1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "tests/btrfs-tests.h" 48 #include "block-group.h" 49 #include "discard.h" 50 51 #include "qgroup.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 /* 71 * Generally the error codes correspond to their respective errors, but there 72 * are a few special cases. 73 * 74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 75 * instance will return EUCLEAN if any of the blocks are corrupted in 76 * a way that is problematic. We want to reserve EUCLEAN for these 77 * sort of corruptions. 78 * 79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 80 * need to use EROFS for this case. We will have no idea of the 81 * original failure, that will have been reported at the time we tripped 82 * over the error. Each subsequent error that doesn't have any context 83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 84 */ 85 const char * __attribute_const__ btrfs_decode_error(int errno) 86 { 87 char *errstr = "unknown"; 88 89 switch (errno) { 90 case -ENOENT: /* -2 */ 91 errstr = "No such entry"; 92 break; 93 case -EIO: /* -5 */ 94 errstr = "IO failure"; 95 break; 96 case -ENOMEM: /* -12*/ 97 errstr = "Out of memory"; 98 break; 99 case -EEXIST: /* -17 */ 100 errstr = "Object already exists"; 101 break; 102 case -ENOSPC: /* -28 */ 103 errstr = "No space left"; 104 break; 105 case -EROFS: /* -30 */ 106 errstr = "Readonly filesystem"; 107 break; 108 case -EOPNOTSUPP: /* -95 */ 109 errstr = "Operation not supported"; 110 break; 111 case -EUCLEAN: /* -117 */ 112 errstr = "Filesystem corrupted"; 113 break; 114 case -EDQUOT: /* -122 */ 115 errstr = "Quota exceeded"; 116 break; 117 } 118 119 return errstr; 120 } 121 122 /* 123 * __btrfs_handle_fs_error decodes expected errors from the caller and 124 * invokes the appropriate error response. 125 */ 126 __cold 127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 128 unsigned int line, int errno, const char *fmt, ...) 129 { 130 struct super_block *sb = fs_info->sb; 131 #ifdef CONFIG_PRINTK 132 const char *errstr; 133 #endif 134 135 /* 136 * Special case: if the error is EROFS, and we're already 137 * under SB_RDONLY, then it is safe here. 138 */ 139 if (errno == -EROFS && sb_rdonly(sb)) 140 return; 141 142 #ifdef CONFIG_PRINTK 143 errstr = btrfs_decode_error(errno); 144 if (fmt) { 145 struct va_format vaf; 146 va_list args; 147 148 va_start(args, fmt); 149 vaf.fmt = fmt; 150 vaf.va = &args; 151 152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 153 sb->s_id, function, line, errno, errstr, &vaf); 154 va_end(args); 155 } else { 156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 157 sb->s_id, function, line, errno, errstr); 158 } 159 #endif 160 161 /* 162 * Today we only save the error info to memory. Long term we'll 163 * also send it down to the disk 164 */ 165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 166 167 /* Don't go through full error handling during mount */ 168 if (!(sb->s_flags & SB_BORN)) 169 return; 170 171 if (sb_rdonly(sb)) 172 return; 173 174 btrfs_discard_stop(fs_info); 175 176 /* btrfs handle error by forcing the filesystem readonly */ 177 sb->s_flags |= SB_RDONLY; 178 btrfs_info(fs_info, "forced readonly"); 179 /* 180 * Note that a running device replace operation is not canceled here 181 * although there is no way to update the progress. It would add the 182 * risk of a deadlock, therefore the canceling is omitted. The only 183 * penalty is that some I/O remains active until the procedure 184 * completes. The next time when the filesystem is mounted writable 185 * again, the device replace operation continues. 186 */ 187 } 188 189 #ifdef CONFIG_PRINTK 190 static const char * const logtypes[] = { 191 "emergency", 192 "alert", 193 "critical", 194 "error", 195 "warning", 196 "notice", 197 "info", 198 "debug", 199 }; 200 201 202 /* 203 * Use one ratelimit state per log level so that a flood of less important 204 * messages doesn't cause more important ones to be dropped. 205 */ 206 static struct ratelimit_state printk_limits[] = { 207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 215 }; 216 217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 218 { 219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 220 struct va_format vaf; 221 va_list args; 222 int kern_level; 223 const char *type = logtypes[4]; 224 struct ratelimit_state *ratelimit = &printk_limits[4]; 225 226 va_start(args, fmt); 227 228 while ((kern_level = printk_get_level(fmt)) != 0) { 229 size_t size = printk_skip_level(fmt) - fmt; 230 231 if (kern_level >= '0' && kern_level <= '7') { 232 memcpy(lvl, fmt, size); 233 lvl[size] = '\0'; 234 type = logtypes[kern_level - '0']; 235 ratelimit = &printk_limits[kern_level - '0']; 236 } 237 fmt += size; 238 } 239 240 vaf.fmt = fmt; 241 vaf.va = &args; 242 243 if (__ratelimit(ratelimit)) 244 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 245 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 246 247 va_end(args); 248 } 249 #endif 250 251 /* 252 * We only mark the transaction aborted and then set the file system read-only. 253 * This will prevent new transactions from starting or trying to join this 254 * one. 255 * 256 * This means that error recovery at the call site is limited to freeing 257 * any local memory allocations and passing the error code up without 258 * further cleanup. The transaction should complete as it normally would 259 * in the call path but will return -EIO. 260 * 261 * We'll complete the cleanup in btrfs_end_transaction and 262 * btrfs_commit_transaction. 263 */ 264 __cold 265 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 266 const char *function, 267 unsigned int line, int errno) 268 { 269 struct btrfs_fs_info *fs_info = trans->fs_info; 270 271 WRITE_ONCE(trans->aborted, errno); 272 /* Nothing used. The other threads that have joined this 273 * transaction may be able to continue. */ 274 if (!trans->dirty && list_empty(&trans->new_bgs)) { 275 const char *errstr; 276 277 errstr = btrfs_decode_error(errno); 278 btrfs_warn(fs_info, 279 "%s:%d: Aborting unused transaction(%s).", 280 function, line, errstr); 281 return; 282 } 283 WRITE_ONCE(trans->transaction->aborted, errno); 284 /* Wake up anybody who may be waiting on this transaction */ 285 wake_up(&fs_info->transaction_wait); 286 wake_up(&fs_info->transaction_blocked_wait); 287 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 288 } 289 /* 290 * __btrfs_panic decodes unexpected, fatal errors from the caller, 291 * issues an alert, and either panics or BUGs, depending on mount options. 292 */ 293 __cold 294 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 295 unsigned int line, int errno, const char *fmt, ...) 296 { 297 char *s_id = "<unknown>"; 298 const char *errstr; 299 struct va_format vaf = { .fmt = fmt }; 300 va_list args; 301 302 if (fs_info) 303 s_id = fs_info->sb->s_id; 304 305 va_start(args, fmt); 306 vaf.va = &args; 307 308 errstr = btrfs_decode_error(errno); 309 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 310 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 311 s_id, function, line, &vaf, errno, errstr); 312 313 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 314 function, line, &vaf, errno, errstr); 315 va_end(args); 316 /* Caller calls BUG() */ 317 } 318 319 static void btrfs_put_super(struct super_block *sb) 320 { 321 close_ctree(btrfs_sb(sb)); 322 } 323 324 enum { 325 Opt_acl, Opt_noacl, 326 Opt_clear_cache, 327 Opt_commit_interval, 328 Opt_compress, 329 Opt_compress_force, 330 Opt_compress_force_type, 331 Opt_compress_type, 332 Opt_degraded, 333 Opt_device, 334 Opt_fatal_errors, 335 Opt_flushoncommit, Opt_noflushoncommit, 336 Opt_inode_cache, Opt_noinode_cache, 337 Opt_max_inline, 338 Opt_barrier, Opt_nobarrier, 339 Opt_datacow, Opt_nodatacow, 340 Opt_datasum, Opt_nodatasum, 341 Opt_defrag, Opt_nodefrag, 342 Opt_discard, Opt_nodiscard, 343 Opt_discard_mode, 344 Opt_norecovery, 345 Opt_ratio, 346 Opt_rescan_uuid_tree, 347 Opt_skip_balance, 348 Opt_space_cache, Opt_no_space_cache, 349 Opt_space_cache_version, 350 Opt_ssd, Opt_nossd, 351 Opt_ssd_spread, Opt_nossd_spread, 352 Opt_subvol, 353 Opt_subvol_empty, 354 Opt_subvolid, 355 Opt_thread_pool, 356 Opt_treelog, Opt_notreelog, 357 Opt_user_subvol_rm_allowed, 358 359 /* Rescue options */ 360 Opt_rescue, 361 Opt_usebackuproot, 362 Opt_nologreplay, 363 364 /* Deprecated options */ 365 Opt_recovery, 366 367 /* Debugging options */ 368 Opt_check_integrity, 369 Opt_check_integrity_including_extent_data, 370 Opt_check_integrity_print_mask, 371 Opt_enospc_debug, Opt_noenospc_debug, 372 #ifdef CONFIG_BTRFS_DEBUG 373 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 374 #endif 375 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 376 Opt_ref_verify, 377 #endif 378 Opt_err, 379 }; 380 381 static const match_table_t tokens = { 382 {Opt_acl, "acl"}, 383 {Opt_noacl, "noacl"}, 384 {Opt_clear_cache, "clear_cache"}, 385 {Opt_commit_interval, "commit=%u"}, 386 {Opt_compress, "compress"}, 387 {Opt_compress_type, "compress=%s"}, 388 {Opt_compress_force, "compress-force"}, 389 {Opt_compress_force_type, "compress-force=%s"}, 390 {Opt_degraded, "degraded"}, 391 {Opt_device, "device=%s"}, 392 {Opt_fatal_errors, "fatal_errors=%s"}, 393 {Opt_flushoncommit, "flushoncommit"}, 394 {Opt_noflushoncommit, "noflushoncommit"}, 395 {Opt_inode_cache, "inode_cache"}, 396 {Opt_noinode_cache, "noinode_cache"}, 397 {Opt_max_inline, "max_inline=%s"}, 398 {Opt_barrier, "barrier"}, 399 {Opt_nobarrier, "nobarrier"}, 400 {Opt_datacow, "datacow"}, 401 {Opt_nodatacow, "nodatacow"}, 402 {Opt_datasum, "datasum"}, 403 {Opt_nodatasum, "nodatasum"}, 404 {Opt_defrag, "autodefrag"}, 405 {Opt_nodefrag, "noautodefrag"}, 406 {Opt_discard, "discard"}, 407 {Opt_discard_mode, "discard=%s"}, 408 {Opt_nodiscard, "nodiscard"}, 409 {Opt_norecovery, "norecovery"}, 410 {Opt_ratio, "metadata_ratio=%u"}, 411 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 412 {Opt_skip_balance, "skip_balance"}, 413 {Opt_space_cache, "space_cache"}, 414 {Opt_no_space_cache, "nospace_cache"}, 415 {Opt_space_cache_version, "space_cache=%s"}, 416 {Opt_ssd, "ssd"}, 417 {Opt_nossd, "nossd"}, 418 {Opt_ssd_spread, "ssd_spread"}, 419 {Opt_nossd_spread, "nossd_spread"}, 420 {Opt_subvol, "subvol=%s"}, 421 {Opt_subvol_empty, "subvol="}, 422 {Opt_subvolid, "subvolid=%s"}, 423 {Opt_thread_pool, "thread_pool=%u"}, 424 {Opt_treelog, "treelog"}, 425 {Opt_notreelog, "notreelog"}, 426 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 427 428 /* Rescue options */ 429 {Opt_rescue, "rescue=%s"}, 430 /* Deprecated, with alias rescue=nologreplay */ 431 {Opt_nologreplay, "nologreplay"}, 432 /* Deprecated, with alias rescue=usebackuproot */ 433 {Opt_usebackuproot, "usebackuproot"}, 434 435 /* Deprecated options */ 436 {Opt_recovery, "recovery"}, 437 438 /* Debugging options */ 439 {Opt_check_integrity, "check_int"}, 440 {Opt_check_integrity_including_extent_data, "check_int_data"}, 441 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 442 {Opt_enospc_debug, "enospc_debug"}, 443 {Opt_noenospc_debug, "noenospc_debug"}, 444 #ifdef CONFIG_BTRFS_DEBUG 445 {Opt_fragment_data, "fragment=data"}, 446 {Opt_fragment_metadata, "fragment=metadata"}, 447 {Opt_fragment_all, "fragment=all"}, 448 #endif 449 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 450 {Opt_ref_verify, "ref_verify"}, 451 #endif 452 {Opt_err, NULL}, 453 }; 454 455 static const match_table_t rescue_tokens = { 456 {Opt_usebackuproot, "usebackuproot"}, 457 {Opt_nologreplay, "nologreplay"}, 458 {Opt_err, NULL}, 459 }; 460 461 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 462 { 463 char *opts; 464 char *orig; 465 char *p; 466 substring_t args[MAX_OPT_ARGS]; 467 int ret = 0; 468 469 opts = kstrdup(options, GFP_KERNEL); 470 if (!opts) 471 return -ENOMEM; 472 orig = opts; 473 474 while ((p = strsep(&opts, ":")) != NULL) { 475 int token; 476 477 if (!*p) 478 continue; 479 token = match_token(p, rescue_tokens, args); 480 switch (token){ 481 case Opt_usebackuproot: 482 btrfs_info(info, 483 "trying to use backup root at mount time"); 484 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 485 break; 486 case Opt_nologreplay: 487 btrfs_set_and_info(info, NOLOGREPLAY, 488 "disabling log replay at mount time"); 489 break; 490 case Opt_err: 491 btrfs_info(info, "unrecognized rescue option '%s'", p); 492 ret = -EINVAL; 493 goto out; 494 default: 495 break; 496 } 497 498 } 499 out: 500 kfree(orig); 501 return ret; 502 } 503 504 /* 505 * Regular mount options parser. Everything that is needed only when 506 * reading in a new superblock is parsed here. 507 * XXX JDM: This needs to be cleaned up for remount. 508 */ 509 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 510 unsigned long new_flags) 511 { 512 substring_t args[MAX_OPT_ARGS]; 513 char *p, *num; 514 u64 cache_gen; 515 int intarg; 516 int ret = 0; 517 char *compress_type; 518 bool compress_force = false; 519 enum btrfs_compression_type saved_compress_type; 520 int saved_compress_level; 521 bool saved_compress_force; 522 int no_compress = 0; 523 524 cache_gen = btrfs_super_cache_generation(info->super_copy); 525 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 526 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 527 else if (cache_gen) 528 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 529 530 /* 531 * Even the options are empty, we still need to do extra check 532 * against new flags 533 */ 534 if (!options) 535 goto check; 536 537 while ((p = strsep(&options, ",")) != NULL) { 538 int token; 539 if (!*p) 540 continue; 541 542 token = match_token(p, tokens, args); 543 switch (token) { 544 case Opt_degraded: 545 btrfs_info(info, "allowing degraded mounts"); 546 btrfs_set_opt(info->mount_opt, DEGRADED); 547 break; 548 case Opt_subvol: 549 case Opt_subvol_empty: 550 case Opt_subvolid: 551 case Opt_device: 552 /* 553 * These are parsed by btrfs_parse_subvol_options or 554 * btrfs_parse_device_options and can be ignored here. 555 */ 556 break; 557 case Opt_nodatasum: 558 btrfs_set_and_info(info, NODATASUM, 559 "setting nodatasum"); 560 break; 561 case Opt_datasum: 562 if (btrfs_test_opt(info, NODATASUM)) { 563 if (btrfs_test_opt(info, NODATACOW)) 564 btrfs_info(info, 565 "setting datasum, datacow enabled"); 566 else 567 btrfs_info(info, "setting datasum"); 568 } 569 btrfs_clear_opt(info->mount_opt, NODATACOW); 570 btrfs_clear_opt(info->mount_opt, NODATASUM); 571 break; 572 case Opt_nodatacow: 573 if (!btrfs_test_opt(info, NODATACOW)) { 574 if (!btrfs_test_opt(info, COMPRESS) || 575 !btrfs_test_opt(info, FORCE_COMPRESS)) { 576 btrfs_info(info, 577 "setting nodatacow, compression disabled"); 578 } else { 579 btrfs_info(info, "setting nodatacow"); 580 } 581 } 582 btrfs_clear_opt(info->mount_opt, COMPRESS); 583 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 584 btrfs_set_opt(info->mount_opt, NODATACOW); 585 btrfs_set_opt(info->mount_opt, NODATASUM); 586 break; 587 case Opt_datacow: 588 btrfs_clear_and_info(info, NODATACOW, 589 "setting datacow"); 590 break; 591 case Opt_compress_force: 592 case Opt_compress_force_type: 593 compress_force = true; 594 fallthrough; 595 case Opt_compress: 596 case Opt_compress_type: 597 saved_compress_type = btrfs_test_opt(info, 598 COMPRESS) ? 599 info->compress_type : BTRFS_COMPRESS_NONE; 600 saved_compress_force = 601 btrfs_test_opt(info, FORCE_COMPRESS); 602 saved_compress_level = info->compress_level; 603 if (token == Opt_compress || 604 token == Opt_compress_force || 605 strncmp(args[0].from, "zlib", 4) == 0) { 606 compress_type = "zlib"; 607 608 info->compress_type = BTRFS_COMPRESS_ZLIB; 609 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 610 /* 611 * args[0] contains uninitialized data since 612 * for these tokens we don't expect any 613 * parameter. 614 */ 615 if (token != Opt_compress && 616 token != Opt_compress_force) 617 info->compress_level = 618 btrfs_compress_str2level( 619 BTRFS_COMPRESS_ZLIB, 620 args[0].from + 4); 621 btrfs_set_opt(info->mount_opt, COMPRESS); 622 btrfs_clear_opt(info->mount_opt, NODATACOW); 623 btrfs_clear_opt(info->mount_opt, NODATASUM); 624 no_compress = 0; 625 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 626 compress_type = "lzo"; 627 info->compress_type = BTRFS_COMPRESS_LZO; 628 info->compress_level = 0; 629 btrfs_set_opt(info->mount_opt, COMPRESS); 630 btrfs_clear_opt(info->mount_opt, NODATACOW); 631 btrfs_clear_opt(info->mount_opt, NODATASUM); 632 btrfs_set_fs_incompat(info, COMPRESS_LZO); 633 no_compress = 0; 634 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 635 compress_type = "zstd"; 636 info->compress_type = BTRFS_COMPRESS_ZSTD; 637 info->compress_level = 638 btrfs_compress_str2level( 639 BTRFS_COMPRESS_ZSTD, 640 args[0].from + 4); 641 btrfs_set_opt(info->mount_opt, COMPRESS); 642 btrfs_clear_opt(info->mount_opt, NODATACOW); 643 btrfs_clear_opt(info->mount_opt, NODATASUM); 644 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 645 no_compress = 0; 646 } else if (strncmp(args[0].from, "no", 2) == 0) { 647 compress_type = "no"; 648 info->compress_level = 0; 649 info->compress_type = 0; 650 btrfs_clear_opt(info->mount_opt, COMPRESS); 651 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 652 compress_force = false; 653 no_compress++; 654 } else { 655 ret = -EINVAL; 656 goto out; 657 } 658 659 if (compress_force) { 660 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 661 } else { 662 /* 663 * If we remount from compress-force=xxx to 664 * compress=xxx, we need clear FORCE_COMPRESS 665 * flag, otherwise, there is no way for users 666 * to disable forcible compression separately. 