xref: /openbmc/linux/fs/btrfs/super.c (revision 2d6bed9c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61 
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64 
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 				      char nbuf[16])
67 {
68 	char *errstr = NULL;
69 
70 	switch (errno) {
71 	case -EIO:
72 		errstr = "IO failure";
73 		break;
74 	case -ENOMEM:
75 		errstr = "Out of memory";
76 		break;
77 	case -EROFS:
78 		errstr = "Readonly filesystem";
79 		break;
80 	case -EEXIST:
81 		errstr = "Object already exists";
82 		break;
83 	default:
84 		if (nbuf) {
85 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 				errstr = nbuf;
87 		}
88 		break;
89 	}
90 
91 	return errstr;
92 }
93 
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 	/*
97 	 * today we only save the error info into ram.  Long term we'll
98 	 * also send it down to the disk
99 	 */
100 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102 
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105 	__save_error_info(fs_info);
106 }
107 
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 	struct super_block *sb = fs_info->sb;
112 
113 	if (sb->s_flags & MS_RDONLY)
114 		return;
115 
116 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 		sb->s_flags |= MS_RDONLY;
118 		printk(KERN_INFO "btrfs is forced readonly\n");
119 		__btrfs_scrub_cancel(fs_info);
120 //		WARN_ON(1);
121 	}
122 }
123 
124 #ifdef CONFIG_PRINTK
125 /*
126  * __btrfs_std_error decodes expected errors from the caller and
127  * invokes the approciate error response.
128  */
129 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
130 		       unsigned int line, int errno, const char *fmt, ...)
131 {
132 	struct super_block *sb = fs_info->sb;
133 	char nbuf[16];
134 	const char *errstr;
135 	va_list args;
136 	va_start(args, fmt);
137 
138 	/*
139 	 * Special case: if the error is EROFS, and we're already
140 	 * under MS_RDONLY, then it is safe here.
141 	 */
142 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143   		return;
144 
145   	errstr = btrfs_decode_error(fs_info, errno, nbuf);
146 	if (fmt) {
147 		struct va_format vaf = {
148 			.fmt = fmt,
149 			.va = &args,
150 		};
151 
152 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
153 			sb->s_id, function, line, errstr, &vaf);
154 	} else {
155 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
156 			sb->s_id, function, line, errstr);
157 	}
158 
159 	/* Don't go through full error handling during mount */
160 	if (sb->s_flags & MS_BORN) {
161 		save_error_info(fs_info);
162 		btrfs_handle_error(fs_info);
163 	}
164 	va_end(args);
165 }
166 
167 static const char * const logtypes[] = {
168 	"emergency",
169 	"alert",
170 	"critical",
171 	"error",
172 	"warning",
173 	"notice",
174 	"info",
175 	"debug",
176 };
177 
178 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
179 {
180 	struct super_block *sb = fs_info->sb;
181 	char lvl[4];
182 	struct va_format vaf;
183 	va_list args;
184 	const char *type = logtypes[4];
185 	int kern_level;
186 
187 	va_start(args, fmt);
188 
189 	kern_level = printk_get_level(fmt);
190 	if (kern_level) {
191 		size_t size = printk_skip_level(fmt) - fmt;
192 		memcpy(lvl, fmt,  size);
193 		lvl[size] = '\0';
194 		fmt += size;
195 		type = logtypes[kern_level - '0'];
196 	} else
197 		*lvl = '\0';
198 
199 	vaf.fmt = fmt;
200 	vaf.va = &args;
201 
202 	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
203 
204 	va_end(args);
205 }
206 
207 #else
208 
209 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
210 		       unsigned int line, int errno, const char *fmt, ...)
211 {
212 	struct super_block *sb = fs_info->sb;
213 
214 	/*
215 	 * Special case: if the error is EROFS, and we're already
216 	 * under MS_RDONLY, then it is safe here.
217 	 */
218 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
219 		return;
220 
221 	/* Don't go through full error handling during mount */
222 	if (sb->s_flags & MS_BORN) {
223 		save_error_info(fs_info);
224 		btrfs_handle_error(fs_info);
225 	}
226 }
227 #endif
228 
229 /*
230  * We only mark the transaction aborted and then set the file system read-only.
231  * This will prevent new transactions from starting or trying to join this
232  * one.
233  *
234  * This means that error recovery at the call site is limited to freeing
235  * any local memory allocations and passing the error code up without
236  * further cleanup. The transaction should complete as it normally would
237  * in the call path but will return -EIO.
238  *
239  * We'll complete the cleanup in btrfs_end_transaction and
240  * btrfs_commit_transaction.
241  */
242 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
243 			       struct btrfs_root *root, const char *function,
244 			       unsigned int line, int errno)
245 {
246 	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n");
247 	trans->aborted = errno;
248 	/* Nothing used. The other threads that have joined this
249 	 * transaction may be able to continue. */
250 	if (!trans->blocks_used) {
251 		char nbuf[16];
252 		const char *errstr;
253 
254 		errstr = btrfs_decode_error(root->fs_info, errno, nbuf);
255 		btrfs_printk(root->fs_info,
256 			     "%s:%d: Aborting unused transaction(%s).\n",
257 			     function, line, errstr);
258 		return;
259 	}
260 	trans->transaction->aborted = errno;
261 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
262 }
263 /*
264  * __btrfs_panic decodes unexpected, fatal errors from the caller,
265  * issues an alert, and either panics or BUGs, depending on mount options.
266  */
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 		   unsigned int line, int errno, const char *fmt, ...)
269 {
270 	char nbuf[16];
271 	char *s_id = "<unknown>";
272 	const char *errstr;
273 	struct va_format vaf = { .fmt = fmt };
274 	va_list args;
275 
276 	if (fs_info)
277 		s_id = fs_info->sb->s_id;
278 
279 	va_start(args, fmt);
280 	vaf.va = &args;
281 
282 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
283 	if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
284 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
285 			s_id, function, line, &vaf, errstr);
286 
287 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
288 	       s_id, function, line, &vaf, errstr);
289 	va_end(args);
290 	/* Caller calls BUG() */
291 }
292 
293 static void btrfs_put_super(struct super_block *sb)
294 {
295 	(void)close_ctree(btrfs_sb(sb)->tree_root);
296 	/* FIXME: need to fix VFS to return error? */
297 	/* AV: return it _where_?  ->put_super() can be triggered by any number
298 	 * of async events, up to and including delivery of SIGKILL to the
299 	 * last process that kept it busy.  Or segfault in the aforementioned
300 	 * process...  Whom would you report that to?
