783 			if (no_compress == 1) {
784 				btrfs_info(info, "use no compression");
785 			} else if ((info->compress_type != saved_compress_type) ||
786 				   (compress_force != saved_compress_force) ||
787 				   (info->compress_level != saved_compress_level)) {
788 				btrfs_info(info, "%s %s compression, level %d",
789 					   (compress_force) ? "force" : "use",
790 					   compress_type, info->compress_level);
791 			}
792 			compress_force = false;
793 			break;
794 		case Opt_ssd:
795 			btrfs_set_and_info(info, SSD,
796 					   "enabling ssd optimizations");
797 			btrfs_clear_opt(info->mount_opt, NOSSD);
798 			break;
799 		case Opt_ssd_spread:
800 			btrfs_set_and_info(info, SSD,
801 					   "enabling ssd optimizations");
802 			btrfs_set_and_info(info, SSD_SPREAD,
803 					   "using spread ssd allocation scheme");
804 			btrfs_clear_opt(info->mount_opt, NOSSD);
805 			break;
806 		case Opt_nossd:
807 			btrfs_set_opt(info->mount_opt, NOSSD);
808 			btrfs_clear_and_info(info, SSD,
809 					     "not using ssd optimizations");
810 			fallthrough;
811 		case Opt_nossd_spread:
812 			btrfs_clear_and_info(info, SSD_SPREAD,
813 					     "not using spread ssd allocation scheme");
814 			break;
815 		case Opt_barrier:
816 			btrfs_clear_and_info(info, NOBARRIER,
817 					     "turning on barriers");
818 			break;
819 		case Opt_nobarrier:
820 			btrfs_set_and_info(info, NOBARRIER,
821 					   "turning off barriers");
822 			break;
823 		case Opt_thread_pool:
824 			ret = match_int(&args[0], &intarg);
825 			if (ret) {
826 				btrfs_err(info, "unrecognized thread_pool value %s",
827 					  args[0].from);
828 				goto out;
829 			} else if (intarg == 0) {
830 				btrfs_err(info, "invalid value 0 for thread_pool");
831 				ret = -EINVAL;
832 				goto out;
833 			}
834 			info->thread_pool_size = intarg;
835 			break;
836 		case Opt_max_inline:
837 			num = match_strdup(&args[0]);
838 			if (num) {
839 				info->max_inline = memparse(num, NULL);
840 				kfree(num);
841 
842 				if (info->max_inline) {
843 					info->max_inline = min_t(u64,
844 						info->max_inline,
845 						info->sectorsize);
846 				}
847 				btrfs_info(info, "max_inline at %llu",
848 					   info->max_inline);
849 			} else {
850 				ret = -ENOMEM;
851 				goto out;
852 			}
853 			break;
854 		case Opt_acl:
855 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
856 			info->sb->s_flags |= SB_POSIXACL;
857 			break;
858 #else
859 			btrfs_err(info, "support for ACL not compiled in!");
860 			ret = -EINVAL;
861 			goto out;
862 #endif
863 		case Opt_noacl:
864 			info->sb->s_flags &= ~SB_POSIXACL;
865 			break;
866 		case Opt_notreelog:
867 			btrfs_set_and_info(info, NOTREELOG,
868 					   "disabling tree log");
869 			break;
870 		case Opt_treelog:
871 			btrfs_clear_and_info(info, NOTREELOG,
872 					     "enabling tree log");
873 			break;
874 		case Opt_norecovery:
875 		case Opt_nologreplay:
876 			btrfs_warn(info,
877 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
878 			btrfs_set_and_info(info, NOLOGREPLAY,
879 					   "disabling log replay at mount time");
880 			break;
881 		case Opt_flushoncommit:
882 			btrfs_set_and_info(info, FLUSHONCOMMIT,
883 					   "turning on flush-on-commit");
884 			break;
885 		case Opt_noflushoncommit:
886 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
887 					     "turning off flush-on-commit");
888 			break;
889 		case Opt_ratio:
890 			ret = match_int(&args[0], &intarg);
891 			if (ret) {
892 				btrfs_err(info, "unrecognized metadata_ratio value %s",
893 					  args[0].from);
894 				goto out;
895 			}
896 			info->metadata_ratio = intarg;
897 			btrfs_info(info, "metadata ratio %u",
898 				   info->metadata_ratio);
899 			break;
900 		case Opt_discard:
901 		case Opt_discard_mode:
902 			if (token == Opt_discard ||
903 			    strcmp(args[0].from, "sync") == 0) {
904 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
905 				btrfs_set_and_info(info, DISCARD_SYNC,
906 						   "turning on sync discard");
907 			} else if (strcmp(args[0].from, "async") == 0) {
908 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
909 				btrfs_set_and_info(info, DISCARD_ASYNC,
910 						   "turning on async discard");
911 			} else {
912 				btrfs_err(info, "unrecognized discard mode value %s",
913 					  args[0].from);
914 				ret = -EINVAL;
915 				goto out;
916 			}
917 			break;
918 		case Opt_nodiscard:
919 			btrfs_clear_and_info(info, DISCARD_SYNC,
920 					     "turning off discard");
921 			btrfs_clear_and_info(info, DISCARD_ASYNC,
922 					     "turning off async discard");
923 			break;
924 		case Opt_space_cache:
925 		case Opt_space_cache_version:
926 			/*
927 			 * We already set FREE_SPACE_TREE above because we have
928 			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
929 			 * to allow v1 to be set for extent tree v2, simply
930 			 * ignore this setting if we're extent tree v2.
931 			 */
932 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
933 				break;
934 			if (token == Opt_space_cache ||
935 			    strcmp(args[0].from, "v1") == 0) {
936 				btrfs_clear_opt(info->mount_opt,
937 						FREE_SPACE_TREE);
938 				btrfs_set_and_info(info, SPACE_CACHE,
939 					   "enabling disk space caching");
940 			} else if (strcmp(args[0].from, "v2") == 0) {
941 				btrfs_clear_opt(info->mount_opt,
942 						SPACE_CACHE);
943 				btrfs_set_and_info(info, FREE_SPACE_TREE,
944 						   "enabling free space tree");
945 			} else {
946 				btrfs_err(info, "unrecognized space_cache value %s",
947 					  args[0].from);
948 				ret = -EINVAL;
949 				goto out;
950 			}
951 			break;
952 		case Opt_rescan_uuid_tree:
953 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
954 			break;
955 		case Opt_no_space_cache:
956 			/*
957 			 * We cannot operate without the free space tree with
958 			 * extent tree v2, ignore this option.
959 			 */
960 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
961 				break;
962 			if (btrfs_test_opt(info, SPACE_CACHE)) {
963 				btrfs_clear_and_info(info, SPACE_CACHE,
964 					     "disabling disk space caching");
965 			}
966 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
967 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
968 					     "disabling free space tree");
969 			}
970 			break;
971 		case Opt_inode_cache:
972 		case Opt_noinode_cache:
973 			btrfs_warn(info,
974 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
975 			break;
976 		case Opt_clear_cache:
977 			/*
978 			 * We cannot clear the free space tree with extent tree
979 			 * v2, ignore this option.
