xref: /openbmc/linux/fs/btrfs/super.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #include "backref.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/btrfs.h>
67 
68 static const struct super_operations btrfs_super_ops;
69 static struct file_system_type btrfs_fs_type;
70 
71 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
72 
73 const char *btrfs_decode_error(int errno)
74 {
75 	char *errstr = "unknown";
76 
77 	switch (errno) {
78 	case -EIO:
79 		errstr = "IO failure";
80 		break;
81 	case -ENOMEM:
82 		errstr = "Out of memory";
83 		break;
84 	case -EROFS:
85 		errstr = "Readonly filesystem";
86 		break;
87 	case -EEXIST:
88 		errstr = "Object already exists";
89 		break;
90 	case -ENOSPC:
91 		errstr = "No space left";
92 		break;
93 	case -ENOENT:
94 		errstr = "No such entry";
95 		break;
96 	}
97 
98 	return errstr;
99 }
100 
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103 {
104 	struct super_block *sb = fs_info->sb;
105 
106 	if (sb_rdonly(sb))
107 		return;
108 
109 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
110 		sb->s_flags |= MS_RDONLY;
111 		btrfs_info(fs_info, "forced readonly");
112 		/*
113 		 * Note that a running device replace operation is not
114 		 * canceled here although there is no way to update
115 		 * the progress. It would add the risk of a deadlock,
116 		 * therefore the canceling is omitted. The only penalty
117 		 * is that some I/O remains active until the procedure
118 		 * completes. The next time when the filesystem is
119 		 * mounted writeable again, the device replace
120 		 * operation continues.
121 		 */
122 	}
123 }
124 
125 /*
126  * __btrfs_handle_fs_error decodes expected errors from the caller and
127  * invokes the approciate error response.
128  */
129 __cold
130 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
131 		       unsigned int line, int errno, const char *fmt, ...)
132 {
133 	struct super_block *sb = fs_info->sb;
134 #ifdef CONFIG_PRINTK
135 	const char *errstr;
136 #endif
137 
138 	/*
139 	 * Special case: if the error is EROFS, and we're already
140 	 * under MS_RDONLY, then it is safe here.
141 	 */
142 	if (errno == -EROFS && sb_rdonly(sb))
143   		return;
144 
145 #ifdef CONFIG_PRINTK
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 			sb->s_id, function, line, errno, errstr, &vaf);
157 		va_end(args);
158 	} else {
159 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
160 			sb->s_id, function, line, errno, errstr);
161 	}
162 #endif
163 
164 	/*
165 	 * Today we only save the error info to memory.  Long term we'll
166 	 * also send it down to the disk
167 	 */
168 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
169 
170 	/* Don't go through full error handling during mount */
171 	if (sb->s_flags & MS_BORN)
172 		btrfs_handle_error(fs_info);
173 }
174 
175 #ifdef CONFIG_PRINTK
176 static const char * const logtypes[] = {
177 	"emergency",
178 	"alert",
179 	"critical",
180 	"error",
181 	"warning",
182 	"notice",
183 	"info",
184 	"debug",
185 };
186 
187 
188 /*
189  * Use one ratelimit state per log level so that a flood of less important
190  * messages doesn't cause more important ones to be dropped.
191  */
192 static struct ratelimit_state printk_limits[] = {
193 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
200 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
201 };
202 
203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
204 {
205 	struct super_block *sb = fs_info->sb;
206 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
207 	struct va_format vaf;
208 	va_list args;
209 	int kern_level;
210 	const char *type = logtypes[4];
211 	struct ratelimit_state *ratelimit = &printk_limits[4];
212 
213 	va_start(args, fmt);
214 
215 	while ((kern_level = printk_get_level(fmt)) != 0) {
216 		size_t size = printk_skip_level(fmt) - fmt;
217 
218 		if (kern_level >= '0' && kern_level <= '7') {
219 			memcpy(lvl, fmt,  size);
220 			lvl[size] = '\0';
221 			type = logtypes[kern_level - '0'];
222 			ratelimit = &printk_limits[kern_level - '0'];
223 		}
224 		fmt += size;
225 	}
226 
227 	vaf.fmt = fmt;
228 	vaf.va = &args;
229 
230 	if (__ratelimit(ratelimit))
231 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
232 
233 	va_end(args);
234 }
235 #endif
236 
237 /*
238  * We only mark the transaction aborted and then set the file system read-only.
239  * This will prevent new transactions from starting or trying to join this
240  * one.
241  *
242  * This means that error recovery at the call site is limited to freeing
243  * any local memory allocations and passing the error code up without
244  * further cleanup. The transaction should complete as it normally would
245  * in the call path but will return -EIO.
246  *
247  * We'll complete the cleanup in btrfs_end_transaction and
248  * btrfs_commit_transaction.
249  */
250 __cold
251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
252 			       const char *function,
253 			       unsigned int line, int errno)
254 {
255 	struct btrfs_fs_info *fs_info = trans->fs_info;
256 
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno);
264 		btrfs_warn(fs_info,
265 		           "%s:%d: Aborting unused transaction(%s).",
266 		           function, line, errstr);
267 		return;
268 	}
269 	WRITE_ONCE(trans->transaction->aborted, errno);
270 	/* Wake up anybody who may be waiting on this transaction */
271 	wake_up(&fs_info->transaction_wait);
272 	wake_up(&fs_info->transaction_blocked_wait);
273 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 __cold
280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
281 		   unsigned int line, int errno, const char *fmt, ...)
282 {
283 	char *s_id = "<unknown>";
284 	const char *errstr;
285 	struct va_format vaf = { .fmt = fmt };
286 	va_list args;
287 
288 	if (fs_info)
289 		s_id = fs_info->sb->s_id;
290 
291 	va_start(args, fmt);
292 	vaf.va = &args;
293 
294 	errstr = btrfs_decode_error(errno);
295 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
296 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
297 			s_id, function, line, &vaf, errno, errstr);
298 
299 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
300 		   function, line, &vaf, errno, errstr);
301 	va_end(args);
302 	/* Caller calls BUG() */
303 }
304 
305 static void btrfs_put_super(struct super_block *sb)
306 {
307 	close_ctree(btrfs_sb(sb));
308 }
309 
310 enum {
311 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
312 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
313 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
314 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
315 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
316 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
317 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
318 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
319 	Opt_skip_balance, Opt_check_integrity,
320 	Opt_check_integrity_including_extent_data,
321 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
322 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
323 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
324 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
325 	Opt_nologreplay, Opt_norecovery,
326 #ifdef CONFIG_BTRFS_DEBUG
327 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
328 #endif
329 	Opt_err,
330 };
331 
332 static const match_table_t tokens = {
333 	{Opt_degraded, "degraded"},
334 	{Opt_subvol, "subvol=%s"},
335 	{Opt_subvolid, "subvolid=%s"},
336 	{Opt_device, "device=%s"},
337 	{Opt_nodatasum, "nodatasum"},
338 	{Opt_datasum, "datasum"},
339 	{Opt_nodatacow, "nodatacow"},
340 	{Opt_datacow, "datacow"},
341 	{Opt_nobarrier, "nobarrier"},
342 	{Opt_barrier, "barrier"},
343 	{Opt_max_inline, "max_inline=%s"},
344 	{Opt_alloc_start, "alloc_start=%s"},
345 	{Opt_thread_pool, "thread_pool=%d"},
346 	{Opt_compress, "compress"},
347 	{Opt_compress_type, "compress=%s"},
348 	{Opt_compress_force, "compress-force"},
349 	{Opt_compress_force_type, "compress-force=%s"},
350 	{Opt_ssd, "ssd"},
351 	{Opt_ssd_spread, "ssd_spread"},
352 	{Opt_nossd, "nossd"},
353 	{Opt_acl, "acl"},
354 	{Opt_noacl, "noacl"},
355 	{Opt_notreelog, "notreelog"},
356 	{Opt_treelog, "treelog"},
357 	{Opt_nologreplay, "nologreplay"},
358 	{Opt_norecovery, "norecovery"},
359 	{Opt_flushoncommit, "flushoncommit"},
360 	{Opt_noflushoncommit, "noflushoncommit"},
361 	{Opt_ratio, "metadata_ratio=%d"},
362 	{Opt_discard, "discard"},
363 	{Opt_nodiscard, "nodiscard"},
364 	{Opt_space_cache, "space_cache"},
365 	{Opt_space_cache_version, "space_cache=%s"},
366 	{Opt_clear_cache, "clear_cache"},
367 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
368 	{Opt_enospc_debug, "enospc_debug"},
369 	{Opt_noenospc_debug, "noenospc_debug"},
370 	{Opt_subvolrootid, "subvolrootid=%d"},
371 	{Opt_defrag, "autodefrag"},
372 	{Opt_nodefrag, "noautodefrag"},
373 	{Opt_inode_cache, "inode_cache"},
374 	{Opt_noinode_cache, "noinode_cache"},
375 	{Opt_no_space_cache, "nospace_cache"},
376 	{Opt_recovery, "recovery"}, /* deprecated */
377 	{Opt_usebackuproot, "usebackuproot"},
378 	{Opt_skip_balance, "skip_balance"},
379 	{Opt_check_integrity, "check_int"},
380 	{Opt_check_integrity_including_extent_data, "check_int_data"},
381 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 	{Opt_fatal_errors, "fatal_errors=%s"},
384 	{Opt_commit_interval, "commit=%d"},
385 #ifdef CONFIG_BTRFS_DEBUG
386 	{Opt_fragment_data, "fragment=data"},
387 	{Opt_fragment_metadata, "fragment=metadata"},
388 	{Opt_fragment_all, "fragment=all"},
389 #endif
390 	{Opt_err, NULL},
391 };
392 
393 /*
394  * Regular mount options parser.  Everything that is needed only when
395  * reading in a new superblock is parsed here.