301 	 */
302 }
303 
304 enum {
305 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
306 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
307 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
308 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
309 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
310 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
311 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
312 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
313 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
314 	Opt_check_integrity_print_mask, Opt_fatal_errors,
315 	Opt_err,
316 };
317 
318 static match_table_t tokens = {
319 	{Opt_degraded, "degraded"},
320 	{Opt_subvol, "subvol=%s"},
321 	{Opt_subvolid, "subvolid=%d"},
322 	{Opt_device, "device=%s"},
323 	{Opt_nodatasum, "nodatasum"},
324 	{Opt_nodatacow, "nodatacow"},
325 	{Opt_nobarrier, "nobarrier"},
326 	{Opt_max_inline, "max_inline=%s"},
327 	{Opt_alloc_start, "alloc_start=%s"},
328 	{Opt_thread_pool, "thread_pool=%d"},
329 	{Opt_compress, "compress"},
330 	{Opt_compress_type, "compress=%s"},
331 	{Opt_compress_force, "compress-force"},
332 	{Opt_compress_force_type, "compress-force=%s"},
333 	{Opt_ssd, "ssd"},
334 	{Opt_ssd_spread, "ssd_spread"},
335 	{Opt_nossd, "nossd"},
336 	{Opt_noacl, "noacl"},
337 	{Opt_notreelog, "notreelog"},
338 	{Opt_flushoncommit, "flushoncommit"},
339 	{Opt_ratio, "metadata_ratio=%d"},
340 	{Opt_discard, "discard"},
341 	{Opt_space_cache, "space_cache"},
342 	{Opt_clear_cache, "clear_cache"},
343 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
344 	{Opt_enospc_debug, "enospc_debug"},
345 	{Opt_subvolrootid, "subvolrootid=%d"},
346 	{Opt_defrag, "autodefrag"},
347 	{Opt_inode_cache, "inode_cache"},
348 	{Opt_no_space_cache, "nospace_cache"},
349 	{Opt_recovery, "recovery"},
350 	{Opt_skip_balance, "skip_balance"},
351 	{Opt_check_integrity, "check_int"},
352 	{Opt_check_integrity_including_extent_data, "check_int_data"},
353 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
354 	{Opt_fatal_errors, "fatal_errors=%s"},
355 	{Opt_err, NULL},
356 };
357 
358 /*
359  * Regular mount options parser.  Everything that is needed only when
360  * reading in a new superblock is parsed here.
361  * XXX JDM: This needs to be cleaned up for remount.
362  */
363 int btrfs_parse_options(struct btrfs_root *root, char *options)
364 {
365 	struct btrfs_fs_info *info = root->fs_info;
366 	substring_t args[MAX_OPT_ARGS];
367 	char *p, *num, *orig = NULL;
368 	u64 cache_gen;
369 	int intarg;
370 	int ret = 0;
371 	char *compress_type;
372 	bool compress_force = false;
373 
374 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
375 	if (cache_gen)
376 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
377 
378 	if (!options)
379 		goto out;
380 
381 	/*
382 	 * strsep changes the string, duplicate it because parse_options
383 	 * gets called twice
384 	 */
385 	options = kstrdup(options, GFP_NOFS);
386 	if (!options)
387 		return -ENOMEM;
388 
389 	orig = options;
390 
391 	while ((p = strsep(&options, ",")) != NULL) {
392 		int token;
393 		if (!*p)
394 			continue;
395 
396 		token = match_token(p, tokens, args);
397 		switch (token) {
398 		case Opt_degraded:
399 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
400 			btrfs_set_opt(info->mount_opt, DEGRADED);
401 			break;
402 		case Opt_subvol:
403 		case Opt_subvolid:
404 		case Opt_subvolrootid:
405 		case Opt_device:
406 			/*
407 			 * These are parsed by btrfs_parse_early_options
408 			 * and can be happily ignored here.
409 			 */
410 			break;
411 		case Opt_nodatasum:
412 			printk(KERN_INFO "btrfs: setting nodatasum\n");
413 			btrfs_set_opt(info->mount_opt, NODATASUM);
414 			break;
415 		case Opt_nodatacow:
416 			if (!btrfs_test_opt(root, COMPRESS) ||
417 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
418 					printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
419 			} else {
420 				printk(KERN_INFO "btrfs: setting nodatacow\n");
421 			}
422 			info->compress_type = BTRFS_COMPRESS_NONE;
423 			btrfs_clear_opt(info->mount_opt, COMPRESS);
424 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
425 			btrfs_set_opt(info->mount_opt, NODATACOW);
426 			btrfs_set_opt(info->mount_opt, NODATASUM);
427 			break;
428 		case Opt_compress_force:
429 		case Opt_compress_force_type:
430 			compress_force = true;
431 		case Opt_compress:
432 		case Opt_compress_type:
433 			if (token == Opt_compress ||
434 			    token == Opt_compress_force ||
435 			    strcmp(args[0].from, "zlib") == 0) {
436 				compress_type = "zlib";
437 				info->compress_type = BTRFS_COMPRESS_ZLIB;
438 				btrfs_set_opt(info->mount_opt, COMPRESS);
439 				btrfs_clear_opt(info->mount_opt, NODATACOW);
440 				btrfs_clear_opt(info->mount_opt, NODATASUM);
441 			} else if (strcmp(args[0].from, "lzo") == 0) {
442 				compress_type = "lzo";
443 				info->compress_type = BTRFS_COMPRESS_LZO;
444 				btrfs_set_opt(info->mount_opt, COMPRESS);
445 				btrfs_clear_opt(info->mount_opt, NODATACOW);
446 				btrfs_clear_opt(info->mount_opt, NODATASUM);
447 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
448 			} else if (strncmp(args[0].from, "no", 2) == 0) {
449 				compress_type = "no";
450 				info->compress_type = BTRFS_COMPRESS_NONE;
451 				btrfs_clear_opt(info->mount_opt, COMPRESS);
452 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
453 				compress_force = false;
454 			} else {
455 				ret = -EINVAL;
456 				goto out;
457 			}
458 
459 			if (compress_force) {
460 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
461 				pr_info("btrfs: force %s compression\n",
462 					compress_type);
463 			} else
464 				pr_info("btrfs: use %s compression\n",
465 					compress_type);
466 			break;
467 		case Opt_ssd:
468 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
469 			btrfs_set_opt(info->mount_opt, SSD);
470 			break;
471 		case Opt_ssd_spread:
472 			printk(KERN_INFO "btrfs: use spread ssd "
473 			       "allocation scheme\n");
474 			btrfs_set_opt(info->mount_opt, SSD);
475 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
476 			break;
477 		case Opt_nossd:
478 			printk(KERN_INFO "btrfs: not using ssd allocation "
479 			       "scheme\n");
480 			btrfs_set_opt(info->mount_opt, NOSSD);
481 			btrfs_clear_opt(info->mount_opt, SSD);
482 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
483 			break;
484 		case Opt_nobarrier:
485 			printk(KERN_INFO "btrfs: turning off barriers\n");
486 			btrfs_set_opt(info->mount_opt, NOBARRIER);
487 			break;
488 		case Opt_thread_pool:
489 			intarg = 0;
490 			match_int(&args[0], &intarg);
491 			if (intarg)
492 				info->thread_pool_size = intarg;
493 			break;
494 		case Opt_max_inline:
495 			num = match_strdup(&args[0]);
496 			if (num) {
497 				info->max_inline = memparse(num, NULL);
498 				kfree(num);
499 
500 				if (info->max_inline) {
501 					info->max_inline = max_t(u64,