667 */ 668 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 669 } 670 if (no_compress == 1) { 671 btrfs_info(info, "use no compression"); 672 } else if ((info->compress_type != saved_compress_type) || 673 (compress_force != saved_compress_force) || 674 (info->compress_level != saved_compress_level)) { 675 btrfs_info(info, "%s %s compression, level %d", 676 (compress_force) ? "force" : "use", 677 compress_type, info->compress_level); 678 } 679 compress_force = false; 680 break; 681 case Opt_ssd: 682 btrfs_set_and_info(info, SSD, 683 "enabling ssd optimizations"); 684 btrfs_clear_opt(info->mount_opt, NOSSD); 685 break; 686 case Opt_ssd_spread: 687 btrfs_set_and_info(info, SSD, 688 "enabling ssd optimizations"); 689 btrfs_set_and_info(info, SSD_SPREAD, 690 "using spread ssd allocation scheme"); 691 btrfs_clear_opt(info->mount_opt, NOSSD); 692 break; 693 case Opt_nossd: 694 btrfs_set_opt(info->mount_opt, NOSSD); 695 btrfs_clear_and_info(info, SSD, 696 "not using ssd optimizations"); 697 fallthrough; 698 case Opt_nossd_spread: 699 btrfs_clear_and_info(info, SSD_SPREAD, 700 "not using spread ssd allocation scheme"); 701 break; 702 case Opt_barrier: 703 btrfs_clear_and_info(info, NOBARRIER, 704 "turning on barriers"); 705 break; 706 case Opt_nobarrier: 707 btrfs_set_and_info(info, NOBARRIER, 708 "turning off barriers"); 709 break; 710 case Opt_thread_pool: 711 ret = match_int(&args[0], &intarg); 712 if (ret) { 713 goto out; 714 } else if (intarg == 0) { 715 ret = -EINVAL; 716 goto out; 717 } 718 info->thread_pool_size = intarg; 719 break; 720 case Opt_max_inline: 721 num = match_strdup(&args[0]); 722 if (num) { 723 info->max_inline = memparse(num, NULL); 724 kfree(num); 725 726 if (info->max_inline) { 727 info->max_inline = min_t(u64, 728 info->max_inline, 729 info->sectorsize); 730 } 731 btrfs_info(info, "max_inline at %llu", 732 info->max_inline); 733 } else { 734 ret = -ENOMEM; 735 goto out; 736 } 737 break; 738 case Opt_acl: 739 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 740 info->sb->s_flags |= SB_POSIXACL; 741 break; 742 #else 743 btrfs_err(info, "support for ACL not compiled in!"); 744 ret = -EINVAL; 745 goto out; 746 #endif 747 case Opt_noacl: 748 info->sb->s_flags &= ~SB_POSIXACL; 749 break; 750 case Opt_notreelog: 751 btrfs_set_and_info(info, NOTREELOG, 752 "disabling tree log"); 753 break; 754 case Opt_treelog: 755 btrfs_clear_and_info(info, NOTREELOG, 756 "enabling tree log"); 757 break; 758 case Opt_norecovery: 759 case Opt_nologreplay: 760 btrfs_warn(info, 761 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 762 btrfs_set_and_info(info, NOLOGREPLAY, 763 "disabling log replay at mount time"); 764 break; 765 case Opt_flushoncommit: 766 btrfs_set_and_info(info, FLUSHONCOMMIT, 767 "turning on flush-on-commit"); 768 break; 769 case Opt_noflushoncommit: 770 btrfs_clear_and_info(info, FLUSHONCOMMIT, 771 "turning off flush-on-commit"); 772 break; 773 case Opt_ratio: 774 ret = match_int(&args[0], &intarg); 775 if (ret) 776 goto out; 777 info->metadata_ratio = intarg; 778 btrfs_info(info, "metadata ratio %u", 779 info->metadata_ratio); 780 break; 781 case Opt_discard: 782 case Opt_discard_mode: 783 if (token == Opt_discard || 784 strcmp(args[0].from, "sync") == 0) { 785 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 786 btrfs_set_and_info(info, DISCARD_SYNC, 787 "turning on sync discard"); 788 } else if (strcmp(args[0].from, "async") == 0) { 789 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 790 btrfs_set_and_info(info, DISCARD_ASYNC, 791 "turning on async discard"); 792 } else { 793 ret = -EINVAL; 794 goto out; 795 } 796 break; 797 case Opt_nodiscard: 798 btrfs_clear_and_info(info, DISCARD_SYNC, 799 "turning off discard"); 800 btrfs_clear_and_info(info, DISCARD_ASYNC, 801 "turning off async discard"); 802 break; 803 case Opt_space_cache: 804 case Opt_space_cache_version: 805 if (token == Opt_space_cache || 806 strcmp(args[0].from, "v1") == 0) { 807 btrfs_clear_opt(info->mount_opt, 808 FREE_SPACE_TREE); 809 btrfs_set_and_info(info, SPACE_CACHE, 810 "enabling disk space caching"); 811 } else if (strcmp(args[0].from, "v2") == 0) { 812 btrfs_clear_opt(info->mount_opt, 813 SPACE_CACHE); 814 btrfs_set_and_info(info, FREE_SPACE_TREE, 815 "enabling free space tree"); 816 } else { 817 ret = -EINVAL; 818 goto out; 819 } 820 break; 821 case Opt_rescan_uuid_tree: 822 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 823 break; 824 case Opt_no_space_cache: 825 if (btrfs_test_opt(info, SPACE_CACHE)) { 826 btrfs_clear_and_info(info, SPACE_CACHE, 827 "disabling disk space caching"); 828 } 829 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 830 btrfs_clear_and_info(info, FREE_SPACE_TREE, 831 "disabling free space tree"); 832 } 833 break; 834 case Opt_inode_cache: 835 btrfs_warn(info, 836 "the 'inode_cache' option is deprecated and will have no effect from 5.11"); 837 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 838 "enabling inode map caching"); 839 break; 840 case Opt_noinode_cache: 841 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 842 "disabling inode map caching"); 843 break; 844 case Opt_clear_cache: 845 btrfs_set_and_info(info, CLEAR_CACHE, 846 "force clearing of disk cache"); 847 break; 848 case Opt_user_subvol_rm_allowed: 849 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 850 break; 851 case Opt_enospc_debug: 852 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 853 break; 854 case Opt_noenospc_debug: 855 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 856 break; 857 case Opt_defrag: 858 btrfs_set_and_info(info, AUTO_DEFRAG, 859 "enabling auto defrag"); 860 break; 861 case Opt_nodefrag: 862 btrfs_clear_and_info(info, AUTO_DEFRAG, 863 "disabling auto defrag"); 864 break; 865 case Opt_recovery: 866 case Opt_usebackuproot: 867 btrfs_warn(info, 868 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 869 token == Opt_recovery ? "recovery" : 870 "usebackuproot"); 871 btrfs_info(info, 872 "trying to use backup root at mount time"); 873 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 874 break; 875 case Opt_skip_balance: 876 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 877 break; 878 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 879 case Opt_check_integrity_including_extent_data: 880 btrfs_info(info, 881 "enabling check integrity including extent data"); 882 btrfs_set_opt(info->mount_opt, 883 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 884 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 885 break; 886 case Opt_check_integrity: 887 btrfs_info(info, "enabling check integrity"); 888 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 889 break; 890 case Opt_check_integrity_print_mask: 891 ret = match_int(&args[0], &intarg); 892 if (ret) 893 goto out; 894 info->check_integrity_print_mask = intarg; 895 btrfs_info(info, "check_integrity_print_mask 0x%x", 896 info->check_integrity_print_mask); 897 break; 898 #else 899 case Opt_check_integrity_including_extent_data: 900 case Opt_check_integrity: 901 case Opt_check_integrity_print_mask: 902 btrfs_err(info, 903 "support for check_integrity* not compiled in!"); 904 ret = -EINVAL; 905 goto out; 906 #endif 907 case Opt_fatal_errors: 908 if (strcmp(args[0].from, "panic") == 0) 909 btrfs_set_opt(info->mount_opt, 910 PANIC_ON_FATAL_ERROR); 911 else if (strcmp(args[0].from, "bug") == 0) 912 btrfs_clear_opt(info->mount_opt, 913 PANIC_ON_FATAL_ERROR); 914 else { 915 ret = -EINVAL; 916 goto out; 917 } 918 break; 919 case Opt_commit_interval: 920 intarg = 0; 921 ret = match_int(&args[0], &intarg); 922 if (ret) 923 goto out; 924 if (intarg == 0) { 925 btrfs_info(info, 926 "using default commit interval %us", 927 BTRFS_DEFAULT_COMMIT_INTERVAL); 928 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 929 } else if (intarg > 300) { 930 btrfs_warn(info, "excessive commit interval %d", 931 intarg); 932 } 933 info->commit_interval = intarg; 934 break; 935 case Opt_rescue: 936 ret = parse_rescue_options(info, args[0].from); 937 if (ret < 0) 938 goto out; 939 break; 940 #ifdef CONFIG_BTRFS_DEBUG 941 case Opt_fragment_all: 942 btrfs_info(info, "fragmenting all space"); 943 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 944 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 945 break; 946 case Opt_fragment_metadata: 947 btrfs_info(info, "fragmenting metadata"); 948 btrfs_set_opt(info->mount_opt, 949 FRAGMENT_METADATA); 950 break; 951 case Opt_fragment_data: 952 btrfs_info(info, "fragmenting data"); 953 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 954 break; 955 #endif 956 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 957 case Opt_ref_verify: 958 btrfs_info(info, "doing ref verification"); 959 btrfs_set_opt(info->mount_opt, REF_VERIFY); 960 break; 961 #endif 962 case Opt_err: 963 btrfs_err(info, "unrecognized mount option '%s'", p); 964 ret = -EINVAL; 965 goto out; 966 default: 967 break; 968 } 969 } 970 check: 971 /* 972 * Extra check for current option against current flag 973 */ 974 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 975 btrfs_err(info, 976 "nologreplay must be used with ro mount option"); 977 ret = -EINVAL; 978 } 979 out: 980 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 981 !btrfs_test_opt(info, FREE_SPACE_TREE) && 982 !btrfs_test_opt(info, CLEAR_CACHE)) { 983 btrfs_err(info, "cannot disable free space tree"); 984 ret = -EINVAL; 985 986 } 987 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 988 btrfs_info(info, "disk space caching is enabled"); 989 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 990 btrfs_info(info, "using free space tree"); 991 return ret; 992 } 993 994 /* 995 * Parse mount options that are required early in the mount process. 996 * 997 * All other options will be parsed on much later in the mount process and 998 * only when we need to allocate a new super block. 999 */ 1000 static int btrfs_parse_device_options(const char *options, fmode_t flags, 1001 void *holder) 1002 { 1003 substring_t args[MAX_OPT_ARGS]; 1004 char *device_name, *opts, *orig, *p; 1005 struct btrfs_device *device = NULL; 1006 int error = 0; 1007 1008 lockdep_assert_held(&uuid_mutex); 1009 1010 if (!options) 1011 return 0; 1012 1013 /* 1014 * strsep changes the string, duplicate it because btrfs_parse_options 1015 * gets called later 1016 */ 1017 opts = kstrdup(options, GFP_KERNEL); 1018 if (!opts) 1019 return -ENOMEM; 1020 orig = opts; 1021 1022 while ((p = strsep(&opts, ",")) != NULL) { 1023 int token; 1024 1025 if (!