1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #include "backref.h" 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/btrfs.h> 67 68 static const struct super_operations btrfs_super_ops; 69 static struct file_system_type btrfs_fs_type; 70 71 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 72 73 const char *btrfs_decode_error(int errno) 74 { 75 char *errstr = "unknown"; 76 77 switch (errno) { 78 case -EIO: 79 errstr = "IO failure"; 80 break; 81 case -ENOMEM: 82 errstr = "Out of memory"; 83 break; 84 case -EROFS: 85 errstr = "Readonly filesystem"; 86 break; 87 case -EEXIST: 88 errstr = "Object already exists"; 89 break; 90 case -ENOSPC: 91 errstr = "No space left"; 92 break; 93 case -ENOENT: 94 errstr = "No such entry"; 95 break; 96 } 97 98 return errstr; 99 } 100 101 /* btrfs handle error by forcing the filesystem readonly */ 102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 103 { 104 struct super_block *sb = fs_info->sb; 105 106 if (sb_rdonly(sb)) 107 return; 108 109 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 110 sb->s_flags |= MS_RDONLY; 111 btrfs_info(fs_info, "forced readonly"); 112 /* 113 * Note that a running device replace operation is not 114 * canceled here although there is no way to update 115 * the progress. It would add the risk of a deadlock, 116 * therefore the canceling is omitted. The only penalty 117 * is that some I/O remains active until the procedure 118 * completes. The next time when the filesystem is 119 * mounted writeable again, the device replace 120 * operation continues. 121 */ 122 } 123 } 124 125 /* 126 * __btrfs_handle_fs_error decodes expected errors from the caller and 127 * invokes the approciate error response. 128 */ 129 __cold 130 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 131 unsigned int line, int errno, const char *fmt, ...) 132 { 133 struct super_block *sb = fs_info->sb; 134 #ifdef CONFIG_PRINTK 135 const char *errstr; 136 #endif 137 138 /* 139 * Special case: if the error is EROFS, and we're already 140 * under MS_RDONLY, then it is safe here. 141 */ 142 if (errno == -EROFS && sb_rdonly(sb)) 143 return; 144 145 #ifdef CONFIG_PRINTK 146 errstr = btrfs_decode_error(errno); 147 if (fmt) { 148 struct va_format vaf; 149 va_list args; 150 151 va_start(args, fmt); 152 vaf.fmt = fmt; 153 vaf.va = &args; 154 155 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 156 sb->s_id, function, line, errno, errstr, &vaf); 157 va_end(args); 158 } else { 159 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 160 sb->s_id, function, line, errno, errstr); 161 } 162 #endif 163 164 /* 165 * Today we only save the error info to memory. Long term we'll 166 * also send it down to the disk 167 */ 168 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 169 170 /* Don't go through full error handling during mount */ 171 if (sb->s_flags & MS_BORN) 172 btrfs_handle_error(fs_info); 173 } 174 175 #ifdef CONFIG_PRINTK 176 static const char * const logtypes[] = { 177 "emergency", 178 "alert", 179 "critical", 180 "error", 181 "warning", 182 "notice", 183 "info", 184 "debug", 185 }; 186 187 188 /* 189 * Use one ratelimit state per log level so that a flood of less important 190 * messages doesn't cause more important ones to be dropped. 191 */ 192 static struct ratelimit_state printk_limits[] = { 193 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 200 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 201 }; 202 203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 204 { 205 struct super_block *sb = fs_info->sb; 206 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 207 struct va_format vaf; 208 va_list args; 209 int kern_level; 210 const char *type = logtypes[4]; 211 struct ratelimit_state *ratelimit = &printk_limits[4]; 212 213 va_start(args, fmt); 214 215 while ((kern_level = printk_get_level(fmt)) != 0) { 216 size_t size = printk_skip_level(fmt) - fmt; 217 218 if (kern_level >= '0' && kern_level <= '7') { 219 memcpy(lvl, fmt, size); 220 lvl[size] = '\0'; 221 type = logtypes[kern_level - '0']; 222 ratelimit = &printk_limits[kern_level - '0']; 223 } 224 fmt += size; 225 } 226 227 vaf.fmt = fmt; 228 vaf.va = &args; 229 230 if (__ratelimit(ratelimit)) 231 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 232 233 va_end(args); 234 } 235 #endif 236 237 /* 238 * We only mark the transaction aborted and then set the file system read-only. 239 * This will prevent new transactions from starting or trying to join this 240 * one. 241 * 242 * This means that error recovery at the call site is limited to freeing 243 * any local memory allocations and passing the error code up without 244 * further cleanup. The transaction should complete as it normally would 245 * in the call path but will return -EIO. 246 * 247 * We'll complete the cleanup in btrfs_end_transaction and 248 * btrfs_commit_transaction. 249 */ 250 __cold 251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 252 const char *function, 253 unsigned int line, int errno) 254 { 255 struct btrfs_fs_info *fs_info = trans->fs_info; 256 257 trans->aborted = errno; 258 /* Nothing used. The other threads that have joined this 259 * transaction may be able to continue. */ 260 if (!trans->dirty && list_empty(&trans->new_bgs)) { 261 const char *errstr; 262 263 errstr = btrfs_decode_error(errno); 264 btrfs_warn(fs_info, 265 "%s:%d: Aborting unused transaction(%s).", 266 function, line, errstr); 267 return; 268 } 269 WRITE_ONCE(trans->transaction->aborted, errno); 270 /* Wake up anybody who may be waiting on this transaction */ 271 wake_up(&fs_info->transaction_wait); 272 wake_up(&fs_info->transaction_blocked_wait); 273 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 274 } 275 /* 276 * __btrfs_panic decodes unexpected, fatal errors from the caller, 277 * issues an alert, and either panics or BUGs, depending on mount options. 278 */ 279 __cold 280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 281 unsigned int line, int errno, const char *fmt, ...) 282 { 283 char *s_id = "<unknown>"; 284 const char *errstr; 285 struct va_format vaf = { .fmt = fmt }; 286 va_list args; 287 288 if (fs_info) 289 s_id = fs_info->sb->s_id; 290 291 va_start(args, fmt); 292 vaf.va = &args; 293 294 errstr = btrfs_decode_error(errno); 295 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 296 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 297 s_id, function, line, &vaf, errno, errstr); 298 299 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 300 function, line, &vaf, errno, errstr); 301 va_end(args); 302 /* Caller calls BUG() */ 303 } 304 305 static void btrfs_put_super(struct super_block *sb) 306 { 307 close_ctree(btrfs_sb(sb)); 308 } 309 310 enum { 311 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 312 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 313 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 314 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 315 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 316 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, 317 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, 318 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, 319 Opt_skip_balance, Opt_check_integrity, 320 Opt_check_integrity_including_extent_data, 321 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 322 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 323 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 324 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, 325 Opt_nologreplay, Opt_norecovery, 326 #ifdef CONFIG_BTRFS_DEBUG 327 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 328 #endif 329 Opt_err, 330 }; 331 332 static const match_table_t tokens = { 333 {Opt_degraded, "degraded"}, 334 {Opt_subvol, "subvol=%s"}, 335 {Opt_subvolid, "subvolid=%s"}, 336 {Opt_device, "device=%s"}, 337 {Opt_nodatasum, "nodatasum"}, 338 {Opt_datasum, "datasum"}, 339 {Opt_nodatacow, "nodatacow"}, 340 {Opt_datacow, "datacow"}, 341 {Opt_nobarrier, "nobarrier"}, 342 {Opt_barrier, "barrier"}, 343 {Opt_max_inline, "max_inline=%s"}, 344 {Opt_alloc_start, "alloc_start=%s"}, 345 {Opt_thread_pool, "thread_pool=%d"}, 346 {Opt_compress, "compress"}, 347 {Opt_compress_type, "compress=%s"}, 348 {Opt_compress_force, "compress-force"}, 349 {Opt_compress_force_type, "compress-force=%s"}, 350 {Opt_ssd, "ssd"}, 351 {Opt_ssd_spread, "ssd_spread"}, 352 {Opt_nossd, "nossd"}, 353 {Opt_acl, "acl"}, 354 {Opt_noacl, "noacl"}, 355 {Opt_notreelog, "notreelog"}, 356 {Opt_treelog, "treelog"}, 357 {Opt_nologreplay, "nologreplay"}, 358 {Opt_norecovery, "norecovery"}, 359 {Opt_flushoncommit, "flushoncommit"}, 360 {Opt_noflushoncommit, "noflushoncommit"}, 361 {Opt_ratio, "metadata_ratio=%d"}, 362 {Opt_discard, "discard"}, 363 {Opt_nodiscard, "nodiscard"}, 364 {Opt_space_cache, "space_cache"}, 365 {Opt_space_cache_version, "space_cache=%s"}, 366 {Opt_clear_cache, "clear_cache"}, 367 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 368 {Opt_enospc_debug, "enospc_debug"}, 369 {Opt_noenospc_debug, "noenospc_debug"}, 370 {Opt_subvolrootid, "subvolrootid=%d"}, 371 {Opt_defrag, "autodefrag"}, 372 {Opt_nodefrag, "noautodefrag"}, 373 {Opt_inode_cache, "inode_cache"}, 374 {Opt_noinode_cache, "noinode_cache"}, 375 {Opt_no_space_cache, "nospace_cache"}, 376 {Opt_recovery, "recovery"}, /* deprecated */ 377 {Opt_usebackuproot, "usebackuproot"}, 378 {Opt_skip_balance, "skip_balance"}, 379 {Opt_check_integrity, "check_int"}, 380 {Opt_check_integrity_including_extent_data, "check_int_data"}, 381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 383 {Opt_fatal_errors, "fatal_errors=%s"}, 384 {Opt_commit_interval, "commit=%d"}, 385 #ifdef CONFIG_BTRFS_DEBUG 386 {Opt_fragment_data, "fragment=data"}, 387 {Opt_fragment_metadata, "fragment=metadata"}, 388 {Opt_fragment_all, "fragment=all"}, 389 #endif 390 {Opt_err, NULL}, 391 }; 392 393 /* 394 * Regular mount options parser. Everything that is needed only when 395 * reading in a new superblock is parsed here. 396 * XXX JDM: This needs to be cleaned up for remount. 397 */ 398 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 399 unsigned long new_flags) 400 { 401 substring_t args[MAX_OPT_ARGS]; 402 char *p, *num, *orig = NULL; 403 u64 cache_gen; 404 int intarg; 405 int ret = 0; 406 char *compress_type; 407 bool compress_force = false; 408 enum btrfs_compression_type saved_compress_type; 409 bool saved_compress_force; 410 int no_compress = 0; 411 412 cache_gen = btrfs_super_cache_generation(info->super_copy); 413 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 414 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 415 else if (cache_gen) 416 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 417 418 /* 419 * Even the options are empty, we still need to do extra check 420 * against new flags 421 */ 422 if (!options) 423 goto check; 424 425 /* 426 * strsep changes the string, duplicate it because parse_options 427 * gets called twice 428 */ 429 options = kstrdup(options, GFP_KERNEL); 430 if (!options) 431 return -ENOMEM; 432 433 orig = options; 434 435 while ((p = strsep(&options, ",")) != NULL) { 436 int token; 437 if (!*p) 438 continue; 439 440 token = match_token(p, tokens, args); 441 switch (token) { 442 case Opt_degraded: 443 btrfs_info(info, "allowing degraded mounts"); 444 btrfs_set_opt(info->mount_opt, DEGRADED); 445 break; 446 case Opt_subvol: 447 case Opt_subvolid: 448 case Opt_subvolrootid: 449 case Opt_device: 450 /* 451 * These are parsed by btrfs_parse_early_options 452 * and can be happily ignored here. 453 */ 454 break; 455 case Opt_nodatasum: 456 btrfs_set_and_info(info, NODATASUM, 457 "setting nodatasum"); 458 break; 459 case Opt_datasum: 460 if (btrfs_test_opt(info, NODATASUM)) { 461 if (btrfs_test_opt(info, NODATACOW)) 462 btrfs_info(info, 463 "setting datasum, datacow enabled"); 464 else 465 btrfs_info(info, "setting datasum"); 466 } 467 btrfs_clear_opt(info->mount_opt, NODATACOW); 468 btrfs_clear_opt(info->mount_opt, NODATASUM); 469 break; 470 case Opt_nodatacow: 471 if (!btrfs_test_opt(info, NODATACOW)) { 472 if (!btrfs_test_opt(info, COMPRESS) || 473 !btrfs_test_opt(info, FORCE_COMPRESS)) { 474 btrfs_info(info, 475 "setting nodatacow, compression disabled"); 476 } else { 477 btrfs_info(info, "setting nodatacow"); 478 } 479 } 480 btrfs_clear_opt(info->mount_opt, COMPRESS); 481 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 482 btrfs_set_opt(info->mount_opt, NODATACOW); 483 btrfs_set_opt(info->mount_opt, NODATASUM); 484 break; 485 case Opt_datacow: 486 btrfs_clear_and_info(info, NODATACOW, 487 "setting datacow"); 488 break; 489 case Opt_compress_force: 490 case Opt_compress_force_type: 491 compress_force = true; 492 /* Fallthrough */ 493 case Opt_compress: 494 case Opt_compress_type: 495 saved_compress_type = btrfs_test_opt(info, 496 COMPRESS) ? 497 info->compress_type : BTRFS_COMPRESS_NONE; 498 saved_compress_force = 499 btrfs_test_opt(info, FORCE_COMPRESS); 500 if (token == Opt_compress || 501 token == Opt_compress_force || 502 strncmp(args[0].from, "zlib", 4) == 0) { 503 compress_type = "zlib"; 504 info->compress_type = BTRFS_COMPRESS_ZLIB; 505 btrfs_set_opt(info->mount_opt, COMPRESS); 506 btrfs_clear_opt(info->mount_opt, NODATACOW); 507 btrfs_clear_opt(info->mount_opt, NODATASUM); 508 no_compress = 0; 509 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 510 compress_type = "lzo"; 511 info->compress_type = BTRFS_COMPRESS_LZO; 512 btrfs_set_opt(info->mount_opt, COMPRESS); 513 btrfs_clear_opt(info->mount_opt, NODATACOW); 514 btrfs_clear_opt(info->mount_opt, NODATASUM); 515 btrfs_set_fs_incompat(info, COMPRESS_LZO); 516 no_compress = 0; 517 } else if (strcmp(args[0].from, "zstd") == 0) { 518 compress_type = "zstd"; 519 info->compress_type = BTRFS_COMPRESS_ZSTD; 520 btrfs_set_opt(info->mount_opt, COMPRESS); 521 btrfs_clear_opt(info->mount_opt, NODATACOW); 522 btrfs_clear_opt(info->mount_opt, NODATASUM); 523 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 524 no_compress = 0; 525 } else if (strncmp(args[0].from, "no", 2) == 0) { 526 compress_type = "no"; 527 btrfs_clear_opt(info->mount_opt, COMPRESS); 528 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 529 compress_force = false; 530 no_compress++; 531 } else { 532 ret = -EINVAL; 533 goto out; 534 } 535 536 if (compress_force) { 537 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 538 } else { 539 /* 540 * If we remount from compress-force=xxx to 541 * compress=xxx, we need clear FORCE_COMPRESS 542 * flag, otherwise, there is no way for users 543 * to disable forcible compression separately. 544 */ 545 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 546 } 547 if ((btrfs_test_opt(info, COMPRESS) && 548 (info->compress_type != saved_compress_type || 549 compress_force != saved_compress_force)) || 550 (!btrfs_test_opt(info, COMPRESS) && 551 no_compress == 1)) { 552 btrfs_info(info, "%s %s compression", 553 (compress_force) ? "force" : "use", 554 compress_type); 555 } 556 compress_force = false; 557 break; 558 case Opt_ssd: 559 btrfs_set_and_info(info, SSD, 560 "enabling ssd optimizations"); 561 btrfs_clear_opt(info->mount_opt, NOSSD); 562 break; 563 case Opt_ssd_spread: 564 btrfs_set_and_info(info, SSD, 565 "enabling ssd optimizations"); 566 btrfs_set_and_info(info, SSD_SPREAD, 567 "using spread ssd allocation scheme"); 568 btrfs_clear_opt(info->mount_opt, NOSSD); 569 break; 570 case Opt_nossd: 571 btrfs_set_opt(info->mount_opt, NOSSD); 572 btrfs_clear_and_info(info, SSD, 573 "not using ssd optimizations"); 574 btrfs_clear_and_info(info, SSD_SPREAD, 575 "not using spread ssd allocation scheme"); 576 break; 577 case Opt_barrier: 578 btrfs_clear_and_info(info, NOBARRIER, 579 "turning on barriers"); 580 break; 581 case Opt_nobarrier: 582 btrfs_set_and_info(info, NOBARRIER, 583 "turning off barriers"); 584 break; 585 case Opt_thread_pool: 586 ret = match_int(&args[0], &intarg); 587 if (ret) { 588 goto out; 589 } else if (intarg > 0) { 590 info->thread_pool_size = intarg; 591 } else { 592 ret = -EINVAL; 593 goto out; 594 } 595 break; 596 case Opt_max_inline: 597 num = match_strdup(&args[0]); 598 if (num) { 599 info->max_inline = memparse(num, NULL); 600 kfree(num); 601 602 if (info->max_inline) { 603 info->max_inline = min_t(u64, 604 info->max_inline, 605 info->sectorsize); 606 } 607 btrfs_info(info, "max_inline at %llu", 608 info->max_inline); 609 } else { 610 ret = -ENOMEM; 611 goto out; 612 } 613 break; 614 case Opt_alloc_start: 615 btrfs_info(info, 616 "option alloc_start is obsolete, ignored"); 617 break; 618 case Opt_acl: 619 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 620 info->sb->s_flags |= MS_POSIXACL; 621 break; 622 #else 623 btrfs_err(info, "support for ACL not compiled in!"); 624 ret = -EINVAL; 625 goto out; 626 #endif 627 case Opt_noacl: 628 info->sb->s_flags &= ~MS_POSIXACL; 629 break; 630 case Opt_notreelog: 631 btrfs_set_and_info(info, NOTREELOG, 632 "disabling tree log"); 633 break; 634 case Opt_treelog: 635 btrfs_clear_and_info(info, NOTREELOG, 636 "enabling tree log"); 637 break; 638 case Opt_norecovery: 639 case Opt_nologreplay: 640 btrfs_set_and_info(info, NOLOGREPLAY, 