502 						info->max_inline,
503 						root->sectorsize);
504 				}
505 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
506 					(unsigned long long)info->max_inline);
507 			}
508 			break;
509 		case Opt_alloc_start:
510 			num = match_strdup(&args[0]);
511 			if (num) {
512 				info->alloc_start = memparse(num, NULL);
513 				kfree(num);
514 				printk(KERN_INFO
515 					"btrfs: allocations start at %llu\n",
516 					(unsigned long long)info->alloc_start);
517 			}
518 			break;
519 		case Opt_noacl:
520 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
521 			break;
522 		case Opt_notreelog:
523 			printk(KERN_INFO "btrfs: disabling tree log\n");
524 			btrfs_set_opt(info->mount_opt, NOTREELOG);
525 			break;
526 		case Opt_flushoncommit:
527 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
528 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
529 			break;
530 		case Opt_ratio:
531 			intarg = 0;
532 			match_int(&args[0], &intarg);
533 			if (intarg) {
534 				info->metadata_ratio = intarg;
535 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
536 				       info->metadata_ratio);
537 			}
538 			break;
539 		case Opt_discard:
540 			btrfs_set_opt(info->mount_opt, DISCARD);
541 			break;
542 		case Opt_space_cache:
543 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
544 			break;
545 		case Opt_no_space_cache:
546 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
547 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
548 			break;
549 		case Opt_inode_cache:
550 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
551 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
552 			break;
553 		case Opt_clear_cache:
554 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
555 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
556 			break;
557 		case Opt_user_subvol_rm_allowed:
558 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
559 			break;
560 		case Opt_enospc_debug:
561 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
562 			break;
563 		case Opt_defrag:
564 			printk(KERN_INFO "btrfs: enabling auto defrag\n");
565 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
566 			break;
567 		case Opt_recovery:
568 			printk(KERN_INFO "btrfs: enabling auto recovery\n");
569 			btrfs_set_opt(info->mount_opt, RECOVERY);
570 			break;
571 		case Opt_skip_balance:
572 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
573 			break;
574 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
575 		case Opt_check_integrity_including_extent_data:
576 			printk(KERN_INFO "btrfs: enabling check integrity"
577 			       " including extent data\n");
578 			btrfs_set_opt(info->mount_opt,
579 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
580 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
581 			break;
582 		case Opt_check_integrity:
583 			printk(KERN_INFO "btrfs: enabling check integrity\n");
584 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
585 			break;
586 		case Opt_check_integrity_print_mask:
587 			intarg = 0;
588 			match_int(&args[0], &intarg);
589 			if (intarg) {
590 				info->check_integrity_print_mask = intarg;
591 				printk(KERN_INFO "btrfs:"
592 				       " check_integrity_print_mask 0x%x\n",
593 				       info->check_integrity_print_mask);
594 			}
595 			break;
596 #else
597 		case Opt_check_integrity_including_extent_data:
598 		case Opt_check_integrity:
599 		case Opt_check_integrity_print_mask:
600 			printk(KERN_ERR "btrfs: support for check_integrity*"
601 			       " not compiled in!\n");
602 			ret = -EINVAL;
603 			goto out;
604 #endif
605 		case Opt_fatal_errors:
606 			if (strcmp(args[0].from, "panic") == 0)
607 				btrfs_set_opt(info->mount_opt,
608 					      PANIC_ON_FATAL_ERROR);
609 			else if (strcmp(args[0].from, "bug") == 0)
610 				btrfs_clear_opt(info->mount_opt,
611 					      PANIC_ON_FATAL_ERROR);
612 			else {
613 				ret = -EINVAL;
614 				goto out;
615 			}
616 			break;
617 		case Opt_err:
618 			printk(KERN_INFO "btrfs: unrecognized mount option "
619 			       "'%s'\n", p);
620 			ret = -EINVAL;
621 			goto out;
622 		default:
623 			break;
624 		}
625 	}
626 out:
627 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
628 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
629 	kfree(orig);
630 	return ret;
631 }
632 
633 /*
634  * Parse mount options that are required early in the mount process.
635  *
636  * All other options will be parsed on much later in the mount process and
637  * only when we need to allocate a new super block.
638  */
639 static int btrfs_parse_early_options(const char *options, fmode_t flags,
640 		void *holder, char **subvol_name, u64 *subvol_objectid,
641 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
642 {
643 	substring_t args[MAX_OPT_ARGS];
644 	char *device_name, *opts, *orig, *p;
645 	int error = 0;
646 	int intarg;
647 
648 	if (!options)
649 		return 0;
650 
651 	/*
652 	 * strsep changes the string, duplicate it because parse_options
653 	 * gets called twice
654 	 */
655 	opts = kstrdup(options, GFP_KERNEL);
656 	if (!opts)
657 		return -ENOMEM;
658 	orig = opts;
659 
660 	while ((p = strsep(&opts, ",")) != NULL) {
661 		int token;
662 		if (!*p)
663 			continue;
664 
665 		token = match_token(p, tokens, args);
666 		switch (token) {
667 		case Opt_subvol:
668 			kfree(*subvol_name);
669 			*subvol_name = match_strdup(&args[0]);
670 			break;
671 		case Opt_subvolid:
672 			intarg = 0;
673 			error = match_int(&args[0], &intarg);
674 			if (!error) {
675 				/* we want the original fs_tree */
676 				if (!intarg)
677 					*subvol_objectid =
678 						BTRFS_FS_TREE_OBJECTID;
679 				else
680 					*subvol_objectid = intarg;
681 			}
682 			break;
683 		case Opt_subvolrootid:
684 			intarg = 0;
685 			error = match_int(&args[0], &intarg);
686 			if (!error) {
687 				/* we want the original fs_tree */
688 				if (!intarg)
689 					*subvol_rootid =
690 						BTRFS_FS_TREE_OBJECTID;
691 				else
692 					*subvol_rootid = intarg;
693 			}
694 			break;
695 		case Opt_device:
696 			device_name = match_strdup(&args[0]);
697 			if (!device_name) {
698 				error = -ENOMEM;
699 				goto out;
700 			}
701 			error = btrfs_scan_one_device(device_name,
702 					flags, holder, fs_devices);
703 			kfree(device_name);
704 			if (error)
705 				goto out;
706 			break;
707 		default:
708 			break;
709 		}
710 	}
711 
712 out:
713 	kfree(orig);
714 	return error;
715 }
716 
717 static struct dentry *get_default_root(struct super_block *sb,
718 				       u64 subvol_objectid)
719 {
720 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
721 	struct btrfs_root *root = fs_info->tree_root;
722 	struct btrfs_root *new_root;
723 	struct btrfs_dir_item *di;
724 	struct btrfs_path *path;
725 	struct btrfs_key location;
726 	struct inode *inode;
727 	u64 dir_id;
728 	int new = 0;
729 
730 	/*
731 	 * We have a specific subvol we want to mount, just setup location and
732 	 * go look up the root.