980 			 */
981 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
982 				break;
983 			btrfs_set_and_info(info, CLEAR_CACHE,
984 					   "force clearing of disk cache");
985 			break;
986 		case Opt_user_subvol_rm_allowed:
987 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
988 			break;
989 		case Opt_enospc_debug:
990 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
991 			break;
992 		case Opt_noenospc_debug:
993 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
994 			break;
995 		case Opt_defrag:
996 			btrfs_set_and_info(info, AUTO_DEFRAG,
997 					   "enabling auto defrag");
998 			break;
999 		case Opt_nodefrag:
1000 			btrfs_clear_and_info(info, AUTO_DEFRAG,
1001 					     "disabling auto defrag");
1002 			break;
1003 		case Opt_recovery:
1004 		case Opt_usebackuproot:
1005 			btrfs_warn(info,
1006 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
1007 				   token == Opt_recovery ? "recovery" :
1008 				   "usebackuproot");
1009 			btrfs_info(info,
1010 				   "trying to use backup root at mount time");
1011 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
1012 			break;
1013 		case Opt_skip_balance:
1014 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
1015 			break;
1016 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1017 		case Opt_check_integrity_including_extent_data:
1018 			btrfs_info(info,
1019 				   "enabling check integrity including extent data");
1020 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
1021 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
1022 			break;
1023 		case Opt_check_integrity:
1024 			btrfs_info(info, "enabling check integrity");
1025 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
1026 			break;
1027 		case Opt_check_integrity_print_mask:
1028 			ret = match_int(&args[0], &intarg);
1029 			if (ret) {
1030 				btrfs_err(info,
1031 				"unrecognized check_integrity_print_mask value %s",
1032 					args[0].from);
1033 				goto out;
1034 			}
1035 			info->check_integrity_print_mask = intarg;
1036 			btrfs_info(info, "check_integrity_print_mask 0x%x",
1037 				   info->check_integrity_print_mask);
1038 			break;
1039 #else
1040 		case Opt_check_integrity_including_extent_data:
1041 		case Opt_check_integrity:
1042 		case Opt_check_integrity_print_mask:
1043 			btrfs_err(info,
1044 				  "support for check_integrity* not compiled in!");
1045 			ret = -EINVAL;
1046 			goto out;
1047 #endif
1048 		case Opt_fatal_errors:
1049 			if (strcmp(args[0].from, "panic") == 0) {
1050 				btrfs_set_opt(info->mount_opt,
1051 					      PANIC_ON_FATAL_ERROR);
1052 			} else if (strcmp(args[0].from, "bug") == 0) {
1053 				btrfs_clear_opt(info->mount_opt,
1054 					      PANIC_ON_FATAL_ERROR);
1055 			} else {
1056 				btrfs_err(info, "unrecognized fatal_errors value %s",
1057 					  args[0].from);
1058 				ret = -EINVAL;
1059 				goto out;
1060 			}
1061 			break;
1062 		case Opt_commit_interval:
1063 			intarg = 0;
1064 			ret = match_int(&args[0], &intarg);
1065 			if (ret) {
1066 				btrfs_err(info, "unrecognized commit_interval value %s",
1067 					  args[0].from);
1068 				ret = -EINVAL;
1069 				goto out;
1070 			}
1071 			if (intarg == 0) {
1072 				btrfs_info(info,
1073 					   "using default commit interval %us",
1074 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
1075 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
1076 			} else if (intarg > 300) {
1077 				btrfs_warn(info, "excessive commit interval %d",
1078 					   intarg);
1079 			}
1080 			info->commit_interval = intarg;
1081 			break;
1082 		case Opt_rescue:
1083 			ret = parse_rescue_options(info, args[0].from);
1084 			if (ret < 0) {
1085 				btrfs_err(info, "unrecognized rescue value %s",
1086 					  args[0].from);
1087 				goto out;
1088 			}
1089 			break;
1090 #ifdef CONFIG_BTRFS_DEBUG
1091 		case Opt_fragment_all:
1092 			btrfs_info(info, "fragmenting all space");
1093 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1094 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
1095 			break;
1096 		case Opt_fragment_metadata:
1097 			btrfs_info(info, "fragmenting metadata");
1098 			btrfs_set_opt(info->mount_opt,
1099 				      FRAGMENT_METADATA);
1100 			break;
1101 		case Opt_fragment_data:
1102 			btrfs_info(info, "fragmenting data");
1103 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1104 			break;
1105 #endif
1106 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1107 		case Opt_ref_verify:
1108 			btrfs_info(info, "doing ref verification");
1109 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1110 			break;
1111 #endif
1112 		case Opt_err:
1113 			btrfs_err(info, "unrecognized mount option '%s'", p);
1114 			ret = -EINVAL;
1115 			goto out;
1116 		default:
1117 			break;
1118 		}
1119 	}
1120 check:
1121 	/* We're read-only, don't have to check. */
1122 	if (new_flags & SB_RDONLY)
1123 		goto out;
1124 
1125 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1126 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1127 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1128 		ret = -EINVAL;
1129 out:
1130 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1131 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1132 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1133 		btrfs_err(info, "cannot disable free space tree");
1134 		ret = -EINVAL;
1135 
1136 	}
1137 	if (!ret)
1138 		ret = btrfs_check_mountopts_zoned(info);
1139 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1140 		btrfs_info(info, "disk space caching is enabled");
1141 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1142 		btrfs_info(info, "using free space tree");
1143 	return ret;
1144 }
1145 
1146 /*
1147  * Parse mount options that are required early in the mount process.
1148  *
1149  * All other options will be parsed on much later in the mount process and
1150  * only when we need to allocate a new super block.
1151  */
1152 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1153 				      void *holder)
1154 {
1155 	substring_t args[MAX_OPT_ARGS];
1156 	char *device_name, *opts, *orig, *p;
1157 	struct btrfs_device *device = NULL;
1158 	int error = 0;
1159 
1160 	lockdep_assert_held(&uuid_mutex);
1161 
1162 	if (!options)
1163 		return 0;
1164 
1165 	/*
1166 	 * strsep changes the string, duplicate it because btrfs_parse_options
1167 	 * gets called later
1168 	 */
1169 	opts = kstrdup(options, GFP_KERNEL);
1170 	if (!opts)
1171 		return -ENOMEM;
1172 	orig = opts;
1173 
1174 	while ((p = strsep(&opts, ",")) != NULL) {
1175 		int token;
1176 
1177 		if (!*p)
1178 			continue;
1179 
1180 		token = match_token(p, tokens, args);
1181 		if (token == Opt_device) {
1182 			device_name = match_strdup(&args[0]);
1183 			if (!device_name) {
1184 				error = -ENOMEM;
1185 				goto out;
1186 			}
1187 			device = btrfs_scan_one_device(device_name, flags,
1188 					holder);
1189 			kfree(device_name);
1190 			if (IS_ERR(device)) {
1191 				error = PTR_ERR(device);
1192 				goto out;
1193 			}
1194 		}
1195 	}
1196 
1197 out:
1198 	kfree(orig);
1199 	return error;
1200 }
1201 
1202 /*
1203  * Parse mount options that are related to subvolume id
1204  *
1205  * The value is later passed to mount_subvol()
1206  */
1207 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1208 		u64 *subvol_objectid)
1209 {
1210 	substring_t args[MAX_OPT_ARGS];
1211 	char *opts, *orig, *p;
1212 	int error = 0;
1213 	u64 subvolid;
1214 
1215 	if (!options)
1216 		return 0;
1217 
1218 	/*
1219 	 * strsep changes the string, duplicate it because
1220 	 * btrfs_parse_device_options gets called later
1221 	 */
1222 	opts = kstrdup(options, GFP_KERNEL);
1223 	if (!opts)
1224 		return -ENOMEM;
1225 	orig = opts;
1226 
1227 	while ((p = strsep(&opts, ",")) != NULL) {
1228 		int token;
1229 		if (!*p)
1230 			continue;
1231 
1232 		token = match_token(p, tokens, args);
1233 		switch (token) {
1234 		case Opt_subvol:
1235 			kfree(*subvol_name);
1236 			*subvol_name = match_strdup(&args[0]);
1237 			if (!*subvol_name) {
1238 				error = -ENOMEM;
1239 				goto out;
1240 			}
1241 			break;
1242 		case Opt_subvolid:
1243 			error = match_u64(&args[0], &subvolid);
1244 			if (error)
1245 				goto out;
1246 
1247 			/* we want the original fs_tree */
1248 			if (subvolid == 0)
1249 				subvolid = BTRFS_FS_TREE_OBJECTID;
1250 
1251 			*subvol_objectid = subvolid;
1252 			break;
1253 		default:
1254 			break;
1255 		}
1256 	}
1257 
1258 out:
1259 	kfree(orig);
1260 	return error;
1261 }
1262 
1263 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1264 					  u64 subvol_objectid)
1265 {
1266 	struct btrfs_root *root = fs_info->tree_root;
1267 	struct btrfs_root *fs_root = NULL;
1268 	struct btrfs_root_ref *root_ref;
1269 	struct btrfs_inode_ref *inode_ref;
1270 	struct btrfs_key key;
1271 	struct btrfs_path *path = NULL;
1272 	char *name = NULL, *ptr;
1273 	u64 dirid;
1274 	int len;
1275 	int ret;
1276 
1277 	path = btrfs_alloc_path();
1278 	if (!path) {
1279 		ret = -ENOMEM;
1280 		goto err;
1281 	}
1282 
1283 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1284 	if (!name) {
1285 		ret = -ENOMEM;
1286 		goto err;
1287 	}
1288 	ptr = name + PATH_MAX - 1;
1289 	ptr[0] = '\0';
1290 
1291 	/*
1292 	 * Walk up the subvolume trees in the tree of tree roots by root
1293 	 * backrefs until we hit the top-level subvolume.