641 "disabling log replay at mount time"); 642 break; 643 case Opt_flushoncommit: 644 btrfs_set_and_info(info, FLUSHONCOMMIT, 645 "turning on flush-on-commit"); 646 break; 647 case Opt_noflushoncommit: 648 btrfs_clear_and_info(info, FLUSHONCOMMIT, 649 "turning off flush-on-commit"); 650 break; 651 case Opt_ratio: 652 ret = match_int(&args[0], &intarg); 653 if (ret) { 654 goto out; 655 } else if (intarg >= 0) { 656 info->metadata_ratio = intarg; 657 btrfs_info(info, "metadata ratio %d", 658 info->metadata_ratio); 659 } else { 660 ret = -EINVAL; 661 goto out; 662 } 663 break; 664 case Opt_discard: 665 btrfs_set_and_info(info, DISCARD, 666 "turning on discard"); 667 break; 668 case Opt_nodiscard: 669 btrfs_clear_and_info(info, DISCARD, 670 "turning off discard"); 671 break; 672 case Opt_space_cache: 673 case Opt_space_cache_version: 674 if (token == Opt_space_cache || 675 strcmp(args[0].from, "v1") == 0) { 676 btrfs_clear_opt(info->mount_opt, 677 FREE_SPACE_TREE); 678 btrfs_set_and_info(info, SPACE_CACHE, 679 "enabling disk space caching"); 680 } else if (strcmp(args[0].from, "v2") == 0) { 681 btrfs_clear_opt(info->mount_opt, 682 SPACE_CACHE); 683 btrfs_set_and_info(info, FREE_SPACE_TREE, 684 "enabling free space tree"); 685 } else { 686 ret = -EINVAL; 687 goto out; 688 } 689 break; 690 case Opt_rescan_uuid_tree: 691 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 692 break; 693 case Opt_no_space_cache: 694 if (btrfs_test_opt(info, SPACE_CACHE)) { 695 btrfs_clear_and_info(info, SPACE_CACHE, 696 "disabling disk space caching"); 697 } 698 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 699 btrfs_clear_and_info(info, FREE_SPACE_TREE, 700 "disabling free space tree"); 701 } 702 break; 703 case Opt_inode_cache: 704 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 705 "enabling inode map caching"); 706 break; 707 case Opt_noinode_cache: 708 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 709 "disabling inode map caching"); 710 break; 711 case Opt_clear_cache: 712 btrfs_set_and_info(info, CLEAR_CACHE, 713 "force clearing of disk cache"); 714 break; 715 case Opt_user_subvol_rm_allowed: 716 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 717 break; 718 case Opt_enospc_debug: 719 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 720 break; 721 case Opt_noenospc_debug: 722 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 723 break; 724 case Opt_defrag: 725 btrfs_set_and_info(info, AUTO_DEFRAG, 726 "enabling auto defrag"); 727 break; 728 case Opt_nodefrag: 729 btrfs_clear_and_info(info, AUTO_DEFRAG, 730 "disabling auto defrag"); 731 break; 732 case Opt_recovery: 733 btrfs_warn(info, 734 "'recovery' is deprecated, use 'usebackuproot' instead"); 735 case Opt_usebackuproot: 736 btrfs_info(info, 737 "trying to use backup root at mount time"); 738 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 739 break; 740 case Opt_skip_balance: 741 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 742 break; 743 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 744 case Opt_check_integrity_including_extent_data: 745 btrfs_info(info, 746 "enabling check integrity including extent data"); 747 btrfs_set_opt(info->mount_opt, 748 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 749 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 750 break; 751 case Opt_check_integrity: 752 btrfs_info(info, "enabling check integrity"); 753 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 754 break; 755 case Opt_check_integrity_print_mask: 756 ret = match_int(&args[0], &intarg); 757 if (ret) { 758 goto out; 759 } else if (intarg >= 0) { 760 info->check_integrity_print_mask = intarg; 761 btrfs_info(info, 762 "check_integrity_print_mask 0x%x", 763 info->check_integrity_print_mask); 764 } else { 765 ret = -EINVAL; 766 goto out; 767 } 768 break; 769 #else 770 case Opt_check_integrity_including_extent_data: 771 case Opt_check_integrity: 772 case Opt_check_integrity_print_mask: 773 btrfs_err(info, 774 "support for check_integrity* not compiled in!"); 775 ret = -EINVAL; 776 goto out; 777 #endif 778 case Opt_fatal_errors: 779 if (strcmp(args[0].from, "panic") == 0) 780 btrfs_set_opt(info->mount_opt, 781 PANIC_ON_FATAL_ERROR); 782 else if (strcmp(args[0].from, "bug") == 0) 783 btrfs_clear_opt(info->mount_opt, 784 PANIC_ON_FATAL_ERROR); 785 else { 786 ret = -EINVAL; 787 goto out; 788 } 789 break; 790 case Opt_commit_interval: 791 intarg = 0; 792 ret = match_int(&args[0], &intarg); 793 if (ret < 0) { 794 btrfs_err(info, "invalid commit interval"); 795 ret = -EINVAL; 796 goto out; 797 } 798 if (intarg > 0) { 799 if (intarg > 300) { 800 btrfs_warn(info, 801 "excessive commit interval %d", 802 intarg); 803 } 804 info->commit_interval = intarg; 805 } else { 806 btrfs_info(info, 807 "using default commit interval %ds", 808 BTRFS_DEFAULT_COMMIT_INTERVAL); 809 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 810 } 811 break; 812 #ifdef CONFIG_BTRFS_DEBUG 813 case Opt_fragment_all: 814 btrfs_info(info, "fragmenting all space"); 815 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 816 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 817 break; 818 case Opt_fragment_metadata: 819 btrfs_info(info, "fragmenting metadata"); 820 btrfs_set_opt(info->mount_opt, 821 FRAGMENT_METADATA); 822 break; 823 case Opt_fragment_data: 824 btrfs_info(info, "fragmenting data"); 825 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 826 break; 827 #endif 828 case Opt_err: 829 btrfs_info(info, "unrecognized mount option '%s'", p); 830 ret = -EINVAL; 831 goto out; 832 default: 833 break; 834 } 835 } 836 check: 837 /* 838 * Extra check for current option against current flag 839 */ 840 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) { 841 btrfs_err(info, 842 "nologreplay must be used with ro mount option"); 843 ret = -EINVAL; 844 } 845 out: 846 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 847 !btrfs_test_opt(info, FREE_SPACE_TREE) && 848 !btrfs_test_opt(info, CLEAR_CACHE)) { 849 btrfs_err(info, "cannot disable free space tree"); 850 ret = -EINVAL; 851 852 } 853 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 854 btrfs_info(info, "disk space caching is enabled"); 855 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 856 btrfs_info(info, "using free space tree"); 857 kfree(orig); 858 return ret; 859 } 860 861 /* 862 * Parse mount options that are required early in the mount process. 863 * 864 * All other options will be parsed on much later in the mount process and 865 * only when we need to allocate a new super block. 866 */ 867 static int btrfs_parse_early_options(const char *options, fmode_t flags, 868 void *holder, char **subvol_name, u64 *subvol_objectid, 869 struct btrfs_fs_devices **fs_devices) 870 { 871 substring_t args[MAX_OPT_ARGS]; 872 char *device_name, *opts, *orig, *p; 873 char *num = NULL; 874 int error = 0; 875 876 if (!options) 877 return 0; 878 879 /* 880 * strsep changes the string, duplicate it because parse_options 881 * gets called twice 882 */ 883 opts = kstrdup(options, GFP_KERNEL); 884 if (!opts) 885 return -ENOMEM; 886 orig = opts; 887 888 while ((p = strsep(&opts, ",")) != NULL) { 889 int token; 890 if (!*p) 891 continue; 892 893 token = match_token(p, tokens, args); 894 switch (token) { 895 case Opt_subvol: 896 kfree(*subvol_name); 897 *subvol_name = match_strdup(&args[0]); 898 if (!*subvol_name) { 899 error = -ENOMEM; 900 goto out; 901 } 902 break; 903 case Opt_subvolid: 904 num = match_strdup(&args[0]); 905 if (num) { 906 *subvol_objectid = memparse(num, NULL); 907 kfree(num); 908 /* we want the original fs_tree */ 909 if (!*subvol_objectid) 910 *subvol_objectid = 911 BTRFS_FS_TREE_OBJECTID; 912 } else { 913 error = -EINVAL; 914 goto out; 915 } 916 break; 917 case Opt_subvolrootid: 918 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 919 break; 920 case Opt_device: 921 device_name = match_strdup(&args[0]); 922 if (!device_name) { 923 error = -ENOMEM; 924 goto out; 925 } 926 error = btrfs_scan_one_device(device_name, 927 flags, holder, fs_devices); 928 kfree(device_name); 929 if (error) 930 goto out; 931 break; 932 default: 933 break; 934 } 935 } 936 937 out: 938 kfree(orig); 939 return error; 940 } 941 942 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 943 u64 subvol_objectid) 944 { 945 struct btrfs_root *root = fs_info->tree_root; 946 struct btrfs_root *fs_root; 947 struct btrfs_root_ref *root_ref; 948 struct btrfs_inode_ref *inode_ref; 949 struct btrfs_key key; 950 struct btrfs_path *path = NULL; 951 char *name = NULL, *ptr; 952 u64 dirid; 953 int len; 954 int ret; 955 956 path = btrfs_alloc_path(); 957 if (!path) { 958 ret = -ENOMEM; 959 goto err; 960 } 961 path->leave_spinning = 1; 962 963 name = kmalloc(PATH_MAX, GFP_KERNEL); 964 if (!name) { 965 ret = -ENOMEM; 966 goto err; 967 } 968 ptr = name + PATH_MAX - 1; 969 ptr[0] = '\0'; 970 971 /* 972 * Walk up the subvolume trees in the tree of tree roots by root 973 * backrefs until we hit the top-level subvolume. 