*p) 1026 continue; 1027 1028 token = match_token(p, tokens, args); 1029 if (token == Opt_device) { 1030 device_name = match_strdup(&args[0]); 1031 if (!device_name) { 1032 error = -ENOMEM; 1033 goto out; 1034 } 1035 device = btrfs_scan_one_device(device_name, flags, 1036 holder); 1037 kfree(device_name); 1038 if (IS_ERR(device)) { 1039 error = PTR_ERR(device); 1040 goto out; 1041 } 1042 } 1043 } 1044 1045 out: 1046 kfree(orig); 1047 return error; 1048 } 1049 1050 /* 1051 * Parse mount options that are related to subvolume id 1052 * 1053 * The value is later passed to mount_subvol() 1054 */ 1055 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1056 u64 *subvol_objectid) 1057 { 1058 substring_t args[MAX_OPT_ARGS]; 1059 char *opts, *orig, *p; 1060 int error = 0; 1061 u64 subvolid; 1062 1063 if (!options) 1064 return 0; 1065 1066 /* 1067 * strsep changes the string, duplicate it because 1068 * btrfs_parse_device_options gets called later 1069 */ 1070 opts = kstrdup(options, GFP_KERNEL); 1071 if (!opts) 1072 return -ENOMEM; 1073 orig = opts; 1074 1075 while ((p = strsep(&opts, ",")) != NULL) { 1076 int token; 1077 if (!*p) 1078 continue; 1079 1080 token = match_token(p, tokens, args); 1081 switch (token) { 1082 case Opt_subvol: 1083 kfree(*subvol_name); 1084 *subvol_name = match_strdup(&args[0]); 1085 if (!*subvol_name) { 1086 error = -ENOMEM; 1087 goto out; 1088 } 1089 break; 1090 case Opt_subvolid: 1091 error = match_u64(&args[0], &subvolid); 1092 if (error) 1093 goto out; 1094 1095 /* we want the original fs_tree */ 1096 if (subvolid == 0) 1097 subvolid = BTRFS_FS_TREE_OBJECTID; 1098 1099 *subvol_objectid = subvolid; 1100 break; 1101 default: 1102 break; 1103 } 1104 } 1105 1106 out: 1107 kfree(orig); 1108 return error; 1109 } 1110 1111 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1112 u64 subvol_objectid) 1113 { 1114 struct btrfs_root *root = fs_info->tree_root; 1115 struct btrfs_root *fs_root = NULL; 1116 struct btrfs_root_ref *root_ref; 1117 struct btrfs_inode_ref *inode_ref; 1118 struct btrfs_key key; 1119 struct btrfs_path *path = NULL; 1120 char *name = NULL, *ptr; 1121 u64 dirid; 1122 int len; 1123 int ret; 1124 1125 path = btrfs_alloc_path(); 1126 if (!path) { 1127 ret = -ENOMEM; 1128 goto err; 1129 } 1130 path->leave_spinning = 1; 1131 1132 name = kmalloc(PATH_MAX, GFP_KERNEL); 1133 if (!name) { 1134 ret = -ENOMEM; 1135 goto err; 1136 } 1137 ptr = name + PATH_MAX - 1; 1138 ptr[0] = '\0'; 1139 1140 /* 1141 * Walk up the subvolume trees in the tree of tree roots by root 1142 * backrefs until we hit the top-level subvolume. 1143 */ 1144 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1145 key.objectid = subvol_objectid; 1146 key.type = BTRFS_ROOT_BACKREF_KEY; 1147 key.offset = (u64)-1; 1148 1149 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1150 if (ret < 0) { 1151 goto err; 1152 } else if (ret > 0) { 1153 ret = btrfs_previous_item(root, path, subvol_objectid, 1154 BTRFS_ROOT_BACKREF_KEY); 1155 if (ret < 0) { 1156 goto err; 1157 } else if (ret > 0) { 1158 ret = -ENOENT; 1159 goto err; 1160 } 1161 } 1162 1163 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1164 subvol_objectid = key.offset; 1165 1166 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1167 struct btrfs_root_ref); 1168 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1169 ptr -= len + 1; 1170 if (ptr < name) { 1171 ret = -ENAMETOOLONG; 1172 goto err; 1173 } 1174 read_extent_buffer(path->nodes[0], ptr + 1, 1175 (unsigned long)(root_ref + 1), len); 1176 ptr[0] = '/'; 1177 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1178 btrfs_release_path(path); 1179 1180 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1181 if (IS_ERR(fs_root)) { 1182 ret = PTR_ERR(fs_root); 1183 fs_root = NULL; 1184 goto err; 1185 } 1186 1187 /* 1188 * Walk up the filesystem tree by inode refs until we hit the 1189 * root directory. 1190 */ 1191 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1192 key.objectid = dirid; 1193 key.type = BTRFS_INODE_REF_KEY; 1194 key.offset = (u64)-1; 1195 1196 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1197 if (ret < 0) { 1198 goto err; 1199 } else if (ret > 0) { 1200 ret = btrfs_previous_item(fs_root, path, dirid, 1201 BTRFS_INODE_REF_KEY); 1202 if (ret < 0) { 1203 goto err; 1204 } else if (ret > 0) { 1205 ret = -ENOENT; 1206 goto err; 1207 } 1208 } 1209 1210 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1211 dirid = key.offset; 1212 1213 inode_ref = btrfs_item_ptr(path->nodes[0], 1214 path->slots[0], 1215 struct btrfs_inode_ref); 1216 len = btrfs_inode_ref_name_len(path->nodes[0], 1217 inode_ref); 1218 ptr -= len + 1; 1219 if (ptr < name) { 1220 ret = -ENAMETOOLONG; 1221 goto err; 1222 } 1223 read_extent_buffer(path->nodes[0], ptr + 1, 1224 (unsigned long)(inode_ref + 1), len); 1225 ptr[0] = '/'; 1226 btrfs_release_path(path); 1227 } 1228 btrfs_put_root(fs_root); 1229 fs_root = NULL; 1230 } 1231 1232 btrfs_free_path(path); 1233 if (ptr == name + PATH_MAX - 1) { 1234 name[0] = '/'; 1235 name[1] = '\0'; 1236 } else { 1237 memmove(name, ptr, name + PATH_MAX - ptr); 1238 } 1239 return name; 1240 1241 err: 1242 btrfs_put_root(fs_root); 1243 btrfs_free_path(path); 1244 kfree(name); 1245 return ERR_PTR(ret); 1246 } 1247 1248 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1249 { 1250 struct btrfs_root *root = fs_info->tree_root; 1251 struct btrfs_dir_item *di; 1252 struct btrfs_path *path; 1253 struct btrfs_key location; 1254 u64 dir_id; 1255 1256 path = btrfs_alloc_path(); 1257 if (!path) 1258 return -ENOMEM; 1259 path->leave_spinning = 1; 1260 1261 /* 1262 * Find the "default" dir item which points to the root item that we 1263 * will mount by default if we haven't been given a specific subvolume 1264 * to mount. 1265 */ 1266 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1267 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1268 if (IS_ERR(di)) { 1269 btrfs_free_path(path); 1270 return PTR_ERR(di); 1271 } 1272 if (!di) { 1273 /* 1274 * Ok the default dir item isn't there. This is weird since 1275 * it's always been there, but don't freak out, just try and 1276 * mount the top-level subvolume. 1277 */ 1278 btrfs_free_path(path); 1279 *objectid = BTRFS_FS_TREE_OBJECTID; 1280 return 0; 1281 } 1282 1283 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1284 btrfs_free_path(path); 1285 *objectid = location.objectid; 1286 return 0; 1287 } 1288 1289 static int btrfs_fill_super(struct super_block *sb, 1290 struct btrfs_fs_devices *fs_devices, 1291 void *data) 1292 { 1293 struct inode *inode; 1294 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1295 int err; 1296 1297 sb->s_maxbytes = MAX_LFS_FILESIZE; 1298 sb->s_magic = BTRFS_SUPER_MAGIC; 1299 sb->s_op = &btrfs_super_ops; 1300 sb->s_d_op = &btrfs_dentry_operations; 1301 sb->s_export_op = &btrfs_export_ops; 1302 sb->s_xattr = btrfs_xattr_handlers; 1303 sb->s_time_gran = 1; 1304 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1305 sb->s_flags |= SB_POSIXACL; 1306 #endif 1307 sb->s_flags |= SB_I_VERSION; 1308 sb->s_iflags |= SB_I_CGROUPWB; 1309 1310 err = super_setup_bdi(sb); 1311 if (err) { 1312 btrfs_err(fs_info, "super_setup_bdi failed"); 1313 return err; 1314 } 1315 1316 err = open_ctree(sb, fs_devices, (char *)data); 1317 if (err) { 1318 btrfs_err(fs_info, "open_ctree failed"); 1319 return err; 1320 } 1321 1322 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1323 if (IS_ERR(inode)) { 1324 err = PTR_ERR(inode); 1325 goto fail_close; 1326 } 1327 1328 sb->s_root = d_make_root(inode); 1329 if (!sb->s_root) { 1330 err = -ENOMEM; 1331 goto fail_close; 1332 } 1333 1334 cleancache_init_fs(sb); 1335 sb->s_flags |= SB_ACTIVE; 1336 return 0; 1337 1338 fail_close: 1339 close_ctree(fs_info); 1340 return err; 1341 } 1342 1343 int btrfs_sync_fs(struct super_block *sb, int wait) 1344 { 1345 struct btrfs_trans_handle *trans; 1346 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1347 struct btrfs_root *root = fs_info->tree_root; 1348 1349 trace_btrfs_sync_fs(fs_info, wait); 1350 1351 if (!wait) { 1352 filemap_flush(fs_info->btree_inode->i_mapping); 1353 return 0; 1354 } 1355 1356 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1357 1358 trans = btrfs_attach_transaction_barrier(root); 1359 if (IS_ERR(trans)) { 1360 /* no transaction, don't bother */ 1361 if (PTR_ERR(trans) == -ENOENT) { 1362 /* 1363 * Exit unless we have some pending changes 1364 * that need to go through commit 1365 */ 1366 if (fs_info->pending_changes == 0) 1367 return 0; 1368 /* 1369 * A non-blocking test if the fs is frozen. We must not 1370 * start a new transaction here otherwise a deadlock 1371 * happens. The pending operations are delayed to the 1372 * next commit after thawing. 