1294 	 */
1295 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1296 		key.objectid = subvol_objectid;
1297 		key.type = BTRFS_ROOT_BACKREF_KEY;
1298 		key.offset = (u64)-1;
1299 
1300 		ret = btrfs_search_backwards(root, &key, path);
1301 		if (ret < 0) {
1302 			goto err;
1303 		} else if (ret > 0) {
1304 			ret = -ENOENT;
1305 			goto err;
1306 		}
1307 
1308 		subvol_objectid = key.offset;
1309 
1310 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1311 					  struct btrfs_root_ref);
1312 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1313 		ptr -= len + 1;
1314 		if (ptr < name) {
1315 			ret = -ENAMETOOLONG;
1316 			goto err;
1317 		}
1318 		read_extent_buffer(path->nodes[0], ptr + 1,
1319 				   (unsigned long)(root_ref + 1), len);
1320 		ptr[0] = '/';
1321 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1322 		btrfs_release_path(path);
1323 
1324 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1325 		if (IS_ERR(fs_root)) {
1326 			ret = PTR_ERR(fs_root);
1327 			fs_root = NULL;
1328 			goto err;
1329 		}
1330 
1331 		/*
1332 		 * Walk up the filesystem tree by inode refs until we hit the
1333 		 * root directory.
1334 		 */
1335 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1336 			key.objectid = dirid;
1337 			key.type = BTRFS_INODE_REF_KEY;
1338 			key.offset = (u64)-1;
1339 
1340 			ret = btrfs_search_backwards(fs_root, &key, path);
1341 			if (ret < 0) {
1342 				goto err;
1343 			} else if (ret > 0) {
1344 				ret = -ENOENT;
1345 				goto err;
1346 			}
1347 
1348 			dirid = key.offset;
1349 
1350 			inode_ref = btrfs_item_ptr(path->nodes[0],
1351 						   path->slots[0],
1352 						   struct btrfs_inode_ref);
1353 			len = btrfs_inode_ref_name_len(path->nodes[0],
1354 						       inode_ref);
1355 			ptr -= len + 1;
1356 			if (ptr < name) {
1357 				ret = -ENAMETOOLONG;
1358 				goto err;
1359 			}
1360 			read_extent_buffer(path->nodes[0], ptr + 1,
1361 					   (unsigned long)(inode_ref + 1), len);
1362 			ptr[0] = '/';
1363 			btrfs_release_path(path);
1364 		}
1365 		btrfs_put_root(fs_root);
1366 		fs_root = NULL;
1367 	}
1368 
1369 	btrfs_free_path(path);
1370 	if (ptr == name + PATH_MAX - 1) {
1371 		name[0] = '/';
1372 		name[1] = '\0';
1373 	} else {
1374 		memmove(name, ptr, name + PATH_MAX - ptr);
1375 	}
1376 	return name;
1377 
1378 err:
1379 	btrfs_put_root(fs_root);
1380 	btrfs_free_path(path);
1381 	kfree(name);
1382 	return ERR_PTR(ret);
1383 }
1384 
1385 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1386 {
1387 	struct btrfs_root *root = fs_info->tree_root;
1388 	struct btrfs_dir_item *di;
1389 	struct btrfs_path *path;
1390 	struct btrfs_key location;
1391 	u64 dir_id;
1392 
1393 	path = btrfs_alloc_path();
1394 	if (!path)
1395 		return -ENOMEM;
1396 
1397 	/*
1398 	 * Find the "default" dir item which points to the root item that we
1399 	 * will mount by default if we haven't been given a specific subvolume
1400 	 * to mount.
1401 	 */
1402 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1403 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1404 	if (IS_ERR(di)) {
1405 		btrfs_free_path(path);
1406 		return PTR_ERR(di);
1407 	}
1408 	if (!di) {
1409 		/*
1410 		 * Ok the default dir item isn't there.  This is weird since
1411 		 * it's always been there, but don't freak out, just try and
1412 		 * mount the top-level subvolume.
1413 		 */
1414 		btrfs_free_path(path);
1415 		*objectid = BTRFS_FS_TREE_OBJECTID;
1416 		return 0;
1417 	}
1418 
1419 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1420 	btrfs_free_path(path);
1421 	*objectid = location.objectid;
1422 	return 0;
1423 }
1424 
1425 static int btrfs_fill_super(struct super_block *sb,
1426 			    struct btrfs_fs_devices *fs_devices,
1427 			    void *data)
1428 {
1429 	struct inode *inode;
1430 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1431 	int err;
1432 
1433 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1434 	sb->s_magic = BTRFS_SUPER_MAGIC;
1435 	sb->s_op = &btrfs_super_ops;
1436 	sb->s_d_op = &btrfs_dentry_operations;
1437 	sb->s_export_op = &btrfs_export_ops;
1438 #ifdef CONFIG_FS_VERITY
1439 	sb->s_vop = &btrfs_verityops;
1440 #endif
1441 	sb->s_xattr = btrfs_xattr_handlers;
1442 	sb->s_time_gran = 1;
1443 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1444 	sb->s_flags |= SB_POSIXACL;
1445 #endif
1446 	sb->s_flags |= SB_I_VERSION;
1447 	sb->s_iflags |= SB_I_CGROUPWB;
1448 
1449 	err = super_setup_bdi(sb);
1450 	if (err) {
1451 		btrfs_err(fs_info, "super_setup_bdi failed");
1452 		return err;
1453 	}
1454 
1455 	err = open_ctree(sb, fs_devices, (char *)data);
1456 	if (err) {
1457 		btrfs_err(fs_info, "open_ctree failed");
1458 		return err;
1459 	}
1460 
1461 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1462 	if (IS_ERR(inode)) {
1463 		err = PTR_ERR(inode);
1464 		goto fail_close;
1465 	}
1466 
1467 	sb->s_root = d_make_root(inode);
1468 	if (!sb->s_root) {
1469 		err = -ENOMEM;
1470 		goto fail_close;
1471 	}
1472 
1473 	sb->s_flags |= SB_ACTIVE;
1474 	return 0;
1475 
1476 fail_close:
1477 	close_ctree(fs_info);
1478 	return err;
1479 }
1480 
1481 int btrfs_sync_fs(struct super_block *sb, int wait)
1482 {
1483 	struct btrfs_trans_handle *trans;
1484 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1485 	struct btrfs_root *root = fs_info->tree_root;
1486 
1487 	trace_btrfs_sync_fs(fs_info, wait);
1488 
1489 	if (!wait) {
1490 		filemap_flush(fs_info->btree_inode->i_mapping);
1491 		return 0;
1492 	}
1493 
1494 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1495 
1496 	trans = btrfs_attach_transaction_barrier(root);
1497 	if (IS_ERR(trans)) {
1498 		/* no transaction, don't bother */
1499 		if (PTR_ERR(trans) == -ENOENT) {
1500 			/*
1501 			 * Exit unless we have some pending changes
1502 			 * that need to go through commit
1503 			 */
1504 			if (fs_info->pending_changes == 0)
1505 				return 0;
1506 			/*
1507 			 * A non-blocking test if the fs is frozen. We must not
1508 			 * start a new transaction here otherwise a deadlock
1509 			 * happens. The pending operations are delayed to the
1510 			 * next commit after thawing.