974 */ 975 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 976 key.objectid = subvol_objectid; 977 key.type = BTRFS_ROOT_BACKREF_KEY; 978 key.offset = (u64)-1; 979 980 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 981 if (ret < 0) { 982 goto err; 983 } else if (ret > 0) { 984 ret = btrfs_previous_item(root, path, subvol_objectid, 985 BTRFS_ROOT_BACKREF_KEY); 986 if (ret < 0) { 987 goto err; 988 } else if (ret > 0) { 989 ret = -ENOENT; 990 goto err; 991 } 992 } 993 994 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 995 subvol_objectid = key.offset; 996 997 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 998 struct btrfs_root_ref); 999 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1000 ptr -= len + 1; 1001 if (ptr < name) { 1002 ret = -ENAMETOOLONG; 1003 goto err; 1004 } 1005 read_extent_buffer(path->nodes[0], ptr + 1, 1006 (unsigned long)(root_ref + 1), len); 1007 ptr[0] = '/'; 1008 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1009 btrfs_release_path(path); 1010 1011 key.objectid = subvol_objectid; 1012 key.type = BTRFS_ROOT_ITEM_KEY; 1013 key.offset = (u64)-1; 1014 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1015 if (IS_ERR(fs_root)) { 1016 ret = PTR_ERR(fs_root); 1017 goto err; 1018 } 1019 1020 /* 1021 * Walk up the filesystem tree by inode refs until we hit the 1022 * root directory. 1023 */ 1024 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1025 key.objectid = dirid; 1026 key.type = BTRFS_INODE_REF_KEY; 1027 key.offset = (u64)-1; 1028 1029 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1030 if (ret < 0) { 1031 goto err; 1032 } else if (ret > 0) { 1033 ret = btrfs_previous_item(fs_root, path, dirid, 1034 BTRFS_INODE_REF_KEY); 1035 if (ret < 0) { 1036 goto err; 1037 } else if (ret > 0) { 1038 ret = -ENOENT; 1039 goto err; 1040 } 1041 } 1042 1043 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1044 dirid = key.offset; 1045 1046 inode_ref = btrfs_item_ptr(path->nodes[0], 1047 path->slots[0], 1048 struct btrfs_inode_ref); 1049 len = btrfs_inode_ref_name_len(path->nodes[0], 1050 inode_ref); 1051 ptr -= len + 1; 1052 if (ptr < name) { 1053 ret = -ENAMETOOLONG; 1054 goto err; 1055 } 1056 read_extent_buffer(path->nodes[0], ptr + 1, 1057 (unsigned long)(inode_ref + 1), len); 1058 ptr[0] = '/'; 1059 btrfs_release_path(path); 1060 } 1061 } 1062 1063 btrfs_free_path(path); 1064 if (ptr == name + PATH_MAX - 1) { 1065 name[0] = '/'; 1066 name[1] = '\0'; 1067 } else { 1068 memmove(name, ptr, name + PATH_MAX - ptr); 1069 } 1070 return name; 1071 1072 err: 1073 btrfs_free_path(path); 1074 kfree(name); 1075 return ERR_PTR(ret); 1076 } 1077 1078 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1079 { 1080 struct btrfs_root *root = fs_info->tree_root; 1081 struct btrfs_dir_item *di; 1082 struct btrfs_path *path; 1083 struct btrfs_key location; 1084 u64 dir_id; 1085 1086 path = btrfs_alloc_path(); 1087 if (!path) 1088 return -ENOMEM; 1089 path->leave_spinning = 1; 1090 1091 /* 1092 * Find the "default" dir item which points to the root item that we 1093 * will mount by default if we haven't been given a specific subvolume 1094 * to mount. 1095 */ 1096 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1097 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1098 if (IS_ERR(di)) { 1099 btrfs_free_path(path); 1100 return PTR_ERR(di); 1101 } 1102 if (!di) { 1103 /* 1104 * Ok the default dir item isn't there. This is weird since 1105 * it's always been there, but don't freak out, just try and 1106 * mount the top-level subvolume. 1107 */ 1108 btrfs_free_path(path); 1109 *objectid = BTRFS_FS_TREE_OBJECTID; 1110 return 0; 1111 } 1112 1113 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1114 btrfs_free_path(path); 1115 *objectid = location.objectid; 1116 return 0; 1117 } 1118 1119 static int btrfs_fill_super(struct super_block *sb, 1120 struct btrfs_fs_devices *fs_devices, 1121 void *data) 1122 { 1123 struct inode *inode; 1124 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1125 struct btrfs_key key; 1126 int err; 1127 1128 sb->s_maxbytes = MAX_LFS_FILESIZE; 1129 sb->s_magic = BTRFS_SUPER_MAGIC; 1130 sb->s_op = &btrfs_super_ops; 1131 sb->s_d_op = &btrfs_dentry_operations; 1132 sb->s_export_op = &btrfs_export_ops; 1133 sb->s_xattr = btrfs_xattr_handlers; 1134 sb->s_time_gran = 1; 1135 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1136 sb->s_flags |= MS_POSIXACL; 1137 #endif 1138 sb->s_flags |= MS_I_VERSION; 1139 sb->s_iflags |= SB_I_CGROUPWB; 1140 1141 err = super_setup_bdi(sb); 1142 if (err) { 1143 btrfs_err(fs_info, "super_setup_bdi failed"); 1144 return err; 1145 } 1146 1147 err = open_ctree(sb, fs_devices, (char *)data); 1148 if (err) { 1149 btrfs_err(fs_info, "open_ctree failed"); 1150 return err; 1151 } 1152 1153 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1154 key.type = BTRFS_INODE_ITEM_KEY; 1155 key.offset = 0; 1156 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1157 if (IS_ERR(inode)) { 1158 err = PTR_ERR(inode); 1159 goto fail_close; 1160 } 1161 1162 sb->s_root = d_make_root(inode); 1163 if (!sb->s_root) { 1164 err = -ENOMEM; 1165 goto fail_close; 1166 } 1167 1168 cleancache_init_fs(sb); 1169 sb->s_flags |= MS_ACTIVE; 1170 return 0; 1171 1172 fail_close: 1173 close_ctree(fs_info); 1174 return err; 1175 } 1176 1177 int btrfs_sync_fs(struct super_block *sb, int wait) 1178 { 1179 struct btrfs_trans_handle *trans; 1180 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1181 struct btrfs_root *root = fs_info->tree_root; 1182 1183 trace_btrfs_sync_fs(fs_info, wait); 1184 1185 if (!wait) { 1186 filemap_flush(fs_info->btree_inode->i_mapping); 1187 return 0; 1188 } 1189 1190 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1191 1192 trans = btrfs_attach_transaction_barrier(root); 1193 if (IS_ERR(trans)) { 1194 /* no transaction, don't bother */ 1195 if (PTR_ERR(trans) == -ENOENT) { 1196 /* 1197 * Exit unless we have some pending changes 1198 * that need to go through commit 1199 */ 1200 if (fs_info->pending_changes == 0) 1201 return 0; 1202 /* 1203 * A non-blocking test if the fs is frozen. We must not 1204 * start a new transaction here otherwise a deadlock 1205 * happens. The pending operations are delayed to the 1206 * next commit after thawing. 1207 */ 1208 if (__sb_start_write(sb, SB_FREEZE_WRITE, false)) 1209 __sb_end_write(sb, SB_FREEZE_WRITE); 1210 else 1211 return 0; 1212 trans = btrfs_start_transaction(root, 0); 1213 } 1214 if (IS_ERR(trans)) 1215 return PTR_ERR(trans); 1216 } 1217 return btrfs_commit_transaction(trans); 1218 } 1219 1220 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1221 { 1222 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1223 char *compress_type; 1224 1225 if (btrfs_test_opt(info, DEGRADED)) 1226 seq_puts(seq, ",degraded"); 1227 if (btrfs_test_opt(info, NODATASUM)) 1228 seq_puts(seq, ",nodatasum"); 1229 if (btrfs_test_opt(info, NODATACOW)) 1230 seq_puts(seq, ",nodatacow"); 1231 if (btrfs_test_opt(info, NOBARRIER)) 1232 seq_puts(seq, ",nobarrier"); 1233 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1234 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1235 if (info->thread_pool_size != min_t(unsigned long, 1236 num_online_cpus() + 2, 8)) 1237 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1238 if (btrfs_test_opt(info, COMPRESS)) { 1239 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1240 compress_type = "zlib"; 1241 else if (info->compress_type == BTRFS_COMPRESS_LZO) 1242 compress_type = "lzo"; 1243 else 1244 compress_type = "zstd"; 1245 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1246 seq_printf(seq, ",compress-force=%s", compress_type); 1247 else 1248 seq_printf(seq, ",compress=%s", compress_type); 1249 } 1250 if (btrfs_test_opt(info, NOSSD)) 1251 seq_puts(seq, ",nossd"); 1252 if (btrfs_test_opt(info, SSD_SPREAD)) 1253 seq_puts(seq, ",ssd_spread"); 1254 else if (btrfs_test_opt(info, SSD)) 1255 seq_puts(seq, ",ssd"); 1256 if (btrfs_test_opt(info, NOTREELOG)) 1257 seq_puts(seq, ",notreelog"); 1258 if (btrfs_test_opt(info, NOLOGREPLAY)) 1259 seq_puts(seq, ",nologreplay"); 1260 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1261 seq_puts(seq, ",flushoncommit"); 1262 if (btrfs_test_opt(info, DISCARD)) 1263 seq_puts(seq, ",discard"); 1264 if (!