1373 */ 1374 if (sb_start_write_trylock(sb)) 1375 sb_end_write(sb); 1376 else 1377 return 0; 1378 trans = btrfs_start_transaction(root, 0); 1379 } 1380 if (IS_ERR(trans)) 1381 return PTR_ERR(trans); 1382 } 1383 return btrfs_commit_transaction(trans); 1384 } 1385 1386 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1387 { 1388 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1389 const char *compress_type; 1390 const char *subvol_name; 1391 1392 if (btrfs_test_opt(info, DEGRADED)) 1393 seq_puts(seq, ",degraded"); 1394 if (btrfs_test_opt(info, NODATASUM)) 1395 seq_puts(seq, ",nodatasum"); 1396 if (btrfs_test_opt(info, NODATACOW)) 1397 seq_puts(seq, ",nodatacow"); 1398 if (btrfs_test_opt(info, NOBARRIER)) 1399 seq_puts(seq, ",nobarrier"); 1400 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1401 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1402 if (info->thread_pool_size != min_t(unsigned long, 1403 num_online_cpus() + 2, 8)) 1404 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1405 if (btrfs_test_opt(info, COMPRESS)) { 1406 compress_type = btrfs_compress_type2str(info->compress_type); 1407 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1408 seq_printf(seq, ",compress-force=%s", compress_type); 1409 else 1410 seq_printf(seq, ",compress=%s", compress_type); 1411 if (info->compress_level) 1412 seq_printf(seq, ":%d", info->compress_level); 1413 } 1414 if (btrfs_test_opt(info, NOSSD)) 1415 seq_puts(seq, ",nossd"); 1416 if (btrfs_test_opt(info, SSD_SPREAD)) 1417 seq_puts(seq, ",ssd_spread"); 1418 else if (btrfs_test_opt(info, SSD)) 1419 seq_puts(seq, ",ssd"); 1420 if (btrfs_test_opt(info, NOTREELOG)) 1421 seq_puts(seq, ",notreelog"); 1422 if (btrfs_test_opt(info, NOLOGREPLAY)) 1423 seq_puts(seq, ",rescue=nologreplay"); 1424 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1425 seq_puts(seq, ",flushoncommit"); 1426 if (btrfs_test_opt(info, DISCARD_SYNC)) 1427 seq_puts(seq, ",discard"); 1428 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1429 seq_puts(seq, ",discard=async"); 1430 if (!(info->sb->s_flags & SB_POSIXACL)) 1431 seq_puts(seq, ",noacl"); 1432 if (btrfs_test_opt(info, SPACE_CACHE)) 1433 seq_puts(seq, ",space_cache"); 1434 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1435 seq_puts(seq, ",space_cache=v2"); 1436 else 1437 seq_puts(seq, ",nospace_cache"); 1438 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1439 seq_puts(seq, ",rescan_uuid_tree"); 1440 if (btrfs_test_opt(info, CLEAR_CACHE)) 1441 seq_puts(seq, ",clear_cache"); 1442 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1443 seq_puts(seq, ",user_subvol_rm_allowed"); 1444 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1445 seq_puts(seq, ",enospc_debug"); 1446 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1447 seq_puts(seq, ",autodefrag"); 1448 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1449 seq_puts(seq, ",inode_cache"); 1450 if (btrfs_test_opt(info, SKIP_BALANCE)) 1451 seq_puts(seq, ",skip_balance"); 1452 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1453 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1454 seq_puts(seq, ",check_int_data"); 1455 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1456 seq_puts(seq, ",check_int"); 1457 if (info->check_integrity_print_mask) 1458 seq_printf(seq, ",check_int_print_mask=%d", 1459 info->check_integrity_print_mask); 1460 #endif 1461 if (info->metadata_ratio) 1462 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1463 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1464 seq_puts(seq, ",fatal_errors=panic"); 1465 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1466 seq_printf(seq, ",commit=%u", info->commit_interval); 1467 #ifdef CONFIG_BTRFS_DEBUG 1468 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1469 seq_puts(seq, ",fragment=data"); 1470 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1471 seq_puts(seq, ",fragment=metadata"); 1472 #endif 1473 if (btrfs_test_opt(info, REF_VERIFY)) 1474 seq_puts(seq, ",ref_verify"); 1475 seq_printf(seq, ",subvolid=%llu", 1476 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1477 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1478 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1479 if (!IS_ERR(subvol_name)) { 1480 seq_puts(seq, ",subvol="); 1481 seq_escape(seq, subvol_name, " \t\n\\"); 1482 kfree(subvol_name); 1483 } 1484 return 0; 1485 } 1486 1487 static int btrfs_test_super(struct super_block *s, void *data) 1488 { 1489 struct btrfs_fs_info *p = data; 1490 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1491 1492 return fs_info->fs_devices == p->fs_devices; 1493 } 1494 1495 static int btrfs_set_super(struct super_block *s, void *data) 1496 { 1497 int err = set_anon_super(s, data); 1498 if (!err) 1499 s->s_fs_info = data; 1500 return err; 1501 } 1502 1503 /* 1504 * subvolumes are identified by ino 256 1505 */ 1506 static inline int is_subvolume_inode(struct inode *inode) 1507 { 1508 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1509 return 1; 1510 return 0; 1511 } 1512 1513 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1514 struct vfsmount *mnt) 1515 { 1516 struct dentry *root; 1517 int ret; 1518 1519 if (!subvol_name) { 1520 if (!subvol_objectid) { 1521 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1522 &subvol_objectid); 1523 if (ret) { 1524 root = ERR_PTR(ret); 1525 goto out; 1526 } 1527 } 1528 subvol_name = btrfs_get_subvol_name_from_objectid( 1529 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1530 if (IS_ERR(subvol_name)) { 1531 root = ERR_CAST(subvol_name); 1532 subvol_name = NULL; 1533 goto out; 1534 } 1535 1536 } 1537 1538 root = mount_subtree(mnt, subvol_name); 1539 /* mount_subtree() drops our reference on the vfsmount. */ 1540 mnt = NULL; 1541 1542 if (!IS_ERR(root)) { 1543 struct super_block *s = root->d_sb; 1544 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1545 struct inode *root_inode = d_inode(root); 1546 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1547 1548 ret = 0; 1549 if (!is_subvolume_inode(root_inode)) { 1550 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1551 subvol_name); 1552 ret = -EINVAL; 1553 } 1554 if (subvol_objectid && root_objectid != subvol_objectid) { 1555 /* 1556 * This will also catch a race condition where a 1557 * subvolume which was passed by ID is renamed and 1558 * another subvolume is renamed over the old location. 1559 */ 1560 btrfs_err(fs_info, 1561 "subvol '%s' does not match subvolid %llu", 1562 subvol_name, subvol_objectid); 1563 ret = -EINVAL; 1564 } 1565 if (ret) { 1566 dput(root); 1567 root = ERR_PTR(ret); 1568 deactivate_locked_super(s); 1569 } 1570 } 1571 1572 out: 1573 mntput(mnt); 1574 kfree(subvol_name); 1575 return root; 1576 } 1577 1578 /* 1579 * Find a superblock for the given device / mount point. 1580 * 1581 * Note: This is based on mount_bdev from fs/super.c with a few additions 1582 * for multiple device setup. Make sure to keep it in sync. 1583 */ 1584 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1585 int flags, const char *device_name, void *data) 1586 { 1587 struct block_device *bdev = NULL; 1588 struct super_block *s; 1589 struct btrfs_device *device = NULL; 1590 struct btrfs_fs_devices *fs_devices = NULL; 1591 struct btrfs_fs_info *fs_info = NULL; 1592 void *new_sec_opts = NULL; 1593 fmode_t mode = FMODE_READ; 1594 int error = 0; 1595 1596 if (!(flags & SB_RDONLY)) 1597 mode |= FMODE_WRITE; 1598 1599 if (data) { 1600 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1601 if (error) 1602 return ERR_PTR(error); 1603 } 1604 1605 /* 1606 * Setup a dummy root and fs_info for test/set super. This is because 1607 * we don't actually fill this stuff out until open_ctree, but we need 1608 * then open_ctree will properly initialize the file system specific 1609 * settings later. btrfs_init_fs_info initializes the static elements 1610 * of the fs_info (locks and such) to make cleanup easier if we find a 1611 * superblock with our given fs_devices later on at sget() time. 1612 */ 1613 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1614 if (!fs_info) { 1615 error = -ENOMEM; 1616 goto error_sec_opts; 1617 } 1618 btrfs_init_fs_info(fs_info); 1619 1620 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1621 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1622 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1623 error = -ENOMEM; 1624 goto error_fs_info; 1625 } 1626 1627 mutex_lock(&uuid_mutex); 1628 error = btrfs_parse_device_options(data, mode, fs_type); 1629 if (error) { 1630 mutex_unlock(&uuid_mutex); 1631 goto error_fs_info; 1632 } 1633 1634 device = btrfs_scan_one_device(device_name, mode, fs_type); 1635 if (IS_ERR(device)) { 1636 mutex_unlock(&uuid_mutex); 1637 error = PTR_ERR(device); 1638 goto error_fs_info; 1639 } 1640 1641 fs_devices = device->fs_devices; 1642 fs_info->fs_devices = fs_devices; 1643 1644 error = btrfs_open_devices(fs_devices, mode, fs_type); 1645 mutex_unlock(&uuid_mutex); 1646 if (error) 1647 goto error_fs_info; 1648 1649 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1650 error = -EACCES; 1651 goto error_close_devices; 1652 } 1653 1654 bdev = fs_devices->latest_bdev; 1655 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1656 fs_info); 1657 if (IS_ERR(s)) { 1658 error = PTR_ERR(s); 1659 goto error_close_devices; 1660 } 1661 1662 if (s->s_root) { 1663 btrfs_close_devices(fs_devices); 1664 btrfs_free_fs_info(fs_info); 1665 if ((flags ^ s->s_flags) & SB_RDONLY) 1666 error = -EBUSY; 1667 } else { 1668 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1669 btrfs_sb(s)->bdev_holder = fs_type; 1670 if (!strstr(crc32c_impl(), "generic")) 1671 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1672 error = btrfs_fill_super(s, fs_devices, data); 1673 } 1674 if (!error) 1675 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1676 security_free_mnt_opts(&new_sec_opts); 1677 if (error) { 1678 deactivate_locked_super(s); 1679 return ERR_PTR(error); 1680 } 1681 1682 return dget(s->s_root); 1683 1684 error_close_devices: 1685 btrfs_close_devices(fs_devices); 1686 error_fs_info: 1687 btrfs_free_fs_info(fs_info); 1688 error_sec_opts: 1689 security_free_mnt_opts(&new_sec_opts); 1690 return ERR_PTR(error); 1691 } 1692 1693 /* 1694 * Mount function which is called by VFS layer. 