396  * XXX JDM: This needs to be cleaned up for remount.
397  */
398 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
399 			unsigned long new_flags)
400 {
401 	substring_t args[MAX_OPT_ARGS];
402 	char *p, *num, *orig = NULL;
403 	u64 cache_gen;
404 	int intarg;
405 	int ret = 0;
406 	char *compress_type;
407 	bool compress_force = false;
408 	enum btrfs_compression_type saved_compress_type;
409 	bool saved_compress_force;
410 	int no_compress = 0;
411 
412 	cache_gen = btrfs_super_cache_generation(info->super_copy);
413 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
414 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
415 	else if (cache_gen)
416 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
417 
418 	/*
419 	 * Even the options are empty, we still need to do extra check
420 	 * against new flags
421 	 */
422 	if (!options)
423 		goto check;
424 
425 	/*
426 	 * strsep changes the string, duplicate it because parse_options
427 	 * gets called twice
428 	 */
429 	options = kstrdup(options, GFP_KERNEL);
430 	if (!options)
431 		return -ENOMEM;
432 
433 	orig = options;
434 
435 	while ((p = strsep(&options, ",")) != NULL) {
436 		int token;
437 		if (!*p)
438 			continue;
439 
440 		token = match_token(p, tokens, args);
441 		switch (token) {
442 		case Opt_degraded:
443 			btrfs_info(info, "allowing degraded mounts");
444 			btrfs_set_opt(info->mount_opt, DEGRADED);
445 			break;
446 		case Opt_subvol:
447 		case Opt_subvolid:
448 		case Opt_subvolrootid:
449 		case Opt_device:
450 			/*
451 			 * These are parsed by btrfs_parse_early_options
452 			 * and can be happily ignored here.
453 			 */
454 			break;
455 		case Opt_nodatasum:
456 			btrfs_set_and_info(info, NODATASUM,
457 					   "setting nodatasum");
458 			break;
459 		case Opt_datasum:
460 			if (btrfs_test_opt(info, NODATASUM)) {
461 				if (btrfs_test_opt(info, NODATACOW))
462 					btrfs_info(info,
463 						   "setting datasum, datacow enabled");
464 				else
465 					btrfs_info(info, "setting datasum");
466 			}
467 			btrfs_clear_opt(info->mount_opt, NODATACOW);
468 			btrfs_clear_opt(info->mount_opt, NODATASUM);
469 			break;
470 		case Opt_nodatacow:
471 			if (!btrfs_test_opt(info, NODATACOW)) {
472 				if (!btrfs_test_opt(info, COMPRESS) ||
473 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
474 					btrfs_info(info,
475 						   "setting nodatacow, compression disabled");
476 				} else {
477 					btrfs_info(info, "setting nodatacow");
478 				}
479 			}
480 			btrfs_clear_opt(info->mount_opt, COMPRESS);
481 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
482 			btrfs_set_opt(info->mount_opt, NODATACOW);
483 			btrfs_set_opt(info->mount_opt, NODATASUM);
484 			break;
485 		case Opt_datacow:
486 			btrfs_clear_and_info(info, NODATACOW,
487 					     "setting datacow");
488 			break;
489 		case Opt_compress_force:
490 		case Opt_compress_force_type:
491 			compress_force = true;
492 			/* Fallthrough */
493 		case Opt_compress:
494 		case Opt_compress_type:
495 			saved_compress_type = btrfs_test_opt(info,
496 							     COMPRESS) ?
497 				info->compress_type : BTRFS_COMPRESS_NONE;
498 			saved_compress_force =
499 				btrfs_test_opt(info, FORCE_COMPRESS);
500 			if (token == Opt_compress ||
501 			    token == Opt_compress_force ||
502 			    strncmp(args[0].from, "zlib", 4) == 0) {
503 				compress_type = "zlib";
504 				info->compress_type = BTRFS_COMPRESS_ZLIB;
505 				btrfs_set_opt(info->mount_opt, COMPRESS);
506 				btrfs_clear_opt(info->mount_opt, NODATACOW);
507 				btrfs_clear_opt(info->mount_opt, NODATASUM);
508 				no_compress = 0;
509 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
510 				compress_type = "lzo";
511 				info->compress_type = BTRFS_COMPRESS_LZO;
512 				btrfs_set_opt(info->mount_opt, COMPRESS);
513 				btrfs_clear_opt(info->mount_opt, NODATACOW);
514 				btrfs_clear_opt(info->mount_opt, NODATASUM);
515 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
516 				no_compress = 0;
517 			} else if (strcmp(args[0].from, "zstd") == 0) {
518 				compress_type = "zstd";
519 				info->compress_type = BTRFS_COMPRESS_ZSTD;
520 				btrfs_set_opt(info->mount_opt, COMPRESS);
521 				btrfs_clear_opt(info->mount_opt, NODATACOW);
522 				btrfs_clear_opt(info->mount_opt, NODATASUM);
523 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
524 				no_compress = 0;
525 			} else if (strncmp(args[0].from, "no", 2) == 0) {
526 				compress_type = "no";
527 				btrfs_clear_opt(info->mount_opt, COMPRESS);
528 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
529 				compress_force = false;
530 				no_compress++;
531 			} else {
532 				ret = -EINVAL;
533 				goto out;
534 			}
535 
536 			if (compress_force) {
537 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
538 			} else {
539 				/*
540 				 * If we remount from compress-force=xxx to
541 				 * compress=xxx, we need clear FORCE_COMPRESS
542 				 * flag, otherwise, there is no way for users
543 				 * to disable forcible compression separately.
544 				 */
545 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
546 			}
547 			if ((btrfs_test_opt(info, COMPRESS) &&
548 			     (info->compress_type != saved_compress_type ||
549 			      compress_force != saved_compress_force)) ||
550 			    (!btrfs_test_opt(info, COMPRESS) &&
551 			     no_compress == 1)) {
552 				btrfs_info(info, "%s %s compression",
553 					   (compress_force) ? "force" : "use",
554 					   compress_type);
555 			}
556 			compress_force = false;
557 			break;
558 		case Opt_ssd:
559 			btrfs_set_and_info(info, SSD,
560 					   "enabling ssd optimizations");
561 			btrfs_clear_opt(info->mount_opt, NOSSD);
562 			break;
563 		case Opt_ssd_spread:
564 			btrfs_set_and_info(info, SSD,
565 					   "enabling ssd optimizations");
566 			btrfs_set_and_info(info, SSD_SPREAD,
567 					   "using spread ssd allocation scheme");
568 			btrfs_clear_opt(info->mount_opt, NOSSD);
569 			break;
570 		case Opt_nossd:
571 			btrfs_set_opt(info->mount_opt, NOSSD);
572 			btrfs_clear_and_info(info, SSD,
573 					     "not using ssd optimizations");
574 			btrfs_clear_and_info(info, SSD_SPREAD,
575 					     "not using spread ssd allocation scheme");
576 			break;
577 		case Opt_barrier:
578 			btrfs_clear_and_info(info, NOBARRIER,
579 					     "turning on barriers");
580 			break;
581 		case Opt_nobarrier:
582 			btrfs_set_and_info(info, NOBARRIER,
583 					   "turning off barriers");
584 			break;
585 		case Opt_thread_pool:
586 			ret = match_int(&args[0], &intarg);
587 			if (ret) {
588 				goto out;
589 			} else if (intarg > 0) {
590 				info->thread_pool_size = intarg;
591 			} else {
592 				ret = -EINVAL;
593 				goto out;
594 			}
595 			break;
596 		case Opt_max_inline:
597 			num = match_strdup(&args[0]);
598 			if (num) {
599 				info->max_inline = memparse(num, NULL);
600 				kfree(num);
601 
602 				if (info->max_inline) {
603 					info->max_inline = min_t(u64,
604 						info->max_inline,
605 						info->sectorsize);
606 				}
607 				btrfs_info(info, "max_inline at %llu",
608 					   info->max_inline);
609 			} else {
610 				ret = -ENOMEM;
611 				goto out;
612 			}
613 			break;
614 		case Opt_alloc_start:
615 			btrfs_info(info,
616 				"option alloc_start is obsolete, ignored");
617 			break;
618 		case Opt_acl:
619 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
620 			info->sb->s_flags |= MS_POSIXACL;
621 			break;
622 #else
623 			btrfs_err(info, "support for ACL not compiled in!");
624 			ret = -EINVAL;
625 			goto out;
626 #endif
627 		case Opt_noacl:
628 			info->sb->s_flags &= ~MS_POSIXACL;
629 			break;
630 		case Opt_notreelog:
631 			btrfs_set_and_info(info, NOTREELOG,
632 					   "disabling tree log");
633 			break;
634 		case Opt_treelog:
635 			btrfs_clear_and_info(info, NOTREELOG,
636 					     "enabling tree log");
637 			break;
638 		case Opt_norecovery:
639 		case Opt_nologreplay:
640 			btrfs_set_and_info(info, NOLOGREPLAY,
641 					   "disabling log replay at mount time");
642 			break;
643 		case Opt_flushoncommit:
644 			btrfs_set_and_info(info, FLUSHONCOMMIT,
645 					   "turning on flush-on-commit");
646 			break;
647 		case Opt_noflushoncommit:
648 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
649 					     "turning off flush-on-commit");
650 			break;
651 		case Opt_ratio:
652 			ret = match_int(&args[0], &intarg);
653 			if (ret) {
654 				goto out;
655 			} else if (intarg >= 0) {
656 				info->metadata_ratio = intarg;
657 				btrfs_info(info, "metadata ratio %d",
658 					   info->metadata_ratio);
659 			} else {
660 				ret = -EINVAL;
661 				goto out;
662 			}
663 			break;
664 		case Opt_discard:
665 			btrfs_set_and_info(info, DISCARD,
666 					   "turning on discard");
667 			break;
668 		case Opt_nodiscard:
669 			btrfs_clear_and_info(info, DISCARD,
670 					     "turning off discard");
671 			break;
672 		case Opt_space_cache:
673 		case Opt_space_cache_version:
674 			if (token == Opt_space_cache ||