(info->sb->s_flags & MS_POSIXACL)) 1265 seq_puts(seq, ",noacl"); 1266 if (btrfs_test_opt(info, SPACE_CACHE)) 1267 seq_puts(seq, ",space_cache"); 1268 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1269 seq_puts(seq, ",space_cache=v2"); 1270 else 1271 seq_puts(seq, ",nospace_cache"); 1272 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1273 seq_puts(seq, ",rescan_uuid_tree"); 1274 if (btrfs_test_opt(info, CLEAR_CACHE)) 1275 seq_puts(seq, ",clear_cache"); 1276 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1277 seq_puts(seq, ",user_subvol_rm_allowed"); 1278 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1279 seq_puts(seq, ",enospc_debug"); 1280 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1281 seq_puts(seq, ",autodefrag"); 1282 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1283 seq_puts(seq, ",inode_cache"); 1284 if (btrfs_test_opt(info, SKIP_BALANCE)) 1285 seq_puts(seq, ",skip_balance"); 1286 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1287 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1288 seq_puts(seq, ",check_int_data"); 1289 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1290 seq_puts(seq, ",check_int"); 1291 if (info->check_integrity_print_mask) 1292 seq_printf(seq, ",check_int_print_mask=%d", 1293 info->check_integrity_print_mask); 1294 #endif 1295 if (info->metadata_ratio) 1296 seq_printf(seq, ",metadata_ratio=%d", 1297 info->metadata_ratio); 1298 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1299 seq_puts(seq, ",fatal_errors=panic"); 1300 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1301 seq_printf(seq, ",commit=%d", info->commit_interval); 1302 #ifdef CONFIG_BTRFS_DEBUG 1303 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1304 seq_puts(seq, ",fragment=data"); 1305 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1306 seq_puts(seq, ",fragment=metadata"); 1307 #endif 1308 seq_printf(seq, ",subvolid=%llu", 1309 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1310 seq_puts(seq, ",subvol="); 1311 seq_dentry(seq, dentry, " \t\n\\"); 1312 return 0; 1313 } 1314 1315 static int btrfs_test_super(struct super_block *s, void *data) 1316 { 1317 struct btrfs_fs_info *p = data; 1318 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1319 1320 return fs_info->fs_devices == p->fs_devices; 1321 } 1322 1323 static int btrfs_set_super(struct super_block *s, void *data) 1324 { 1325 int err = set_anon_super(s, data); 1326 if (!err) 1327 s->s_fs_info = data; 1328 return err; 1329 } 1330 1331 /* 1332 * subvolumes are identified by ino 256 1333 */ 1334 static inline int is_subvolume_inode(struct inode *inode) 1335 { 1336 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1337 return 1; 1338 return 0; 1339 } 1340 1341 /* 1342 * This will add subvolid=0 to the argument string while removing any subvol= 1343 * and subvolid= arguments to make sure we get the top-level root for path 1344 * walking to the subvol we want. 1345 */ 1346 static char *setup_root_args(char *args) 1347 { 1348 char *buf, *dst, *sep; 1349 1350 if (!args) 1351 return kstrdup("subvolid=0", GFP_KERNEL); 1352 1353 /* The worst case is that we add ",subvolid=0" to the end. */ 1354 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, 1355 GFP_KERNEL); 1356 if (!buf) 1357 return NULL; 1358 1359 while (1) { 1360 sep = strchrnul(args, ','); 1361 if (!strstarts(args, "subvol=") && 1362 !strstarts(args, "subvolid=")) { 1363 memcpy(dst, args, sep - args); 1364 dst += sep - args; 1365 *dst++ = ','; 1366 } 1367 if (*sep) 1368 args = sep + 1; 1369 else 1370 break; 1371 } 1372 strcpy(dst, "subvolid=0"); 1373 1374 return buf; 1375 } 1376 1377 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1378 int flags, const char *device_name, 1379 char *data) 1380 { 1381 struct dentry *root; 1382 struct vfsmount *mnt = NULL; 1383 char *newargs; 1384 int ret; 1385 1386 newargs = setup_root_args(data); 1387 if (!newargs) { 1388 root = ERR_PTR(-ENOMEM); 1389 goto out; 1390 } 1391 1392 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); 1393 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { 1394 if (flags & MS_RDONLY) { 1395 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, 1396 device_name, newargs); 1397 } else { 1398 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, 1399 device_name, newargs); 1400 if (IS_ERR(mnt)) { 1401 root = ERR_CAST(mnt); 1402 mnt = NULL; 1403 goto out; 1404 } 1405 1406 down_write(&mnt->mnt_sb->s_umount); 1407 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1408 up_write(&mnt->mnt_sb->s_umount); 1409 if (ret < 0) { 1410 root = ERR_PTR(ret); 1411 goto out; 1412 } 1413 } 1414 } 1415 if (IS_ERR(mnt)) { 1416 root = ERR_CAST(mnt); 1417 mnt = NULL; 1418 goto out; 1419 } 1420 1421 if (!subvol_name) { 1422 if (!subvol_objectid) { 1423 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1424 &subvol_objectid); 1425 if (ret) { 1426 root = ERR_PTR(ret); 1427 goto out; 1428 } 1429 } 1430 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1431 subvol_objectid); 1432 if (IS_ERR(subvol_name)) { 1433 root = ERR_CAST(subvol_name); 1434 subvol_name = NULL; 1435 goto out; 1436 } 1437 1438 } 1439 1440 root = mount_subtree(mnt, subvol_name); 1441 /* mount_subtree() drops our reference on the vfsmount. */ 1442 mnt = NULL; 1443 1444 if (!IS_ERR(root)) { 1445 struct super_block *s = root->d_sb; 1446 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1447 struct inode *root_inode = d_inode(root); 1448 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1449 1450 ret = 0; 1451 if (!is_subvolume_inode(root_inode)) { 1452 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1453 subvol_name); 1454 ret = -EINVAL; 1455 } 1456 if (subvol_objectid && root_objectid != subvol_objectid) { 1457 /* 1458 * This will also catch a race condition where a 1459 * subvolume which was passed by ID is renamed and 1460 * another subvolume is renamed over the old location. 1461 */ 1462 btrfs_err(fs_info, 1463 "subvol '%s' does not match subvolid %llu", 1464 subvol_name, subvol_objectid); 1465 ret = -EINVAL; 1466 } 1467 if (ret) { 1468 dput(root); 1469 root = ERR_PTR(ret); 1470 deactivate_locked_super(s); 1471 } 1472 } 1473 1474 out: 1475 mntput(mnt); 1476 kfree(newargs); 1477 kfree(subvol_name); 1478 return root; 1479 } 1480 1481 static int parse_security_options(char *orig_opts, 1482 struct security_mnt_opts *sec_opts) 1483 { 1484 char *secdata = NULL; 1485 int ret = 0; 1486 1487 secdata = alloc_secdata(); 1488 if (!secdata) 1489 return -ENOMEM; 1490 ret = security_sb_copy_data(orig_opts, secdata); 1491 if (ret) { 1492 free_secdata(secdata); 1493 return ret; 1494 } 1495 ret = security_sb_parse_opts_str(secdata, sec_opts); 1496 free_secdata(secdata); 1497 return ret; 1498 } 1499 1500 static int setup_security_options(struct btrfs_fs_info *fs_info, 1501 struct super_block *sb, 1502 struct security_mnt_opts *sec_opts) 1503 { 1504 int ret = 0; 1505 1506 /* 1507 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1508 * is valid. 1509 */ 1510 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1511 if (ret) 1512 return ret; 1513 1514 #ifdef CONFIG_SECURITY 1515 if (!fs_info->security_opts.num_mnt_opts) { 1516 /* first time security setup, copy sec_opts to fs_info */ 1517 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1518 } else { 1519 /* 1520 * Since SELinux (the only one supporting security_mnt_opts) 1521 * does NOT support changing context during remount/mount of 1522 * the same sb, this must be the same or part of the same 1523 * security options, just free it. 1524 */ 1525 security_free_mnt_opts(sec_opts); 1526 } 1527 #endif 1528 return ret; 1529 } 1530 1531 /* 1532 * Find a superblock for the given device / mount point. 1533 * 1534 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1535 * for multiple device setup. Make sure to keep it in sync. 1536 */ 1537 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1538 const char *device_name, void *data) 1539 { 1540 struct block_device *bdev = NULL; 1541 struct super_block *s; 1542 struct btrfs_fs_devices *fs_devices = NULL; 1543 struct btrfs_fs_info *fs_info = NULL; 1544 struct security_mnt_opts new_sec_opts; 1545 fmode_t mode = FMODE_READ; 1546 char *subvol_name = NULL; 1547 u64 subvol_objectid = 0; 1548 int error = 0; 1549 1550 if (!