xref: /openbmc/linux/fs/btrfs/super.c (revision 293d5b43)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
72 const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
100 /* btrfs handle error by forcing the filesystem readonly */
101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
102 {
103 	struct super_block *sb = fs_info->sb;
104 
105 	if (sb->s_flags & MS_RDONLY)
106 		return;
107 
108 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
109 		sb->s_flags |= MS_RDONLY;
110 		btrfs_info(fs_info, "forced readonly");
111 		/*
112 		 * Note that a running device replace operation is not
113 		 * canceled here although there is no way to update
114 		 * the progress. It would add the risk of a deadlock,
115 		 * therefore the canceling is omitted. The only penalty
116 		 * is that some I/O remains active until the procedure
117 		 * completes. The next time when the filesystem is
118 		 * mounted writeable again, the device replace
119 		 * operation continues.
120 		 */
121 	}
122 }
123 
124 /*
125  * __btrfs_handle_fs_error decodes expected errors from the caller and
126  * invokes the approciate error response.
127  */
128 __cold
129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
130 		       unsigned int line, int errno, const char *fmt, ...)
131 {
132 	struct super_block *sb = fs_info->sb;
133 #ifdef CONFIG_PRINTK
134 	const char *errstr;
135 #endif
136 
137 	/*
138 	 * Special case: if the error is EROFS, and we're already
139 	 * under MS_RDONLY, then it is safe here.
140 	 */
141 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
142   		return;
143 
144 #ifdef CONFIG_PRINTK
145 	errstr = btrfs_decode_error(errno);
146 	if (fmt) {
147 		struct va_format vaf;
148 		va_list args;
149 
150 		va_start(args, fmt);
151 		vaf.fmt = fmt;
152 		vaf.va = &args;
153 
154 		printk(KERN_CRIT
155 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 			sb->s_id, function, line, errno, errstr, &vaf);
157 		va_end(args);
158 	} else {
159 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
160 			sb->s_id, function, line, errno, errstr);
161 	}
162 #endif
163 
164 	/*
165 	 * Today we only save the error info to memory.  Long term we'll
166 	 * also send it down to the disk
167 	 */
168 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
169 
170 	/* Don't go through full error handling during mount */
171 	if (sb->s_flags & MS_BORN)
172 		btrfs_handle_error(fs_info);
173 }
174 
175 #ifdef CONFIG_PRINTK
176 static const char * const logtypes[] = {
177 	"emergency",
178 	"alert",
179 	"critical",
180 	"error",
181 	"warning",
182 	"notice",
183 	"info",
184 	"debug",
185 };
186 
187 
188 /*
189  * Use one ratelimit state per log level so that a flood of less important
190  * messages doesn't cause more important ones to be dropped.
191  */
192 static struct ratelimit_state printk_limits[] = {
193 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
200 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
201 };
202 
203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
204 {
205 	struct super_block *sb = fs_info->sb;
206 	char lvl[4];
207 	struct va_format vaf;
208 	va_list args;
209 	const char *type = logtypes[4];
210 	int kern_level;
211 	struct ratelimit_state *ratelimit;
212 
213 	va_start(args, fmt);
214 
215 	kern_level = printk_get_level(fmt);
216 	if (kern_level) {
217 		size_t size = printk_skip_level(fmt) - fmt;
218 		memcpy(lvl, fmt,  size);
219 		lvl[size] = '\0';
220 		fmt += size;
221 		type = logtypes[kern_level - '0'];
222 		ratelimit = &printk_limits[kern_level - '0'];
223 	} else {
224 		*lvl = '\0';
225 		/* Default to debug output */
226 		ratelimit = &printk_limits[7];
227 	}
228 
229 	vaf.fmt = fmt;
230 	vaf.va = &args;
231 
232 	if (__ratelimit(ratelimit))
233 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
234 
235 	va_end(args);
236 }
237 #endif
238 
239 /*
240  * We only mark the transaction aborted and then set the file system read-only.
241  * This will prevent new transactions from starting or trying to join this
242  * one.
243  *
244  * This means that error recovery at the call site is limited to freeing
245  * any local memory allocations and passing the error code up without
246  * further cleanup. The transaction should complete as it normally would
247  * in the call path but will return -EIO.
248  *
249  * We'll complete the cleanup in btrfs_end_transaction and
250  * btrfs_commit_transaction.
251  */
252 __cold
253 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
254 			       const char *function,
255 			       unsigned int line, int errno)
256 {
257 	struct btrfs_fs_info *fs_info = trans->fs_info;
258 
259 	trans->aborted = errno;
260 	/* Nothing used. The other threads that have joined this
261 	 * transaction may be able to continue. */
262 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
263 		const char *errstr;
264 
265 		errstr = btrfs_decode_error(errno);
266 		btrfs_warn(fs_info,
267 		           "%s:%d: Aborting unused transaction(%s).",
268 		           function, line, errstr);
269 		return;
270 	}
271 	ACCESS_ONCE(trans->transaction->aborted) = errno;
272 	/* Wake up anybody who may be waiting on this transaction */
273 	wake_up(&fs_info->transaction_wait);
274 	wake_up(&fs_info->transaction_blocked_wait);
275 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
276 }
277 /*
278  * __btrfs_panic decodes unexpected, fatal errors from the caller,
279  * issues an alert, and either panics or BUGs, depending on mount options.
280  */
281 __cold
282 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
283 		   unsigned int line, int errno, const char *fmt, ...)
284 {
285 	char *s_id = "<unknown>";
286 	const char *errstr;
287 	struct va_format vaf = { .fmt = fmt };
288 	va_list args;
289 
290 	if (fs_info)
291 		s_id = fs_info->sb->s_id;
292 
293 	va_start(args, fmt);
294 	vaf.va = &args;
295 
296 	errstr = btrfs_decode_error(errno);
297 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
298 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
299 			s_id, function, line, &vaf, errno, errstr);
300 
301 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
302 		   function, line, &vaf, errno, errstr);
303 	va_end(args);
304 	/* Caller calls BUG() */
305 }
306 
307 static void btrfs_put_super(struct super_block *sb)
308 {
309 	close_ctree(btrfs_sb(sb)->tree_root);
310 }
311 
312 enum {
313 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
314 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
315 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
316 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
317 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
318 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
319 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
320 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
321 	Opt_skip_balance, Opt_check_integrity,
322 	Opt_check_integrity_including_extent_data,
323 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
324 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
325 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
326 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
327 	Opt_nologreplay, Opt_norecovery,
328 #ifdef CONFIG_BTRFS_DEBUG
329 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
330 #endif
331 	Opt_err,
332 };
333 
334 static const match_table_t tokens = {
335 	{Opt_degraded, "degraded"},
336 	{Opt_subvol, "subvol=%s"},
337 	{Opt_subvolid, "subvolid=%s"},
338 	{Opt_device, "device=%s"},
339 	{Opt_nodatasum, "nodatasum"},
340 	{Opt_datasum, "datasum"},
341 	{Opt_nodatacow, "nodatacow"},
342 	{Opt_datacow, "datacow"},
343 	{Opt_nobarrier, "nobarrier"},
344 	{Opt_barrier, "barrier"},
345 	{Opt_max_inline, "max_inline=%s"},
346 	{Opt_alloc_start, "alloc_start=%s"},
347 	{Opt_thread_pool, "thread_pool=%d"},
348 	{Opt_compress, "compress"},
349 	{Opt_compress_type, "compress=%s"},
350 	{Opt_compress_force, "compress-force"},
351 	{Opt_compress_force_type, "compress-force=%s"},
352 	{Opt_ssd, "ssd"},
353 	{Opt_ssd_spread, "ssd_spread"},
354 	{Opt_nossd, "nossd"},
355 	{Opt_acl, "acl"},
356 	{Opt_noacl, "noacl"},
357 	{Opt_notreelog, "notreelog"},
358 	{Opt_treelog, "treelog"},
359 	{Opt_nologreplay, "nologreplay"},
360 	{Opt_norecovery, "norecovery"},
361 	{Opt_flushoncommit, "flushoncommit"},
362 	{Opt_noflushoncommit, "noflushoncommit"},
363 	{Opt_ratio, "metadata_ratio=%d"},
364 	{Opt_discard, "discard"},
365 	{Opt_nodiscard, "nodiscard"},
366 	{Opt_space_cache, "space_cache"},
367 	{Opt_space_cache_version, "space_cache=%s"},
368 	{Opt_clear_cache, "clear_cache"},
369 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
370 	{Opt_enospc_debug, "enospc_debug"},
371 	{Opt_noenospc_debug, "noenospc_debug"},
372 	{Opt_subvolrootid, "subvolrootid=%d"},
373 	{Opt_defrag, "autodefrag"},
374 	{Opt_nodefrag, "noautodefrag"},
375 	{Opt_inode_cache, "inode_cache"},
376 	{Opt_noinode_cache, "noinode_cache"},
377 	{Opt_no_space_cache, "nospace_cache"},
378 	{Opt_recovery, "recovery"}, /* deprecated */
379 	{Opt_usebackuproot, "usebackuproot"},
380 	{Opt_skip_balance, "skip_balance"},
381 	{Opt_check_integrity, "check_int"},
382 	{Opt_check_integrity_including_extent_data, "check_int_data"},
383 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
384 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
385 	{Opt_fatal_errors, "fatal_errors=%s"},
386 	{Opt_commit_interval, "commit=%d"},
387 #ifdef CONFIG_BTRFS_DEBUG
388 	{Opt_fragment_data, "fragment=data"},
389 	{Opt_fragment_metadata, "fragment=metadata"},
390 	{Opt_fragment_all, "fragment=all"},
391 #endif
392 	{Opt_err, NULL},
393 };
394 
395 /*
396  * Regular mount options parser.  Everything that is needed only when
397  * reading in a new superblock is parsed here.