675 			    strcmp(args[0].from, "v1") == 0) {
676 				btrfs_clear_opt(info->mount_opt,
677 						FREE_SPACE_TREE);
678 				btrfs_set_and_info(info, SPACE_CACHE,
679 					   "enabling disk space caching");
680 			} else if (strcmp(args[0].from, "v2") == 0) {
681 				btrfs_clear_opt(info->mount_opt,
682 						SPACE_CACHE);
683 				btrfs_set_and_info(info, FREE_SPACE_TREE,
684 						   "enabling free space tree");
685 			} else {
686 				ret = -EINVAL;
687 				goto out;
688 			}
689 			break;
690 		case Opt_rescan_uuid_tree:
691 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
692 			break;
693 		case Opt_no_space_cache:
694 			if (btrfs_test_opt(info, SPACE_CACHE)) {
695 				btrfs_clear_and_info(info, SPACE_CACHE,
696 					     "disabling disk space caching");
697 			}
698 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
699 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
700 					     "disabling free space tree");
701 			}
702 			break;
703 		case Opt_inode_cache:
704 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
705 					   "enabling inode map caching");
706 			break;
707 		case Opt_noinode_cache:
708 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
709 					     "disabling inode map caching");
710 			break;
711 		case Opt_clear_cache:
712 			btrfs_set_and_info(info, CLEAR_CACHE,
713 					   "force clearing of disk cache");
714 			break;
715 		case Opt_user_subvol_rm_allowed:
716 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
717 			break;
718 		case Opt_enospc_debug:
719 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
720 			break;
721 		case Opt_noenospc_debug:
722 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
723 			break;
724 		case Opt_defrag:
725 			btrfs_set_and_info(info, AUTO_DEFRAG,
726 					   "enabling auto defrag");
727 			break;
728 		case Opt_nodefrag:
729 			btrfs_clear_and_info(info, AUTO_DEFRAG,
730 					     "disabling auto defrag");
731 			break;
732 		case Opt_recovery:
733 			btrfs_warn(info,
734 				   "'recovery' is deprecated, use 'usebackuproot' instead");
735 		case Opt_usebackuproot:
736 			btrfs_info(info,
737 				   "trying to use backup root at mount time");
738 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
739 			break;
740 		case Opt_skip_balance:
741 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
742 			break;
743 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
744 		case Opt_check_integrity_including_extent_data:
745 			btrfs_info(info,
746 				   "enabling check integrity including extent data");
747 			btrfs_set_opt(info->mount_opt,
748 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
749 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
750 			break;
751 		case Opt_check_integrity:
752 			btrfs_info(info, "enabling check integrity");
753 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
754 			break;
755 		case Opt_check_integrity_print_mask:
756 			ret = match_int(&args[0], &intarg);
757 			if (ret) {
758 				goto out;
759 			} else if (intarg >= 0) {
760 				info->check_integrity_print_mask = intarg;
761 				btrfs_info(info,
762 					   "check_integrity_print_mask 0x%x",
763 					   info->check_integrity_print_mask);
764 			} else {
765 				ret = -EINVAL;
766 				goto out;
767 			}
768 			break;
769 #else
770 		case Opt_check_integrity_including_extent_data:
771 		case Opt_check_integrity:
772 		case Opt_check_integrity_print_mask:
773 			btrfs_err(info,
774 				  "support for check_integrity* not compiled in!");
775 			ret = -EINVAL;
776 			goto out;
777 #endif
778 		case Opt_fatal_errors:
779 			if (strcmp(args[0].from, "panic") == 0)
780 				btrfs_set_opt(info->mount_opt,
781 					      PANIC_ON_FATAL_ERROR);
782 			else if (strcmp(args[0].from, "bug") == 0)
783 				btrfs_clear_opt(info->mount_opt,
784 					      PANIC_ON_FATAL_ERROR);
785 			else {
786 				ret = -EINVAL;
787 				goto out;
788 			}
789 			break;
790 		case Opt_commit_interval:
791 			intarg = 0;
792 			ret = match_int(&args[0], &intarg);
793 			if (ret < 0) {
794 				btrfs_err(info, "invalid commit interval");
795 				ret = -EINVAL;
796 				goto out;
797 			}
798 			if (intarg > 0) {
799 				if (intarg > 300) {
800 					btrfs_warn(info,
801 						"excessive commit interval %d",
802 						intarg);
803 				}
804 				info->commit_interval = intarg;
805 			} else {
806 				btrfs_info(info,
807 					   "using default commit interval %ds",
808 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
809 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
810 			}
811 			break;
812 #ifdef CONFIG_BTRFS_DEBUG
813 		case Opt_fragment_all:
814 			btrfs_info(info, "fragmenting all space");
815 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
816 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
817 			break;
818 		case Opt_fragment_metadata:
819 			btrfs_info(info, "fragmenting metadata");
820 			btrfs_set_opt(info->mount_opt,
821 				      FRAGMENT_METADATA);
822 			break;
823 		case Opt_fragment_data:
824 			btrfs_info(info, "fragmenting data");
825 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
826 			break;
827 #endif
828 		case Opt_err:
829 			btrfs_info(info, "unrecognized mount option '%s'", p);
830 			ret = -EINVAL;
831 			goto out;
832 		default:
833 			break;
834 		}
835 	}
836 check:
837 	/*
838 	 * Extra check for current option against current flag
839 	 */
840 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
841 		btrfs_err(info,
842 			  "nologreplay must be used with ro mount option");
843 		ret = -EINVAL;
844 	}
845 out:
846 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
847 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
848 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
849 		btrfs_err(info, "cannot disable free space tree");
850 		ret = -EINVAL;
851 
852 	}
853 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
854 		btrfs_info(info, "disk space caching is enabled");
855 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
856 		btrfs_info(info, "using free space tree");
857 	kfree(orig);
858 	return ret;
859 }
860 
861 /*
862  * Parse mount options that are required early in the mount process.
863  *
864  * All other options will be parsed on much later in the mount process and
865  * only when we need to allocate a new super block.
866  */
867 static int btrfs_parse_early_options(const char *options, fmode_t flags,
868 		void *holder, char **subvol_name, u64 *subvol_objectid,
869 		struct btrfs_fs_devices **fs_devices)
870 {
871 	substring_t args[MAX_OPT_ARGS];
872 	char *device_name, *opts, *orig, *p;
873 	char *num = NULL;
874 	int error = 0;
875 
876 	if (!options)
877 		return 0;
878 
879 	/*
880 	 * strsep changes the string, duplicate it because parse_options
881 	 * gets called twice
882 	 */
883 	opts = kstrdup(options, GFP_KERNEL);
884 	if (!opts)
885 		return -ENOMEM;
886 	orig = opts;
887 
888 	while ((p = strsep(&opts, ",")) != NULL) {
889 		int token;
890 		if (!*p)
891 			continue;
892 
893 		token = match_token(p, tokens, args);
894 		switch (token) {
895 		case Opt_subvol:
896 			kfree(*subvol_name);
897 			*subvol_name = match_strdup(&args[0]);
898 			if (!*subvol_name) {
899 				error = -ENOMEM;
900 				goto out;
901 			}
902 			break;
903 		case Opt_subvolid:
904 			num = match_strdup(&args[0]);
905 			if (num) {
906 				*subvol_objectid = memparse(num, NULL);
907 				kfree(num);
908 				/* we want the original fs_tree */
909 				if (!*subvol_objectid)
910 					*subvol_objectid =
911 						BTRFS_FS_TREE_OBJECTID;
912 			} else {
913 				error = -EINVAL;
914 				goto out;
915 			}
916 			break;
917 		case Opt_subvolrootid:
918 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
919 			break;
920 		case Opt_device:
921 			device_name = match_strdup(&args[0]);
922 			if (!device_name) {
923 				error = -ENOMEM;
924 				goto out;
925 			}
926 			error = btrfs_scan_one_device(device_name,
927 					flags, holder, fs_devices);
928 			kfree(device_name);
929 			if (error)
930 				goto out;
931 			break;
932 		default:
933 			break;
934 		}
935 	}
936 
937 out:
938 	kfree(orig);
939 	return error;
940 }
941 
942 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
943 					   u64 subvol_objectid)
944 {
945 	struct btrfs_root *root = fs_info->tree_root;
946 	struct btrfs_root *fs_root;
947 	struct btrfs_root_ref *root_ref;
948 	struct btrfs_inode_ref *inode_ref;
949 	struct btrfs_key key;
950 	struct btrfs_path *path = NULL;
951 	char *name = NULL, *ptr;
952 	u64 dirid;
953 	int len;
954 	int ret;
955 
956 	path = btrfs_alloc_path();
957 	if (!path) {
958 		ret = -ENOMEM;
959 		goto err;
960 	}
961 	path->leave_spinning = 1;
962 
963 	name = kmalloc(PATH_MAX, GFP_KERNEL);
964 	if (!name) {
965 		ret = -ENOMEM;
966 		goto err;
967 	}
968 	ptr = name + PATH_MAX - 1;
969 	ptr[0] = '\0';
970 
971 	/*
972 	 * Walk up the subvolume trees in the tree of tree roots by root
973 	 * backrefs until we hit the top-level subvolume.