(flags & MS_RDONLY)) 1551 mode |= FMODE_WRITE; 1552 1553 error = btrfs_parse_early_options(data, mode, fs_type, 1554 &subvol_name, &subvol_objectid, 1555 &fs_devices); 1556 if (error) { 1557 kfree(subvol_name); 1558 return ERR_PTR(error); 1559 } 1560 1561 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1562 /* mount_subvol() will free subvol_name. */ 1563 return mount_subvol(subvol_name, subvol_objectid, flags, 1564 device_name, data); 1565 } 1566 1567 security_init_mnt_opts(&new_sec_opts); 1568 if (data) { 1569 error = parse_security_options(data, &new_sec_opts); 1570 if (error) 1571 return ERR_PTR(error); 1572 } 1573 1574 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1575 if (error) 1576 goto error_sec_opts; 1577 1578 /* 1579 * Setup a dummy root and fs_info for test/set super. This is because 1580 * we don't actually fill this stuff out until open_ctree, but we need 1581 * it for searching for existing supers, so this lets us do that and 1582 * then open_ctree will properly initialize everything later. 1583 */ 1584 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1585 if (!fs_info) { 1586 error = -ENOMEM; 1587 goto error_sec_opts; 1588 } 1589 1590 fs_info->fs_devices = fs_devices; 1591 1592 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1593 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1594 security_init_mnt_opts(&fs_info->security_opts); 1595 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1596 error = -ENOMEM; 1597 goto error_fs_info; 1598 } 1599 1600 error = btrfs_open_devices(fs_devices, mode, fs_type); 1601 if (error) 1602 goto error_fs_info; 1603 1604 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1605 error = -EACCES; 1606 goto error_close_devices; 1607 } 1608 1609 bdev = fs_devices->latest_bdev; 1610 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1611 fs_info); 1612 if (IS_ERR(s)) { 1613 error = PTR_ERR(s); 1614 goto error_close_devices; 1615 } 1616 1617 if (s->s_root) { 1618 btrfs_close_devices(fs_devices); 1619 free_fs_info(fs_info); 1620 if ((flags ^ s->s_flags) & MS_RDONLY) 1621 error = -EBUSY; 1622 } else { 1623 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1624 btrfs_sb(s)->bdev_holder = fs_type; 1625 error = btrfs_fill_super(s, fs_devices, data); 1626 } 1627 if (error) { 1628 deactivate_locked_super(s); 1629 goto error_sec_opts; 1630 } 1631 1632 fs_info = btrfs_sb(s); 1633 error = setup_security_options(fs_info, s, &new_sec_opts); 1634 if (error) { 1635 deactivate_locked_super(s); 1636 goto error_sec_opts; 1637 } 1638 1639 return dget(s->s_root); 1640 1641 error_close_devices: 1642 btrfs_close_devices(fs_devices); 1643 error_fs_info: 1644 free_fs_info(fs_info); 1645 error_sec_opts: 1646 security_free_mnt_opts(&new_sec_opts); 1647 return ERR_PTR(error); 1648 } 1649 1650 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1651 int new_pool_size, int old_pool_size) 1652 { 1653 if (new_pool_size == old_pool_size) 1654 return; 1655 1656 fs_info->thread_pool_size = new_pool_size; 1657 1658 btrfs_info(fs_info, "resize thread pool %d -> %d", 1659 old_pool_size, new_pool_size); 1660 1661 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1662 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1663 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1664 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1665 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1666 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1667 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1668 new_pool_size); 1669 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1670 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1671 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1672 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1673 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1674 new_pool_size); 1675 } 1676 1677 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1678 { 1679 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1680 } 1681 1682 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1683 unsigned long old_opts, int flags) 1684 { 1685 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1686 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1687 (flags & MS_RDONLY))) { 1688 /* wait for any defraggers to finish */ 1689 wait_event(fs_info->transaction_wait, 1690 (atomic_read(&fs_info->defrag_running) == 0)); 1691 if (flags & MS_RDONLY) 1692 sync_filesystem(fs_info->sb); 1693 } 1694 } 1695 1696 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1697 unsigned long old_opts) 1698 { 1699 /* 1700 * We need to cleanup all defragable inodes if the autodefragment is 1701 * close or the filesystem is read only. 1702 */ 1703 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1704 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1705 btrfs_cleanup_defrag_inodes(fs_info); 1706 } 1707 1708 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1709 } 1710 1711 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1712 { 1713 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1714 struct btrfs_root *root = fs_info->tree_root; 1715 unsigned old_flags = sb->s_flags; 1716 unsigned long old_opts = fs_info->mount_opt; 1717 unsigned long old_compress_type = fs_info->compress_type; 1718 u64 old_max_inline = fs_info->max_inline; 1719 int old_thread_pool_size = fs_info->thread_pool_size; 1720 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1721 int ret; 1722 1723 sync_filesystem(sb); 1724 btrfs_remount_prepare(fs_info); 1725 1726 if (data) { 1727 struct security_mnt_opts new_sec_opts; 1728 1729 security_init_mnt_opts(&new_sec_opts); 1730 ret = parse_security_options(data, &new_sec_opts); 1731 if (ret) 1732 goto restore; 1733 ret = setup_security_options(fs_info, sb, 1734 &new_sec_opts); 1735 if (ret) { 1736 security_free_mnt_opts(&new_sec_opts); 1737 goto restore; 1738 } 1739 } 1740 1741 ret = btrfs_parse_options(fs_info, data, *flags); 1742 if (ret) { 1743 ret = -EINVAL; 1744 goto restore; 1745 } 1746 1747 btrfs_remount_begin(fs_info, old_opts, *flags); 1748 btrfs_resize_thread_pool(fs_info, 1749 fs_info->thread_pool_size, old_thread_pool_size); 1750 1751 if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb)) 1752 goto out; 1753 1754 if (*flags & MS_RDONLY) { 1755 /* 1756 * this also happens on 'umount -rf' or on shutdown, when 1757 * the filesystem is busy. 1758 */ 1759 cancel_work_sync(&fs_info->async_reclaim_work); 1760 1761 /* wait for the uuid_scan task to finish */ 1762 down(&fs_info->uuid_tree_rescan_sem); 1763 /* avoid complains from lockdep et al. */ 1764 up(&fs_info->uuid_tree_rescan_sem); 1765 1766 sb->s_flags |= MS_RDONLY; 1767 1768 /* 1769 * Setting MS_RDONLY will put the cleaner thread to 1770 * sleep at the next loop if it's already active. 1771 * If it's already asleep, we'll leave unused block 1772 * groups on disk until we're mounted read-write again 1773 * unless we clean them up here. 1774 */ 1775 btrfs_delete_unused_bgs(fs_info); 1776 1777 btrfs_dev_replace_suspend_for_unmount(fs_info); 1778 btrfs_scrub_cancel(fs_info); 1779 btrfs_pause_balance(fs_info); 1780 1781 ret = btrfs_commit_super(fs_info); 1782 if (ret) 1783 goto restore; 1784 } else { 1785 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1786 btrfs_err(fs_info, 1787 "Remounting read-write after error is not allowed"); 1788 ret = -EINVAL; 1789 goto restore; 1790 } 1791 if (fs_info->fs_devices->rw_devices == 0) { 1792 ret = -EACCES; 1793 goto restore; 1794 } 1795 1796 if (!btrfs_check_rw_degradable(fs_info)) { 1797 btrfs_warn(fs_info, 1798 "too many missing devices, writeable remount is not allowed"); 1799 ret = -EACCES; 1800 goto restore; 1801 } 1802 1803 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1804 ret = -EINVAL; 1805 goto restore; 1806 } 1807 1808 ret = btrfs_cleanup_fs_roots(fs_info); 1809 if (ret) 1810 goto restore; 1811 1812 /* recover relocation */ 1813 mutex_lock(&fs_info->cleaner_mutex); 1814 ret = btrfs_recover_relocation(root); 1815 mutex_unlock(&fs_info->cleaner_mutex); 1816 if (ret) 1817 goto restore; 1818 1819 ret = btrfs_resume_balance_async(fs_info); 1820 if (ret) 1821 goto restore; 1822 1823 ret = btrfs_resume_dev_replace_async(fs_info); 1824 if (ret) { 1825 btrfs_warn(fs_info, "failed to resume dev_replace"); 1826 goto restore; 1827 } 1828 1829 btrfs_qgroup_rescan_resume(fs_info); 1830 1831 if (!fs_info->uuid_root) { 1832 btrfs_info(fs_info, "creating UUID tree"); 1833 ret = btrfs_create_uuid_tree(fs_info); 1834 if (ret) { 1835 btrfs_warn(fs_info, 1836 "failed to create the UUID tree %d", 1837 ret); 1838 goto restore; 1839 } 1840 } 1841 sb->s_flags &= ~MS_RDONLY; 1842 1843 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1844 } 1845 out: 1846 wake_up_process(fs_info->transaction_kthread); 1847 btrfs_remount_cleanup(fs_info, old_opts); 1848 return 0; 1849 1850 restore: 1851 /* We've hit an error - don't reset MS_RDONLY */ 1852 if (sb_rdonly(sb)) 1853 old_flags |= MS_RDONLY; 1854 sb->s_flags = old_flags; 1855 fs_info->mount_opt = old_opts; 1856 fs_info->compress_type = old_compress_type; 1857 fs_info->max_inline = old_max_inline; 1858 btrfs_resize_thread_pool(fs_info, 1859 old_thread_pool_size, fs_info->thread_pool_size); 1860 fs_info->metadata_ratio = old_metadata_ratio; 1861 btrfs_remount_cleanup(fs_info, old_opts); 1862 return ret; 1863 } 1864 1865 /* Used to sort the devices by max_avail(descending sort) */ 1866 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1867 const void *dev_info2) 1868 { 1869 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1870 ((struct btrfs_device_info *)dev_info2)->max_avail) 1871 return -1; 1872 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1873 ((struct btrfs_device_info *)dev_info2)->max_avail) 1874 return 1; 1875 else 1876 return 0; 1877 } 1878 1879 /* 1880 * sort the devices by max_avail, in which max free extent size of each device 1881 * is stored.