398  * XXX JDM: This needs to be cleaned up for remount.
399  */
400 int btrfs_parse_options(struct btrfs_root *root, char *options,
401 			unsigned long new_flags)
402 {
403 	struct btrfs_fs_info *info = root->fs_info;
404 	substring_t args[MAX_OPT_ARGS];
405 	char *p, *num, *orig = NULL;
406 	u64 cache_gen;
407 	int intarg;
408 	int ret = 0;
409 	char *compress_type;
410 	bool compress_force = false;
411 	enum btrfs_compression_type saved_compress_type;
412 	bool saved_compress_force;
413 	int no_compress = 0;
414 
415 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
416 	if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE))
417 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
418 	else if (cache_gen)
419 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
420 
421 	/*
422 	 * Even the options are empty, we still need to do extra check
423 	 * against new flags
424 	 */
425 	if (!options)
426 		goto check;
427 
428 	/*
429 	 * strsep changes the string, duplicate it because parse_options
430 	 * gets called twice
431 	 */
432 	options = kstrdup(options, GFP_NOFS);
433 	if (!options)
434 		return -ENOMEM;
435 
436 	orig = options;
437 
438 	while ((p = strsep(&options, ",")) != NULL) {
439 		int token;
440 		if (!*p)
441 			continue;
442 
443 		token = match_token(p, tokens, args);
444 		switch (token) {
445 		case Opt_degraded:
446 			btrfs_info(root->fs_info, "allowing degraded mounts");
447 			btrfs_set_opt(info->mount_opt, DEGRADED);
448 			break;
449 		case Opt_subvol:
450 		case Opt_subvolid:
451 		case Opt_subvolrootid:
452 		case Opt_device:
453 			/*
454 			 * These are parsed by btrfs_parse_early_options
455 			 * and can be happily ignored here.
456 			 */
457 			break;
458 		case Opt_nodatasum:
459 			btrfs_set_and_info(info, NODATASUM,
460 					   "setting nodatasum");
461 			break;
462 		case Opt_datasum:
463 			if (btrfs_test_opt(info, NODATASUM)) {
464 				if (btrfs_test_opt(info, NODATACOW))
465 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
466 				else
467 					btrfs_info(root->fs_info, "setting datasum");
468 			}
469 			btrfs_clear_opt(info->mount_opt, NODATACOW);
470 			btrfs_clear_opt(info->mount_opt, NODATASUM);
471 			break;
472 		case Opt_nodatacow:
473 			if (!btrfs_test_opt(info, NODATACOW)) {
474 				if (!btrfs_test_opt(info, COMPRESS) ||
475 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
476 					btrfs_info(root->fs_info,
477 						   "setting nodatacow, compression disabled");
478 				} else {
479 					btrfs_info(root->fs_info, "setting nodatacow");
480 				}
481 			}
482 			btrfs_clear_opt(info->mount_opt, COMPRESS);
483 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
484 			btrfs_set_opt(info->mount_opt, NODATACOW);
485 			btrfs_set_opt(info->mount_opt, NODATASUM);
486 			break;
487 		case Opt_datacow:
488 			btrfs_clear_and_info(info, NODATACOW,
489 					     "setting datacow");
490 			break;
491 		case Opt_compress_force:
492 		case Opt_compress_force_type:
493 			compress_force = true;
494 			/* Fallthrough */
495 		case Opt_compress:
496 		case Opt_compress_type:
497 			saved_compress_type = btrfs_test_opt(info,
498 							     COMPRESS) ?
499 				info->compress_type : BTRFS_COMPRESS_NONE;
500 			saved_compress_force =
501 				btrfs_test_opt(info, FORCE_COMPRESS);
502 			if (token == Opt_compress ||
503 			    token == Opt_compress_force ||
504 			    strcmp(args[0].from, "zlib") == 0) {
505 				compress_type = "zlib";
506 				info->compress_type = BTRFS_COMPRESS_ZLIB;
507 				btrfs_set_opt(info->mount_opt, COMPRESS);
508 				btrfs_clear_opt(info->mount_opt, NODATACOW);
509 				btrfs_clear_opt(info->mount_opt, NODATASUM);
510 				no_compress = 0;
511 			} else if (strcmp(args[0].from, "lzo") == 0) {
512 				compress_type = "lzo";
513 				info->compress_type = BTRFS_COMPRESS_LZO;
514 				btrfs_set_opt(info->mount_opt, COMPRESS);
515 				btrfs_clear_opt(info->mount_opt, NODATACOW);
516 				btrfs_clear_opt(info->mount_opt, NODATASUM);
517 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
518 				no_compress = 0;
519 			} else if (strncmp(args[0].from, "no", 2) == 0) {
520 				compress_type = "no";
521 				btrfs_clear_opt(info->mount_opt, COMPRESS);
522 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
523 				compress_force = false;
524 				no_compress++;
525 			} else {
526 				ret = -EINVAL;
527 				goto out;
528 			}
529 
530 			if (compress_force) {
531 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
532 			} else {
533 				/*
534 				 * If we remount from compress-force=xxx to
535 				 * compress=xxx, we need clear FORCE_COMPRESS
536 				 * flag, otherwise, there is no way for users
537 				 * to disable forcible compression separately.
538 				 */
539 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
540 			}
541 			if ((btrfs_test_opt(info, COMPRESS) &&
542 			     (info->compress_type != saved_compress_type ||
543 			      compress_force != saved_compress_force)) ||
544 			    (!btrfs_test_opt(info, COMPRESS) &&
545 			     no_compress == 1)) {
546 				btrfs_info(root->fs_info,
547 					   "%s %s compression",
548 					   (compress_force) ? "force" : "use",
549 					   compress_type);
550 			}
551 			compress_force = false;
552 			break;
553 		case Opt_ssd:
554 			btrfs_set_and_info(info, SSD,
555 					   "use ssd allocation scheme");
556 			break;
557 		case Opt_ssd_spread:
558 			btrfs_set_and_info(info, SSD_SPREAD,
559 					   "use spread ssd allocation scheme");
560 			btrfs_set_opt(info->mount_opt, SSD);
561 			break;
562 		case Opt_nossd:
563 			btrfs_set_and_info(info, NOSSD,
564 					     "not using ssd allocation scheme");
565 			btrfs_clear_opt(info->mount_opt, SSD);
566 			break;
567 		case Opt_barrier:
568 			btrfs_clear_and_info(info, NOBARRIER,
569 					     "turning on barriers");
570 			break;
571 		case Opt_nobarrier:
572 			btrfs_set_and_info(info, NOBARRIER,
573 					   "turning off barriers");
574 			break;
575 		case Opt_thread_pool:
576 			ret = match_int(&args[0], &intarg);
577 			if (ret) {
578 				goto out;
579 			} else if (intarg > 0) {
580 				info->thread_pool_size = intarg;
581 			} else {
582 				ret = -EINVAL;
583 				goto out;
584 			}
585 			break;
586 		case Opt_max_inline:
587 			num = match_strdup(&args[0]);
588 			if (num) {
589 				info->max_inline = memparse(num, NULL);
590 				kfree(num);
591 
592 				if (info->max_inline) {
593 					info->max_inline = min_t(u64,
594 						info->max_inline,
595 						root->sectorsize);
596 				}
597 				btrfs_info(root->fs_info, "max_inline at %llu",
598 					info->max_inline);
599 			} else {
600 				ret = -ENOMEM;
601 				goto out;
602 			}
603 			break;
604 		case Opt_alloc_start:
605 			num = match_strdup(&args[0]);
606 			if (num) {
607 				mutex_lock(&info->chunk_mutex);
608 				info->alloc_start = memparse(num, NULL);
609 				mutex_unlock(&info->chunk_mutex);
610 				kfree(num);
611 				btrfs_info(root->fs_info, "allocations start at %llu",
612 					info->alloc_start);
613 			} else {
614 				ret = -ENOMEM;
615 				goto out;
616 			}
617 			break;
618 		case Opt_acl:
619 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
620 			root->fs_info->sb->s_flags |= MS_POSIXACL;
621 			break;
622 #else
623 			btrfs_err(root->fs_info,
624 				"support for ACL not compiled in!");
625 			ret = -EINVAL;
626 			goto out;
627 #endif
628 		case Opt_noacl:
629 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
630 			break;
631 		case Opt_notreelog:
632 			btrfs_set_and_info(info, NOTREELOG,
633 					   "disabling tree log");
634 			break;
635 		case Opt_treelog:
636 			btrfs_clear_and_info(info, NOTREELOG,
637 					     "enabling tree log");
638 			break;
639 		case Opt_norecovery:
640 		case Opt_nologreplay:
641 			btrfs_set_and_info(info, NOLOGREPLAY,
642 					   "disabling log replay at mount time");
643 			break;
644 		case Opt_flushoncommit:
645 			btrfs_set_and_info(info, FLUSHONCOMMIT,
646 					   "turning on flush-on-commit");
647 			break;
648 		case Opt_noflushoncommit:
649 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
650 					     "turning off flush-on-commit");
651 			break;
652 		case Opt_ratio:
653 			ret = match_int(&args[0], &intarg);
654 			if (ret) {
655 				goto out;
656 			} else if (intarg >= 0) {
657 				info->metadata_ratio = intarg;
658 				btrfs_info(root->fs_info, "metadata ratio %d",
659 				       info->metadata_ratio);
660 			} else {
661 				ret = -EINVAL;
662 				goto out;
663 			}
664 			break;
665 		case Opt_discard:
666 			btrfs_set_and_info(info, DISCARD,
667 					   "turning on discard");
668 			break;
669 		case Opt_nodiscard:
670 			btrfs_clear_and_info(info, DISCARD,
671 					     "turning off discard");
672 			break;
673 		case Opt_space_cache:
674 		case Opt_space_cache_version:
675 			if (token == Opt_space_cache ||
676 			    strcmp(args[0].from, "v1") == 0) {
677 				btrfs_clear_opt(root->fs_info->mount_opt,
678 						FREE_SPACE_TREE);
679 				btrfs_set_and_info(info, SPACE_CACHE,