1695 * 1696 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1697 * which needs vfsmount* of device's root (/). This means device's root has to 1698 * be mounted internally in any case. 1699 * 1700 * Operation flow: 1701 * 1. Parse subvol id related options for later use in mount_subvol(). 1702 * 1703 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1704 * 1705 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1706 * first place. In order to avoid calling btrfs_mount() again, we use 1707 * different file_system_type which is not registered to VFS by 1708 * register_filesystem() (btrfs_root_fs_type). As a result, 1709 * btrfs_mount_root() is called. The return value will be used by 1710 * mount_subtree() in mount_subvol(). 1711 * 1712 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1713 * "btrfs subvolume set-default", mount_subvol() is called always. 1714 */ 1715 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1716 const char *device_name, void *data) 1717 { 1718 struct vfsmount *mnt_root; 1719 struct dentry *root; 1720 char *subvol_name = NULL; 1721 u64 subvol_objectid = 0; 1722 int error = 0; 1723 1724 error = btrfs_parse_subvol_options(data, &subvol_name, 1725 &subvol_objectid); 1726 if (error) { 1727 kfree(subvol_name); 1728 return ERR_PTR(error); 1729 } 1730 1731 /* mount device's root (/) */ 1732 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1733 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1734 if (flags & SB_RDONLY) { 1735 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1736 flags & ~SB_RDONLY, device_name, data); 1737 } else { 1738 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1739 flags | SB_RDONLY, device_name, data); 1740 if (IS_ERR(mnt_root)) { 1741 root = ERR_CAST(mnt_root); 1742 kfree(subvol_name); 1743 goto out; 1744 } 1745 1746 down_write(&mnt_root->mnt_sb->s_umount); 1747 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1748 up_write(&mnt_root->mnt_sb->s_umount); 1749 if (error < 0) { 1750 root = ERR_PTR(error); 1751 mntput(mnt_root); 1752 kfree(subvol_name); 1753 goto out; 1754 } 1755 } 1756 } 1757 if (IS_ERR(mnt_root)) { 1758 root = ERR_CAST(mnt_root); 1759 kfree(subvol_name); 1760 goto out; 1761 } 1762 1763 /* mount_subvol() will free subvol_name and mnt_root */ 1764 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1765 1766 out: 1767 return root; 1768 } 1769 1770 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1771 u32 new_pool_size, u32 old_pool_size) 1772 { 1773 if (new_pool_size == old_pool_size) 1774 return; 1775 1776 fs_info->thread_pool_size = new_pool_size; 1777 1778 btrfs_info(fs_info, "resize thread pool %d -> %d", 1779 old_pool_size, new_pool_size); 1780 1781 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1782 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1783 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1784 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1785 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1786 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1787 new_pool_size); 1788 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1789 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1790 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1791 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1792 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1793 new_pool_size); 1794 } 1795 1796 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1797 unsigned long old_opts, int flags) 1798 { 1799 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1800 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1801 (flags & SB_RDONLY))) { 1802 /* wait for any defraggers to finish */ 1803 wait_event(fs_info->transaction_wait, 1804 (atomic_read(&fs_info->defrag_running) == 0)); 1805 if (flags & SB_RDONLY) 1806 sync_filesystem(fs_info->sb); 1807 } 1808 } 1809 1810 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1811 unsigned long old_opts) 1812 { 1813 /* 1814 * We need to cleanup all defragable inodes if the autodefragment is 1815 * close or the filesystem is read only. 1816 */ 1817 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1818 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1819 btrfs_cleanup_defrag_inodes(fs_info); 1820 } 1821 1822 /* If we toggled discard async */ 1823 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1824 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1825 btrfs_discard_resume(fs_info); 1826 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1827 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1828 btrfs_discard_cleanup(fs_info); 1829 } 1830 1831 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1832 { 1833 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1834 struct btrfs_root *root = fs_info->tree_root; 1835 unsigned old_flags = sb->s_flags; 1836 unsigned long old_opts = fs_info->mount_opt; 1837 unsigned long old_compress_type = fs_info->compress_type; 1838 u64 old_max_inline = fs_info->max_inline; 1839 u32 old_thread_pool_size = fs_info->thread_pool_size; 1840 u32 old_metadata_ratio = fs_info->metadata_ratio; 1841 int ret; 1842 1843 sync_filesystem(sb); 1844 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1845 1846 if (data) { 1847 void *new_sec_opts = NULL; 1848 1849 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1850 if (!ret) 1851 ret = security_sb_remount(sb, new_sec_opts); 1852 security_free_mnt_opts(&new_sec_opts); 1853 if (ret) 1854 goto restore; 1855 } 1856 1857 ret = btrfs_parse_options(fs_info, data, *flags); 1858 if (ret) 1859 goto restore; 1860 1861 btrfs_remount_begin(fs_info, old_opts, *flags); 1862 btrfs_resize_thread_pool(fs_info, 1863 fs_info->thread_pool_size, old_thread_pool_size); 1864 1865 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1866 goto out; 1867 1868 if (*flags & SB_RDONLY) { 1869 /* 1870 * this also happens on 'umount -rf' or on shutdown, when 1871 * the filesystem is busy. 1872 */ 1873 cancel_work_sync(&fs_info->async_reclaim_work); 1874 1875 btrfs_discard_cleanup(fs_info); 1876 1877 /* wait for the uuid_scan task to finish */ 1878 down(&fs_info->uuid_tree_rescan_sem); 1879 /* avoid complains from lockdep et al. */ 1880 up(&fs_info->uuid_tree_rescan_sem); 1881 1882 sb->s_flags |= SB_RDONLY; 1883 1884 /* 1885 * Setting SB_RDONLY will put the cleaner thread to 1886 * sleep at the next loop if it's already active. 1887 * If it's already asleep, we'll leave unused block 1888 * groups on disk until we're mounted read-write again 1889 * unless we clean them up here. 1890 */ 1891 btrfs_delete_unused_bgs(fs_info); 1892 1893 btrfs_dev_replace_suspend_for_unmount(fs_info); 1894 btrfs_scrub_cancel(fs_info); 1895 btrfs_pause_balance(fs_info); 1896 1897 ret = btrfs_commit_super(fs_info); 1898 if (ret) 1899 goto restore; 1900 } else { 1901 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1902 btrfs_err(fs_info, 1903 "Remounting read-write after error is not allowed"); 1904 ret = -EINVAL; 1905 goto restore; 1906 } 1907 if (fs_info->fs_devices->rw_devices == 0) { 1908 ret = -EACCES; 1909 goto restore; 1910 } 1911 1912 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1913 btrfs_warn(fs_info, 1914 "too many missing devices, writable remount is not allowed"); 1915 ret = -EACCES; 1916 goto restore; 1917 } 1918 1919 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1920 btrfs_warn(fs_info, 1921 "mount required to replay tree-log, cannot remount read-write"); 1922 ret = -EINVAL; 1923 goto restore; 1924 } 1925 1926 ret = btrfs_cleanup_fs_roots(fs_info); 1927 if (ret) 1928 goto restore; 1929 1930 /* recover relocation */ 1931 mutex_lock(&fs_info->cleaner_mutex); 1932 ret = btrfs_recover_relocation(root); 1933 mutex_unlock(&fs_info->cleaner_mutex); 1934 if (ret) 1935 goto restore; 1936 1937 ret = btrfs_resume_balance_async(fs_info); 1938 if (ret) 1939 goto restore; 1940 1941 ret = btrfs_resume_dev_replace_async(fs_info); 1942 if (ret) { 1943 btrfs_warn(fs_info, "failed to resume dev_replace"); 1944 goto restore; 1945 } 1946 1947 btrfs_qgroup_rescan_resume(fs_info); 1948 1949 if (!fs_info->uuid_root) { 1950 btrfs_info(fs_info, "creating UUID tree"); 1951 ret = btrfs_create_uuid_tree(fs_info); 1952 if (ret) { 1953 btrfs_warn(fs_info, 1954 "failed to create the UUID tree %d", 1955 ret); 1956 goto restore; 1957 } 1958 } 1959 sb->s_flags &= ~SB_RDONLY; 1960 1961 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1962 } 1963 out: 1964 /* 1965 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 1966 * since the absence of the flag means it can be toggled off by remount. 