(Descending Sort) 1882 */ 1883 static inline void btrfs_descending_sort_devices( 1884 struct btrfs_device_info *devices, 1885 size_t nr_devices) 1886 { 1887 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1888 btrfs_cmp_device_free_bytes, NULL); 1889 } 1890 1891 /* 1892 * The helper to calc the free space on the devices that can be used to store 1893 * file data. 1894 */ 1895 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1896 u64 *free_bytes) 1897 { 1898 struct btrfs_device_info *devices_info; 1899 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1900 struct btrfs_device *device; 1901 u64 skip_space; 1902 u64 type; 1903 u64 avail_space; 1904 u64 min_stripe_size; 1905 int min_stripes = 1, num_stripes = 1; 1906 int i = 0, nr_devices; 1907 1908 /* 1909 * We aren't under the device list lock, so this is racy-ish, but good 1910 * enough for our purposes. 1911 */ 1912 nr_devices = fs_info->fs_devices->open_devices; 1913 if (!nr_devices) { 1914 smp_mb(); 1915 nr_devices = fs_info->fs_devices->open_devices; 1916 ASSERT(nr_devices); 1917 if (!nr_devices) { 1918 *free_bytes = 0; 1919 return 0; 1920 } 1921 } 1922 1923 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1924 GFP_KERNEL); 1925 if (!devices_info) 1926 return -ENOMEM; 1927 1928 /* calc min stripe number for data space allocation */ 1929 type = btrfs_data_alloc_profile(fs_info); 1930 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1931 min_stripes = 2; 1932 num_stripes = nr_devices; 1933 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1934 min_stripes = 2; 1935 num_stripes = 2; 1936 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1937 min_stripes = 4; 1938 num_stripes = 4; 1939 } 1940 1941 if (type & BTRFS_BLOCK_GROUP_DUP) 1942 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1943 else 1944 min_stripe_size = BTRFS_STRIPE_LEN; 1945 1946 rcu_read_lock(); 1947 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1948 if (!device->in_fs_metadata || !device->bdev || 1949 device->is_tgtdev_for_dev_replace) 1950 continue; 1951 1952 if (i >= nr_devices) 1953 break; 1954 1955 avail_space = device->total_bytes - device->bytes_used; 1956 1957 /* align with stripe_len */ 1958 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1959 avail_space *= BTRFS_STRIPE_LEN; 1960 1961 /* 1962 * In order to avoid overwriting the superblock on the drive, 1963 * btrfs starts at an offset of at least 1MB when doing chunk 1964 * allocation. 1965 */ 1966 skip_space = SZ_1M; 1967 1968 /* 1969 * we can use the free space in [0, skip_space - 1], subtract 1970 * it from the total. 1971 */ 1972 if (avail_space && avail_space >= skip_space) 1973 avail_space -= skip_space; 1974 else 1975 avail_space = 0; 1976 1977 if (avail_space < min_stripe_size) 1978 continue; 1979 1980 devices_info[i].dev = device; 1981 devices_info[i].max_avail = avail_space; 1982 1983 i++; 1984 } 1985 rcu_read_unlock(); 1986 1987 nr_devices = i; 1988 1989 btrfs_descending_sort_devices(devices_info, nr_devices); 1990 1991 i = nr_devices - 1; 1992 avail_space = 0; 1993 while (nr_devices >= min_stripes) { 1994 if (num_stripes > nr_devices) 1995 num_stripes = nr_devices; 1996 1997 if (devices_info[i].max_avail >= min_stripe_size) { 1998 int j; 1999 u64 alloc_size; 2000 2001 avail_space += devices_info[i].max_avail * num_stripes; 2002 alloc_size = devices_info[i].max_avail; 2003 for (j = i + 1 - num_stripes; j <= i; j++) 2004 devices_info[j].max_avail -= alloc_size; 2005 } 2006 i--; 2007 nr_devices--; 2008 } 2009 2010 kfree(devices_info); 2011 *free_bytes = avail_space; 2012 return 0; 2013 } 2014 2015 /* 2016 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2017 * 2018 * If there's a redundant raid level at DATA block groups, use the respective 2019 * multiplier to scale the sizes. 2020 * 2021 * Unused device space usage is based on simulating the chunk allocator 2022 * algorithm that respects the device sizes and order of allocations. This is 2023 * a close approximation of the actual use but there are other factors that may 2024 * change the result (like a new metadata chunk). 2025 * 2026 * If metadata is exhausted, f_bavail will be 0. 2027 */ 2028 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2029 { 2030 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2031 struct btrfs_super_block *disk_super = fs_info->super_copy; 2032 struct list_head *head = &fs_info->space_info; 2033 struct btrfs_space_info *found; 2034 u64 total_used = 0; 2035 u64 total_free_data = 0; 2036 u64 total_free_meta = 0; 2037 int bits = dentry->d_sb->s_blocksize_bits; 2038 __be32 *fsid = (__be32 *)fs_info->fsid; 2039 unsigned factor = 1; 2040 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2041 int ret; 2042 u64 thresh = 0; 2043 int mixed = 0; 2044 2045 rcu_read_lock(); 2046 list_for_each_entry_rcu(found, head, list) { 2047 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2048 int i; 2049 2050 total_free_data += found->disk_total - found->disk_used; 2051 total_free_data -= 2052 btrfs_account_ro_block_groups_free_space(found); 2053 2054 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2055 if (!list_empty(&found->block_groups[i])) { 2056 switch (i) { 2057 case BTRFS_RAID_DUP: 2058 case BTRFS_RAID_RAID1: 2059 case BTRFS_RAID_RAID10: 2060 factor = 2; 2061 } 2062 } 2063 } 2064 } 2065 2066 /* 2067 * Metadata in mixed block goup profiles are accounted in data 2068 */ 2069 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2070 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2071 mixed = 1; 2072 else 2073 total_free_meta += found->disk_total - 2074 found->disk_used; 2075 } 2076 2077 total_used += found->disk_used; 2078 } 2079 2080 rcu_read_unlock(); 2081 2082 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2083 buf->f_blocks >>= bits; 2084 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2085 2086 /* Account global block reserve as used, it's in logical size already */ 2087 spin_lock(&block_rsv->lock); 2088 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2089 if (buf->f_bfree >= block_rsv->size >> bits) 2090 buf->f_bfree -= block_rsv->size >> bits; 2091 else 2092 buf->f_bfree = 0; 2093 spin_unlock(&block_rsv->lock); 2094 2095 buf->f_bavail = div_u64(total_free_data, factor); 2096 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2097 if (ret) 2098 return ret; 2099 buf->f_bavail += div_u64(total_free_data, factor); 2100 buf->f_bavail = buf->f_bavail >> bits; 2101 2102 /* 2103 * We calculate the remaining metadata space minus global reserve. If 2104 * this is (supposedly) smaller than zero, there's no space. But this 2105 * does not hold in practice, the exhausted state happens where's still 2106 * some positive delta. So we apply some guesswork and compare the 2107 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2108 * 2109 * We probably cannot calculate the exact threshold value because this 2110 * depends on the internal reservations requested by various 2111 * operations, so some operations that consume a few metadata will 2112 * succeed even if the Avail is zero. But this is better than the other 2113 * way around. 