680 						   "enabling disk space caching");
681 			} else if (strcmp(args[0].from, "v2") == 0) {
682 				btrfs_clear_opt(root->fs_info->mount_opt,
683 						SPACE_CACHE);
684 				btrfs_set_and_info(info,
685 						   FREE_SPACE_TREE,
686 						   "enabling free space tree");
687 			} else {
688 				ret = -EINVAL;
689 				goto out;
690 			}
691 			break;
692 		case Opt_rescan_uuid_tree:
693 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
694 			break;
695 		case Opt_no_space_cache:
696 			if (btrfs_test_opt(info, SPACE_CACHE)) {
697 				btrfs_clear_and_info(info,
698 						     SPACE_CACHE,
699 						     "disabling disk space caching");
700 			}
701 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
702 				btrfs_clear_and_info(info,
703 						     FREE_SPACE_TREE,
704 						     "disabling free space tree");
705 			}
706 			break;
707 		case Opt_inode_cache:
708 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
709 					   "enabling inode map caching");
710 			break;
711 		case Opt_noinode_cache:
712 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
713 					     "disabling inode map caching");
714 			break;
715 		case Opt_clear_cache:
716 			btrfs_set_and_info(info, CLEAR_CACHE,
717 					   "force clearing of disk cache");
718 			break;
719 		case Opt_user_subvol_rm_allowed:
720 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
721 			break;
722 		case Opt_enospc_debug:
723 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
724 			break;
725 		case Opt_noenospc_debug:
726 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
727 			break;
728 		case Opt_defrag:
729 			btrfs_set_and_info(info, AUTO_DEFRAG,
730 					   "enabling auto defrag");
731 			break;
732 		case Opt_nodefrag:
733 			btrfs_clear_and_info(info, AUTO_DEFRAG,
734 					     "disabling auto defrag");
735 			break;
736 		case Opt_recovery:
737 			btrfs_warn(root->fs_info,
738 				   "'recovery' is deprecated, use 'usebackuproot' instead");
739 		case Opt_usebackuproot:
740 			btrfs_info(root->fs_info,
741 				   "trying to use backup root at mount time");
742 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
743 			break;
744 		case Opt_skip_balance:
745 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
746 			break;
747 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
748 		case Opt_check_integrity_including_extent_data:
749 			btrfs_info(root->fs_info,
750 				   "enabling check integrity including extent data");
751 			btrfs_set_opt(info->mount_opt,
752 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
753 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
754 			break;
755 		case Opt_check_integrity:
756 			btrfs_info(root->fs_info, "enabling check integrity");
757 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
758 			break;
759 		case Opt_check_integrity_print_mask:
760 			ret = match_int(&args[0], &intarg);
761 			if (ret) {
762 				goto out;
763 			} else if (intarg >= 0) {
764 				info->check_integrity_print_mask = intarg;
765 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
766 				       info->check_integrity_print_mask);
767 			} else {
768 				ret = -EINVAL;
769 				goto out;
770 			}
771 			break;
772 #else
773 		case Opt_check_integrity_including_extent_data:
774 		case Opt_check_integrity:
775 		case Opt_check_integrity_print_mask:
776 			btrfs_err(root->fs_info,
777 				"support for check_integrity* not compiled in!");
778 			ret = -EINVAL;
779 			goto out;
780 #endif
781 		case Opt_fatal_errors:
782 			if (strcmp(args[0].from, "panic") == 0)
783 				btrfs_set_opt(info->mount_opt,
784 					      PANIC_ON_FATAL_ERROR);
785 			else if (strcmp(args[0].from, "bug") == 0)
786 				btrfs_clear_opt(info->mount_opt,
787 					      PANIC_ON_FATAL_ERROR);
788 			else {
789 				ret = -EINVAL;
790 				goto out;
791 			}
792 			break;
793 		case Opt_commit_interval:
794 			intarg = 0;
795 			ret = match_int(&args[0], &intarg);
796 			if (ret < 0) {
797 				btrfs_err(root->fs_info, "invalid commit interval");
798 				ret = -EINVAL;
799 				goto out;
800 			}
801 			if (intarg > 0) {
802 				if (intarg > 300) {
803 					btrfs_warn(root->fs_info, "excessive commit interval %d",
804 							intarg);
805 				}
806 				info->commit_interval = intarg;
807 			} else {
808 				btrfs_info(root->fs_info, "using default commit interval %ds",
809 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
810 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
811 			}
812 			break;
813 #ifdef CONFIG_BTRFS_DEBUG
814 		case Opt_fragment_all:
815 			btrfs_info(root->fs_info, "fragmenting all space");
816 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
817 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
818 			break;
819 		case Opt_fragment_metadata:
820 			btrfs_info(root->fs_info, "fragmenting metadata");
821 			btrfs_set_opt(info->mount_opt,
822 				      FRAGMENT_METADATA);
823 			break;
824 		case Opt_fragment_data:
825 			btrfs_info(root->fs_info, "fragmenting data");
826 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
827 			break;
828 #endif
829 		case Opt_err:
830 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
831 			ret = -EINVAL;
832 			goto out;
833 		default:
834 			break;
835 		}
836 	}
837 check:
838 	/*
839 	 * Extra check for current option against current flag
840 	 */
841 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
842 		btrfs_err(root->fs_info,
843 			  "nologreplay must be used with ro mount option");
844 		ret = -EINVAL;
845 	}
846 out:
847 	if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) &&
848 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
849 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
850 		btrfs_err(root->fs_info, "cannot disable free space tree");
851 		ret = -EINVAL;
852 
853 	}
854 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
855 		btrfs_info(root->fs_info, "disk space caching is enabled");
856 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
857 		btrfs_info(root->fs_info, "using free space tree");
858 	kfree(orig);
859 	return ret;
860 }
861 
862 /*
863  * Parse mount options that are required early in the mount process.
864  *
865  * All other options will be parsed on much later in the mount process and
866  * only when we need to allocate a new super block.
867  */
868 static int btrfs_parse_early_options(const char *options, fmode_t flags,
869 		void *holder, char **subvol_name, u64 *subvol_objectid,
870 		struct btrfs_fs_devices **fs_devices)
871 {
872 	substring_t args[MAX_OPT_ARGS];
873 	char *device_name, *opts, *orig, *p;
874 	char *num = NULL;
875 	int error = 0;
876 
877 	if (!options)
878 		return 0;
879 
880 	/*
881 	 * strsep changes the string, duplicate it because parse_options
882 	 * gets called twice
883 	 */
884 	opts = kstrdup(options, GFP_KERNEL);
885 	if (!opts)
886 		return -ENOMEM;
887 	orig = opts;
888 
889 	while ((p = strsep(&opts, ",")) != NULL) {
890 		int token;
891 		if (!*p)
892 			continue;
893 
894 		token = match_token(p, tokens, args);
895 		switch (token) {
896 		case Opt_subvol:
897 			kfree(*subvol_name);
898 			*subvol_name = match_strdup(&args[0]);
899 			if (!*subvol_name) {
900 				error = -ENOMEM;
901 				goto out;
902 			}
903 			break;
904 		case Opt_subvolid:
905 			num = match_strdup(&args[0]);
906 			if (num) {
907 				*subvol_objectid = memparse(num, NULL);
908 				kfree(num);
909 				/* we want the original fs_tree */
910 				if (!*subvol_objectid)
911 					*subvol_objectid =
912 						BTRFS_FS_TREE_OBJECTID;
913 			} else {
914 				error = -EINVAL;
915 				goto out;
916 			}
917 			break;
918 		case Opt_subvolrootid:
919 			printk(KERN_WARNING
920 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
921 				"no effect\n");
922 			break;
923 		case Opt_device:
924 			device_name = match_strdup(&args[0]);
925 			if (!device_name) {
926 				error = -ENOMEM;
927 				goto out;
928 			}
929 			error = btrfs_scan_one_device(device_name,
930 					flags, holder, fs_devices);
931 			kfree(device_name);
932 			if (error)
933 				goto out;
934 			break;
935 		default:
936 			break;
937 		}
938 	}
939 
940 out:
941 	kfree(orig);
942 	return error;
943 }
944 
945 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
946 					   u64 subvol_objectid)
947 {
948 	struct btrfs_root *root = fs_info->tree_root;
949 	struct btrfs_root *fs_root;
950 	struct btrfs_root_ref *root_ref;
951 	struct btrfs_inode_ref *inode_ref;
952 	struct btrfs_key key;
953 	struct btrfs_path *path = NULL;
954 	char *name = NULL, *ptr;
955 	u64 dirid;
956 	int len;
957 	int ret;
958 
959 	path = btrfs_alloc_path();
960 	if (!path) {
961 		ret = -ENOMEM;
962 		goto err;
963 	}
964 	path->leave_spinning = 1;
965 
966 	name = kmalloc(PATH_MAX, GFP_NOFS);
967 	if (!name) {
968 		ret = -ENOMEM;
969 		goto err;
970 	}
971 	ptr = name + PATH_MAX - 1;
972 	ptr[0] = '\0';
973 
974 	/*
975 	 * Walk up the subvolume trees in the tree of tree roots by root
976 	 * backrefs until we hit the top-level subvolume.