733 	 */
734 	if (subvol_objectid) {
735 		location.objectid = subvol_objectid;
736 		location.type = BTRFS_ROOT_ITEM_KEY;
737 		location.offset = (u64)-1;
738 		goto find_root;
739 	}
740 
741 	path = btrfs_alloc_path();
742 	if (!path)
743 		return ERR_PTR(-ENOMEM);
744 	path->leave_spinning = 1;
745 
746 	/*
747 	 * Find the "default" dir item which points to the root item that we
748 	 * will mount by default if we haven't been given a specific subvolume
749 	 * to mount.
750 	 */
751 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
752 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
753 	if (IS_ERR(di)) {
754 		btrfs_free_path(path);
755 		return ERR_CAST(di);
756 	}
757 	if (!di) {
758 		/*
759 		 * Ok the default dir item isn't there.  This is weird since
760 		 * it's always been there, but don't freak out, just try and
761 		 * mount to root most subvolume.
762 		 */
763 		btrfs_free_path(path);
764 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
765 		new_root = fs_info->fs_root;
766 		goto setup_root;
767 	}
768 
769 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
770 	btrfs_free_path(path);
771 
772 find_root:
773 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
774 	if (IS_ERR(new_root))
775 		return ERR_CAST(new_root);
776 
777 	if (btrfs_root_refs(&new_root->root_item) == 0)
778 		return ERR_PTR(-ENOENT);
779 
780 	dir_id = btrfs_root_dirid(&new_root->root_item);
781 setup_root:
782 	location.objectid = dir_id;
783 	location.type = BTRFS_INODE_ITEM_KEY;
784 	location.offset = 0;
785 
786 	inode = btrfs_iget(sb, &location, new_root, &new);
787 	if (IS_ERR(inode))
788 		return ERR_CAST(inode);
789 
790 	/*
791 	 * If we're just mounting the root most subvol put the inode and return
792 	 * a reference to the dentry.  We will have already gotten a reference
793 	 * to the inode in btrfs_fill_super so we're good to go.
794 	 */
795 	if (!new && sb->s_root->d_inode == inode) {
796 		iput(inode);
797 		return dget(sb->s_root);
798 	}
799 
800 	return d_obtain_alias(inode);
801 }
802 
803 static int btrfs_fill_super(struct super_block *sb,
804 			    struct btrfs_fs_devices *fs_devices,
805 			    void *data, int silent)
806 {
807 	struct inode *inode;
808 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
809 	struct btrfs_key key;
810 	int err;
811 
812 	sb->s_maxbytes = MAX_LFS_FILESIZE;
813 	sb->s_magic = BTRFS_SUPER_MAGIC;
814 	sb->s_op = &btrfs_super_ops;
815 	sb->s_d_op = &btrfs_dentry_operations;
816 	sb->s_export_op = &btrfs_export_ops;
817 	sb->s_xattr = btrfs_xattr_handlers;
818 	sb->s_time_gran = 1;
819 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
820 	sb->s_flags |= MS_POSIXACL;
821 #endif
822 	sb->s_flags |= MS_I_VERSION;
823 	err = open_ctree(sb, fs_devices, (char *)data);
824 	if (err) {
825 		printk("btrfs: open_ctree failed\n");
826 		return err;
827 	}
828 
829 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
830 	key.type = BTRFS_INODE_ITEM_KEY;
831 	key.offset = 0;
832 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
833 	if (IS_ERR(inode)) {
834 		err = PTR_ERR(inode);
835 		goto fail_close;
836 	}
837 
838 	sb->s_root = d_make_root(inode);
839 	if (!sb->s_root) {
840 		err = -ENOMEM;
841 		goto fail_close;
842 	}
843 
844 	save_mount_options(sb, data);
845 	cleancache_init_fs(sb);
846 	sb->s_flags |= MS_ACTIVE;
847 	return 0;
848 
849 fail_close:
850 	close_ctree(fs_info->tree_root);
851 	return err;
852 }
853 
854 int btrfs_sync_fs(struct super_block *sb, int wait)
855 {
856 	struct btrfs_trans_handle *trans;
857 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
858 	struct btrfs_root *root = fs_info->tree_root;
859 
860 	trace_btrfs_sync_fs(wait);
861 
862 	if (!wait) {
863 		filemap_flush(fs_info->btree_inode->i_mapping);
864 		return 0;
865 	}
866 
867 	btrfs_wait_ordered_extents(root, 0);
868 
869 	trans = btrfs_attach_transaction(root);
870 	if (IS_ERR(trans)) {
871 		/* no transaction, don't bother */
872 		if (PTR_ERR(trans) == -ENOENT)
873 			return 0;
874 		return PTR_ERR(trans);
875 	}
876 	return btrfs_commit_transaction(trans, root);
877 }
878 
879 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
880 {
881 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
882 	struct btrfs_root *root = info->tree_root;
883 	char *compress_type;
884 
885 	if (btrfs_test_opt(root, DEGRADED))
886 		seq_puts(seq, ",degraded");
887 	if (btrfs_test_opt(root, NODATASUM))
888 		seq_puts(seq, ",nodatasum");
889 	if (btrfs_test_opt(root, NODATACOW))
890 		seq_puts(seq, ",nodatacow");
891 	if (btrfs_test_opt(root, NOBARRIER))
892 		seq_puts(seq, ",nobarrier");
893 	if (info->max_inline != 8192 * 1024)
894 		seq_printf(seq, ",max_inline=%llu",
895 			   (unsigned long long)info->max_inline);
896 	if (info->alloc_start != 0)
897 		seq_printf(seq, ",alloc_start=%llu",
898 			   (unsigned long long)info->alloc_start);
899 	if (info->thread_pool_size !=  min_t(unsigned long,
900 					     num_online_cpus() + 2, 8))
901 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
902 	if (btrfs_test_opt(root, COMPRESS)) {
903 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
904 			compress_type = "zlib";
905 		else
906 			compress_type = "lzo";
907 		if (btrfs_test_opt(root, FORCE_COMPRESS))
908 			seq_printf(seq, ",compress-force=%s", compress_type);
909 		else
910 			seq_printf(seq, ",compress=%s", compress_type);
911 	}
912 	if (btrfs_test_opt(root, NOSSD))
913 		seq_puts(seq, ",nossd");
914 	if (btrfs_test_opt(root, SSD_SPREAD))
915 		seq_puts(seq, ",ssd_spread");