974 	 */
975 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
976 		key.objectid = subvol_objectid;
977 		key.type = BTRFS_ROOT_BACKREF_KEY;
978 		key.offset = (u64)-1;
979 
980 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
981 		if (ret < 0) {
982 			goto err;
983 		} else if (ret > 0) {
984 			ret = btrfs_previous_item(root, path, subvol_objectid,
985 						  BTRFS_ROOT_BACKREF_KEY);
986 			if (ret < 0) {
987 				goto err;
988 			} else if (ret > 0) {
989 				ret = -ENOENT;
990 				goto err;
991 			}
992 		}
993 
994 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
995 		subvol_objectid = key.offset;
996 
997 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
998 					  struct btrfs_root_ref);
999 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1000 		ptr -= len + 1;
1001 		if (ptr < name) {
1002 			ret = -ENAMETOOLONG;
1003 			goto err;
1004 		}
1005 		read_extent_buffer(path->nodes[0], ptr + 1,
1006 				   (unsigned long)(root_ref + 1), len);
1007 		ptr[0] = '/';
1008 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1009 		btrfs_release_path(path);
1010 
1011 		key.objectid = subvol_objectid;
1012 		key.type = BTRFS_ROOT_ITEM_KEY;
1013 		key.offset = (u64)-1;
1014 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1015 		if (IS_ERR(fs_root)) {
1016 			ret = PTR_ERR(fs_root);
1017 			goto err;
1018 		}
1019 
1020 		/*
1021 		 * Walk up the filesystem tree by inode refs until we hit the
1022 		 * root directory.
1023 		 */
1024 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1025 			key.objectid = dirid;
1026 			key.type = BTRFS_INODE_REF_KEY;
1027 			key.offset = (u64)-1;
1028 
1029 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1030 			if (ret < 0) {
1031 				goto err;
1032 			} else if (ret > 0) {
1033 				ret = btrfs_previous_item(fs_root, path, dirid,
1034 							  BTRFS_INODE_REF_KEY);
1035 				if (ret < 0) {
1036 					goto err;
1037 				} else if (ret > 0) {
1038 					ret = -ENOENT;
1039 					goto err;
1040 				}
1041 			}
1042 
1043 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1044 			dirid = key.offset;
1045 
1046 			inode_ref = btrfs_item_ptr(path->nodes[0],
1047 						   path->slots[0],
1048 						   struct btrfs_inode_ref);
1049 			len = btrfs_inode_ref_name_len(path->nodes[0],
1050 						       inode_ref);
1051 			ptr -= len + 1;
1052 			if (ptr < name) {
1053 				ret = -ENAMETOOLONG;
1054 				goto err;
1055 			}
1056 			read_extent_buffer(path->nodes[0], ptr + 1,
1057 					   (unsigned long)(inode_ref + 1), len);
1058 			ptr[0] = '/';
1059 			btrfs_release_path(path);
1060 		}
1061 	}
1062 
1063 	btrfs_free_path(path);
1064 	if (ptr == name + PATH_MAX - 1) {
1065 		name[0] = '/';
1066 		name[1] = '\0';
1067 	} else {
1068 		memmove(name, ptr, name + PATH_MAX - ptr);
1069 	}
1070 	return name;
1071 
1072 err:
1073 	btrfs_free_path(path);
1074 	kfree(name);
1075 	return ERR_PTR(ret);
1076 }
1077 
1078 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1079 {
1080 	struct btrfs_root *root = fs_info->tree_root;
1081 	struct btrfs_dir_item *di;
1082 	struct btrfs_path *path;
1083 	struct btrfs_key location;
1084 	u64 dir_id;
1085 
1086 	path = btrfs_alloc_path();
1087 	if (!path)
1088 		return -ENOMEM;
1089 	path->leave_spinning = 1;
1090 
1091 	/*
1092 	 * Find the "default" dir item which points to the root item that we
1093 	 * will mount by default if we haven't been given a specific subvolume
1094 	 * to mount.
1095 	 */
1096 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1097 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1098 	if (IS_ERR(di)) {
1099 		btrfs_free_path(path);
1100 		return PTR_ERR(di);
1101 	}
1102 	if (!di) {
1103 		/*
1104 		 * Ok the default dir item isn't there.  This is weird since
1105 		 * it's always been there, but don't freak out, just try and
1106 		 * mount the top-level subvolume.
1107 		 */
1108 		btrfs_free_path(path);
1109 		*objectid = BTRFS_FS_TREE_OBJECTID;
1110 		return 0;
1111 	}
1112 
1113 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1114 	btrfs_free_path(path);
1115 	*objectid = location.objectid;
1116 	return 0;
1117 }
1118 
1119 static int btrfs_fill_super(struct super_block *sb,
1120 			    struct btrfs_fs_devices *fs_devices,
1121 			    void *data)
1122 {
1123 	struct inode *inode;
1124 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1125 	struct btrfs_key key;
1126 	int err;
1127 
1128 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1129 	sb->s_magic = BTRFS_SUPER_MAGIC;
1130 	sb->s_op = &btrfs_super_ops;
1131 	sb->s_d_op = &btrfs_dentry_operations;
1132 	sb->s_export_op = &btrfs_export_ops;
1133 	sb->s_xattr = btrfs_xattr_handlers;
1134 	sb->s_time_gran = 1;
1135 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1136 	sb->s_flags |= MS_POSIXACL;
1137 #endif
1138 	sb->s_flags |= MS_I_VERSION;
1139 	sb->s_iflags |= SB_I_CGROUPWB;
1140 
1141 	err = super_setup_bdi(sb);
1142 	if (err) {
1143 		btrfs_err(fs_info, "super_setup_bdi failed");
1144 		return err;
1145 	}
1146 
1147 	err = open_ctree(sb, fs_devices, (char *)data);
1148 	if (err) {
1149 		btrfs_err(fs_info, "open_ctree failed");
1150 		return err;
1151 	}
1152 
1153 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1154 	key.type = BTRFS_INODE_ITEM_KEY;
1155 	key.offset = 0;
1156 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1157 	if (IS_ERR(inode)) {
1158 		err = PTR_ERR(inode);
1159 		goto fail_close;
1160 	}
1161 
1162 	sb->s_root = d_make_root(inode);
1163 	if (!sb->s_root) {
1164 		err = -ENOMEM;
1165 		goto fail_close;
1166 	}
1167 
1168 	cleancache_init_fs(sb);
1169 	sb->s_flags |= MS_ACTIVE;
1170 	return 0;
1171 
1172 fail_close:
1173 	close_ctree(fs_info);
1174 	return err;
1175 }
1176 
1177 int btrfs_sync_fs(struct super_block *sb, int wait)
1178 {
1179 	struct btrfs_trans_handle *trans;
1180 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1181 	struct btrfs_root *root = fs_info->tree_root;
1182 
1183 	trace_btrfs_sync_fs(fs_info, wait);
1184 
1185 	if (!wait) {
1186 		filemap_flush(fs_info->btree_inode->i_mapping);
1187 		return 0;
1188 	}
1189 
1190 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1191 
1192 	trans = btrfs_attach_transaction_barrier(root);
1193 	if (IS_ERR(trans)) {
1194 		/* no transaction, don't bother */
1195 		if (PTR_ERR(trans) == -ENOENT) {
1196 			/*
1197 			 * Exit unless we have some pending changes
1198 			 * that need to go through commit
1199 			 */
1200 			if (fs_info->pending_changes == 0)
1201 				return 0;
1202 			/*
1203 			 * A non-blocking test if the fs is frozen. We must not
1204 			 * start a new transaction here otherwise a deadlock
1205 			 * happens. The pending operations are delayed to the
1206 			 * next commit after thawing.