977 	 */
978 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
979 		key.objectid = subvol_objectid;
980 		key.type = BTRFS_ROOT_BACKREF_KEY;
981 		key.offset = (u64)-1;
982 
983 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
984 		if (ret < 0) {
985 			goto err;
986 		} else if (ret > 0) {
987 			ret = btrfs_previous_item(root, path, subvol_objectid,
988 						  BTRFS_ROOT_BACKREF_KEY);
989 			if (ret < 0) {
990 				goto err;
991 			} else if (ret > 0) {
992 				ret = -ENOENT;
993 				goto err;
994 			}
995 		}
996 
997 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
998 		subvol_objectid = key.offset;
999 
1000 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1001 					  struct btrfs_root_ref);
1002 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1003 		ptr -= len + 1;
1004 		if (ptr < name) {
1005 			ret = -ENAMETOOLONG;
1006 			goto err;
1007 		}
1008 		read_extent_buffer(path->nodes[0], ptr + 1,
1009 				   (unsigned long)(root_ref + 1), len);
1010 		ptr[0] = '/';
1011 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1012 		btrfs_release_path(path);
1013 
1014 		key.objectid = subvol_objectid;
1015 		key.type = BTRFS_ROOT_ITEM_KEY;
1016 		key.offset = (u64)-1;
1017 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1018 		if (IS_ERR(fs_root)) {
1019 			ret = PTR_ERR(fs_root);
1020 			goto err;
1021 		}
1022 
1023 		/*
1024 		 * Walk up the filesystem tree by inode refs until we hit the
1025 		 * root directory.
1026 		 */
1027 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1028 			key.objectid = dirid;
1029 			key.type = BTRFS_INODE_REF_KEY;
1030 			key.offset = (u64)-1;
1031 
1032 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1033 			if (ret < 0) {
1034 				goto err;
1035 			} else if (ret > 0) {
1036 				ret = btrfs_previous_item(fs_root, path, dirid,
1037 							  BTRFS_INODE_REF_KEY);
1038 				if (ret < 0) {
1039 					goto err;
1040 				} else if (ret > 0) {
1041 					ret = -ENOENT;
1042 					goto err;
1043 				}
1044 			}
1045 
1046 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1047 			dirid = key.offset;
1048 
1049 			inode_ref = btrfs_item_ptr(path->nodes[0],
1050 						   path->slots[0],
1051 						   struct btrfs_inode_ref);
1052 			len = btrfs_inode_ref_name_len(path->nodes[0],
1053 						       inode_ref);
1054 			ptr -= len + 1;
1055 			if (ptr < name) {
1056 				ret = -ENAMETOOLONG;
1057 				goto err;
1058 			}
1059 			read_extent_buffer(path->nodes[0], ptr + 1,
1060 					   (unsigned long)(inode_ref + 1), len);
1061 			ptr[0] = '/';
1062 			btrfs_release_path(path);
1063 		}
1064 	}
1065 
1066 	btrfs_free_path(path);
1067 	if (ptr == name + PATH_MAX - 1) {
1068 		name[0] = '/';
1069 		name[1] = '\0';
1070 	} else {
1071 		memmove(name, ptr, name + PATH_MAX - ptr);
1072 	}
1073 	return name;
1074 
1075 err:
1076 	btrfs_free_path(path);
1077 	kfree(name);
1078 	return ERR_PTR(ret);
1079 }
1080 
1081 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1082 {
1083 	struct btrfs_root *root = fs_info->tree_root;
1084 	struct btrfs_dir_item *di;
1085 	struct btrfs_path *path;
1086 	struct btrfs_key location;
1087 	u64 dir_id;
1088 
1089 	path = btrfs_alloc_path();
1090 	if (!path)
1091 		return -ENOMEM;
1092 	path->leave_spinning = 1;
1093 
1094 	/*
1095 	 * Find the "default" dir item which points to the root item that we
1096 	 * will mount by default if we haven't been given a specific subvolume
1097 	 * to mount.
1098 	 */
1099 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1100 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1101 	if (IS_ERR(di)) {
1102 		btrfs_free_path(path);
1103 		return PTR_ERR(di);
1104 	}
1105 	if (!di) {
1106 		/*
1107 		 * Ok the default dir item isn't there.  This is weird since
1108 		 * it's always been there, but don't freak out, just try and
1109 		 * mount the top-level subvolume.
1110 		 */
1111 		btrfs_free_path(path);
1112 		*objectid = BTRFS_FS_TREE_OBJECTID;
1113 		return 0;
1114 	}
1115 
1116 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1117 	btrfs_free_path(path);
1118 	*objectid = location.objectid;
1119 	return 0;
1120 }
1121 
1122 static int btrfs_fill_super(struct super_block *sb,
1123 			    struct btrfs_fs_devices *fs_devices,
1124 			    void *data, int silent)
1125 {
1126 	struct inode *inode;
1127 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1128 	struct btrfs_key key;
1129 	int err;
1130 
1131 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1132 	sb->s_magic = BTRFS_SUPER_MAGIC;
1133 	sb->s_op = &btrfs_super_ops;
1134 	sb->s_d_op = &btrfs_dentry_operations;
1135 	sb->s_export_op = &btrfs_export_ops;
1136 	sb->s_xattr = btrfs_xattr_handlers;
1137 	sb->s_time_gran = 1;
1138 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1139 	sb->s_flags |= MS_POSIXACL;
1140 #endif
1141 	sb->s_flags |= MS_I_VERSION;
1142 	sb->s_iflags |= SB_I_CGROUPWB;
1143 	err = open_ctree(sb, fs_devices, (char *)data);
1144 	if (err) {
1145 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
1146 		return err;
1147 	}
1148 
1149 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1150 	key.type = BTRFS_INODE_ITEM_KEY;
1151 	key.offset = 0;
1152 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1153 	if (IS_ERR(inode)) {
1154 		err = PTR_ERR(inode);
1155 		goto fail_close;
1156 	}
1157 
1158 	sb->s_root = d_make_root(inode);
1159 	if (!sb->s_root) {
1160 		err = -ENOMEM;
1161 		goto fail_close;
1162 	}
1163 
1164 	save_mount_options(sb, data);
1165 	cleancache_init_fs(sb);
1166 	sb->s_flags |= MS_ACTIVE;
1167 	return 0;
1168 
1169 fail_close:
1170 	close_ctree(fs_info->tree_root);
1171 	return err;
1172 }
1173 
1174 int btrfs_sync_fs(struct super_block *sb, int wait)
1175 {
1176 	struct btrfs_trans_handle *trans;
1177 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1178 	struct btrfs_root *root = fs_info->tree_root;
1179 
1180 	trace_btrfs_sync_fs(fs_info, wait);
1181 
1182 	if (!wait) {
1183 		filemap_flush(fs_info->btree_inode->i_mapping);
1184 		return 0;
1185 	}
1186 
1187 	btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1188 
1189 	trans = btrfs_attach_transaction_barrier(root);
1190 	if (IS_ERR(trans)) {
1191 		/* no transaction, don't bother */
1192 		if (PTR_ERR(trans) == -ENOENT) {
1193 			/*
1194 			 * Exit unless we have some pending changes
1195 			 * that need to go through commit
1196 			 */
1197 			if (fs_info->pending_changes == 0)
1198 				return 0;
1199 			/*
1200 			 * A non-blocking test if the fs is frozen. We must not
1201 			 * start a new transaction here otherwise a deadlock
1202 			 * happens. The pending operations are delayed to the
1203 			 * next commit after thawing.