1511 			 */
1512 			if (sb_start_write_trylock(sb))
1513 				sb_end_write(sb);
1514 			else
1515 				return 0;
1516 			trans = btrfs_start_transaction(root, 0);
1517 		}
1518 		if (IS_ERR(trans))
1519 			return PTR_ERR(trans);
1520 	}
1521 	return btrfs_commit_transaction(trans);
1522 }
1523 
1524 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1525 {
1526 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1527 	*printed = true;
1528 }
1529 
1530 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1531 {
1532 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1533 	const char *compress_type;
1534 	const char *subvol_name;
1535 	bool printed = false;
1536 
1537 	if (btrfs_test_opt(info, DEGRADED))
1538 		seq_puts(seq, ",degraded");
1539 	if (btrfs_test_opt(info, NODATASUM))
1540 		seq_puts(seq, ",nodatasum");
1541 	if (btrfs_test_opt(info, NODATACOW))
1542 		seq_puts(seq, ",nodatacow");
1543 	if (btrfs_test_opt(info, NOBARRIER))
1544 		seq_puts(seq, ",nobarrier");
1545 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1546 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1547 	if (info->thread_pool_size !=  min_t(unsigned long,
1548 					     num_online_cpus() + 2, 8))
1549 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1550 	if (btrfs_test_opt(info, COMPRESS)) {
1551 		compress_type = btrfs_compress_type2str(info->compress_type);
1552 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1553 			seq_printf(seq, ",compress-force=%s", compress_type);
1554 		else
1555 			seq_printf(seq, ",compress=%s", compress_type);
1556 		if (info->compress_level)
1557 			seq_printf(seq, ":%d", info->compress_level);
1558 	}
1559 	if (btrfs_test_opt(info, NOSSD))
1560 		seq_puts(seq, ",nossd");
1561 	if (btrfs_test_opt(info, SSD_SPREAD))
1562 		seq_puts(seq, ",ssd_spread");
1563 	else if (btrfs_test_opt(info, SSD))
1564 		seq_puts(seq, ",ssd");
1565 	if (btrfs_test_opt(info, NOTREELOG))
1566 		seq_puts(seq, ",notreelog");
1567 	if (btrfs_test_opt(info, NOLOGREPLAY))
1568 		print_rescue_option(seq, "nologreplay", &printed);
1569 	if (btrfs_test_opt(info, USEBACKUPROOT))
1570 		print_rescue_option(seq, "usebackuproot", &printed);
1571 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1572 		print_rescue_option(seq, "ignorebadroots", &printed);
1573 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1574 		print_rescue_option(seq, "ignoredatacsums", &printed);
1575 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1576 		seq_puts(seq, ",flushoncommit");
1577 	if (btrfs_test_opt(info, DISCARD_SYNC))
1578 		seq_puts(seq, ",discard");
1579 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1580 		seq_puts(seq, ",discard=async");
1581 	if (!(info->sb->s_flags & SB_POSIXACL))
1582 		seq_puts(seq, ",noacl");
1583 	if (btrfs_free_space_cache_v1_active(info))
1584 		seq_puts(seq, ",space_cache");
1585 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1586 		seq_puts(seq, ",space_cache=v2");
1587 	else
1588 		seq_puts(seq, ",nospace_cache");
1589 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1590 		seq_puts(seq, ",rescan_uuid_tree");
1591 	if (btrfs_test_opt(info, CLEAR_CACHE))
1592 		seq_puts(seq, ",clear_cache");
1593 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1594 		seq_puts(seq, ",user_subvol_rm_allowed");
1595 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1596 		seq_puts(seq, ",enospc_debug");
1597 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1598 		seq_puts(seq, ",autodefrag");
1599 	if (btrfs_test_opt(info, SKIP_BALANCE))
1600 		seq_puts(seq, ",skip_balance");
1601 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1602 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1603 		seq_puts(seq, ",check_int_data");
1604 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1605 		seq_puts(seq, ",check_int");
1606 	if (info->check_integrity_print_mask)
1607 		seq_printf(seq, ",check_int_print_mask=%d",
1608 				info->check_integrity_print_mask);
1609 #endif
1610 	if (info->metadata_ratio)
1611 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1612 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1613 		seq_puts(seq, ",fatal_errors=panic");
1614 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1615 		seq_printf(seq, ",commit=%u", info->commit_interval);
1616 #ifdef CONFIG_BTRFS_DEBUG
1617 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1618 		seq_puts(seq, ",fragment=data");
1619 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1620 		seq_puts(seq, ",fragment=metadata");
1621 #endif
1622 	if (btrfs_test_opt(info, REF_VERIFY))
1623 		seq_puts(seq, ",ref_verify");
1624 	seq_printf(seq, ",subvolid=%llu",
1625 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1626 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1627 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1628 	if (!IS_ERR(subvol_name)) {
1629 		seq_puts(seq, ",subvol=");
1630 		seq_escape(seq, subvol_name, " \t\n\\");
1631 		kfree(subvol_name);
1632 	}
1633 	return 0;
1634 }
1635 
1636 static int btrfs_test_super(struct super_block *s, void *data)
1637 {
1638 	struct btrfs_fs_info *p = data;
1639 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1640 
1641 	return fs_info->fs_devices == p->fs_devices;
1642 }
1643 
1644 static int btrfs_set_super(struct super_block *s, void *data)
1645 {
1646 	int err = set_anon_super(s, data);
1647 	if (!err)
1648 		s->s_fs_info = data;
1649 	return err;
1650 }
1651 
1652 /*
1653  * subvolumes are identified by ino 256
1654  */
1655 static inline int is_subvolume_inode(struct inode *inode)
1656 {
1657 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1658 		return 1;
1659 	return 0;
1660 }
1661 
1662 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1663 				   struct vfsmount *mnt)
1664 {
1665 	struct dentry *root;
1666 	int ret;
1667 
1668 	if (!subvol_name) {
1669 		if (!subvol_objectid) {
1670 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1671 							  &subvol_objectid);
1672 			if (ret) {
1673 				root = ERR_PTR(ret);
1674 				goto out;
1675 			}
1676 		}
1677 		subvol_name = btrfs_get_subvol_name_from_objectid(
1678 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1679 		if (IS_ERR(subvol_name)) {
1680 			root = ERR_CAST(subvol_name);
1681 			subvol_name = NULL;
1682 			goto out;
1683 		}
1684 
1685 	}
1686 
1687 	root = mount_subtree(mnt, subvol_name);
1688 	/* mount_subtree() drops our reference on the vfsmount. */
1689 	mnt = NULL;
1690 
1691 	if (!IS_ERR(root)) {
1692 		struct super_block *s = root->d_sb;
1693 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1694 		struct inode *root_inode = d_inode(root);
1695 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1696 
1697 		ret = 0;
1698 		if (!is_subvolume_inode(root_inode)) {
1699 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1700 			       subvol_name);
1701 			ret = -EINVAL;
1702 		}
1703 		if (subvol_objectid && root_objectid != subvol_objectid) {
1704 			/*
1705 			 * This will also catch a race condition where a
1706 			 * subvolume which was passed by ID is renamed and
1707 			 * another subvolume is renamed over the old location.
1708 			 */
1709 			btrfs_err(fs_info,
1710 				  "subvol '%s' does not match subvolid %llu",
1711 				  subvol_name, subvol_objectid);
1712 			ret = -EINVAL;
1713 		}
1714 		if (ret) {
1715 			dput(root);
1716 			root = ERR_PTR(ret);
1717 			deactivate_locked_super(s);
1718 		}
1719 	}
1720 
1721 out:
1722 	mntput(mnt);
1723 	kfree(subvol_name);
1724 	return root;
1725 }
1726 
1727 /*
1728  * Find a superblock for the given device / mount point.
1729  *
1730  * Note: This is based on mount_bdev from fs/super.c with a few additions
1731  *       for multiple device setup.  Make sure to keep it in sync.
1732  */
1733 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1734 		int flags, const char *device_name, void *data)
1735 {
1736 	struct block_device *bdev = NULL;
1737 	struct super_block *s;
1738 	struct btrfs_device *device = NULL;
1739 	struct btrfs_fs_devices *fs_devices = NULL;
1740 	struct btrfs_fs_info *fs_info = NULL;
1741 	void *new_sec_opts = NULL;
1742 	fmode_t mode = FMODE_READ;
1743 	int error = 0;
1744 
1745 	if (!(flags & SB_RDONLY))
1746 		mode |= FMODE_WRITE;
1747 
1748 	if (data) {
1749 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1750 		if (error)
1751 			return ERR_PTR(error);
1752 	}
1753 
1754 	/*
1755 	 * Setup a dummy root and fs_info for test/set super.  This is because
1756 	 * we don't actually fill this stuff out until open_ctree, but we need
1757 	 * then open_ctree will properly initialize the file system specific
1758 	 * settings later.  btrfs_init_fs_info initializes the static elements
1759 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1760 	 * superblock with our given fs_devices later on at sget() time.