1207 			 */
1208 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1209 				__sb_end_write(sb, SB_FREEZE_WRITE);
1210 			else
1211 				return 0;
1212 			trans = btrfs_start_transaction(root, 0);
1213 		}
1214 		if (IS_ERR(trans))
1215 			return PTR_ERR(trans);
1216 	}
1217 	return btrfs_commit_transaction(trans);
1218 }
1219 
1220 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1221 {
1222 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1223 	char *compress_type;
1224 
1225 	if (btrfs_test_opt(info, DEGRADED))
1226 		seq_puts(seq, ",degraded");
1227 	if (btrfs_test_opt(info, NODATASUM))
1228 		seq_puts(seq, ",nodatasum");
1229 	if (btrfs_test_opt(info, NODATACOW))
1230 		seq_puts(seq, ",nodatacow");
1231 	if (btrfs_test_opt(info, NOBARRIER))
1232 		seq_puts(seq, ",nobarrier");
1233 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1234 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1235 	if (info->thread_pool_size !=  min_t(unsigned long,
1236 					     num_online_cpus() + 2, 8))
1237 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1238 	if (btrfs_test_opt(info, COMPRESS)) {
1239 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1240 			compress_type = "zlib";
1241 		else if (info->compress_type == BTRFS_COMPRESS_LZO)
1242 			compress_type = "lzo";
1243 		else
1244 			compress_type = "zstd";
1245 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1246 			seq_printf(seq, ",compress-force=%s", compress_type);
1247 		else
1248 			seq_printf(seq, ",compress=%s", compress_type);
1249 	}
1250 	if (btrfs_test_opt(info, NOSSD))
1251 		seq_puts(seq, ",nossd");
1252 	if (btrfs_test_opt(info, SSD_SPREAD))
1253 		seq_puts(seq, ",ssd_spread");
1254 	else if (btrfs_test_opt(info, SSD))
1255 		seq_puts(seq, ",ssd");
1256 	if (btrfs_test_opt(info, NOTREELOG))
1257 		seq_puts(seq, ",notreelog");
1258 	if (btrfs_test_opt(info, NOLOGREPLAY))
1259 		seq_puts(seq, ",nologreplay");
1260 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1261 		seq_puts(seq, ",flushoncommit");
1262 	if (btrfs_test_opt(info, DISCARD))
1263 		seq_puts(seq, ",discard");
1264 	if (!(info->sb->s_flags & MS_POSIXACL))
1265 		seq_puts(seq, ",noacl");
1266 	if (btrfs_test_opt(info, SPACE_CACHE))
1267 		seq_puts(seq, ",space_cache");
1268 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1269 		seq_puts(seq, ",space_cache=v2");
1270 	else
1271 		seq_puts(seq, ",nospace_cache");
1272 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1273 		seq_puts(seq, ",rescan_uuid_tree");
1274 	if (btrfs_test_opt(info, CLEAR_CACHE))
1275 		seq_puts(seq, ",clear_cache");
1276 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1277 		seq_puts(seq, ",user_subvol_rm_allowed");
1278 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1279 		seq_puts(seq, ",enospc_debug");
1280 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1281 		seq_puts(seq, ",autodefrag");
1282 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1283 		seq_puts(seq, ",inode_cache");
1284 	if (btrfs_test_opt(info, SKIP_BALANCE))
1285 		seq_puts(seq, ",skip_balance");
1286 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1287 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1288 		seq_puts(seq, ",check_int_data");
1289 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1290 		seq_puts(seq, ",check_int");
1291 	if (info->check_integrity_print_mask)
1292 		seq_printf(seq, ",check_int_print_mask=%d",
1293 				info->check_integrity_print_mask);
1294 #endif
1295 	if (info->metadata_ratio)
1296 		seq_printf(seq, ",metadata_ratio=%d",
1297 				info->metadata_ratio);
1298 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1299 		seq_puts(seq, ",fatal_errors=panic");
1300 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1301 		seq_printf(seq, ",commit=%d", info->commit_interval);
1302 #ifdef CONFIG_BTRFS_DEBUG
1303 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1304 		seq_puts(seq, ",fragment=data");
1305 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1306 		seq_puts(seq, ",fragment=metadata");
1307 #endif
1308 	seq_printf(seq, ",subvolid=%llu",
1309 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1310 	seq_puts(seq, ",subvol=");
1311 	seq_dentry(seq, dentry, " \t\n\\");
1312 	return 0;
1313 }
1314 
1315 static int btrfs_test_super(struct super_block *s, void *data)
1316 {
1317 	struct btrfs_fs_info *p = data;
1318 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1319 
1320 	return fs_info->fs_devices == p->fs_devices;
1321 }
1322 
1323 static int btrfs_set_super(struct super_block *s, void *data)
1324 {
1325 	int err = set_anon_super(s, data);
1326 	if (!err)
1327 		s->s_fs_info = data;
1328 	return err;
1329 }
1330 
1331 /*
1332  * subvolumes are identified by ino 256
1333  */
1334 static inline int is_subvolume_inode(struct inode *inode)
1335 {
1336 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1337 		return 1;
1338 	return 0;
1339 }
1340 
1341 /*
1342  * This will add subvolid=0 to the argument string while removing any subvol=
1343  * and subvolid= arguments to make sure we get the top-level root for path
1344  * walking to the subvol we want.
1345  */
1346 static char *setup_root_args(char *args)
1347 {
1348 	char *buf, *dst, *sep;
1349 
1350 	if (!args)
1351 		return kstrdup("subvolid=0", GFP_KERNEL);
1352 
1353 	/* The worst case is that we add ",subvolid=0" to the end. */
1354 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1,
1355 			GFP_KERNEL);
1356 	if (!buf)
1357 		return NULL;
1358 
1359 	while (1) {
1360 		sep = strchrnul(args, ',');
1361 		if (!strstarts(args, "subvol=") &&
1362 		    !strstarts(args, "subvolid=")) {
1363 			memcpy(dst, args, sep - args);
1364 			dst += sep - args;
1365 			*dst++ = ',';
1366 		}
1367 		if (*sep)
1368 			args = sep + 1;
1369 		else
1370 			break;
1371 	}
1372 	strcpy(dst, "subvolid=0");
1373 
1374 	return buf;
1375 }
1376 
1377 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1378 				   int flags, const char *device_name,
1379 				   char *data)
1380 {
1381 	struct dentry *root;
1382 	struct vfsmount *mnt = NULL;
1383 	char *newargs;
1384 	int ret;
1385 
1386 	newargs = setup_root_args(data);
1387 	if (!newargs) {
1388 		root = ERR_PTR(-ENOMEM);
1389 		goto out;
1390 	}
1391 
1392 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1393 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1394 		if (flags & MS_RDONLY) {
1395 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1396 					     device_name, newargs);
1397 		} else {
1398 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1399 					     device_name, newargs);
1400 			if (IS_ERR(mnt)) {
1401 				root = ERR_CAST(mnt);
1402 				mnt = NULL;
1403 				goto out;
1404 			}
1405 
1406 			down_write(&mnt->mnt_sb->s_umount);
1407 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1408 			up_write(&mnt->mnt_sb->s_umount);
1409 			if (ret < 0) {
1410 				root = ERR_PTR(ret);
1411 				goto out;
1412 			}
1413 		}
1414 	}
1415 	if (IS_ERR(mnt)) {
1416 		root = ERR_CAST(mnt);
1417 		mnt = NULL;
1418 		goto out;
1419 	}
1420 
1421 	if (!subvol_name) {
1422 		if (!subvol_objectid) {
1423 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1424 							  &subvol_objectid);
1425 			if (ret) {
1426 				root = ERR_PTR(ret);
1427 				goto out;
1428 			}
1429 		}
1430 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1431 							    subvol_objectid);
1432 		if (IS_ERR(subvol_name)) {
1433 			root = ERR_CAST(subvol_name);
1434 			subvol_name = NULL;
1435 			goto out;
1436 		}
1437 
1438 	}
1439 
1440 	root = mount_subtree(mnt, subvol_name);
1441 	/* mount_subtree() drops our reference on the vfsmount. */
1442 	mnt = NULL;
1443 
1444 	if (!IS_ERR(root)) {
1445 		struct super_block *s = root->d_sb;
1446 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1447 		struct inode *root_inode = d_inode(root);
1448 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1449 
1450 		ret = 0;
1451 		if (!is_subvolume_inode(root_inode)) {
1452 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1453 			       subvol_name);
1454 			ret = -EINVAL;
1455 		}
1456 		if (subvol_objectid && root_objectid != subvol_objectid) {
1457 			/*
1458 			 * This will also catch a race condition where a
1459 			 * subvolume which was passed by ID is renamed and
1460 			 * another subvolume is renamed over the old location.
1461 			 */
1462 			btrfs_err(fs_info,
1463 				  "subvol '%s' does not match subvolid %llu",
1464 				  subvol_name, subvol_objectid);
1465 			ret = -EINVAL;
1466 		}
1467 		if (ret) {
1468 			dput(root);
1469 			root = ERR_PTR(ret);
1470 			deactivate_locked_super(s);
1471 		}
1472 	}
1473 
1474 out:
1475 	mntput(mnt);
1476 	kfree(newargs);
1477 	kfree(subvol_name);
1478 	return root;
1479 }
1480 
1481 static int parse_security_options(char *orig_opts,
1482 				  struct security_mnt_opts *sec_opts)
1483 {
1484 	char *secdata = NULL;
1485 	int ret = 0;
1486 
1487 	secdata = alloc_secdata();
1488 	if (!secdata)
1489 		return -ENOMEM;
1490 	ret = security_sb_copy_data(orig_opts, secdata);
1491 	if (ret) {
1492 		free_secdata(secdata);
1493 		return ret;
1494 	}
1495 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1496 	free_secdata(secdata);
1497 	return ret;
1498 }
1499 
1500 static int setup_security_options(struct btrfs_fs_info *fs_info,
1501 				  struct super_block *sb,
1502 				  struct security_mnt_opts *sec_opts)
1503 {
1504 	int ret = 0;
1505 
1506 	/*
1507 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1508 	 * is valid.
1509 	 */
1510 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1511 	if (ret)
1512 		return ret;
1513 
1514 #ifdef CONFIG_SECURITY
1515 	if (!fs_info->security_opts.num_mnt_opts) {
1516 		/* first time security setup, copy sec_opts to fs_info */
1517 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1518 	} else {
1519 		/*
1520 		 * Since SELinux (the only one supporting security_mnt_opts)
1521 		 * does NOT support changing context during remount/mount of
1522 		 * the same sb, this must be the same or part of the same
1523 		 * security options, just free it.
1524 		 */
1525 		security_free_mnt_opts(sec_opts);
1526 	}
1527 #endif
1528 	return ret;
1529 }
1530 
1531 /*
1532  * Find a superblock for the given device / mount point.
1533  *
1534  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1535  *	  for multiple device setup.  Make sure to keep it in sync.