1204 			 */
1205 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1206 				__sb_end_write(sb, SB_FREEZE_WRITE);
1207 			else
1208 				return 0;
1209 			trans = btrfs_start_transaction(root, 0);
1210 		}
1211 		if (IS_ERR(trans))
1212 			return PTR_ERR(trans);
1213 	}
1214 	return btrfs_commit_transaction(trans, root);
1215 }
1216 
1217 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1218 {
1219 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1220 	struct btrfs_root *root = info->tree_root;
1221 	char *compress_type;
1222 
1223 	if (btrfs_test_opt(info, DEGRADED))
1224 		seq_puts(seq, ",degraded");
1225 	if (btrfs_test_opt(info, NODATASUM))
1226 		seq_puts(seq, ",nodatasum");
1227 	if (btrfs_test_opt(info, NODATACOW))
1228 		seq_puts(seq, ",nodatacow");
1229 	if (btrfs_test_opt(info, NOBARRIER))
1230 		seq_puts(seq, ",nobarrier");
1231 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1232 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1233 	if (info->alloc_start != 0)
1234 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1235 	if (info->thread_pool_size !=  min_t(unsigned long,
1236 					     num_online_cpus() + 2, 8))
1237 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1238 	if (btrfs_test_opt(info, COMPRESS)) {
1239 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1240 			compress_type = "zlib";
1241 		else
1242 			compress_type = "lzo";
1243 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1244 			seq_printf(seq, ",compress-force=%s", compress_type);
1245 		else
1246 			seq_printf(seq, ",compress=%s", compress_type);
1247 	}
1248 	if (btrfs_test_opt(info, NOSSD))
1249 		seq_puts(seq, ",nossd");
1250 	if (btrfs_test_opt(info, SSD_SPREAD))
1251 		seq_puts(seq, ",ssd_spread");
1252 	else if (btrfs_test_opt(info, SSD))
1253 		seq_puts(seq, ",ssd");
1254 	if (btrfs_test_opt(info, NOTREELOG))
1255 		seq_puts(seq, ",notreelog");
1256 	if (btrfs_test_opt(info, NOLOGREPLAY))
1257 		seq_puts(seq, ",nologreplay");
1258 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1259 		seq_puts(seq, ",flushoncommit");
1260 	if (btrfs_test_opt(info, DISCARD))
1261 		seq_puts(seq, ",discard");
1262 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1263 		seq_puts(seq, ",noacl");
1264 	if (btrfs_test_opt(info, SPACE_CACHE))
1265 		seq_puts(seq, ",space_cache");
1266 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1267 		seq_puts(seq, ",space_cache=v2");
1268 	else
1269 		seq_puts(seq, ",nospace_cache");
1270 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1271 		seq_puts(seq, ",rescan_uuid_tree");
1272 	if (btrfs_test_opt(info, CLEAR_CACHE))
1273 		seq_puts(seq, ",clear_cache");
1274 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1275 		seq_puts(seq, ",user_subvol_rm_allowed");
1276 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1277 		seq_puts(seq, ",enospc_debug");
1278 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1279 		seq_puts(seq, ",autodefrag");
1280 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1281 		seq_puts(seq, ",inode_cache");
1282 	if (btrfs_test_opt(info, SKIP_BALANCE))
1283 		seq_puts(seq, ",skip_balance");
1284 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1285 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1286 		seq_puts(seq, ",check_int_data");
1287 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1288 		seq_puts(seq, ",check_int");
1289 	if (info->check_integrity_print_mask)
1290 		seq_printf(seq, ",check_int_print_mask=%d",
1291 				info->check_integrity_print_mask);
1292 #endif
1293 	if (info->metadata_ratio)
1294 		seq_printf(seq, ",metadata_ratio=%d",
1295 				info->metadata_ratio);
1296 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1297 		seq_puts(seq, ",fatal_errors=panic");
1298 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1299 		seq_printf(seq, ",commit=%d", info->commit_interval);
1300 #ifdef CONFIG_BTRFS_DEBUG
1301 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1302 		seq_puts(seq, ",fragment=data");
1303 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1304 		seq_puts(seq, ",fragment=metadata");
1305 #endif
1306 	seq_printf(seq, ",subvolid=%llu",
1307 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1308 	seq_puts(seq, ",subvol=");
1309 	seq_dentry(seq, dentry, " \t\n\\");
1310 	return 0;
1311 }
1312 
1313 static int btrfs_test_super(struct super_block *s, void *data)
1314 {
1315 	struct btrfs_fs_info *p = data;
1316 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1317 
1318 	return fs_info->fs_devices == p->fs_devices;
1319 }
1320 
1321 static int btrfs_set_super(struct super_block *s, void *data)
1322 {
1323 	int err = set_anon_super(s, data);
1324 	if (!err)
1325 		s->s_fs_info = data;
1326 	return err;
1327 }
1328 
1329 /*
1330  * subvolumes are identified by ino 256
1331  */
1332 static inline int is_subvolume_inode(struct inode *inode)
1333 {
1334 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1335 		return 1;
1336 	return 0;
1337 }
1338 
1339 /*
1340  * This will add subvolid=0 to the argument string while removing any subvol=
1341  * and subvolid= arguments to make sure we get the top-level root for path
1342  * walking to the subvol we want.
1343  */
1344 static char *setup_root_args(char *args)
1345 {
1346 	char *buf, *dst, *sep;
1347 
1348 	if (!args)
1349 		return kstrdup("subvolid=0", GFP_NOFS);
1350 
1351 	/* The worst case is that we add ",subvolid=0" to the end. */
1352 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1353 	if (!buf)
1354 		return NULL;
1355 
1356 	while (1) {
1357 		sep = strchrnul(args, ',');
1358 		if (!strstarts(args, "subvol=") &&
1359 		    !strstarts(args, "subvolid=")) {
1360 			memcpy(dst, args, sep - args);
1361 			dst += sep - args;
1362 			*dst++ = ',';
1363 		}
1364 		if (*sep)
1365 			args = sep + 1;
1366 		else
1367 			break;
1368 	}
1369 	strcpy(dst, "subvolid=0");
1370 
1371 	return buf;
1372 }
1373 
1374 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1375 				   int flags, const char *device_name,
1376 				   char *data)
1377 {
1378 	struct dentry *root;
1379 	struct vfsmount *mnt = NULL;
1380 	char *newargs;
1381 	int ret;
1382 
1383 	newargs = setup_root_args(data);
1384 	if (!newargs) {
1385 		root = ERR_PTR(-ENOMEM);
1386 		goto out;
1387 	}
1388 
1389 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1390 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1391 		if (flags & MS_RDONLY) {
1392 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1393 					     device_name, newargs);
1394 		} else {
1395 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1396 					     device_name, newargs);
1397 			if (IS_ERR(mnt)) {
1398 				root = ERR_CAST(mnt);
1399 				mnt = NULL;
1400 				goto out;
1401 			}
1402 
1403 			down_write(&mnt->mnt_sb->s_umount);
1404 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1405 			up_write(&mnt->mnt_sb->s_umount);
1406 			if (ret < 0) {
1407 				root = ERR_PTR(ret);
1408 				goto out;
1409 			}
1410 		}
1411 	}
1412 	if (IS_ERR(mnt)) {
1413 		root = ERR_CAST(mnt);
1414 		mnt = NULL;
1415 		goto out;
1416 	}
1417 
1418 	if (!subvol_name) {
1419 		if (!subvol_objectid) {
1420 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1421 							  &subvol_objectid);
1422 			if (ret) {
1423 				root = ERR_PTR(ret);
1424 				goto out;
1425 			}
1426 		}
1427 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1428 							    subvol_objectid);
1429 		if (IS_ERR(subvol_name)) {
1430 			root = ERR_CAST(subvol_name);
1431 			subvol_name = NULL;
1432 			goto out;
1433 		}
1434 
1435 	}
1436 
1437 	root = mount_subtree(mnt, subvol_name);
1438 	/* mount_subtree() drops our reference on the vfsmount. */
1439 	mnt = NULL;
1440 
1441 	if (!IS_ERR(root)) {
1442 		struct super_block *s = root->d_sb;
1443 		struct inode *root_inode = d_inode(root);
1444 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1445 
1446 		ret = 0;
1447 		if (!is_subvolume_inode(root_inode)) {
1448 			pr_err("BTRFS: '%s' is not a valid subvolume\n",
1449 			       subvol_name);
1450 			ret = -EINVAL;
1451 		}
1452 		if (subvol_objectid && root_objectid != subvol_objectid) {
1453 			/*
1454 			 * This will also catch a race condition where a
1455 			 * subvolume which was passed by ID is renamed and
1456 			 * another subvolume is renamed over the old location.
1457 			 */
1458 			pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
1459 			       subvol_name, subvol_objectid);
1460 			ret = -EINVAL;
1461 		}
1462 		if (ret) {
1463 			dput(root);
1464 			root = ERR_PTR(ret);
1465 			deactivate_locked_super(s);
1466 		}
1467 	}
1468 
1469 out:
1470 	mntput(mnt);
1471 	kfree(newargs);
1472 	kfree(subvol_name);
1473 	return root;
1474 }
1475 
1476 static int parse_security_options(char *orig_opts,
1477 				  struct security_mnt_opts *sec_opts)
1478 {
1479 	char *secdata = NULL;
1480 	int ret = 0;
1481 
1482 	secdata = alloc_secdata();
1483 	if (!secdata)
1484 		return -ENOMEM;
1485 	ret = security_sb_copy_data(orig_opts, secdata);
1486 	if (ret) {
1487 		free_secdata(secdata);
1488 		return ret;
1489 	}
1490 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1491 	free_secdata(secdata);
1492 	return ret;
1493 }
1494 
1495 static int setup_security_options(struct btrfs_fs_info *fs_info,
1496 				  struct super_block *sb,
1497 				  struct security_mnt_opts *sec_opts)
1498 {
1499 	int ret = 0;
1500 
1501 	/*
1502 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1503 	 * is valid.
1504 	 */
1505 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1506 	if (ret)
1507 		return ret;
1508 
1509 #ifdef CONFIG_SECURITY
1510 	if (!fs_info->security_opts.num_mnt_opts) {
1511 		/* first time security setup, copy sec_opts to fs_info */
1512 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1513 	} else {
1514 		/*
1515 		 * Since SELinux (the only one supporting security_mnt_opts)
1516 		 * does NOT support changing context during remount/mount of
1517 		 * the same sb, this must be the same or part of the same
1518 		 * security options, just free it.
1519 		 */
1520 		security_free_mnt_opts(sec_opts);
1521 	}
1522 #endif
1523 	return ret;
1524 }
1525 
1526 /*
1527  * Find a superblock for the given device / mount point.
1528  *
1529  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1530  *	  for multiple device setup.  Make sure to keep it in sync.
1531  */
1532 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1533 		const char *device_name, void *data)
1534 {
1535 	struct block_device *bdev = NULL;
1536 	struct super_block *s;
1537 	struct btrfs_fs_devices *fs_devices = NULL;
1538 	struct btrfs_fs_info *fs_info = NULL;
1539 	struct security_mnt_opts new_sec_opts;
1540 	fmode_t mode = FMODE_READ;
1541 	char *subvol_name = NULL;
1542 	u64 subvol_objectid = 0;
1543 	int error = 0;
1544 
1545 	if (!(flags & MS_RDONLY))
1546 		mode |= FMODE_WRITE;
1547 
1548 	error = btrfs_parse_early_options(data, mode, fs_type,
1549 					  &subvol_name, &subvol_objectid,
1550 					  &fs_devices);
1551 	if (error) {
1552 		kfree(subvol_name);
1553 		return ERR_PTR(error);
1554 	}
1555 
1556 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1557 		/* mount_subvol() will free subvol_name. */
1558 		return mount_subvol(subvol_name, subvol_objectid, flags,
1559 				    device_name, data);
1560 	}
1561 
1562 	security_init_mnt_opts(&new_sec_opts);
1563 	if (data) {
1564 		error = parse_security_options(data, &new_sec_opts);
1565 		if (error)
1566 			return ERR_PTR(error);
1567 	}
1568 
1569 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1570 	if (error)
1571 		goto error_sec_opts;
1572 
1573 	/*
1574 	 * Setup a dummy root and fs_info for test/set super.  This is because
1575 	 * we don't actually fill this stuff out until open_ctree, but we need
1576 	 * it for searching for existing supers, so this lets us do that and
1577 	 * then open_ctree will properly initialize everything later.