916 	else if (btrfs_test_opt(root, SSD))
917 		seq_puts(seq, ",ssd");
918 	if (btrfs_test_opt(root, NOTREELOG))
919 		seq_puts(seq, ",notreelog");
920 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
921 		seq_puts(seq, ",flushoncommit");
922 	if (btrfs_test_opt(root, DISCARD))
923 		seq_puts(seq, ",discard");
924 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
925 		seq_puts(seq, ",noacl");
926 	if (btrfs_test_opt(root, SPACE_CACHE))
927 		seq_puts(seq, ",space_cache");
928 	else
929 		seq_puts(seq, ",nospace_cache");
930 	if (btrfs_test_opt(root, CLEAR_CACHE))
931 		seq_puts(seq, ",clear_cache");
932 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
933 		seq_puts(seq, ",user_subvol_rm_allowed");
934 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
935 		seq_puts(seq, ",enospc_debug");
936 	if (btrfs_test_opt(root, AUTO_DEFRAG))
937 		seq_puts(seq, ",autodefrag");
938 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
939 		seq_puts(seq, ",inode_cache");
940 	if (btrfs_test_opt(root, SKIP_BALANCE))
941 		seq_puts(seq, ",skip_balance");
942 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
943 		seq_puts(seq, ",fatal_errors=panic");
944 	return 0;
945 }
946 
947 static int btrfs_test_super(struct super_block *s, void *data)
948 {
949 	struct btrfs_fs_info *p = data;
950 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
951 
952 	return fs_info->fs_devices == p->fs_devices;
953 }
954 
955 static int btrfs_set_super(struct super_block *s, void *data)
956 {
957 	int err = set_anon_super(s, data);
958 	if (!err)
959 		s->s_fs_info = data;
960 	return err;
961 }
962 
963 /*
964  * subvolumes are identified by ino 256
965  */
966 static inline int is_subvolume_inode(struct inode *inode)
967 {
968 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
969 		return 1;
970 	return 0;
971 }
972 
973 /*
974  * This will strip out the subvol=%s argument for an argument string and add
975  * subvolid=0 to make sure we get the actual tree root for path walking to the
976  * subvol we want.
977  */
978 static char *setup_root_args(char *args)
979 {
980 	unsigned len = strlen(args) + 2 + 1;
981 	char *src, *dst, *buf;
982 
983 	/*
984 	 * We need the same args as before, but with this substitution:
985 	 * s!subvol=[^,]+!subvolid=0!
986 	 *
987 	 * Since the replacement string is up to 2 bytes longer than the
988 	 * original, allocate strlen(args) + 2 + 1 bytes.
989 	 */
990 
991 	src = strstr(args, "subvol=");
992 	/* This shouldn't happen, but just in case.. */
993 	if (!src)
994 		return NULL;
995 
996 	buf = dst = kmalloc(len, GFP_NOFS);
997 	if (!buf)
998 		return NULL;
999 
1000 	/*
1001 	 * If the subvol= arg is not at the start of the string,
1002 	 * copy whatever precedes it into buf.
1003 	 */
1004 	if (src != args) {
1005 		*src++ = '\0';
1006 		strcpy(buf, args);
1007 		dst += strlen(args);
1008 	}
1009 
1010 	strcpy(dst, "subvolid=0");
1011 	dst += strlen("subvolid=0");
1012 
1013 	/*
1014 	 * If there is a "," after the original subvol=... string,
1015 	 * copy that suffix into our buffer.  Otherwise, we're done.
1016 	 */
1017 	src = strchr(src, ',');
1018 	if (src)
1019 		strcpy(dst, src);
1020 
1021 	return buf;
1022 }
1023 
1024 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1025 				   const char *device_name, char *data)
1026 {
1027 	struct dentry *root;
1028 	struct vfsmount *mnt;
1029 	char *newargs;
1030 
1031 	newargs = setup_root_args(data);
1032 	if (!newargs)
1033 		return ERR_PTR(-ENOMEM);
1034 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1035 			     newargs);
1036 	kfree(newargs);
1037 	if (IS_ERR(mnt))
1038 		return ERR_CAST(mnt);
1039 
1040 	root = mount_subtree(mnt, subvol_name);
1041 
1042 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1043 		struct super_block *s = root->d_sb;
1044 		dput(root);
1045 		root = ERR_PTR(-EINVAL);
1046 		deactivate_locked_super(s);
1047 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1048 				subvol_name);
1049 	}
1050 
1051 	return root;
1052 }
1053 
1054 /*
1055  * Find a superblock for the given device / mount point.
1056  *
1057  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1058  *	  for multiple device setup.  Make sure to keep it in sync.
1059  */
1060 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1061 		const char *device_name, void *data)
1062 {
1063 	struct block_device *bdev = NULL;
1064 	struct super_block *s;
1065 	struct dentry *root;
1066 	struct btrfs_fs_devices *fs_devices = NULL;
1067 	struct btrfs_fs_info *fs_info = NULL;
1068 	fmode_t mode = FMODE_READ;
1069 	char *subvol_name = NULL;
1070 	u64 subvol_objectid = 0;
1071 	u64 subvol_rootid = 0;
1072 	int error = 0;
1073 
1074 	if (!(flags & MS_RDONLY))
1075 		mode |= FMODE_WRITE;
1076 
1077 	error = btrfs_parse_early_options(data, mode, fs_type,
1078 					  &subvol_name, &subvol_objectid,
1079 					  &subvol_rootid, &fs_devices);
1080 	if (error) {
1081 		kfree(subvol_name);
1082 		return ERR_PTR(error);
1083 	}
1084 
1085 	if (subvol_name) {
1086 		root = mount_subvol(subvol_name, flags, device_name, data);
1087 		kfree(subvol_name);
1088 		return root;
1089 	}
1090 
1091 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1092 	if (error)
1093 		return ERR_PTR(error);
1094 
1095 	/*
1096 	 * Setup a dummy root and fs_info for test/set super.  This is because
1097 	 * we don't actually fill this stuff out until open_ctree, but we need
1098 	 * it for searching for existing supers, so this lets us do that and
1099 	 * then open_ctree will properly initialize everything later.