1536  */
1537 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1538 		const char *device_name, void *data)
1539 {
1540 	struct block_device *bdev = NULL;
1541 	struct super_block *s;
1542 	struct btrfs_fs_devices *fs_devices = NULL;
1543 	struct btrfs_fs_info *fs_info = NULL;
1544 	struct security_mnt_opts new_sec_opts;
1545 	fmode_t mode = FMODE_READ;
1546 	char *subvol_name = NULL;
1547 	u64 subvol_objectid = 0;
1548 	int error = 0;
1549 
1550 	if (!(flags & MS_RDONLY))
1551 		mode |= FMODE_WRITE;
1552 
1553 	error = btrfs_parse_early_options(data, mode, fs_type,
1554 					  &subvol_name, &subvol_objectid,
1555 					  &fs_devices);
1556 	if (error) {
1557 		kfree(subvol_name);
1558 		return ERR_PTR(error);
1559 	}
1560 
1561 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1562 		/* mount_subvol() will free subvol_name. */
1563 		return mount_subvol(subvol_name, subvol_objectid, flags,
1564 				    device_name, data);
1565 	}
1566 
1567 	security_init_mnt_opts(&new_sec_opts);
1568 	if (data) {
1569 		error = parse_security_options(data, &new_sec_opts);
1570 		if (error)
1571 			return ERR_PTR(error);
1572 	}
1573 
1574 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1575 	if (error)
1576 		goto error_sec_opts;
1577 
1578 	/*
1579 	 * Setup a dummy root and fs_info for test/set super.  This is because
1580 	 * we don't actually fill this stuff out until open_ctree, but we need
1581 	 * it for searching for existing supers, so this lets us do that and
1582 	 * then open_ctree will properly initialize everything later.
1583 	 */
1584 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1585 	if (!fs_info) {
1586 		error = -ENOMEM;
1587 		goto error_sec_opts;
1588 	}
1589 
1590 	fs_info->fs_devices = fs_devices;
1591 
1592 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1593 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1594 	security_init_mnt_opts(&fs_info->security_opts);
1595 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1596 		error = -ENOMEM;
1597 		goto error_fs_info;
1598 	}
1599 
1600 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1601 	if (error)
1602 		goto error_fs_info;
1603 
1604 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1605 		error = -EACCES;
1606 		goto error_close_devices;
1607 	}
1608 
1609 	bdev = fs_devices->latest_bdev;
1610 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1611 		 fs_info);
1612 	if (IS_ERR(s)) {
1613 		error = PTR_ERR(s);
1614 		goto error_close_devices;
1615 	}
1616 
1617 	if (s->s_root) {
1618 		btrfs_close_devices(fs_devices);
1619 		free_fs_info(fs_info);
1620 		if ((flags ^ s->s_flags) & MS_RDONLY)
1621 			error = -EBUSY;
1622 	} else {
1623 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1624 		btrfs_sb(s)->bdev_holder = fs_type;
1625 		error = btrfs_fill_super(s, fs_devices, data);
1626 	}
1627 	if (error) {
1628 		deactivate_locked_super(s);
1629 		goto error_sec_opts;
1630 	}
1631 
1632 	fs_info = btrfs_sb(s);
1633 	error = setup_security_options(fs_info, s, &new_sec_opts);
1634 	if (error) {
1635 		deactivate_locked_super(s);
1636 		goto error_sec_opts;
1637 	}
1638 
1639 	return dget(s->s_root);
1640 
1641 error_close_devices:
1642 	btrfs_close_devices(fs_devices);
1643 error_fs_info:
1644 	free_fs_info(fs_info);
1645 error_sec_opts:
1646 	security_free_mnt_opts(&new_sec_opts);
1647 	return ERR_PTR(error);
1648 }
1649 
1650 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1651 				     int new_pool_size, int old_pool_size)
1652 {
1653 	if (new_pool_size == old_pool_size)
1654 		return;
1655 
1656 	fs_info->thread_pool_size = new_pool_size;
1657 
1658 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1659 	       old_pool_size, new_pool_size);
1660 
1661 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1662 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1663 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1664 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1665 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1666 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1667 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1668 				new_pool_size);
1669 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1670 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1671 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1672 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1673 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1674 				new_pool_size);
1675 }
1676 
1677 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1678 {
1679 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1680 }
1681 
1682 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1683 				       unsigned long old_opts, int flags)
1684 {
1685 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1686 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1687 	     (flags & MS_RDONLY))) {
1688 		/* wait for any defraggers to finish */
1689 		wait_event(fs_info->transaction_wait,
1690 			   (atomic_read(&fs_info->defrag_running) == 0));
1691 		if (flags & MS_RDONLY)
1692 			sync_filesystem(fs_info->sb);
1693 	}
1694 }
1695 
1696 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1697 					 unsigned long old_opts)
1698 {
1699 	/*
1700 	 * We need to cleanup all defragable inodes if the autodefragment is
1701 	 * close or the filesystem is read only.
1702 	 */
1703 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1704 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1705 		btrfs_cleanup_defrag_inodes(fs_info);
1706 	}
1707 
1708 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1709 }
1710 
1711 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1712 {
1713 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1714 	struct btrfs_root *root = fs_info->tree_root;
1715 	unsigned old_flags = sb->s_flags;
1716 	unsigned long old_opts = fs_info->mount_opt;
1717 	unsigned long old_compress_type = fs_info->compress_type;
1718 	u64 old_max_inline = fs_info->max_inline;
1719 	int old_thread_pool_size = fs_info->thread_pool_size;
1720 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1721 	int ret;
1722 
1723 	sync_filesystem(sb);
1724 	btrfs_remount_prepare(fs_info);
1725 
1726 	if (data) {
1727 		struct security_mnt_opts new_sec_opts;
1728 
1729 		security_init_mnt_opts(&new_sec_opts);
1730 		ret = parse_security_options(data, &new_sec_opts);
1731 		if (ret)
1732 			goto restore;
1733 		ret = setup_security_options(fs_info, sb,
1734 					     &new_sec_opts);
1735 		if (ret) {
1736 			security_free_mnt_opts(&new_sec_opts);
1737 			goto restore;
1738 		}
1739 	}
1740 
1741 	ret = btrfs_parse_options(fs_info, data, *flags);
1742 	if (ret) {
1743 		ret = -EINVAL;
1744 		goto restore;
1745 	}
1746 
1747 	btrfs_remount_begin(fs_info, old_opts, *flags);
1748 	btrfs_resize_thread_pool(fs_info,
1749 		fs_info->thread_pool_size, old_thread_pool_size);
1750 
1751 	if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb))
1752 		goto out;
1753 
1754 	if (*flags & MS_RDONLY) {
1755 		/*
1756 		 * this also happens on 'umount -rf' or on shutdown, when
1757 		 * the filesystem is busy.
1758 		 */
1759 		cancel_work_sync(&fs_info->async_reclaim_work);
1760 
1761 		/* wait for the uuid_scan task to finish */
1762 		down(&fs_info->uuid_tree_rescan_sem);
1763 		/* avoid complains from lockdep et al. */
1764 		up(&fs_info->uuid_tree_rescan_sem);
1765 
1766 		sb->s_flags |= MS_RDONLY;
1767 
1768 		/*
1769 		 * Setting MS_RDONLY will put the cleaner thread to
1770 		 * sleep at the next loop if it's already active.
1771 		 * If it's already asleep, we'll leave unused block
1772 		 * groups on disk until we're mounted read-write again
1773 		 * unless we clean them up here.
1774 		 */
1775 		btrfs_delete_unused_bgs(fs_info);
1776 
1777 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1778 		btrfs_scrub_cancel(fs_info);
1779 		btrfs_pause_balance(fs_info);
1780 
1781 		ret = btrfs_commit_super(fs_info);
1782 		if (ret)
1783 			goto restore;
1784 	} else {
1785 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1786 			btrfs_err(fs_info,
1787 				"Remounting read-write after error is not allowed");
1788 			ret = -EINVAL;
1789 			goto restore;
1790 		}
1791 		if (fs_info->fs_devices->rw_devices == 0) {
1792 			ret = -EACCES;
1793 			goto restore;
1794 		}
1795 
1796 		if (!btrfs_check_rw_degradable(fs_info)) {
1797 			btrfs_warn(fs_info,
1798 				"too many missing devices, writeable remount is not allowed");
1799 			ret = -EACCES;
1800 			goto restore;
1801 		}
1802 
1803 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1804 			ret = -EINVAL;
1805 			goto restore;
1806 		}
1807 
1808 		ret = btrfs_cleanup_fs_roots(fs_info);
1809 		if (ret)
1810 			goto restore;
1811 
1812 		/* recover relocation */
1813 		mutex_lock(&fs_info->cleaner_mutex);
1814 		ret = btrfs_recover_relocation(root);
1815 		mutex_unlock(&fs_info->cleaner_mutex);
1816 		if (ret)
1817 			goto restore;
1818 
1819 		ret = btrfs_resume_balance_async(fs_info);
1820 		if (ret)
1821 			goto restore;
1822 
1823 		ret = btrfs_resume_dev_replace_async(fs_info);
1824 		if (ret) {
1825 			btrfs_warn(fs_info, "failed to resume dev_replace");
1826 			goto restore;
1827 		}
1828 
1829 		btrfs_qgroup_rescan_resume(fs_info);
1830 
1831 		if (!fs_info->uuid_root) {
1832 			btrfs_info(fs_info, "creating UUID tree");
1833 			ret = btrfs_create_uuid_tree(fs_info);
1834 			if (ret) {
1835 				btrfs_warn(fs_info,
1836 					   "failed to create the UUID tree %d",
1837 					   ret);
1838 				goto restore;
1839 			}
1840 		}
1841 		sb->s_flags &= ~MS_RDONLY;
1842 
1843 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1844 	}
1845 out:
1846 	wake_up_process(fs_info->transaction_kthread);
1847 	btrfs_remount_cleanup(fs_info, old_opts);
1848 	return 0;
1849 
1850 restore:
1851 	/* We've hit an error - don't reset MS_RDONLY */
1852 	if (sb_rdonly(sb))
1853 		old_flags |= MS_RDONLY;
1854 	sb->s_flags = old_flags;
1855 	fs_info->mount_opt = old_opts;
1856 	fs_info->compress_type = old_compress_type;
1857 	fs_info->max_inline = old_max_inline;
1858 	btrfs_resize_thread_pool(fs_info,
1859 		old_thread_pool_size, fs_info->thread_pool_size);
1860 	fs_info->metadata_ratio = old_metadata_ratio;
1861 	btrfs_remount_cleanup(fs_info, old_opts);
1862 	return ret;
1863 }
1864 
1865 /* Used to sort the devices by max_avail(descending sort) */
1866 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1867 				       const void *dev_info2)
1868 {
1869 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1870 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1871 		return -1;
1872 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1873 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1874 		return 1;
1875 	else
1876 	return 0;
1877 }
1878 
1879 /*
1880  * sort the devices by max_avail, in which max free extent size of each device
1881  * is stored.(Descending Sort)
1882  */
1883 static inline void btrfs_descending_sort_devices(
1884 					struct btrfs_device_info *devices,
1885 					size_t nr_devices)
1886 {
1887 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1888 	     btrfs_cmp_device_free_bytes, NULL);
1889 }
1890 
1891 /*
1892  * The helper to calc the free space on the devices that can be used to store
1893  * file data.