1578 	 */
1579 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1580 	if (!fs_info) {
1581 		error = -ENOMEM;
1582 		goto error_sec_opts;
1583 	}
1584 
1585 	fs_info->fs_devices = fs_devices;
1586 
1587 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1588 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1589 	security_init_mnt_opts(&fs_info->security_opts);
1590 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1591 		error = -ENOMEM;
1592 		goto error_fs_info;
1593 	}
1594 
1595 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1596 	if (error)
1597 		goto error_fs_info;
1598 
1599 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1600 		error = -EACCES;
1601 		goto error_close_devices;
1602 	}
1603 
1604 	bdev = fs_devices->latest_bdev;
1605 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1606 		 fs_info);
1607 	if (IS_ERR(s)) {
1608 		error = PTR_ERR(s);
1609 		goto error_close_devices;
1610 	}
1611 
1612 	if (s->s_root) {
1613 		btrfs_close_devices(fs_devices);
1614 		free_fs_info(fs_info);
1615 		if ((flags ^ s->s_flags) & MS_RDONLY)
1616 			error = -EBUSY;
1617 	} else {
1618 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1619 		btrfs_sb(s)->bdev_holder = fs_type;
1620 		error = btrfs_fill_super(s, fs_devices, data,
1621 					 flags & MS_SILENT ? 1 : 0);
1622 	}
1623 	if (error) {
1624 		deactivate_locked_super(s);
1625 		goto error_sec_opts;
1626 	}
1627 
1628 	fs_info = btrfs_sb(s);
1629 	error = setup_security_options(fs_info, s, &new_sec_opts);
1630 	if (error) {
1631 		deactivate_locked_super(s);
1632 		goto error_sec_opts;
1633 	}
1634 
1635 	return dget(s->s_root);
1636 
1637 error_close_devices:
1638 	btrfs_close_devices(fs_devices);
1639 error_fs_info:
1640 	free_fs_info(fs_info);
1641 error_sec_opts:
1642 	security_free_mnt_opts(&new_sec_opts);
1643 	return ERR_PTR(error);
1644 }
1645 
1646 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1647 				     int new_pool_size, int old_pool_size)
1648 {
1649 	if (new_pool_size == old_pool_size)
1650 		return;
1651 
1652 	fs_info->thread_pool_size = new_pool_size;
1653 
1654 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1655 	       old_pool_size, new_pool_size);
1656 
1657 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1658 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1659 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1660 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1661 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1662 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1663 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1664 				new_pool_size);
1665 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1666 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1667 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1668 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1669 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1670 				new_pool_size);
1671 }
1672 
1673 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1674 {
1675 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1676 }
1677 
1678 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1679 				       unsigned long old_opts, int flags)
1680 {
1681 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1682 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1683 	     (flags & MS_RDONLY))) {
1684 		/* wait for any defraggers to finish */
1685 		wait_event(fs_info->transaction_wait,
1686 			   (atomic_read(&fs_info->defrag_running) == 0));
1687 		if (flags & MS_RDONLY)
1688 			sync_filesystem(fs_info->sb);
1689 	}
1690 }
1691 
1692 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1693 					 unsigned long old_opts)
1694 {
1695 	/*
1696 	 * We need to cleanup all defragable inodes if the autodefragment is
1697 	 * close or the filesystem is read only.
1698 	 */
1699 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1700 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1701 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1702 		btrfs_cleanup_defrag_inodes(fs_info);
1703 	}
1704 
1705 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1706 }
1707 
1708 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1709 {
1710 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1711 	struct btrfs_root *root = fs_info->tree_root;
1712 	unsigned old_flags = sb->s_flags;
1713 	unsigned long old_opts = fs_info->mount_opt;
1714 	unsigned long old_compress_type = fs_info->compress_type;
1715 	u64 old_max_inline = fs_info->max_inline;
1716 	u64 old_alloc_start = fs_info->alloc_start;
1717 	int old_thread_pool_size = fs_info->thread_pool_size;
1718 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1719 	int ret;
1720 
1721 	sync_filesystem(sb);
1722 	btrfs_remount_prepare(fs_info);
1723 
1724 	if (data) {
1725 		struct security_mnt_opts new_sec_opts;
1726 
1727 		security_init_mnt_opts(&new_sec_opts);
1728 		ret = parse_security_options(data, &new_sec_opts);
1729 		if (ret)
1730 			goto restore;
1731 		ret = setup_security_options(fs_info, sb,
1732 					     &new_sec_opts);
1733 		if (ret) {
1734 			security_free_mnt_opts(&new_sec_opts);
1735 			goto restore;
1736 		}
1737 	}
1738 
1739 	ret = btrfs_parse_options(root, data, *flags);
1740 	if (ret) {
1741 		ret = -EINVAL;
1742 		goto restore;
1743 	}
1744 
1745 	btrfs_remount_begin(fs_info, old_opts, *flags);
1746 	btrfs_resize_thread_pool(fs_info,
1747 		fs_info->thread_pool_size, old_thread_pool_size);
1748 
1749 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1750 		goto out;
1751 
1752 	if (*flags & MS_RDONLY) {
1753 		/*
1754 		 * this also happens on 'umount -rf' or on shutdown, when
1755 		 * the filesystem is busy.
1756 		 */
1757 		cancel_work_sync(&fs_info->async_reclaim_work);
1758 
1759 		/* wait for the uuid_scan task to finish */
1760 		down(&fs_info->uuid_tree_rescan_sem);
1761 		/* avoid complains from lockdep et al. */
1762 		up(&fs_info->uuid_tree_rescan_sem);
1763 
1764 		sb->s_flags |= MS_RDONLY;
1765 
1766 		/*
1767 		 * Setting MS_RDONLY will put the cleaner thread to
1768 		 * sleep at the next loop if it's already active.
1769 		 * If it's already asleep, we'll leave unused block
1770 		 * groups on disk until we're mounted read-write again
1771 		 * unless we clean them up here.
1772 		 */
1773 		btrfs_delete_unused_bgs(fs_info);
1774 
1775 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1776 		btrfs_scrub_cancel(fs_info);
1777 		btrfs_pause_balance(fs_info);
1778 
1779 		ret = btrfs_commit_super(root);
1780 		if (ret)
1781 			goto restore;
1782 	} else {
1783 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1784 			btrfs_err(fs_info,
1785 				"Remounting read-write after error is not allowed");
1786 			ret = -EINVAL;
1787 			goto restore;
1788 		}
1789 		if (fs_info->fs_devices->rw_devices == 0) {
1790 			ret = -EACCES;
1791 			goto restore;
1792 		}
1793 
1794 		if (fs_info->fs_devices->missing_devices >
1795 		     fs_info->num_tolerated_disk_barrier_failures &&
1796 		    !(*flags & MS_RDONLY)) {
1797 			btrfs_warn(fs_info,
1798 				"too many missing devices, writeable remount is not allowed");
1799 			ret = -EACCES;
1800 			goto restore;
1801 		}
1802 
1803 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1804 			ret = -EINVAL;
1805 			goto restore;
1806 		}
1807 
1808 		ret = btrfs_cleanup_fs_roots(fs_info);
1809 		if (ret)
1810 			goto restore;
1811 
1812 		/* recover relocation */
1813 		mutex_lock(&fs_info->cleaner_mutex);
1814 		ret = btrfs_recover_relocation(root);
1815 		mutex_unlock(&fs_info->cleaner_mutex);
1816 		if (ret)
1817 			goto restore;
1818 
1819 		ret = btrfs_resume_balance_async(fs_info);
1820 		if (ret)
1821 			goto restore;
1822 
1823 		ret = btrfs_resume_dev_replace_async(fs_info);
1824 		if (ret) {
1825 			btrfs_warn(fs_info, "failed to resume dev_replace");
1826 			goto restore;
1827 		}
1828 
1829 		if (!fs_info->uuid_root) {
1830 			btrfs_info(fs_info, "creating UUID tree");
1831 			ret = btrfs_create_uuid_tree(fs_info);
1832 			if (ret) {
1833 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1834 				goto restore;
1835 			}
1836 		}
1837 		sb->s_flags &= ~MS_RDONLY;
1838 
1839 		fs_info->open = 1;
1840 	}
1841 out:
1842 	wake_up_process(fs_info->transaction_kthread);
1843 	btrfs_remount_cleanup(fs_info, old_opts);
1844 	return 0;
1845 
1846 restore:
1847 	/* We've hit an error - don't reset MS_RDONLY */
1848 	if (sb->s_flags & MS_RDONLY)
1849 		old_flags |= MS_RDONLY;
1850 	sb->s_flags = old_flags;
1851 	fs_info->mount_opt = old_opts;
1852 	fs_info->compress_type = old_compress_type;
1853 	fs_info->max_inline = old_max_inline;
1854 	mutex_lock(&fs_info->chunk_mutex);
1855 	fs_info->alloc_start = old_alloc_start;
1856 	mutex_unlock(&fs_info->chunk_mutex);
1857 	btrfs_resize_thread_pool(fs_info,
1858 		old_thread_pool_size, fs_info->thread_pool_size);
1859 	fs_info->metadata_ratio = old_metadata_ratio;
1860 	btrfs_remount_cleanup(fs_info, old_opts);
1861 	return ret;
1862 }
1863 
1864 /* Used to sort the devices by max_avail(descending sort) */
1865 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1866 				       const void *dev_info2)
1867 {
1868 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1869 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1870 		return -1;
1871 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1872 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1873 		return 1;
1874 	else
1875 	return 0;
1876 }
1877 
1878 /*
1879  * sort the devices by max_avail, in which max free extent size of each device
1880  * is stored.(Descending Sort)
1881  */
1882 static inline void btrfs_descending_sort_devices(
1883 					struct btrfs_device_info *devices,
1884 					size_t nr_devices)
1885 {
1886 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1887 	     btrfs_cmp_device_free_bytes, NULL);
1888 }
1889 
1890 /*
1891  * The helper to calc the free space on the devices that can be used to store
1892  * file data.