1761 	 */
1762 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1763 	if (!fs_info) {
1764 		error = -ENOMEM;
1765 		goto error_sec_opts;
1766 	}
1767 	btrfs_init_fs_info(fs_info);
1768 
1769 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1770 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1771 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1772 		error = -ENOMEM;
1773 		goto error_fs_info;
1774 	}
1775 
1776 	mutex_lock(&uuid_mutex);
1777 	error = btrfs_parse_device_options(data, mode, fs_type);
1778 	if (error) {
1779 		mutex_unlock(&uuid_mutex);
1780 		goto error_fs_info;
1781 	}
1782 
1783 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1784 	if (IS_ERR(device)) {
1785 		mutex_unlock(&uuid_mutex);
1786 		error = PTR_ERR(device);
1787 		goto error_fs_info;
1788 	}
1789 
1790 	fs_devices = device->fs_devices;
1791 	fs_info->fs_devices = fs_devices;
1792 
1793 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1794 	mutex_unlock(&uuid_mutex);
1795 	if (error)
1796 		goto error_fs_info;
1797 
1798 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1799 		error = -EACCES;
1800 		goto error_close_devices;
1801 	}
1802 
1803 	bdev = fs_devices->latest_dev->bdev;
1804 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1805 		 fs_info);
1806 	if (IS_ERR(s)) {
1807 		error = PTR_ERR(s);
1808 		goto error_close_devices;
1809 	}
1810 
1811 	if (s->s_root) {
1812 		btrfs_close_devices(fs_devices);
1813 		btrfs_free_fs_info(fs_info);
1814 		if ((flags ^ s->s_flags) & SB_RDONLY)
1815 			error = -EBUSY;
1816 	} else {
1817 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1818 		btrfs_sb(s)->bdev_holder = fs_type;
1819 		if (!strstr(crc32c_impl(), "generic"))
1820 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1821 		error = btrfs_fill_super(s, fs_devices, data);
1822 	}
1823 	if (!error)
1824 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1825 	security_free_mnt_opts(&new_sec_opts);
1826 	if (error) {
1827 		deactivate_locked_super(s);
1828 		return ERR_PTR(error);
1829 	}
1830 
1831 	return dget(s->s_root);
1832 
1833 error_close_devices:
1834 	btrfs_close_devices(fs_devices);
1835 error_fs_info:
1836 	btrfs_free_fs_info(fs_info);
1837 error_sec_opts:
1838 	security_free_mnt_opts(&new_sec_opts);
1839 	return ERR_PTR(error);
1840 }
1841 
1842 /*
1843  * Mount function which is called by VFS layer.
1844  *
1845  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1846  * which needs vfsmount* of device's root (/).  This means device's root has to
1847  * be mounted internally in any case.
1848  *
1849  * Operation flow:
1850  *   1. Parse subvol id related options for later use in mount_subvol().
1851  *
1852  *   2. Mount device's root (/) by calling vfs_kern_mount().
1853  *
1854  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1855  *      first place. In order to avoid calling btrfs_mount() again, we use
1856  *      different file_system_type which is not registered to VFS by
1857  *      register_filesystem() (btrfs_root_fs_type). As a result,
1858  *      btrfs_mount_root() is called. The return value will be used by
1859  *      mount_subtree() in mount_subvol().
1860  *
1861  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1862  *      "btrfs subvolume set-default", mount_subvol() is called always.
1863  */
1864 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1865 		const char *device_name, void *data)
1866 {
1867 	struct vfsmount *mnt_root;
1868 	struct dentry *root;
1869 	char *subvol_name = NULL;
1870 	u64 subvol_objectid = 0;
1871 	int error = 0;
1872 
1873 	error = btrfs_parse_subvol_options(data, &subvol_name,
1874 					&subvol_objectid);
1875 	if (error) {
1876 		kfree(subvol_name);
1877 		return ERR_PTR(error);
1878 	}
1879 
1880 	/* mount device's root (/) */
1881 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1882 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1883 		if (flags & SB_RDONLY) {
1884 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1885 				flags & ~SB_RDONLY, device_name, data);
1886 		} else {
1887 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1888 				flags | SB_RDONLY, device_name, data);
1889 			if (IS_ERR(mnt_root)) {
1890 				root = ERR_CAST(mnt_root);
1891 				kfree(subvol_name);
1892 				goto out;
1893 			}
1894 
1895 			down_write(&mnt_root->mnt_sb->s_umount);
1896 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1897 			up_write(&mnt_root->mnt_sb->s_umount);
1898 			if (error < 0) {
1899 				root = ERR_PTR(error);
1900 				mntput(mnt_root);
1901 				kfree(subvol_name);
1902 				goto out;
1903 			}
1904 		}
1905 	}
1906 	if (IS_ERR(mnt_root)) {
1907 		root = ERR_CAST(mnt_root);
1908 		kfree(subvol_name);
1909 		goto out;
1910 	}
1911 
1912 	/* mount_subvol() will free subvol_name and mnt_root */
1913 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1914 
1915 out:
1916 	return root;
1917 }
1918 
1919 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1920 				     u32 new_pool_size, u32 old_pool_size)
1921 {
1922 	if (new_pool_size == old_pool_size)
1923 		return;
1924 
1925 	fs_info->thread_pool_size = new_pool_size;
1926 
1927 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1928 	       old_pool_size, new_pool_size);
1929 
1930 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1931 	btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1932 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1933 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1934 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1935 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1936 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1937 				new_pool_size);
1938 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1939 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1940 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1941 }
1942 
1943 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1944 				       unsigned long old_opts, int flags)
1945 {
1946 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1947 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1948 	     (flags & SB_RDONLY))) {
1949 		/* wait for any defraggers to finish */
1950 		wait_event(fs_info->transaction_wait,
1951 			   (atomic_read(&fs_info->defrag_running) == 0));
1952 		if (flags & SB_RDONLY)
1953 			sync_filesystem(fs_info->sb);
1954 	}
1955 }
1956 
1957 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1958 					 unsigned long old_opts)
1959 {
1960 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1961 
1962 	/*
1963 	 * We need to cleanup all defragable inodes if the autodefragment is
1964 	 * close or the filesystem is read only.
1965 	 */
1966 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1967 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1968 		btrfs_cleanup_defrag_inodes(fs_info);
1969 	}
1970 
1971 	/* If we toggled discard async */
1972 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1973 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1974 		btrfs_discard_resume(fs_info);
1975 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1976 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1977 		btrfs_discard_cleanup(fs_info);
1978 
1979 	/* If we toggled space cache */
1980 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1981 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1982 }
1983 
1984 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1985 {
1986 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1987 	unsigned old_flags = sb->s_flags;
1988 	unsigned long old_opts = fs_info->mount_opt;
1989 	unsigned long old_compress_type = fs_info->compress_type;
1990 	u64 old_max_inline = fs_info->max_inline;
1991 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1992 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1993 	int ret;
1994 
1995 	sync_filesystem(sb);
1996 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1997 
1998 	if (data) {
1999 		void *new_sec_opts = NULL;
2000 
2001 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
2002 		if (!ret)
2003 			ret = security_sb_remount(sb, new_sec_opts);
2004 		security_free_mnt_opts(&new_sec_opts);
2005 		if (ret)
2006 			goto restore;
2007 	}
2008 
2009 	ret = btrfs_parse_options(fs_info, data, *flags);
2010 	if (ret)
2011 		goto restore;
2012 
2013 	/* V1 cache is not supported for subpage mount. */
2014 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
2015 		btrfs_warn(fs_info,
2016 	"v1 space cache is not supported for page size %lu with sectorsize %u",
2017 			   PAGE_SIZE, fs_info->sectorsize);
2018 		ret = -EINVAL;
2019 		goto restore;
2020 	}
2021 	btrfs_remount_begin(fs_info, old_opts, *flags);
2022 	btrfs_resize_thread_pool(fs_info,
2023 		fs_info->thread_pool_size, old_thread_pool_size);
2024 
2025 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
2026 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2027 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
2028 		btrfs_warn(fs_info,
2029 		"remount supports changing free space tree only from ro to rw");
2030 		/* Make sure free space cache options match the state on disk */
2031 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2032 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
2033 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
2034 		}
2035 		if (btrfs_free_space_cache_v1_active(fs_info)) {
2036 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
2037 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
2038 		}
2039 	}
2040 
2041 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
2042 		goto out;
2043 
2044 	if (*flags & SB_RDONLY) {
2045 		/*
2046 		 * this also happens on 'umount -rf' or on shutdown, when
2047 		 * the filesystem is busy.