1100 	 */
1101 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1102 	if (!fs_info)
1103 		return ERR_PTR(-ENOMEM);
1104 
1105 	fs_info->fs_devices = fs_devices;
1106 
1107 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1108 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1109 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1110 		error = -ENOMEM;
1111 		goto error_fs_info;
1112 	}
1113 
1114 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1115 	if (error)
1116 		goto error_fs_info;
1117 
1118 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1119 		error = -EACCES;
1120 		goto error_close_devices;
1121 	}
1122 
1123 	bdev = fs_devices->latest_bdev;
1124 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1125 		 fs_info);
1126 	if (IS_ERR(s)) {
1127 		error = PTR_ERR(s);
1128 		goto error_close_devices;
1129 	}
1130 
1131 	if (s->s_root) {
1132 		btrfs_close_devices(fs_devices);
1133 		free_fs_info(fs_info);
1134 		if ((flags ^ s->s_flags) & MS_RDONLY)
1135 			error = -EBUSY;
1136 	} else {
1137 		char b[BDEVNAME_SIZE];
1138 
1139 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1140 		btrfs_sb(s)->bdev_holder = fs_type;
1141 		error = btrfs_fill_super(s, fs_devices, data,
1142 					 flags & MS_SILENT ? 1 : 0);
1143 	}
1144 
1145 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1146 	if (IS_ERR(root))
1147 		deactivate_locked_super(s);
1148 
1149 	return root;
1150 
1151 error_close_devices:
1152 	btrfs_close_devices(fs_devices);
1153 error_fs_info:
1154 	free_fs_info(fs_info);
1155 	return ERR_PTR(error);
1156 }
1157 
1158 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1159 {
1160 	spin_lock_irq(&workers->lock);
1161 	workers->max_workers = new_limit;
1162 	spin_unlock_irq(&workers->lock);
1163 }
1164 
1165 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1166 				     int new_pool_size, int old_pool_size)
1167 {
1168 	if (new_pool_size == old_pool_size)
1169 		return;
1170 
1171 	fs_info->thread_pool_size = new_pool_size;
1172 
1173 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1174 	       old_pool_size, new_pool_size);
1175 
1176 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1177 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1178 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1179 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1180 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1181 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1182 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1183 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1184 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1185 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1186 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1187 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1188 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1189 	btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1190 }
1191 
1192 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1193 {
1194 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1195 	struct btrfs_root *root = fs_info->tree_root;
1196 	unsigned old_flags = sb->s_flags;
1197 	unsigned long old_opts = fs_info->mount_opt;
1198 	unsigned long old_compress_type = fs_info->compress_type;
1199 	u64 old_max_inline = fs_info->max_inline;
1200 	u64 old_alloc_start = fs_info->alloc_start;
1201 	int old_thread_pool_size = fs_info->thread_pool_size;
1202 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1203 	int ret;
1204 
1205 	ret = btrfs_parse_options(root, data);
1206 	if (ret) {
1207 		ret = -EINVAL;
1208 		goto restore;
1209 	}
1210 
1211 	btrfs_resize_thread_pool(fs_info,
1212 		fs_info->thread_pool_size, old_thread_pool_size);
1213 
1214 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1215 		return 0;
1216 
1217 	if (*flags & MS_RDONLY) {
1218 		sb->s_flags |= MS_RDONLY;
1219 
1220 		ret = btrfs_commit_super(root);
1221 		if (ret)
1222 			goto restore;
1223 	} else {
1224 		if (fs_info->fs_devices->rw_devices == 0) {
1225 			ret = -EACCES;
1226 			goto restore;
1227 		}
1228 
1229 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1230 			ret = -EINVAL;
1231 			goto restore;
1232 		}
1233 
1234 		ret = btrfs_cleanup_fs_roots(fs_info);
1235 		if (ret)
1236 			goto restore;
1237 
1238 		/* recover relocation */
1239 		ret = btrfs_recover_relocation(root);
1240 		if (ret)
1241 			goto restore;
1242 
1243 		ret = btrfs_resume_balance_async(fs_info);
1244 		if (ret)
1245 			goto restore;
1246 
1247 		sb->s_flags &= ~MS_RDONLY;
1248 	}
1249 
1250 	return 0;
1251 
1252 restore:
1253 	/* We've hit an error - don't reset MS_RDONLY */
1254 	if (sb->s_flags & MS_RDONLY)
1255 		old_flags |= MS_RDONLY;
1256 	sb->s_flags = old_flags;
1257 	fs_info->mount_opt = old_opts;
1258 	fs_info->compress_type = old_compress_type;
1259 	fs_info->max_inline = old_max_inline;
1260 	fs_info->alloc_start = old_alloc_start;
1261 	btrfs_resize_thread_pool(fs_info,
1262 		old_thread_pool_size, fs_info->thread_pool_size);
1263 	fs_info->metadata_ratio = old_metadata_ratio;
1264 	return ret;
1265 }
1266 
1267 /* Used to sort the devices by max_avail(descending sort) */
1268 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1269 				       const void *dev_info2)
1270 {
1271 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1272 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1273 		return -1;
1274 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1275 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1276 		return 1;
1277 	else
1278 	return 0;
1279 }
1280 
1281 /*
1282  * sort the devices by max_avail, in which max free extent size of each device
1283  * is stored.(Descending Sort)
1284  */
1285 static inline void btrfs_descending_sort_devices(
1286 					struct btrfs_device_info *devices,
1287 					size_t nr_devices)
1288 {
1289 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1290 	     btrfs_cmp_device_free_bytes, NULL);
1291 }
1292 
1293 /*
1294  * The helper to calc the free space on the devices that can be used to store
1295  * file data.