1893  */
1894 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1895 {
1896 	struct btrfs_fs_info *fs_info = root->fs_info;
1897 	struct btrfs_device_info *devices_info;
1898 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1899 	struct btrfs_device *device;
1900 	u64 skip_space;
1901 	u64 type;
1902 	u64 avail_space;
1903 	u64 used_space;
1904 	u64 min_stripe_size;
1905 	int min_stripes = 1, num_stripes = 1;
1906 	int i = 0, nr_devices;
1907 	int ret;
1908 
1909 	/*
1910 	 * We aren't under the device list lock, so this is racy-ish, but good
1911 	 * enough for our purposes.
1912 	 */
1913 	nr_devices = fs_info->fs_devices->open_devices;
1914 	if (!nr_devices) {
1915 		smp_mb();
1916 		nr_devices = fs_info->fs_devices->open_devices;
1917 		ASSERT(nr_devices);
1918 		if (!nr_devices) {
1919 			*free_bytes = 0;
1920 			return 0;
1921 		}
1922 	}
1923 
1924 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1925 			       GFP_NOFS);
1926 	if (!devices_info)
1927 		return -ENOMEM;
1928 
1929 	/* calc min stripe number for data space allocation */
1930 	type = btrfs_get_alloc_profile(root, 1);
1931 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1932 		min_stripes = 2;
1933 		num_stripes = nr_devices;
1934 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1935 		min_stripes = 2;
1936 		num_stripes = 2;
1937 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1938 		min_stripes = 4;
1939 		num_stripes = 4;
1940 	}
1941 
1942 	if (type & BTRFS_BLOCK_GROUP_DUP)
1943 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1944 	else
1945 		min_stripe_size = BTRFS_STRIPE_LEN;
1946 
1947 	if (fs_info->alloc_start)
1948 		mutex_lock(&fs_devices->device_list_mutex);
1949 	rcu_read_lock();
1950 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1951 		if (!device->in_fs_metadata || !device->bdev ||
1952 		    device->is_tgtdev_for_dev_replace)
1953 			continue;
1954 
1955 		if (i >= nr_devices)
1956 			break;
1957 
1958 		avail_space = device->total_bytes - device->bytes_used;
1959 
1960 		/* align with stripe_len */
1961 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1962 		avail_space *= BTRFS_STRIPE_LEN;
1963 
1964 		/*
1965 		 * In order to avoid overwriting the superblock on the drive,
1966 		 * btrfs starts at an offset of at least 1MB when doing chunk
1967 		 * allocation.
1968 		 */
1969 		skip_space = SZ_1M;
1970 
1971 		/* user can set the offset in fs_info->alloc_start. */
1972 		if (fs_info->alloc_start &&
1973 		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1974 		    device->total_bytes) {
1975 			rcu_read_unlock();
1976 			skip_space = max(fs_info->alloc_start, skip_space);
1977 
1978 			/*
1979 			 * btrfs can not use the free space in
1980 			 * [0, skip_space - 1], we must subtract it from the
1981 			 * total. In order to implement it, we account the used
1982 			 * space in this range first.
1983 			 */
1984 			ret = btrfs_account_dev_extents_size(device, 0,
1985 							     skip_space - 1,
1986 							     &used_space);
1987 			if (ret) {
1988 				kfree(devices_info);
1989 				mutex_unlock(&fs_devices->device_list_mutex);
1990 				return ret;
1991 			}
1992 
1993 			rcu_read_lock();
1994 
1995 			/* calc the free space in [0, skip_space - 1] */
1996 			skip_space -= used_space;
1997 		}
1998 
1999 		/*
2000 		 * we can use the free space in [0, skip_space - 1], subtract
2001 		 * it from the total.
2002 		 */
2003 		if (avail_space && avail_space >= skip_space)
2004 			avail_space -= skip_space;
2005 		else
2006 			avail_space = 0;
2007 
2008 		if (avail_space < min_stripe_size)
2009 			continue;
2010 
2011 		devices_info[i].dev = device;
2012 		devices_info[i].max_avail = avail_space;
2013 
2014 		i++;
2015 	}
2016 	rcu_read_unlock();
2017 	if (fs_info->alloc_start)
2018 		mutex_unlock(&fs_devices->device_list_mutex);
2019 
2020 	nr_devices = i;
2021 
2022 	btrfs_descending_sort_devices(devices_info, nr_devices);
2023 
2024 	i = nr_devices - 1;
2025 	avail_space = 0;
2026 	while (nr_devices >= min_stripes) {
2027 		if (num_stripes > nr_devices)
2028 			num_stripes = nr_devices;
2029 
2030 		if (devices_info[i].max_avail >= min_stripe_size) {
2031 			int j;
2032 			u64 alloc_size;
2033 
2034 			avail_space += devices_info[i].max_avail * num_stripes;
2035 			alloc_size = devices_info[i].max_avail;
2036 			for (j = i + 1 - num_stripes; j <= i; j++)
2037 				devices_info[j].max_avail -= alloc_size;
2038 		}
2039 		i--;
2040 		nr_devices--;
2041 	}
2042 
2043 	kfree(devices_info);
2044 	*free_bytes = avail_space;
2045 	return 0;
2046 }
2047 
2048 /*
2049  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2050  *
2051  * If there's a redundant raid level at DATA block groups, use the respective
2052  * multiplier to scale the sizes.
2053  *
2054  * Unused device space usage is based on simulating the chunk allocator
2055  * algorithm that respects the device sizes, order of allocations and the
2056  * 'alloc_start' value, this is a close approximation of the actual use but
2057  * there are other factors that may change the result (like a new metadata
2058  * chunk).
2059  *
2060  * If metadata is exhausted, f_bavail will be 0.
2061  */
2062 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2063 {
2064 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2065 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2066 	struct list_head *head = &fs_info->space_info;
2067 	struct btrfs_space_info *found;
2068 	u64 total_used = 0;
2069 	u64 total_free_data = 0;
2070 	u64 total_free_meta = 0;
2071 	int bits = dentry->d_sb->s_blocksize_bits;
2072 	__be32 *fsid = (__be32 *)fs_info->fsid;
2073 	unsigned factor = 1;
2074 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2075 	int ret;
2076 	u64 thresh = 0;
2077 	int mixed = 0;
2078 
2079 	/*
2080 	 * holding chunk_mutex to avoid allocating new chunks, holding
2081 	 * device_list_mutex to avoid the device being removed
2082 	 */
2083 	rcu_read_lock();
2084 	list_for_each_entry_rcu(found, head, list) {
2085 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2086 			int i;
2087 
2088 			total_free_data += found->disk_total - found->disk_used;
2089 			total_free_data -=
2090 				btrfs_account_ro_block_groups_free_space(found);
2091 
2092 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2093 				if (!list_empty(&found->block_groups[i])) {
2094 					switch (i) {
2095 					case BTRFS_RAID_DUP:
2096 					case BTRFS_RAID_RAID1:
2097 					case BTRFS_RAID_RAID10:
2098 						factor = 2;
2099 					}
2100 				}
2101 			}
2102 		}
2103 
2104 		/*
2105 		 * Metadata in mixed block goup profiles are accounted in data
2106 		 */
2107 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2108 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2109 				mixed = 1;
2110 			else
2111 				total_free_meta += found->disk_total -
2112 					found->disk_used;
2113 		}
2114 
2115 		total_used += found->disk_used;
2116 	}
2117 
2118 	rcu_read_unlock();
2119 
2120 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2121 	buf->f_blocks >>= bits;
2122 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2123 
2124 	/* Account global block reserve as used, it's in logical size already */
2125 	spin_lock(&block_rsv->lock);
2126 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2127 	if (buf->f_bfree >= block_rsv->size >> bits)
2128 		buf->f_bfree -= block_rsv->size >> bits;
2129 	else
2130 		buf->f_bfree = 0;
2131 	spin_unlock(&block_rsv->lock);
2132 
2133 	buf->f_bavail = div_u64(total_free_data, factor);
2134 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
2135 	if (ret)
2136 		return ret;
2137 	buf->f_bavail += div_u64(total_free_data, factor);
2138 	buf->f_bavail = buf->f_bavail >> bits;
2139 
2140 	/*
2141 	 * We calculate the remaining metadata space minus global reserve. If
2142 	 * this is (supposedly) smaller than zero, there's no space. But this
2143 	 * does not hold in practice, the exhausted state happens where's still
2144 	 * some positive delta. So we apply some guesswork and compare the
2145 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2146 	 *
2147 	 * We probably cannot calculate the exact threshold value because this
2148 	 * depends on the internal reservations requested by various
2149 	 * operations, so some operations that consume a few metadata will
2150 	 * succeed even if the Avail is zero. But this is better than the other
2151 	 * way around.