2048 		 */
2049 		cancel_work_sync(&fs_info->async_reclaim_work);
2050 		cancel_work_sync(&fs_info->async_data_reclaim_work);
2051 
2052 		btrfs_discard_cleanup(fs_info);
2053 
2054 		/* wait for the uuid_scan task to finish */
2055 		down(&fs_info->uuid_tree_rescan_sem);
2056 		/* avoid complains from lockdep et al. */
2057 		up(&fs_info->uuid_tree_rescan_sem);
2058 
2059 		btrfs_set_sb_rdonly(sb);
2060 
2061 		/*
2062 		 * Setting SB_RDONLY will put the cleaner thread to
2063 		 * sleep at the next loop if it's already active.
2064 		 * If it's already asleep, we'll leave unused block
2065 		 * groups on disk until we're mounted read-write again
2066 		 * unless we clean them up here.
2067 		 */
2068 		btrfs_delete_unused_bgs(fs_info);
2069 
2070 		/*
2071 		 * The cleaner task could be already running before we set the
2072 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
2073 		 * We must make sure that after we finish the remount, i.e. after
2074 		 * we call btrfs_commit_super(), the cleaner can no longer start
2075 		 * a transaction - either because it was dropping a dead root,
2076 		 * running delayed iputs or deleting an unused block group (the
2077 		 * cleaner picked a block group from the list of unused block
2078 		 * groups before we were able to in the previous call to
2079 		 * btrfs_delete_unused_bgs()).
2080 		 */
2081 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
2082 			    TASK_UNINTERRUPTIBLE);
2083 
2084 		/*
2085 		 * We've set the superblock to RO mode, so we might have made
2086 		 * the cleaner task sleep without running all pending delayed
2087 		 * iputs. Go through all the delayed iputs here, so that if an
2088 		 * unmount happens without remounting RW we don't end up at
2089 		 * finishing close_ctree() with a non-empty list of delayed
2090 		 * iputs.
2091 		 */
2092 		btrfs_run_delayed_iputs(fs_info);
2093 
2094 		btrfs_dev_replace_suspend_for_unmount(fs_info);
2095 		btrfs_scrub_cancel(fs_info);
2096 		btrfs_pause_balance(fs_info);
2097 
2098 		/*
2099 		 * Pause the qgroup rescan worker if it is running. We don't want
2100 		 * it to be still running after we are in RO mode, as after that,
2101 		 * by the time we unmount, it might have left a transaction open,
2102 		 * so we would leak the transaction and/or crash.
2103 		 */
2104 		btrfs_qgroup_wait_for_completion(fs_info, false);
2105 
2106 		ret = btrfs_commit_super(fs_info);
2107 		if (ret)
2108 			goto restore;
2109 	} else {
2110 		if (BTRFS_FS_ERROR(fs_info)) {
2111 			btrfs_err(fs_info,
2112 				"Remounting read-write after error is not allowed");
2113 			ret = -EINVAL;
2114 			goto restore;
2115 		}
2116 		if (fs_info->fs_devices->rw_devices == 0) {
2117 			ret = -EACCES;
2118 			goto restore;
2119 		}
2120 
2121 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2122 			btrfs_warn(fs_info,
2123 		"too many missing devices, writable remount is not allowed");
2124 			ret = -EACCES;
2125 			goto restore;
2126 		}
2127 
2128 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2129 			btrfs_warn(fs_info,
2130 		"mount required to replay tree-log, cannot remount read-write");
2131 			ret = -EINVAL;
2132 			goto restore;
2133 		}
2134 
2135 		/*
2136 		 * NOTE: when remounting with a change that does writes, don't
2137 		 * put it anywhere above this point, as we are not sure to be
2138 		 * safe to write until we pass the above checks.
2139 		 */
2140 		ret = btrfs_start_pre_rw_mount(fs_info);
2141 		if (ret)
2142 			goto restore;
2143 
2144 		btrfs_clear_sb_rdonly(sb);
2145 
2146 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2147 	}
2148 out:
2149 	/*
2150 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2151 	 * since the absence of the flag means it can be toggled off by remount.
2152 	 */
2153 	*flags |= SB_I_VERSION;
2154 
2155 	wake_up_process(fs_info->transaction_kthread);
2156 	btrfs_remount_cleanup(fs_info, old_opts);
2157 	btrfs_clear_oneshot_options(fs_info);
2158 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2159 
2160 	return 0;
2161 
2162 restore:
2163 	/* We've hit an error - don't reset SB_RDONLY */
2164 	if (sb_rdonly(sb))
2165 		old_flags |= SB_RDONLY;
2166 	if (!(old_flags & SB_RDONLY))
2167 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2168 	sb->s_flags = old_flags;
2169 	fs_info->mount_opt = old_opts;
2170 	fs_info->compress_type = old_compress_type;
2171 	fs_info->max_inline = old_max_inline;
2172 	btrfs_resize_thread_pool(fs_info,
2173 		old_thread_pool_size, fs_info->thread_pool_size);
2174 	fs_info->metadata_ratio = old_metadata_ratio;
2175 	btrfs_remount_cleanup(fs_info, old_opts);
2176 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2177 
2178 	return ret;
2179 }
2180 
2181 /* Used to sort the devices by max_avail(descending sort) */
2182 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
2183 {
2184 	const struct btrfs_device_info *dev_info1 = a;
2185 	const struct btrfs_device_info *dev_info2 = b;
2186 
2187 	if (dev_info1->max_avail > dev_info2->max_avail)
2188 		return -1;
2189 	else if (dev_info1->max_avail < dev_info2->max_avail)
2190 		return 1;
2191 	return 0;
2192 }
2193 
2194 /*
2195  * sort the devices by max_avail, in which max free extent size of each device
2196  * is stored.(Descending Sort)
2197  */
2198 static inline void btrfs_descending_sort_devices(
2199 					struct btrfs_device_info *devices,
2200 					size_t nr_devices)
2201 {
2202 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2203 	     btrfs_cmp_device_free_bytes, NULL);
2204 }
2205 
2206 /*
2207  * The helper to calc the free space on the devices that can be used to store
2208  * file data.
2209  */
2210 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2211 					      u64 *free_bytes)
2212 {
2213 	struct btrfs_device_info *devices_info;
2214 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2215 	struct btrfs_device *device;
2216 	u64 type;
2217 	u64 avail_space;
2218 	u64 min_stripe_size;
2219 	int num_stripes = 1;
2220 	int i = 0, nr_devices;
2221 	const struct btrfs_raid_attr *rattr;
2222 
2223 	/*
2224 	 * We aren't under the device list lock, so this is racy-ish, but good
2225 	 * enough for our purposes.
2226 	 */
2227 	nr_devices = fs_info->fs_devices->open_devices;
2228 	if (!nr_devices) {
2229 		smp_mb();
2230 		nr_devices = fs_info->fs_devices->open_devices;
2231 		ASSERT(nr_devices);
2232 		if (!nr_devices) {
2233 			*free_bytes = 0;
2234 			return 0;
2235 		}
2236 	}
2237 
2238 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2239 			       GFP_KERNEL);
2240 	if (!devices_info)
2241 		return -ENOMEM;
2242 
2243 	/* calc min stripe number for data space allocation */
2244 	type = btrfs_data_alloc_profile(fs_info);
2245 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2246 
2247 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2248 		num_stripes = nr_devices;
2249 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2250 		num_stripes = 2;
2251 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2252 		num_stripes = 3;
2253 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2254 		num_stripes = 4;
2255 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2256 		num_stripes = 4;
2257 
2258 	/* Adjust for more than 1 stripe per device */
2259 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2260 
2261 	rcu_read_lock();
2262 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2263 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2264 						&device->dev_state) ||
2265 		    !device->bdev ||
2266 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2267 			continue;
2268 
2269 		if (i >= nr_devices)
2270 			break;
2271 
2272 		avail_space = device->total_bytes - device->bytes_used;
2273 
2274 		/* align with stripe_len */
2275 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2276 
2277 		/*
2278 		 * In order to avoid overwriting the superblock on the drive,
2279 		 * btrfs starts at an offset of at least 1MB when doing chunk
2280 		 * allocation.
2281 		 *
2282 		 * This ensures we have at least min_stripe_size free space
2283 		 * after excluding 1MB.