1894  */
1895 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1896 				       u64 *free_bytes)
1897 {
1898 	struct btrfs_device_info *devices_info;
1899 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1900 	struct btrfs_device *device;
1901 	u64 skip_space;
1902 	u64 type;
1903 	u64 avail_space;
1904 	u64 min_stripe_size;
1905 	int min_stripes = 1, num_stripes = 1;
1906 	int i = 0, nr_devices;
1907 
1908 	/*
1909 	 * We aren't under the device list lock, so this is racy-ish, but good
1910 	 * enough for our purposes.
1911 	 */
1912 	nr_devices = fs_info->fs_devices->open_devices;
1913 	if (!nr_devices) {
1914 		smp_mb();
1915 		nr_devices = fs_info->fs_devices->open_devices;
1916 		ASSERT(nr_devices);
1917 		if (!nr_devices) {
1918 			*free_bytes = 0;
1919 			return 0;
1920 		}
1921 	}
1922 
1923 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1924 			       GFP_KERNEL);
1925 	if (!devices_info)
1926 		return -ENOMEM;
1927 
1928 	/* calc min stripe number for data space allocation */
1929 	type = btrfs_data_alloc_profile(fs_info);
1930 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1931 		min_stripes = 2;
1932 		num_stripes = nr_devices;
1933 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1934 		min_stripes = 2;
1935 		num_stripes = 2;
1936 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1937 		min_stripes = 4;
1938 		num_stripes = 4;
1939 	}
1940 
1941 	if (type & BTRFS_BLOCK_GROUP_DUP)
1942 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1943 	else
1944 		min_stripe_size = BTRFS_STRIPE_LEN;
1945 
1946 	rcu_read_lock();
1947 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1948 		if (!device->in_fs_metadata || !device->bdev ||
1949 		    device->is_tgtdev_for_dev_replace)
1950 			continue;
1951 
1952 		if (i >= nr_devices)
1953 			break;
1954 
1955 		avail_space = device->total_bytes - device->bytes_used;
1956 
1957 		/* align with stripe_len */
1958 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1959 		avail_space *= BTRFS_STRIPE_LEN;
1960 
1961 		/*
1962 		 * In order to avoid overwriting the superblock on the drive,
1963 		 * btrfs starts at an offset of at least 1MB when doing chunk
1964 		 * allocation.
1965 		 */
1966 		skip_space = SZ_1M;
1967 
1968 		/*
1969 		 * we can use the free space in [0, skip_space - 1], subtract
1970 		 * it from the total.
1971 		 */
1972 		if (avail_space && avail_space >= skip_space)
1973 			avail_space -= skip_space;
1974 		else
1975 			avail_space = 0;
1976 
1977 		if (avail_space < min_stripe_size)
1978 			continue;
1979 
1980 		devices_info[i].dev = device;
1981 		devices_info[i].max_avail = avail_space;
1982 
1983 		i++;
1984 	}
1985 	rcu_read_unlock();
1986 
1987 	nr_devices = i;
1988 
1989 	btrfs_descending_sort_devices(devices_info, nr_devices);
1990 
1991 	i = nr_devices - 1;
1992 	avail_space = 0;
1993 	while (nr_devices >= min_stripes) {
1994 		if (num_stripes > nr_devices)
1995 			num_stripes = nr_devices;
1996 
1997 		if (devices_info[i].max_avail >= min_stripe_size) {
1998 			int j;
1999 			u64 alloc_size;
2000 
2001 			avail_space += devices_info[i].max_avail * num_stripes;
2002 			alloc_size = devices_info[i].max_avail;
2003 			for (j = i + 1 - num_stripes; j <= i; j++)
2004 				devices_info[j].max_avail -= alloc_size;
2005 		}
2006 		i--;
2007 		nr_devices--;
2008 	}
2009 
2010 	kfree(devices_info);
2011 	*free_bytes = avail_space;
2012 	return 0;
2013 }
2014 
2015 /*
2016  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2017  *
2018  * If there's a redundant raid level at DATA block groups, use the respective
2019  * multiplier to scale the sizes.
2020  *
2021  * Unused device space usage is based on simulating the chunk allocator
2022  * algorithm that respects the device sizes and order of allocations.  This is
2023  * a close approximation of the actual use but there are other factors that may
2024  * change the result (like a new metadata chunk).
2025  *
2026  * If metadata is exhausted, f_bavail will be 0.
2027  */
2028 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2029 {
2030 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2031 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2032 	struct list_head *head = &fs_info->space_info;
2033 	struct btrfs_space_info *found;
2034 	u64 total_used = 0;
2035 	u64 total_free_data = 0;
2036 	u64 total_free_meta = 0;
2037 	int bits = dentry->d_sb->s_blocksize_bits;
2038 	__be32 *fsid = (__be32 *)fs_info->fsid;
2039 	unsigned factor = 1;
2040 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2041 	int ret;
2042 	u64 thresh = 0;
2043 	int mixed = 0;
2044 
2045 	rcu_read_lock();
2046 	list_for_each_entry_rcu(found, head, list) {
2047 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2048 			int i;
2049 
2050 			total_free_data += found->disk_total - found->disk_used;
2051 			total_free_data -=
2052 				btrfs_account_ro_block_groups_free_space(found);
2053 
2054 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2055 				if (!list_empty(&found->block_groups[i])) {
2056 					switch (i) {
2057 					case BTRFS_RAID_DUP:
2058 					case BTRFS_RAID_RAID1:
2059 					case BTRFS_RAID_RAID10:
2060 						factor = 2;
2061 					}
2062 				}
2063 			}
2064 		}
2065 
2066 		/*
2067 		 * Metadata in mixed block goup profiles are accounted in data
2068 		 */
2069 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2070 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2071 				mixed = 1;
2072 			else
2073 				total_free_meta += found->disk_total -
2074 					found->disk_used;
2075 		}
2076 
2077 		total_used += found->disk_used;
2078 	}
2079 
2080 	rcu_read_unlock();
2081 
2082 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2083 	buf->f_blocks >>= bits;
2084 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2085 
2086 	/* Account global block reserve as used, it's in logical size already */
2087 	spin_lock(&block_rsv->lock);
2088 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2089 	if (buf->f_bfree >= block_rsv->size >> bits)
2090 		buf->f_bfree -= block_rsv->size >> bits;
2091 	else
2092 		buf->f_bfree = 0;
2093 	spin_unlock(&block_rsv->lock);
2094 
2095 	buf->f_bavail = div_u64(total_free_data, factor);
2096 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2097 	if (ret)
2098 		return ret;
2099 	buf->f_bavail += div_u64(total_free_data, factor);
2100 	buf->f_bavail = buf->f_bavail >> bits;
2101 
2102 	/*
2103 	 * We calculate the remaining metadata space minus global reserve. If
2104 	 * this is (supposedly) smaller than zero, there's no space. But this
2105 	 * does not hold in practice, the exhausted state happens where's still
2106 	 * some positive delta. So we apply some guesswork and compare the
2107 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2108 	 *
2109 	 * We probably cannot calculate the exact threshold value because this
2110 	 * depends on the internal reservations requested by various
2111 	 * operations, so some operations that consume a few metadata will
2112 	 * succeed even if the Avail is zero. But this is better than the other
2113 	 * way around.
2114 	 */
2115 	thresh = 4 * 1024 * 1024;
2116 
2117 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2118 		buf->f_bavail = 0;
2119 
2120 	buf->f_type = BTRFS_SUPER_MAGIC;
2121 	buf->f_bsize = dentry->d_sb->s_blocksize;
2122 	buf->f_namelen = BTRFS_NAME_LEN;
2123 
2124 	/* We treat it as constant endianness (it doesn't matter _which_)
2125 	   because we want the fsid to come out the same whether mounted
2126 	   on a big-endian or little-endian host */
2127 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2128 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2129 	/* Mask in the root object ID too, to disambiguate subvols */
2130 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2131 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2132 
2133 	return 0;
2134 }
2135 
2136 static void btrfs_kill_super(struct super_block *sb)
2137 {
2138 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2139 	kill_anon_super(sb);
2140 	free_fs_info(fs_info);
2141 }
2142 
2143 static struct file_system_type btrfs_fs_type = {
2144 	.owner		= THIS_MODULE,
2145 	.name		= "btrfs",
2146 	.mount		= btrfs_mount,
2147 	.kill_sb	= btrfs_kill_super,
2148 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2149 };
2150 MODULE_ALIAS_FS("btrfs");
2151 
2152 static int btrfs_control_open(struct inode *inode, struct file *file)
2153 {
2154 	/*
2155 	 * The control file's private_data is used to hold the
2156 	 * transaction when it is started and is used to keep
2157 	 * track of whether a transaction is already in progress.