1296  */
1297 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1298 {
1299 	struct btrfs_fs_info *fs_info = root->fs_info;
1300 	struct btrfs_device_info *devices_info;
1301 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1302 	struct btrfs_device *device;
1303 	u64 skip_space;
1304 	u64 type;
1305 	u64 avail_space;
1306 	u64 used_space;
1307 	u64 min_stripe_size;
1308 	int min_stripes = 1, num_stripes = 1;
1309 	int i = 0, nr_devices;
1310 	int ret;
1311 
1312 	nr_devices = fs_info->fs_devices->open_devices;
1313 	BUG_ON(!nr_devices);
1314 
1315 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1316 			       GFP_NOFS);
1317 	if (!devices_info)
1318 		return -ENOMEM;
1319 
1320 	/* calc min stripe number for data space alloction */
1321 	type = btrfs_get_alloc_profile(root, 1);
1322 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1323 		min_stripes = 2;
1324 		num_stripes = nr_devices;
1325 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1326 		min_stripes = 2;
1327 		num_stripes = 2;
1328 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1329 		min_stripes = 4;
1330 		num_stripes = 4;
1331 	}
1332 
1333 	if (type & BTRFS_BLOCK_GROUP_DUP)
1334 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1335 	else
1336 		min_stripe_size = BTRFS_STRIPE_LEN;
1337 
1338 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1339 		if (!device->in_fs_metadata || !device->bdev)
1340 			continue;
1341 
1342 		avail_space = device->total_bytes - device->bytes_used;
1343 
1344 		/* align with stripe_len */
1345 		do_div(avail_space, BTRFS_STRIPE_LEN);
1346 		avail_space *= BTRFS_STRIPE_LEN;
1347 
1348 		/*
1349 		 * In order to avoid overwritting the superblock on the drive,
1350 		 * btrfs starts at an offset of at least 1MB when doing chunk
1351 		 * allocation.
1352 		 */
1353 		skip_space = 1024 * 1024;
1354 
1355 		/* user can set the offset in fs_info->alloc_start. */
1356 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1357 		    device->total_bytes)
1358 			skip_space = max(fs_info->alloc_start, skip_space);
1359 
1360 		/*
1361 		 * btrfs can not use the free space in [0, skip_space - 1],
1362 		 * we must subtract it from the total. In order to implement
1363 		 * it, we account the used space in this range first.
1364 		 */
1365 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1366 						     &used_space);
1367 		if (ret) {
1368 			kfree(devices_info);
1369 			return ret;
1370 		}
1371 
1372 		/* calc the free space in [0, skip_space - 1] */
1373 		skip_space -= used_space;
1374 
1375 		/*
1376 		 * we can use the free space in [0, skip_space - 1], subtract
1377 		 * it from the total.
1378 		 */
1379 		if (avail_space && avail_space >= skip_space)
1380 			avail_space -= skip_space;
1381 		else
1382 			avail_space = 0;
1383 
1384 		if (avail_space < min_stripe_size)
1385 			continue;
1386 
1387 		devices_info[i].dev = device;
1388 		devices_info[i].max_avail = avail_space;
1389 
1390 		i++;
1391 	}
1392 
1393 	nr_devices = i;
1394 
1395 	btrfs_descending_sort_devices(devices_info, nr_devices);
1396 
1397 	i = nr_devices - 1;
1398 	avail_space = 0;
1399 	while (nr_devices >= min_stripes) {
1400 		if (num_stripes > nr_devices)
1401 			num_stripes = nr_devices;
1402 
1403 		if (devices_info[i].max_avail >= min_stripe_size) {
1404 			int j;
1405 			u64 alloc_size;
1406 
1407 			avail_space += devices_info[i].max_avail * num_stripes;
1408 			alloc_size = devices_info[i].max_avail;
1409 			for (j = i + 1 - num_stripes; j <= i; j++)
1410 				devices_info[j].max_avail -= alloc_size;
1411 		}
1412 		i--;
1413 		nr_devices--;
1414 	}
1415 
1416 	kfree(devices_info);
1417 	*free_bytes = avail_space;
1418 	return 0;
1419 }
1420 
1421 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1422 {
1423 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1424 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1425 	struct list_head *head = &fs_info->space_info;
1426 	struct btrfs_space_info *found;
1427 	u64 total_used = 0;
1428 	u64 total_free_data = 0;
1429 	int bits = dentry->d_sb->s_blocksize_bits;
1430 	__be32 *fsid = (__be32 *)fs_info->fsid;
1431 	int ret;
1432 
1433 	/* holding chunk_muext to avoid allocating new chunks */
1434 	mutex_lock(&fs_info->chunk_mutex);
1435 	rcu_read_lock();
1436 	list_for_each_entry_rcu(found, head, list) {
1437 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1438 			total_free_data += found->disk_total - found->disk_used;
1439 			total_free_data -=
1440 				btrfs_account_ro_block_groups_free_space(found);
1441 		}
1442 
1443 		total_used += found->disk_used;
1444 	}
1445 	rcu_read_unlock();
1446 
1447 	buf->f_namelen = BTRFS_NAME_LEN;
1448 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1449 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1450 	buf->f_bsize = dentry->d_sb->s_blocksize;
1451 	buf->f_type = BTRFS_SUPER_MAGIC;
1452 	buf->f_bavail = total_free_data;
1453 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1454 	if (ret) {
1455 		mutex_unlock(&fs_info->chunk_mutex);
1456 		return ret;
1457 	}
1458 	buf->f_bavail += total_free_data;
1459 	buf->f_bavail = buf->f_bavail >> bits;
1460 	mutex_unlock(&fs_info->chunk_mutex);
1461 
1462 	/* We treat it as constant endianness (it doesn't matter _which_)
1463 	   because we want the fsid to come out the same whether mounted
1464 	   on a big-endian or little-endian host */
1465 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1466 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1467 	/* Mask in the root object ID too, to disambiguate subvols */
1468 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1469 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1470 
1471 	return 0;
1472 }
1473 
1474 static void btrfs_kill_super(struct super_block *sb)
1475 {
1476 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1477 	kill_anon_super(sb);