2114 */ 2115 thresh = 4 * 1024 * 1024; 2116 2117 if (!mixed && total_free_meta - thresh < block_rsv->size) 2118 buf->f_bavail = 0; 2119 2120 buf->f_type = BTRFS_SUPER_MAGIC; 2121 buf->f_bsize = dentry->d_sb->s_blocksize; 2122 buf->f_namelen = BTRFS_NAME_LEN; 2123 2124 /* We treat it as constant endianness (it doesn't matter _which_) 2125 because we want the fsid to come out the same whether mounted 2126 on a big-endian or little-endian host */ 2127 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2128 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2129 /* Mask in the root object ID too, to disambiguate subvols */ 2130 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2131 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2132 2133 return 0; 2134 } 2135 2136 static void btrfs_kill_super(struct super_block *sb) 2137 { 2138 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2139 kill_anon_super(sb); 2140 free_fs_info(fs_info); 2141 } 2142 2143 static struct file_system_type btrfs_fs_type = { 2144 .owner = THIS_MODULE, 2145 .name = "btrfs", 2146 .mount = btrfs_mount, 2147 .kill_sb = btrfs_kill_super, 2148 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2149 }; 2150 MODULE_ALIAS_FS("btrfs"); 2151 2152 static int btrfs_control_open(struct inode *inode, struct file *file) 2153 { 2154 /* 2155 * The control file's private_data is used to hold the 2156 * transaction when it is started and is used to keep 2157 * track of whether a transaction is already in progress. 2158 */ 2159 file->private_data = NULL; 2160 return 0; 2161 } 2162 2163 /* 2164 * used by btrfsctl to scan devices when no FS is mounted 2165 */ 2166 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2167 unsigned long arg) 2168 { 2169 struct btrfs_ioctl_vol_args *vol; 2170 struct btrfs_fs_devices *fs_devices; 2171 int ret = -ENOTTY; 2172 2173 if (!capable(CAP_SYS_ADMIN)) 2174 return -EPERM; 2175 2176 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2177 if (IS_ERR(vol)) 2178 return PTR_ERR(vol); 2179 2180 switch (cmd) { 2181 case BTRFS_IOC_SCAN_DEV: 2182 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2183 &btrfs_fs_type, &fs_devices); 2184 break; 2185 case BTRFS_IOC_DEVICES_READY: 2186 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2187 &btrfs_fs_type, &fs_devices); 2188 if (ret) 2189 break; 2190 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2191 break; 2192 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2193 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2194 break; 2195 } 2196 2197 kfree(vol); 2198 return ret; 2199 } 2200 2201 static int btrfs_freeze(struct super_block *sb) 2202 { 2203 struct btrfs_trans_handle *trans; 2204 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2205 struct btrfs_root *root = fs_info->tree_root; 2206 2207 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2208 /* 2209 * We don't need a barrier here, we'll wait for any transaction that 2210 * could be in progress on other threads (and do delayed iputs that 2211 * we want to avoid on a frozen filesystem), or do the commit 2212 * ourselves. 2213 */ 2214 trans = btrfs_attach_transaction_barrier(root); 2215 if (IS_ERR(trans)) { 2216 /* no transaction, don't bother */ 2217 if (PTR_ERR(trans) == -ENOENT) 2218 return 0; 2219 return PTR_ERR(trans); 2220 } 2221 return btrfs_commit_transaction(trans); 2222 } 2223 2224 static int btrfs_unfreeze(struct super_block *sb) 2225 { 2226 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2227 2228 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2229 return 0; 2230 } 2231 2232 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2233 { 2234 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2235 struct btrfs_fs_devices *cur_devices; 2236 struct btrfs_device *dev, *first_dev = NULL; 2237 struct list_head *head; 2238 struct rcu_string *name; 2239 2240 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2241 cur_devices = fs_info->fs_devices; 2242 while (cur_devices) { 2243 head = &cur_devices->devices; 2244 list_for_each_entry(dev, head, dev_list) { 2245 if (dev->missing) 2246 continue; 2247 if (!dev->name) 2248 continue; 2249 if (!first_dev || dev->devid < first_dev->devid) 2250 first_dev = dev; 2251 } 2252 cur_devices = cur_devices->seed; 2253 } 2254 2255 if (first_dev) { 2256 rcu_read_lock(); 2257 name = rcu_dereference(first_dev->name); 2258 seq_escape(m, name->str, " \t\n\\"); 2259 rcu_read_unlock(); 2260 } else { 2261 WARN_ON(1); 2262 } 2263 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2264 return 0; 2265 } 2266 2267 static const struct super_operations btrfs_super_ops = { 2268 .drop_inode = btrfs_drop_inode, 2269 .evict_inode = btrfs_evict_inode, 2270 .put_super = btrfs_put_super, 2271 .sync_fs = btrfs_sync_fs, 2272 .show_options = btrfs_show_options, 2273 .show_devname = btrfs_show_devname, 2274 .write_inode = btrfs_write_inode, 2275 .alloc_inode = btrfs_alloc_inode, 2276 .destroy_inode = btrfs_destroy_inode, 2277 .statfs = btrfs_statfs, 2278 .remount_fs = btrfs_remount, 2279 .freeze_fs = btrfs_freeze, 2280 .unfreeze_fs = btrfs_unfreeze, 2281 }; 2282 2283 static const struct file_operations btrfs_ctl_fops = { 2284 .open = btrfs_control_open, 2285 .unlocked_ioctl = btrfs_control_ioctl, 2286 .compat_ioctl = btrfs_control_ioctl, 2287 .owner = THIS_MODULE, 2288 .llseek = noop_llseek, 2289 }; 2290 2291 static struct miscdevice btrfs_misc = { 2292 .minor = BTRFS_MINOR, 2293 .name = "btrfs-control", 2294 .fops = &btrfs_ctl_fops 2295 }; 2296 2297 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2298 MODULE_ALIAS("devname:btrfs-control"); 2299 2300 static int btrfs_interface_init(void) 2301 { 2302 return misc_register(&btrfs_misc); 2303 } 2304 2305 static void btrfs_interface_exit(void) 2306 { 2307 misc_deregister(&btrfs_misc); 2308 } 2309 2310 static void btrfs_print_mod_info(void) 2311 { 2312 pr_info("Btrfs loaded, crc32c=%s" 2313 #ifdef CONFIG_BTRFS_DEBUG 2314 ", debug=on" 2315 #endif 2316 #ifdef CONFIG_BTRFS_ASSERT 2317 ", assert=on" 2318 #endif 2319 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2320 ", integrity-checker=on" 2321 #endif 2322 "\n", 2323 btrfs_crc32c_impl()); 2324 } 2325 2326 static int __init init_btrfs_fs(void) 2327 { 2328 int err; 2329 2330 err = btrfs_hash_init(); 2331 if (err) 2332 return err; 2333 2334 btrfs_props_init(); 2335 2336 err = btrfs_init_sysfs(); 2337 if (err) 2338 goto free_hash; 2339 2340 btrfs_init_compress(); 2341 2342 err = btrfs_init_cachep(); 2343 if (err) 2344 goto free_compress; 2345 2346 err = extent_io_init(); 2347 if (err) 2348 goto free_cachep; 2349 2350 err = extent_map_init(); 2351 if (err) 2352 goto free_extent_io; 2353 2354 err = ordered_data_init(); 2355 if (err) 2356 goto free_extent_map; 2357 2358 err = btrfs_delayed_inode_init(); 2359 if (err) 2360 goto free_ordered_data; 2361 2362 err = btrfs_auto_defrag_init(); 2363 if (err) 2364 goto free_delayed_inode; 2365 2366 err = btrfs_delayed_ref_init(); 2367 if (err) 2368 goto free_auto_defrag; 2369 2370 err = btrfs_prelim_ref_init(); 2371 if (err) 2372 goto free_delayed_ref; 2373 2374 err = btrfs_end_io_wq_init(); 2375 if (err) 2376 goto free_prelim_ref; 2377 2378 err = btrfs_interface_init(); 2379 if (err) 2380 goto free_end_io_wq; 2381 2382 btrfs_init_lockdep(); 2383 2384 btrfs_print_mod_info(); 2385 2386 err = btrfs_run_sanity_tests(); 2387 if (err) 2388 goto unregister_ioctl; 2389 2390 err = register_filesystem(&btrfs_fs_type); 2391 if (err) 2392 goto unregister_ioctl; 2393 2394 return 0; 2395 2396 unregister_ioctl: 2397 btrfs_interface_exit(); 2398 free_end_io_wq: 2399 btrfs_end_io_wq_exit(); 2400 free_prelim_ref: 2401 btrfs_prelim_ref_exit(); 2402 free_delayed_ref: 2403 btrfs_delayed_ref_exit(); 2404 free_auto_defrag: 2405 btrfs_auto_defrag_exit(); 2406 free_delayed_inode: 2407 btrfs_delayed_inode_exit(); 2408 free_ordered_data: 2409 ordered_data_exit(); 2410 free_extent_map: 2411 extent_map_exit(); 2412 free_extent_io: 2413 extent_io_exit(); 2414 free_cachep: 2415 btrfs_destroy_cachep(); 2416 free_compress: 2417 btrfs_exit_compress(); 2418 btrfs_exit_sysfs(); 2419 free_hash: 2420 btrfs_hash_exit(); 2421 return err; 2422 } 2423 2424 static void __exit exit_btrfs_fs(void) 2425 { 2426 btrfs_destroy_cachep(); 2427 btrfs_delayed_ref_exit(); 2428 btrfs_auto_defrag_exit(); 2429 btrfs_delayed_inode_exit(); 2430 btrfs_prelim_ref_exit(); 2431 ordered_data_exit(); 2432 extent_map_exit(); 2433 extent_io_exit(); 2434 btrfs_interface_exit(); 2435 btrfs_end_io_wq_exit(); 2436 unregister_filesystem(&btrfs_fs_type); 2437 btrfs_exit_sysfs(); 2438 btrfs_cleanup_fs_uuids(); 2439 btrfs_exit_compress(); 2440 btrfs_hash_exit(); 2441 } 2442 2443 late_initcall(init_btrfs_fs); 2444 module_exit(exit_btrfs_fs) 2445 2446 MODULE_LICENSE("GPL"); 2447