2284 		 */
2285 		if (avail_space <= SZ_1M + min_stripe_size)
2286 			continue;
2287 
2288 		avail_space -= SZ_1M;
2289 
2290 		devices_info[i].dev = device;
2291 		devices_info[i].max_avail = avail_space;
2292 
2293 		i++;
2294 	}
2295 	rcu_read_unlock();
2296 
2297 	nr_devices = i;
2298 
2299 	btrfs_descending_sort_devices(devices_info, nr_devices);
2300 
2301 	i = nr_devices - 1;
2302 	avail_space = 0;
2303 	while (nr_devices >= rattr->devs_min) {
2304 		num_stripes = min(num_stripes, nr_devices);
2305 
2306 		if (devices_info[i].max_avail >= min_stripe_size) {
2307 			int j;
2308 			u64 alloc_size;
2309 
2310 			avail_space += devices_info[i].max_avail * num_stripes;
2311 			alloc_size = devices_info[i].max_avail;
2312 			for (j = i + 1 - num_stripes; j <= i; j++)
2313 				devices_info[j].max_avail -= alloc_size;
2314 		}
2315 		i--;
2316 		nr_devices--;
2317 	}
2318 
2319 	kfree(devices_info);
2320 	*free_bytes = avail_space;
2321 	return 0;
2322 }
2323 
2324 /*
2325  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2326  *
2327  * If there's a redundant raid level at DATA block groups, use the respective
2328  * multiplier to scale the sizes.
2329  *
2330  * Unused device space usage is based on simulating the chunk allocator
2331  * algorithm that respects the device sizes and order of allocations.  This is
2332  * a close approximation of the actual use but there are other factors that may
2333  * change the result (like a new metadata chunk).
2334  *
2335  * If metadata is exhausted, f_bavail will be 0.
2336  */
2337 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2338 {
2339 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2340 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2341 	struct btrfs_space_info *found;
2342 	u64 total_used = 0;
2343 	u64 total_free_data = 0;
2344 	u64 total_free_meta = 0;
2345 	u32 bits = fs_info->sectorsize_bits;
2346 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2347 	unsigned factor = 1;
2348 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2349 	int ret;
2350 	u64 thresh = 0;
2351 	int mixed = 0;
2352 
2353 	list_for_each_entry(found, &fs_info->space_info, list) {
2354 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2355 			int i;
2356 
2357 			total_free_data += found->disk_total - found->disk_used;
2358 			total_free_data -=
2359 				btrfs_account_ro_block_groups_free_space(found);
2360 
2361 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2362 				if (!list_empty(&found->block_groups[i]))
2363 					factor = btrfs_bg_type_to_factor(
2364 						btrfs_raid_array[i].bg_flag);
2365 			}
2366 		}
2367 
2368 		/*
2369 		 * Metadata in mixed block goup profiles are accounted in data
2370 		 */
2371 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2372 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2373 				mixed = 1;
2374 			else
2375 				total_free_meta += found->disk_total -
2376 					found->disk_used;
2377 		}
2378 
2379 		total_used += found->disk_used;
2380 	}
2381 
2382 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2383 	buf->f_blocks >>= bits;
2384 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2385 
2386 	/* Account global block reserve as used, it's in logical size already */
2387 	spin_lock(&block_rsv->lock);
2388 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2389 	if (buf->f_bfree >= block_rsv->size >> bits)
2390 		buf->f_bfree -= block_rsv->size >> bits;
2391 	else
2392 		buf->f_bfree = 0;
2393 	spin_unlock(&block_rsv->lock);
2394 
2395 	buf->f_bavail = div_u64(total_free_data, factor);
2396 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2397 	if (ret)
2398 		return ret;
2399 	buf->f_bavail += div_u64(total_free_data, factor);
2400 	buf->f_bavail = buf->f_bavail >> bits;
2401 
2402 	/*
2403 	 * We calculate the remaining metadata space minus global reserve. If
2404 	 * this is (supposedly) smaller than zero, there's no space. But this
2405 	 * does not hold in practice, the exhausted state happens where's still
2406 	 * some positive delta. So we apply some guesswork and compare the
2407 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2408 	 *
2409 	 * We probably cannot calculate the exact threshold value because this
2410 	 * depends on the internal reservations requested by various
2411 	 * operations, so some operations that consume a few metadata will
2412 	 * succeed even if the Avail is zero. But this is better than the other
2413 	 * way around.
2414 	 */
2415 	thresh = SZ_4M;
2416 
2417 	/*
2418 	 * We only want to claim there's no available space if we can no longer
2419 	 * allocate chunks for our metadata profile and our global reserve will
2420 	 * not fit in the free metadata space.  If we aren't ->full then we
2421 	 * still can allocate chunks and thus are fine using the currently
2422 	 * calculated f_bavail.
2423 	 */
2424 	if (!mixed && block_rsv->space_info->full &&
2425 	    total_free_meta - thresh < block_rsv->size)
2426 		buf->f_bavail = 0;
2427 
2428 	buf->f_type = BTRFS_SUPER_MAGIC;
2429 	buf->f_bsize = dentry->d_sb->s_blocksize;
2430 	buf->f_namelen = BTRFS_NAME_LEN;
2431 
2432 	/* We treat it as constant endianness (it doesn't matter _which_)
2433 	   because we want the fsid to come out the same whether mounted
2434 	   on a big-endian or little-endian host */
2435 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2436 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2437 	/* Mask in the root object ID too, to disambiguate subvols */
2438 	buf->f_fsid.val[0] ^=
2439 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2440 	buf->f_fsid.val[1] ^=
2441 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2442 
2443 	return 0;
2444 }
2445 
2446 static void btrfs_kill_super(struct super_block *sb)
2447 {
2448 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2449 	kill_anon_super(sb);
2450 	btrfs_free_fs_info(fs_info);
2451 }
2452 
2453 static struct file_system_type btrfs_fs_type = {
2454 	.owner		= THIS_MODULE,
2455 	.name		= "btrfs",
2456 	.mount		= btrfs_mount,
2457 	.kill_sb	= btrfs_kill_super,
2458 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2459 };
2460 
2461 static struct file_system_type btrfs_root_fs_type = {
2462 	.owner		= THIS_MODULE,
2463 	.name		= "btrfs",
2464 	.mount		= btrfs_mount_root,
2465 	.kill_sb	= btrfs_kill_super,
2466 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2467 };
2468 
2469 MODULE_ALIAS_FS("btrfs");
2470 
2471 static int btrfs_control_open(struct inode *inode, struct file *file)
2472 {
2473 	/*
2474 	 * The control file's private_data is used to hold the
2475 	 * transaction when it is started and is used to keep
2476 	 * track of whether a transaction is already in progress.
2477 	 */
2478 	file->private_data = NULL;
2479 	return 0;
2480 }
2481 
2482 /*
2483  * Used by /dev/btrfs-control for devices ioctls.
2484  */
2485 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2486 				unsigned long arg)
2487 {
2488 	struct btrfs_ioctl_vol_args *vol;
2489 	struct btrfs_device *device = NULL;
2490 	dev_t devt = 0;
2491 	int ret = -ENOTTY;
2492 
2493 	if (!capable(CAP_SYS_ADMIN))
2494 		return -EPERM;
2495 
2496 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2497 	if (IS_ERR(vol))
2498 		return PTR_ERR(vol);
2499 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2500 
2501 	switch (cmd) {
2502 	case BTRFS_IOC_SCAN_DEV:
2503 		mutex_lock(&uuid_mutex);
2504 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2505 					       &btrfs_root_fs_type);
2506 		ret = PTR_ERR_OR_ZERO(device);
2507 		mutex_unlock(&uuid_mutex);
2508 		break;
2509 	case BTRFS_IOC_FORGET_DEV:
2510 		if (vol->name[0] != 0) {
2511 			ret = lookup_bdev(vol->name, &devt);
2512 			if (ret)
2513 				break;
2514 		}
2515 		ret = btrfs_forget_devices(devt);
2516 		break;
2517 	case BTRFS_IOC_DEVICES_READY:
2518 		mutex_lock(&uuid_mutex);
2519 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2520 					       &btrfs_root_fs_type);
2521 		if (IS_ERR(device)) {
2522 			mutex_unlock(&uuid_mutex);
2523 			ret = PTR_ERR(device);
2524 			break;
2525 		}
2526 		ret = !(device->fs_devices->num_devices ==
2527 			device->fs_devices->total_devices);
2528 		mutex_unlock(&uuid_mutex);
2529 		break;
2530 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2531 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2532 		break;
2533 	}
2534 
2535 	kfree(vol);
2536 	return ret;
2537 }
2538 
2539 static int btrfs_freeze(struct super_block *sb)
2540 {
2541 	struct btrfs_trans_handle *trans;
2542 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2543 	struct btrfs_root *root = fs_info->tree_root;
2544 
2545 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2546 	/*
2547 	 * We don't need a barrier here, we'll wait for any transaction that
2548 	 * could be in progress on other threads (and do delayed iputs that
2549 	 * we want to avoid on a frozen filesystem), or do the commit
2550 	 * ourselves.