1967 */ 1968 *flags |= SB_I_VERSION; 1969 1970 wake_up_process(fs_info->transaction_kthread); 1971 btrfs_remount_cleanup(fs_info, old_opts); 1972 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1973 1974 return 0; 1975 1976 restore: 1977 /* We've hit an error - don't reset SB_RDONLY */ 1978 if (sb_rdonly(sb)) 1979 old_flags |= SB_RDONLY; 1980 sb->s_flags = old_flags; 1981 fs_info->mount_opt = old_opts; 1982 fs_info->compress_type = old_compress_type; 1983 fs_info->max_inline = old_max_inline; 1984 btrfs_resize_thread_pool(fs_info, 1985 old_thread_pool_size, fs_info->thread_pool_size); 1986 fs_info->metadata_ratio = old_metadata_ratio; 1987 btrfs_remount_cleanup(fs_info, old_opts); 1988 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1989 1990 return ret; 1991 } 1992 1993 /* Used to sort the devices by max_avail(descending sort) */ 1994 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 1995 const void *dev_info2) 1996 { 1997 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1998 ((struct btrfs_device_info *)dev_info2)->max_avail) 1999 return -1; 2000 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 2001 ((struct btrfs_device_info *)dev_info2)->max_avail) 2002 return 1; 2003 else 2004 return 0; 2005 } 2006 2007 /* 2008 * sort the devices by max_avail, in which max free extent size of each device 2009 * is stored.(Descending Sort) 2010 */ 2011 static inline void btrfs_descending_sort_devices( 2012 struct btrfs_device_info *devices, 2013 size_t nr_devices) 2014 { 2015 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2016 btrfs_cmp_device_free_bytes, NULL); 2017 } 2018 2019 /* 2020 * The helper to calc the free space on the devices that can be used to store 2021 * file data. 2022 */ 2023 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2024 u64 *free_bytes) 2025 { 2026 struct btrfs_device_info *devices_info; 2027 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2028 struct btrfs_device *device; 2029 u64 type; 2030 u64 avail_space; 2031 u64 min_stripe_size; 2032 int num_stripes = 1; 2033 int i = 0, nr_devices; 2034 const struct btrfs_raid_attr *rattr; 2035 2036 /* 2037 * We aren't under the device list lock, so this is racy-ish, but good 2038 * enough for our purposes. 2039 */ 2040 nr_devices = fs_info->fs_devices->open_devices; 2041 if (!nr_devices) { 2042 smp_mb(); 2043 nr_devices = fs_info->fs_devices->open_devices; 2044 ASSERT(nr_devices); 2045 if (!nr_devices) { 2046 *free_bytes = 0; 2047 return 0; 2048 } 2049 } 2050 2051 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2052 GFP_KERNEL); 2053 if (!devices_info) 2054 return -ENOMEM; 2055 2056 /* calc min stripe number for data space allocation */ 2057 type = btrfs_data_alloc_profile(fs_info); 2058 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2059 2060 if (type & BTRFS_BLOCK_GROUP_RAID0) 2061 num_stripes = nr_devices; 2062 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2063 num_stripes = 2; 2064 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2065 num_stripes = 3; 2066 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2067 num_stripes = 4; 2068 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2069 num_stripes = 4; 2070 2071 /* Adjust for more than 1 stripe per device */ 2072 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2073 2074 rcu_read_lock(); 2075 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2076 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2077 &device->dev_state) || 2078 !device->bdev || 2079 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2080 continue; 2081 2082 if (i >= nr_devices) 2083 break; 2084 2085 avail_space = device->total_bytes - device->bytes_used; 2086 2087 /* align with stripe_len */ 2088 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2089 2090 /* 2091 * In order to avoid overwriting the superblock on the drive, 2092 * btrfs starts at an offset of at least 1MB when doing chunk 2093 * allocation. 2094 * 2095 * This ensures we have at least min_stripe_size free space 2096 * after excluding 1MB. 2097 */ 2098 if (avail_space <= SZ_1M + min_stripe_size) 2099 continue; 2100 2101 avail_space -= SZ_1M; 2102 2103 devices_info[i].dev = device; 2104 devices_info[i].max_avail = avail_space; 2105 2106 i++; 2107 } 2108 rcu_read_unlock(); 2109 2110 nr_devices = i; 2111 2112 btrfs_descending_sort_devices(devices_info, nr_devices); 2113 2114 i = nr_devices - 1; 2115 avail_space = 0; 2116 while (nr_devices >= rattr->devs_min) { 2117 num_stripes = min(num_stripes, nr_devices); 2118 2119 if (devices_info[i].max_avail >= min_stripe_size) { 2120 int j; 2121 u64 alloc_size; 2122 2123 avail_space += devices_info[i].max_avail * num_stripes; 2124 alloc_size = devices_info[i].max_avail; 2125 for (j = i + 1 - num_stripes; j <= i; j++) 2126 devices_info[j].max_avail -= alloc_size; 2127 } 2128 i--; 2129 nr_devices--; 2130 } 2131 2132 kfree(devices_info); 2133 *free_bytes = avail_space; 2134 return 0; 2135 } 2136 2137 /* 2138 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2139 * 2140 * If there's a redundant raid level at DATA block groups, use the respective 2141 * multiplier to scale the sizes. 2142 * 2143 * Unused device space usage is based on simulating the chunk allocator 2144 * algorithm that respects the device sizes and order of allocations. This is 2145 * a close approximation of the actual use but there are other factors that may 2146 * change the result (like a new metadata chunk). 2147 * 2148 * If metadata is exhausted, f_bavail will be 0. 2149 */ 2150 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2151 { 2152 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2153 struct btrfs_super_block *disk_super = fs_info->super_copy; 2154 struct btrfs_space_info *found; 2155 u64 total_used = 0; 2156 u64 total_free_data = 0; 2157 u64 total_free_meta = 0; 2158 int bits = dentry->d_sb->s_blocksize_bits; 2159 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2160 unsigned factor = 1; 2161 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2162 int ret; 2163 u64 thresh = 0; 2164 int mixed = 0; 2165 2166 rcu_read_lock(); 2167 list_for_each_entry_rcu(found, &fs_info->space_info, list) { 2168 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2169 int i; 2170 2171 total_free_data += found->disk_total - found->disk_used; 2172 total_free_data -= 2173 btrfs_account_ro_block_groups_free_space(found); 2174 2175 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2176 if (!list_empty(&found->block_groups[i])) 2177 factor = btrfs_bg_type_to_factor( 2178 btrfs_raid_array[i].bg_flag); 2179 } 2180 } 2181 2182 /* 2183 * Metadata in mixed block goup profiles are accounted in data 2184 */ 2185 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2186 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2187 mixed = 1; 2188 else 2189 total_free_meta += found->disk_total - 2190 found->disk_used; 2191 } 2192 2193 total_used += found->disk_used; 2194 } 2195 2196 rcu_read_unlock(); 2197 2198 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2199 buf->f_blocks >>= bits; 2200 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2201 2202 /* Account global block reserve as used, it's in logical size already */ 2203 spin_lock(&block_rsv->lock); 2204 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2205 if (buf->f_bfree >= block_rsv->size >> bits) 2206 buf->f_bfree -= block_rsv->size >> bits; 2207 else 2208 buf->f_bfree = 0; 2209 spin_unlock(&block_rsv->lock); 2210 2211 buf->f_bavail = div_u64(total_free_data, factor); 2212 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2213 if (ret) 2214 return ret; 2215 buf->f_bavail += div_u64(total_free_data, factor); 2216 buf->f_bavail = buf->f_bavail >> bits; 2217 2218 /* 2219 * We calculate the remaining metadata space minus global reserve. If 2220 * this is (supposedly) smaller than zero, there's no space. But this 2221 * does not hold in practice, the exhausted state happens where's still 2222 * some positive delta. So we apply some guesswork and compare the 2223 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2224 * 2225 * We probably cannot calculate the exact threshold value because this 2226 * depends on the internal reservations requested by various 2227 * operations, so some operations that consume a few metadata will 2228 * succeed even if the Avail is zero. But this is better than the other 2229 * way around. 2230 */ 2231 thresh = SZ_4M; 2232 2233 /* 2234 * We only want to claim there's no available space if we can no longer 2235 * allocate chunks for our metadata profile and our global reserve will 2236 * not fit in the free metadata space. If we aren't ->full then we 2237 * still can allocate chunks and thus are fine using the currently 2238 * calculated f_bavail. 