2158 	 */
2159 	file->private_data = NULL;
2160 	return 0;
2161 }
2162 
2163 /*
2164  * used by btrfsctl to scan devices when no FS is mounted
2165  */
2166 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2167 				unsigned long arg)
2168 {
2169 	struct btrfs_ioctl_vol_args *vol;
2170 	struct btrfs_fs_devices *fs_devices;
2171 	int ret = -ENOTTY;
2172 
2173 	if (!capable(CAP_SYS_ADMIN))
2174 		return -EPERM;
2175 
2176 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2177 	if (IS_ERR(vol))
2178 		return PTR_ERR(vol);
2179 
2180 	switch (cmd) {
2181 	case BTRFS_IOC_SCAN_DEV:
2182 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2183 					    &btrfs_fs_type, &fs_devices);
2184 		break;
2185 	case BTRFS_IOC_DEVICES_READY:
2186 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2187 					    &btrfs_fs_type, &fs_devices);
2188 		if (ret)
2189 			break;
2190 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2191 		break;
2192 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2193 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2194 		break;
2195 	}
2196 
2197 	kfree(vol);
2198 	return ret;
2199 }
2200 
2201 static int btrfs_freeze(struct super_block *sb)
2202 {
2203 	struct btrfs_trans_handle *trans;
2204 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2205 	struct btrfs_root *root = fs_info->tree_root;
2206 
2207 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2208 	/*
2209 	 * We don't need a barrier here, we'll wait for any transaction that
2210 	 * could be in progress on other threads (and do delayed iputs that
2211 	 * we want to avoid on a frozen filesystem), or do the commit
2212 	 * ourselves.
2213 	 */
2214 	trans = btrfs_attach_transaction_barrier(root);
2215 	if (IS_ERR(trans)) {
2216 		/* no transaction, don't bother */
2217 		if (PTR_ERR(trans) == -ENOENT)
2218 			return 0;
2219 		return PTR_ERR(trans);
2220 	}
2221 	return btrfs_commit_transaction(trans);
2222 }
2223 
2224 static int btrfs_unfreeze(struct super_block *sb)
2225 {
2226 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2227 
2228 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2229 	return 0;
2230 }
2231 
2232 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2233 {
2234 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2235 	struct btrfs_fs_devices *cur_devices;
2236 	struct btrfs_device *dev, *first_dev = NULL;
2237 	struct list_head *head;
2238 	struct rcu_string *name;
2239 
2240 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2241 	cur_devices = fs_info->fs_devices;
2242 	while (cur_devices) {
2243 		head = &cur_devices->devices;
2244 		list_for_each_entry(dev, head, dev_list) {
2245 			if (dev->missing)
2246 				continue;
2247 			if (!dev->name)
2248 				continue;
2249 			if (!first_dev || dev->devid < first_dev->devid)
2250 				first_dev = dev;
2251 		}
2252 		cur_devices = cur_devices->seed;
2253 	}
2254 
2255 	if (first_dev) {
2256 		rcu_read_lock();
2257 		name = rcu_dereference(first_dev->name);
2258 		seq_escape(m, name->str, " \t\n\\");
2259 		rcu_read_unlock();
2260 	} else {
2261 		WARN_ON(1);
2262 	}
2263 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2264 	return 0;
2265 }
2266 
2267 static const struct super_operations btrfs_super_ops = {
2268 	.drop_inode	= btrfs_drop_inode,
2269 	.evict_inode	= btrfs_evict_inode,
2270 	.put_super	= btrfs_put_super,
2271 	.sync_fs	= btrfs_sync_fs,
2272 	.show_options	= btrfs_show_options,
2273 	.show_devname	= btrfs_show_devname,
2274 	.write_inode	= btrfs_write_inode,
2275 	.alloc_inode	= btrfs_alloc_inode,
2276 	.destroy_inode	= btrfs_destroy_inode,
2277 	.statfs		= btrfs_statfs,
2278 	.remount_fs	= btrfs_remount,
2279 	.freeze_fs	= btrfs_freeze,
2280 	.unfreeze_fs	= btrfs_unfreeze,
2281 };
2282 
2283 static const struct file_operations btrfs_ctl_fops = {
2284 	.open = btrfs_control_open,
2285 	.unlocked_ioctl	 = btrfs_control_ioctl,
2286 	.compat_ioctl = btrfs_control_ioctl,
2287 	.owner	 = THIS_MODULE,
2288 	.llseek = noop_llseek,
2289 };
2290 
2291 static struct miscdevice btrfs_misc = {
2292 	.minor		= BTRFS_MINOR,
2293 	.name		= "btrfs-control",
2294 	.fops		= &btrfs_ctl_fops
2295 };
2296 
2297 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2298 MODULE_ALIAS("devname:btrfs-control");
2299 
2300 static int btrfs_interface_init(void)
2301 {
2302 	return misc_register(&btrfs_misc);
2303 }
2304 
2305 static void btrfs_interface_exit(void)
2306 {
2307 	misc_deregister(&btrfs_misc);
2308 }
2309 
2310 static void btrfs_print_mod_info(void)
2311 {
2312 	pr_info("Btrfs loaded, crc32c=%s"
2313 #ifdef CONFIG_BTRFS_DEBUG
2314 			", debug=on"
2315 #endif
2316 #ifdef CONFIG_BTRFS_ASSERT
2317 			", assert=on"
2318 #endif
2319 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2320 			", integrity-checker=on"
2321 #endif
2322 			"\n",
2323 			btrfs_crc32c_impl());
2324 }
2325 
2326 static int __init init_btrfs_fs(void)
2327 {
2328 	int err;
2329 
2330 	err = btrfs_hash_init();
2331 	if (err)
2332 		return err;
2333 
2334 	btrfs_props_init();
2335 
2336 	err = btrfs_init_sysfs();
2337 	if (err)
2338 		goto free_hash;
2339 
2340 	btrfs_init_compress();
2341 
2342 	err = btrfs_init_cachep();
2343 	if (err)
2344 		goto free_compress;
2345 
2346 	err = extent_io_init();
2347 	if (err)
2348 		goto free_cachep;
2349 
2350 	err = extent_map_init();
2351 	if (err)
2352 		goto free_extent_io;
2353 
2354 	err = ordered_data_init();
2355 	if (err)
2356 		goto free_extent_map;
2357 
2358 	err = btrfs_delayed_inode_init();
2359 	if (err)
2360 		goto free_ordered_data;
2361 
2362 	err = btrfs_auto_defrag_init();
2363 	if (err)
2364 		goto free_delayed_inode;
2365 
2366 	err = btrfs_delayed_ref_init();
2367 	if (err)
2368 		goto free_auto_defrag;
2369 
2370 	err = btrfs_prelim_ref_init();
2371 	if (err)
2372 		goto free_delayed_ref;
2373 
2374 	err = btrfs_end_io_wq_init();
2375 	if (err)
2376 		goto free_prelim_ref;
2377 
2378 	err = btrfs_interface_init();
2379 	if (err)
2380 		goto free_end_io_wq;
2381 
2382 	btrfs_init_lockdep();
2383 
2384 	btrfs_print_mod_info();
2385 
2386 	err = btrfs_run_sanity_tests();
2387 	if (err)
2388 		goto unregister_ioctl;
2389 
2390 	err = register_filesystem(&btrfs_fs_type);
2391 	if (err)
2392 		goto unregister_ioctl;
2393 
2394 	return 0;
2395 
2396 unregister_ioctl:
2397 	btrfs_interface_exit();
2398 free_end_io_wq:
2399 	btrfs_end_io_wq_exit();
2400 free_prelim_ref:
2401 	btrfs_prelim_ref_exit();
2402 free_delayed_ref:
2403 	btrfs_delayed_ref_exit();
2404 free_auto_defrag:
2405 	btrfs_auto_defrag_exit();
2406 free_delayed_inode:
2407 	btrfs_delayed_inode_exit();
2408 free_ordered_data:
2409 	ordered_data_exit();
2410 free_extent_map:
2411 	extent_map_exit();
2412 free_extent_io:
2413 	extent_io_exit();
2414 free_cachep:
2415 	btrfs_destroy_cachep();
2416 free_compress:
2417 	btrfs_exit_compress();
2418 	btrfs_exit_sysfs();
2419 free_hash:
2420 	btrfs_hash_exit();
2421 	return err;
2422 }
2423 
2424 static void __exit exit_btrfs_fs(void)
2425 {
2426 	btrfs_destroy_cachep();
2427 	btrfs_delayed_ref_exit();
2428 	btrfs_auto_defrag_exit();
2429 	btrfs_delayed_inode_exit();
2430 	btrfs_prelim_ref_exit();
2431 	ordered_data_exit();
2432 	extent_map_exit();
2433 	extent_io_exit();
2434 	btrfs_interface_exit();
2435 	btrfs_end_io_wq_exit();
2436 	unregister_filesystem(&btrfs_fs_type);
2437 	btrfs_exit_sysfs();
2438 	btrfs_cleanup_fs_uuids();
2439 	btrfs_exit_compress();
2440 	btrfs_hash_exit();
2441 }
2442 
2443 late_initcall(init_btrfs_fs);
2444 module_exit(exit_btrfs_fs)
2445 
2446 MODULE_LICENSE("GPL");
2447