1478 	free_fs_info(fs_info);
1479 }
1480 
1481 static struct file_system_type btrfs_fs_type = {
1482 	.owner		= THIS_MODULE,
1483 	.name		= "btrfs",
1484 	.mount		= btrfs_mount,
1485 	.kill_sb	= btrfs_kill_super,
1486 	.fs_flags	= FS_REQUIRES_DEV,
1487 };
1488 
1489 /*
1490  * used by btrfsctl to scan devices when no FS is mounted
1491  */
1492 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1493 				unsigned long arg)
1494 {
1495 	struct btrfs_ioctl_vol_args *vol;
1496 	struct btrfs_fs_devices *fs_devices;
1497 	int ret = -ENOTTY;
1498 
1499 	if (!capable(CAP_SYS_ADMIN))
1500 		return -EPERM;
1501 
1502 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1503 	if (IS_ERR(vol))
1504 		return PTR_ERR(vol);
1505 
1506 	switch (cmd) {
1507 	case BTRFS_IOC_SCAN_DEV:
1508 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1509 					    &btrfs_fs_type, &fs_devices);
1510 		break;
1511 	case BTRFS_IOC_DEVICES_READY:
1512 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1513 					    &btrfs_fs_type, &fs_devices);
1514 		if (ret)
1515 			break;
1516 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1517 		break;
1518 	}
1519 
1520 	kfree(vol);
1521 	return ret;
1522 }
1523 
1524 static int btrfs_freeze(struct super_block *sb)
1525 {
1526 	struct btrfs_trans_handle *trans;
1527 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1528 
1529 	trans = btrfs_attach_transaction(root);
1530 	if (IS_ERR(trans)) {
1531 		/* no transaction, don't bother */
1532 		if (PTR_ERR(trans) == -ENOENT)
1533 			return 0;
1534 		return PTR_ERR(trans);
1535 	}
1536 	return btrfs_commit_transaction(trans, root);
1537 }
1538 
1539 static int btrfs_unfreeze(struct super_block *sb)
1540 {
1541 	return 0;
1542 }
1543 
1544 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1545 {
1546 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1547 	struct btrfs_fs_devices *cur_devices;
1548 	struct btrfs_device *dev, *first_dev = NULL;
1549 	struct list_head *head;
1550 	struct rcu_string *name;
1551 
1552 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1553 	cur_devices = fs_info->fs_devices;
1554 	while (cur_devices) {
1555 		head = &cur_devices->devices;
1556 		list_for_each_entry(dev, head, dev_list) {
1557 			if (dev->missing)
1558 				continue;
1559 			if (!first_dev || dev->devid < first_dev->devid)
1560 				first_dev = dev;
1561 		}
1562 		cur_devices = cur_devices->seed;
1563 	}
1564 
1565 	if (first_dev) {
1566 		rcu_read_lock();
1567 		name = rcu_dereference(first_dev->name);
1568 		seq_escape(m, name->str, " \t\n\\");
1569 		rcu_read_unlock();
1570 	} else {
1571 		WARN_ON(1);
1572 	}
1573 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1574 	return 0;
1575 }
1576 
1577 static const struct super_operations btrfs_super_ops = {
1578 	.drop_inode	= btrfs_drop_inode,
1579 	.evict_inode	= btrfs_evict_inode,
1580 	.put_super	= btrfs_put_super,
1581 	.sync_fs	= btrfs_sync_fs,
1582 	.show_options	= btrfs_show_options,
1583 	.show_devname	= btrfs_show_devname,
1584 	.write_inode	= btrfs_write_inode,
1585 	.alloc_inode	= btrfs_alloc_inode,
1586 	.destroy_inode	= btrfs_destroy_inode,
1587 	.statfs		= btrfs_statfs,
1588 	.remount_fs	= btrfs_remount,
1589 	.freeze_fs	= btrfs_freeze,
1590 	.unfreeze_fs	= btrfs_unfreeze,
1591 };
1592 
1593 static const struct file_operations btrfs_ctl_fops = {
1594 	.unlocked_ioctl	 = btrfs_control_ioctl,
1595 	.compat_ioctl = btrfs_control_ioctl,
1596 	.owner	 = THIS_MODULE,
1597 	.llseek = noop_llseek,
1598 };
1599 
1600 static struct miscdevice btrfs_misc = {
1601 	.minor		= BTRFS_MINOR,
1602 	.name		= "btrfs-control",
1603 	.fops		= &btrfs_ctl_fops
1604 };
1605 
1606 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1607 MODULE_ALIAS("devname:btrfs-control");
1608 
1609 static int btrfs_interface_init(void)
1610 {
1611 	return misc_register(&btrfs_misc);
1612 }
1613 
1614 static void btrfs_interface_exit(void)
1615 {
1616 	if (misc_deregister(&btrfs_misc) < 0)
1617 		printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1618 }
1619 
1620 static int __init init_btrfs_fs(void)
1621 {
1622 	int err;
1623 
1624 	err = btrfs_init_sysfs();
1625 	if (err)
1626 		return err;
1627 
1628 	btrfs_init_compress();
1629 
1630 	err = btrfs_init_cachep();
1631 	if (err)
1632 		goto free_compress;
1633 
1634 	err = extent_io_init();
1635 	if (err)
1636 		goto free_cachep;
1637 
1638 	err = extent_map_init();
1639 	if (err)
1640 		goto free_extent_io;
1641 
1642 	err = ordered_data_init();
1643 	if (err)
1644 		goto free_extent_map;
1645 
1646 	err = btrfs_delayed_inode_init();
1647 	if (err)
1648 		goto free_ordered_data;
1649 
1650 	err = btrfs_interface_init();
1651 	if (err)
1652 		goto free_delayed_inode;
1653 
1654 	err = register_filesystem(&btrfs_fs_type);
1655 	if (err)
1656 		goto unregister_ioctl;
1657 
1658 	btrfs_init_lockdep();
1659 
1660 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1661 	return 0;
1662 
1663 unregister_ioctl:
1664 	btrfs_interface_exit();
1665 free_delayed_inode:
1666 	btrfs_delayed_inode_exit();
1667 free_ordered_data:
1668 	ordered_data_exit();
1669 free_extent_map:
1670 	extent_map_exit();
1671 free_extent_io:
1672 	extent_io_exit();
1673 free_cachep:
1674 	btrfs_destroy_cachep();
1675 free_compress:
1676 	btrfs_exit_compress();
1677 	btrfs_exit_sysfs();
1678 	return err;
1679 }
1680 
1681 static void __exit exit_btrfs_fs(void)
1682 {
1683 	btrfs_destroy_cachep();
1684 	btrfs_delayed_inode_exit();
1685 	ordered_data_exit();
1686 	extent_map_exit();
1687 	extent_io_exit();
1688 	btrfs_interface_exit();
1689 	unregister_filesystem(&btrfs_fs_type);
1690 	btrfs_exit_sysfs();
1691 	btrfs_cleanup_fs_uuids();
1692 	btrfs_exit_compress();
1693 }
1694 
1695 module_init(init_btrfs_fs)
1696 module_exit(exit_btrfs_fs)
1697 
1698 MODULE_LICENSE("GPL");
1699