2239 */ 2240 if (!mixed && block_rsv->space_info->full && 2241 total_free_meta - thresh < block_rsv->size) 2242 buf->f_bavail = 0; 2243 2244 buf->f_type = BTRFS_SUPER_MAGIC; 2245 buf->f_bsize = dentry->d_sb->s_blocksize; 2246 buf->f_namelen = BTRFS_NAME_LEN; 2247 2248 /* We treat it as constant endianness (it doesn't matter _which_) 2249 because we want the fsid to come out the same whether mounted 2250 on a big-endian or little-endian host */ 2251 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2252 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2253 /* Mask in the root object ID too, to disambiguate subvols */ 2254 buf->f_fsid.val[0] ^= 2255 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2256 buf->f_fsid.val[1] ^= 2257 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2258 2259 return 0; 2260 } 2261 2262 static void btrfs_kill_super(struct super_block *sb) 2263 { 2264 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2265 kill_anon_super(sb); 2266 btrfs_free_fs_info(fs_info); 2267 } 2268 2269 static struct file_system_type btrfs_fs_type = { 2270 .owner = THIS_MODULE, 2271 .name = "btrfs", 2272 .mount = btrfs_mount, 2273 .kill_sb = btrfs_kill_super, 2274 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2275 }; 2276 2277 static struct file_system_type btrfs_root_fs_type = { 2278 .owner = THIS_MODULE, 2279 .name = "btrfs", 2280 .mount = btrfs_mount_root, 2281 .kill_sb = btrfs_kill_super, 2282 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2283 }; 2284 2285 MODULE_ALIAS_FS("btrfs"); 2286 2287 static int btrfs_control_open(struct inode *inode, struct file *file) 2288 { 2289 /* 2290 * The control file's private_data is used to hold the 2291 * transaction when it is started and is used to keep 2292 * track of whether a transaction is already in progress. 2293 */ 2294 file->private_data = NULL; 2295 return 0; 2296 } 2297 2298 /* 2299 * Used by /dev/btrfs-control for devices ioctls. 2300 */ 2301 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2302 unsigned long arg) 2303 { 2304 struct btrfs_ioctl_vol_args *vol; 2305 struct btrfs_device *device = NULL; 2306 int ret = -ENOTTY; 2307 2308 if (!capable(CAP_SYS_ADMIN)) 2309 return -EPERM; 2310 2311 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2312 if (IS_ERR(vol)) 2313 return PTR_ERR(vol); 2314 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2315 2316 switch (cmd) { 2317 case BTRFS_IOC_SCAN_DEV: 2318 mutex_lock(&uuid_mutex); 2319 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2320 &btrfs_root_fs_type); 2321 ret = PTR_ERR_OR_ZERO(device); 2322 mutex_unlock(&uuid_mutex); 2323 break; 2324 case BTRFS_IOC_FORGET_DEV: 2325 ret = btrfs_forget_devices(vol->name); 2326 break; 2327 case BTRFS_IOC_DEVICES_READY: 2328 mutex_lock(&uuid_mutex); 2329 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2330 &btrfs_root_fs_type); 2331 if (IS_ERR(device)) { 2332 mutex_unlock(&uuid_mutex); 2333 ret = PTR_ERR(device); 2334 break; 2335 } 2336 ret = !(device->fs_devices->num_devices == 2337 device->fs_devices->total_devices); 2338 mutex_unlock(&uuid_mutex); 2339 break; 2340 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2341 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2342 break; 2343 } 2344 2345 kfree(vol); 2346 return ret; 2347 } 2348 2349 static int btrfs_freeze(struct super_block *sb) 2350 { 2351 struct btrfs_trans_handle *trans; 2352 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2353 struct btrfs_root *root = fs_info->tree_root; 2354 2355 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2356 /* 2357 * We don't need a barrier here, we'll wait for any transaction that 2358 * could be in progress on other threads (and do delayed iputs that 2359 * we want to avoid on a frozen filesystem), or do the commit 2360 * ourselves. 2361 */ 2362 trans = btrfs_attach_transaction_barrier(root); 2363 if (IS_ERR(trans)) { 2364 /* no transaction, don't bother */ 2365 if (PTR_ERR(trans) == -ENOENT) 2366 return 0; 2367 return PTR_ERR(trans); 2368 } 2369 return btrfs_commit_transaction(trans); 2370 } 2371 2372 static int btrfs_unfreeze(struct super_block *sb) 2373 { 2374 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2375 2376 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2377 return 0; 2378 } 2379 2380 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2381 { 2382 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2383 struct btrfs_device *dev, *first_dev = NULL; 2384 2385 /* 2386 * Lightweight locking of the devices. We should not need 2387 * device_list_mutex here as we only read the device data and the list 2388 * is protected by RCU. Even if a device is deleted during the list 2389 * traversals, we'll get valid data, the freeing callback will wait at 2390 * least until the rcu_read_unlock. 2391 */ 2392 rcu_read_lock(); 2393 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) { 2394 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2395 continue; 2396 if (!dev->name) 2397 continue; 2398 if (!first_dev || dev->devid < first_dev->devid) 2399 first_dev = dev; 2400 } 2401 2402 if (first_dev) 2403 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2404 else 2405 WARN_ON(1); 2406 rcu_read_unlock(); 2407 return 0; 2408 } 2409 2410 static const struct super_operations btrfs_super_ops = { 2411 .drop_inode = btrfs_drop_inode, 2412 .evict_inode = btrfs_evict_inode, 2413 .put_super = btrfs_put_super, 2414 .sync_fs = btrfs_sync_fs, 2415 .show_options = btrfs_show_options, 2416 .show_devname = btrfs_show_devname, 2417 .alloc_inode = btrfs_alloc_inode, 2418 .destroy_inode = btrfs_destroy_inode, 2419 .free_inode = btrfs_free_inode, 2420 .statfs = btrfs_statfs, 2421 .remount_fs = btrfs_remount, 2422 .freeze_fs = btrfs_freeze, 2423 .unfreeze_fs = btrfs_unfreeze, 2424 }; 2425 2426 static const struct file_operations btrfs_ctl_fops = { 2427 .open = btrfs_control_open, 2428 .unlocked_ioctl = btrfs_control_ioctl, 2429 .compat_ioctl = compat_ptr_ioctl, 2430 .owner = THIS_MODULE, 2431 .llseek = noop_llseek, 2432 }; 2433 2434 static struct miscdevice btrfs_misc = { 2435 .minor = BTRFS_MINOR, 2436 .name = "btrfs-control", 2437 .fops = &btrfs_ctl_fops 2438 }; 2439 2440 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2441 MODULE_ALIAS("devname:btrfs-control"); 2442 2443 static int __init btrfs_interface_init(void) 2444 { 2445 return misc_register(&btrfs_misc); 2446 } 2447 2448 static __cold void btrfs_interface_exit(void) 2449 { 2450 misc_deregister(&btrfs_misc); 2451 } 2452 2453 static void __init btrfs_print_mod_info(void) 2454 { 2455 static const char options[] = "" 2456 #ifdef CONFIG_BTRFS_DEBUG 2457 ", debug=on" 2458 #endif 2459 #ifdef CONFIG_BTRFS_ASSERT 2460 ", assert=on" 2461 #endif 2462 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2463 ", integrity-checker=on" 2464 #endif 2465 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2466 ", ref-verify=on" 2467 #endif 2468 ; 2469 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2470 } 2471 2472 static int __init init_btrfs_fs(void) 2473 { 2474 int err; 2475 2476 btrfs_props_init(); 2477 2478 err = btrfs_init_sysfs(); 2479 if (err) 2480 return err; 2481 2482 btrfs_init_compress(); 2483 2484 err = btrfs_init_cachep(); 2485 if (err) 2486 goto free_compress; 2487 2488 err = extent_io_init(); 2489 if (err) 2490 goto free_cachep; 2491 2492 err = extent_state_cache_init(); 2493 if (err) 2494 goto free_extent_io; 2495 2496 err = extent_map_init(); 2497 if (err) 2498 goto free_extent_state_cache; 2499 2500 err = ordered_data_init(); 2501 if (err) 2502 goto free_extent_map; 2503 2504 err = btrfs_delayed_inode_init(); 2505 if (err) 2506 goto free_ordered_data; 2507 2508 err = btrfs_auto_defrag_init(); 2509 if (err) 2510 goto free_delayed_inode; 2511 2512 err = btrfs_delayed_ref_init(); 2513 if (err) 2514 goto free_auto_defrag; 2515 2516 err = btrfs_prelim_ref_init(); 2517 if (err) 2518 goto free_delayed_ref; 2519 2520 err = btrfs_end_io_wq_init(); 2521 if (err) 2522 goto free_prelim_ref; 2523 2524 err = btrfs_interface_init(); 2525 if (err) 2526 goto free_end_io_wq; 2527 2528 btrfs_init_lockdep(); 2529 2530 btrfs_print_mod_info(); 2531 2532 err = btrfs_run_sanity_tests(); 2533 if (err) 2534 goto unregister_ioctl; 2535 2536 err = register_filesystem(&btrfs_fs_type); 2537 if (err) 2538 goto unregister_ioctl; 2539 2540 return 0; 2541 2542 unregister_ioctl: 2543 btrfs_interface_exit(); 2544 free_end_io_wq: 2545 btrfs_end_io_wq_exit(); 2546 free_prelim_ref: 2547 btrfs_prelim_ref_exit(); 2548 free_delayed_ref: 2549 btrfs_delayed_ref_exit(); 2550 free_auto_defrag: 2551 btrfs_auto_defrag_exit(); 2552 free_delayed_inode: 2553 btrfs_delayed_inode_exit(); 2554 free_ordered_data: 2555 ordered_data_exit(); 2556 free_extent_map: 2557 extent_map_exit(); 2558 free_extent_state_cache: 2559 extent_state_cache_exit(); 2560 free_extent_io: 2561 extent_io_exit(); 2562 free_cachep: 2563 btrfs_destroy_cachep(); 2564 free_compress: 2565 btrfs_exit_compress(); 2566 btrfs_exit_sysfs(); 2567 2568 return err; 2569 } 2570 2571 static void __exit exit_btrfs_fs(void) 2572 { 2573 btrfs_destroy_cachep(); 2574 btrfs_delayed_ref_exit(); 2575 btrfs_auto_defrag_exit(); 2576 btrfs_delayed_inode_exit(); 2577 btrfs_prelim_ref_exit(); 2578 ordered_data_exit(); 2579 extent_map_exit(); 2580 extent_state_cache_exit(); 2581 extent_io_exit(); 2582 btrfs_interface_exit(); 2583 btrfs_end_io_wq_exit(); 2584 unregister_filesystem(&btrfs_fs_type); 2585 btrfs_exit_sysfs(); 2586 btrfs_cleanup_fs_uuids(); 2587 btrfs_exit_compress(); 2588 } 2589 2590 late_initcall(init_btrfs_fs); 2591 module_exit(exit_btrfs_fs) 2592 2593 MODULE_LICENSE("GPL"); 2594 MODULE_SOFTDEP("pre: crc32c"); 2595 MODULE_SOFTDEP("pre: xxhash64"); 2596 MODULE_SOFTDEP("pre: sha256"); 2597 MODULE_SOFTDEP("pre: blake2b-256"); 2598