2551 	 */
2552 	trans = btrfs_attach_transaction_barrier(root);
2553 	if (IS_ERR(trans)) {
2554 		/* no transaction, don't bother */
2555 		if (PTR_ERR(trans) == -ENOENT)
2556 			return 0;
2557 		return PTR_ERR(trans);
2558 	}
2559 	return btrfs_commit_transaction(trans);
2560 }
2561 
2562 static int btrfs_unfreeze(struct super_block *sb)
2563 {
2564 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2565 
2566 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2567 	return 0;
2568 }
2569 
2570 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2571 {
2572 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2573 
2574 	/*
2575 	 * There should be always a valid pointer in latest_dev, it may be stale
2576 	 * for a short moment in case it's being deleted but still valid until
2577 	 * the end of RCU grace period.
2578 	 */
2579 	rcu_read_lock();
2580 	seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\");
2581 	rcu_read_unlock();
2582 
2583 	return 0;
2584 }
2585 
2586 static const struct super_operations btrfs_super_ops = {
2587 	.drop_inode	= btrfs_drop_inode,
2588 	.evict_inode	= btrfs_evict_inode,
2589 	.put_super	= btrfs_put_super,
2590 	.sync_fs	= btrfs_sync_fs,
2591 	.show_options	= btrfs_show_options,
2592 	.show_devname	= btrfs_show_devname,
2593 	.alloc_inode	= btrfs_alloc_inode,
2594 	.destroy_inode	= btrfs_destroy_inode,
2595 	.free_inode	= btrfs_free_inode,
2596 	.statfs		= btrfs_statfs,
2597 	.remount_fs	= btrfs_remount,
2598 	.freeze_fs	= btrfs_freeze,
2599 	.unfreeze_fs	= btrfs_unfreeze,
2600 };
2601 
2602 static const struct file_operations btrfs_ctl_fops = {
2603 	.open = btrfs_control_open,
2604 	.unlocked_ioctl	 = btrfs_control_ioctl,
2605 	.compat_ioctl = compat_ptr_ioctl,
2606 	.owner	 = THIS_MODULE,
2607 	.llseek = noop_llseek,
2608 };
2609 
2610 static struct miscdevice btrfs_misc = {
2611 	.minor		= BTRFS_MINOR,
2612 	.name		= "btrfs-control",
2613 	.fops		= &btrfs_ctl_fops
2614 };
2615 
2616 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2617 MODULE_ALIAS("devname:btrfs-control");
2618 
2619 static int __init btrfs_interface_init(void)
2620 {
2621 	return misc_register(&btrfs_misc);
2622 }
2623 
2624 static __cold void btrfs_interface_exit(void)
2625 {
2626 	misc_deregister(&btrfs_misc);
2627 }
2628 
2629 static void __init btrfs_print_mod_info(void)
2630 {
2631 	static const char options[] = ""
2632 #ifdef CONFIG_BTRFS_DEBUG
2633 			", debug=on"
2634 #endif
2635 #ifdef CONFIG_BTRFS_ASSERT
2636 			", assert=on"
2637 #endif
2638 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2639 			", integrity-checker=on"
2640 #endif
2641 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2642 			", ref-verify=on"
2643 #endif
2644 #ifdef CONFIG_BLK_DEV_ZONED
2645 			", zoned=yes"
2646 #else
2647 			", zoned=no"
2648 #endif
2649 #ifdef CONFIG_FS_VERITY
2650 			", fsverity=yes"
2651 #else
2652 			", fsverity=no"
2653 #endif
2654 			;
2655 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2656 }
2657 
2658 static int __init init_btrfs_fs(void)
2659 {
2660 	int err;
2661 
2662 	btrfs_props_init();
2663 
2664 	err = btrfs_init_sysfs();
2665 	if (err)
2666 		return err;
2667 
2668 	btrfs_init_compress();
2669 
2670 	err = btrfs_init_cachep();
2671 	if (err)
2672 		goto free_compress;
2673 
2674 	err = extent_io_init();
2675 	if (err)
2676 		goto free_cachep;
2677 
2678 	err = extent_state_cache_init();
2679 	if (err)
2680 		goto free_extent_io;
2681 
2682 	err = extent_map_init();
2683 	if (err)
2684 		goto free_extent_state_cache;
2685 
2686 	err = ordered_data_init();
2687 	if (err)
2688 		goto free_extent_map;
2689 
2690 	err = btrfs_delayed_inode_init();
2691 	if (err)
2692 		goto free_ordered_data;
2693 
2694 	err = btrfs_auto_defrag_init();
2695 	if (err)
2696 		goto free_delayed_inode;
2697 
2698 	err = btrfs_delayed_ref_init();
2699 	if (err)
2700 		goto free_auto_defrag;
2701 
2702 	err = btrfs_prelim_ref_init();
2703 	if (err)
2704 		goto free_delayed_ref;
2705 
2706 	err = btrfs_end_io_wq_init();
2707 	if (err)
2708 		goto free_prelim_ref;
2709 
2710 	err = btrfs_interface_init();
2711 	if (err)
2712 		goto free_end_io_wq;
2713 
2714 	btrfs_print_mod_info();
2715 
2716 	err = btrfs_run_sanity_tests();
2717 	if (err)
2718 		goto unregister_ioctl;
2719 
2720 	err = register_filesystem(&btrfs_fs_type);
2721 	if (err)
2722 		goto unregister_ioctl;
2723 
2724 	return 0;
2725 
2726 unregister_ioctl:
2727 	btrfs_interface_exit();
2728 free_end_io_wq:
2729 	btrfs_end_io_wq_exit();
2730 free_prelim_ref:
2731 	btrfs_prelim_ref_exit();
2732 free_delayed_ref:
2733 	btrfs_delayed_ref_exit();
2734 free_auto_defrag:
2735 	btrfs_auto_defrag_exit();
2736 free_delayed_inode:
2737 	btrfs_delayed_inode_exit();
2738 free_ordered_data:
2739 	ordered_data_exit();
2740 free_extent_map:
2741 	extent_map_exit();
2742 free_extent_state_cache:
2743 	extent_state_cache_exit();
2744 free_extent_io:
2745 	extent_io_exit();
2746 free_cachep:
2747 	btrfs_destroy_cachep();
2748 free_compress:
2749 	btrfs_exit_compress();
2750 	btrfs_exit_sysfs();
2751 
2752 	return err;
2753 }
2754 
2755 static void __exit exit_btrfs_fs(void)
2756 {
2757 	btrfs_destroy_cachep();
2758 	btrfs_delayed_ref_exit();
2759 	btrfs_auto_defrag_exit();
2760 	btrfs_delayed_inode_exit();
2761 	btrfs_prelim_ref_exit();
2762 	ordered_data_exit();
2763 	extent_map_exit();
2764 	extent_state_cache_exit();
2765 	extent_io_exit();
2766 	btrfs_interface_exit();
2767 	btrfs_end_io_wq_exit();
2768 	unregister_filesystem(&btrfs_fs_type);
2769 	btrfs_exit_sysfs();
2770 	btrfs_cleanup_fs_uuids();
2771 	btrfs_exit_compress();
2772 }
2773 
2774 late_initcall(init_btrfs_fs);
2775 module_exit(exit_btrfs_fs)
2776 
2777 MODULE_LICENSE("GPL");
2778 MODULE_SOFTDEP("pre: crc32c");
2779 MODULE_SOFTDEP("pre: xxhash64");
2780 MODULE_SOFTDEP("pre: sha256");
2781 MODULE_SOFTDEP("pre: blake2b-256");
2782