2152 	 */
2153 	thresh = 4 * 1024 * 1024;
2154 
2155 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2156 		buf->f_bavail = 0;
2157 
2158 	buf->f_type = BTRFS_SUPER_MAGIC;
2159 	buf->f_bsize = dentry->d_sb->s_blocksize;
2160 	buf->f_namelen = BTRFS_NAME_LEN;
2161 
2162 	/* We treat it as constant endianness (it doesn't matter _which_)
2163 	   because we want the fsid to come out the same whether mounted
2164 	   on a big-endian or little-endian host */
2165 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2166 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2167 	/* Mask in the root object ID too, to disambiguate subvols */
2168 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2169 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2170 
2171 	return 0;
2172 }
2173 
2174 static void btrfs_kill_super(struct super_block *sb)
2175 {
2176 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2177 	kill_anon_super(sb);
2178 	free_fs_info(fs_info);
2179 }
2180 
2181 static struct file_system_type btrfs_fs_type = {
2182 	.owner		= THIS_MODULE,
2183 	.name		= "btrfs",
2184 	.mount		= btrfs_mount,
2185 	.kill_sb	= btrfs_kill_super,
2186 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2187 };
2188 MODULE_ALIAS_FS("btrfs");
2189 
2190 static int btrfs_control_open(struct inode *inode, struct file *file)
2191 {
2192 	/*
2193 	 * The control file's private_data is used to hold the
2194 	 * transaction when it is started and is used to keep
2195 	 * track of whether a transaction is already in progress.
2196 	 */
2197 	file->private_data = NULL;
2198 	return 0;
2199 }
2200 
2201 /*
2202  * used by btrfsctl to scan devices when no FS is mounted
2203  */
2204 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2205 				unsigned long arg)
2206 {
2207 	struct btrfs_ioctl_vol_args *vol;
2208 	struct btrfs_fs_devices *fs_devices;
2209 	int ret = -ENOTTY;
2210 
2211 	if (!capable(CAP_SYS_ADMIN))
2212 		return -EPERM;
2213 
2214 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2215 	if (IS_ERR(vol))
2216 		return PTR_ERR(vol);
2217 
2218 	switch (cmd) {
2219 	case BTRFS_IOC_SCAN_DEV:
2220 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2221 					    &btrfs_fs_type, &fs_devices);
2222 		break;
2223 	case BTRFS_IOC_DEVICES_READY:
2224 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2225 					    &btrfs_fs_type, &fs_devices);
2226 		if (ret)
2227 			break;
2228 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2229 		break;
2230 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2231 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2232 		break;
2233 	}
2234 
2235 	kfree(vol);
2236 	return ret;
2237 }
2238 
2239 static int btrfs_freeze(struct super_block *sb)
2240 {
2241 	struct btrfs_trans_handle *trans;
2242 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2243 
2244 	trans = btrfs_attach_transaction_barrier(root);
2245 	if (IS_ERR(trans)) {
2246 		/* no transaction, don't bother */
2247 		if (PTR_ERR(trans) == -ENOENT)
2248 			return 0;
2249 		return PTR_ERR(trans);
2250 	}
2251 	return btrfs_commit_transaction(trans, root);
2252 }
2253 
2254 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2255 {
2256 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2257 	struct btrfs_fs_devices *cur_devices;
2258 	struct btrfs_device *dev, *first_dev = NULL;
2259 	struct list_head *head;
2260 	struct rcu_string *name;
2261 
2262 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2263 	cur_devices = fs_info->fs_devices;
2264 	while (cur_devices) {
2265 		head = &cur_devices->devices;
2266 		list_for_each_entry(dev, head, dev_list) {
2267 			if (dev->missing)
2268 				continue;
2269 			if (!dev->name)
2270 				continue;
2271 			if (!first_dev || dev->devid < first_dev->devid)
2272 				first_dev = dev;
2273 		}
2274 		cur_devices = cur_devices->seed;
2275 	}
2276 
2277 	if (first_dev) {
2278 		rcu_read_lock();
2279 		name = rcu_dereference(first_dev->name);
2280 		seq_escape(m, name->str, " \t\n\\");
2281 		rcu_read_unlock();
2282 	} else {
2283 		WARN_ON(1);
2284 	}
2285 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2286 	return 0;
2287 }
2288 
2289 static const struct super_operations btrfs_super_ops = {
2290 	.drop_inode	= btrfs_drop_inode,
2291 	.evict_inode	= btrfs_evict_inode,
2292 	.put_super	= btrfs_put_super,
2293 	.sync_fs	= btrfs_sync_fs,
2294 	.show_options	= btrfs_show_options,
2295 	.show_devname	= btrfs_show_devname,
2296 	.write_inode	= btrfs_write_inode,
2297 	.alloc_inode	= btrfs_alloc_inode,
2298 	.destroy_inode	= btrfs_destroy_inode,
2299 	.statfs		= btrfs_statfs,
2300 	.remount_fs	= btrfs_remount,
2301 	.freeze_fs	= btrfs_freeze,
2302 };
2303 
2304 static const struct file_operations btrfs_ctl_fops = {
2305 	.open = btrfs_control_open,
2306 	.unlocked_ioctl	 = btrfs_control_ioctl,
2307 	.compat_ioctl = btrfs_control_ioctl,
2308 	.owner	 = THIS_MODULE,
2309 	.llseek = noop_llseek,
2310 };
2311 
2312 static struct miscdevice btrfs_misc = {
2313 	.minor		= BTRFS_MINOR,
2314 	.name		= "btrfs-control",
2315 	.fops		= &btrfs_ctl_fops
2316 };
2317 
2318 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2319 MODULE_ALIAS("devname:btrfs-control");
2320 
2321 static int btrfs_interface_init(void)
2322 {
2323 	return misc_register(&btrfs_misc);
2324 }
2325 
2326 static void btrfs_interface_exit(void)
2327 {
2328 	misc_deregister(&btrfs_misc);
2329 }
2330 
2331 static void btrfs_print_mod_info(void)
2332 {
2333 	printk(KERN_INFO "Btrfs loaded, crc32c=%s"
2334 #ifdef CONFIG_BTRFS_DEBUG
2335 			", debug=on"
2336 #endif
2337 #ifdef CONFIG_BTRFS_ASSERT
2338 			", assert=on"
2339 #endif
2340 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2341 			", integrity-checker=on"
2342 #endif
2343 			"\n",
2344 			btrfs_crc32c_impl());
2345 }
2346 
2347 static int __init init_btrfs_fs(void)
2348 {
2349 	int err;
2350 
2351 	err = btrfs_hash_init();
2352 	if (err)
2353 		return err;
2354 
2355 	btrfs_props_init();
2356 
2357 	err = btrfs_init_sysfs();
2358 	if (err)
2359 		goto free_hash;
2360 
2361 	btrfs_init_compress();
2362 
2363 	err = btrfs_init_cachep();
2364 	if (err)
2365 		goto free_compress;
2366 
2367 	err = extent_io_init();
2368 	if (err)
2369 		goto free_cachep;
2370 
2371 	err = extent_map_init();
2372 	if (err)
2373 		goto free_extent_io;
2374 
2375 	err = ordered_data_init();
2376 	if (err)
2377 		goto free_extent_map;
2378 
2379 	err = btrfs_delayed_inode_init();
2380 	if (err)
2381 		goto free_ordered_data;
2382 
2383 	err = btrfs_auto_defrag_init();
2384 	if (err)
2385 		goto free_delayed_inode;
2386 
2387 	err = btrfs_delayed_ref_init();
2388 	if (err)
2389 		goto free_auto_defrag;
2390 
2391 	err = btrfs_prelim_ref_init();
2392 	if (err)
2393 		goto free_delayed_ref;
2394 
2395 	err = btrfs_end_io_wq_init();
2396 	if (err)
2397 		goto free_prelim_ref;
2398 
2399 	err = btrfs_interface_init();
2400 	if (err)
2401 		goto free_end_io_wq;
2402 
2403 	btrfs_init_lockdep();
2404 
2405 	btrfs_print_mod_info();
2406 
2407 	err = btrfs_run_sanity_tests();
2408 	if (err)
2409 		goto unregister_ioctl;
2410 
2411 	err = register_filesystem(&btrfs_fs_type);
2412 	if (err)
2413 		goto unregister_ioctl;
2414 
2415 	return 0;
2416 
2417 unregister_ioctl:
2418 	btrfs_interface_exit();
2419 free_end_io_wq:
2420 	btrfs_end_io_wq_exit();
2421 free_prelim_ref:
2422 	btrfs_prelim_ref_exit();
2423 free_delayed_ref:
2424 	btrfs_delayed_ref_exit();
2425 free_auto_defrag:
2426 	btrfs_auto_defrag_exit();
2427 free_delayed_inode:
2428 	btrfs_delayed_inode_exit();
2429 free_ordered_data:
2430 	ordered_data_exit();
2431 free_extent_map:
2432 	extent_map_exit();
2433 free_extent_io:
2434 	extent_io_exit();
2435 free_cachep:
2436 	btrfs_destroy_cachep();
2437 free_compress:
2438 	btrfs_exit_compress();
2439 	btrfs_exit_sysfs();
2440 free_hash:
2441 	btrfs_hash_exit();
2442 	return err;
2443 }
2444 
2445 static void __exit exit_btrfs_fs(void)
2446 {
2447 	btrfs_destroy_cachep();
2448 	btrfs_delayed_ref_exit();
2449 	btrfs_auto_defrag_exit();
2450 	btrfs_delayed_inode_exit();
2451 	btrfs_prelim_ref_exit();
2452 	ordered_data_exit();
2453 	extent_map_exit();
2454 	extent_io_exit();
2455 	btrfs_interface_exit();
2456 	btrfs_end_io_wq_exit();
2457 	unregister_filesystem(&btrfs_fs_type);
2458 	btrfs_exit_sysfs();
2459 	btrfs_cleanup_fs_uuids();
2460 	btrfs_exit_compress();
2461 	btrfs_hash_exit();
2462 }
2463 
2464 late_initcall(init_btrfs_fs);
2465 module_exit(exit_btrfs_fs)
2466 
2467 MODULE_LICENSE("GPL");
2468