xref: /openbmc/linux/fs/btrfs/super.c (revision 26ba4e57)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 
50 #include "qgroup.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/btrfs.h>
53 
54 static const struct super_operations btrfs_super_ops;
55 
56 /*
57  * Types for mounting the default subvolume and a subvolume explicitly
58  * requested by subvol=/path. That way the callchain is straightforward and we
59  * don't have to play tricks with the mount options and recursive calls to
60  * btrfs_mount.
61  *
62  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
63  */
64 static struct file_system_type btrfs_fs_type;
65 static struct file_system_type btrfs_root_fs_type;
66 
67 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
68 
69 const char *btrfs_decode_error(int errno)
70 {
71 	char *errstr = "unknown";
72 
73 	switch (errno) {
74 	case -EIO:
75 		errstr = "IO failure";
76 		break;
77 	case -ENOMEM:
78 		errstr = "Out of memory";
79 		break;
80 	case -EROFS:
81 		errstr = "Readonly filesystem";
82 		break;
83 	case -EEXIST:
84 		errstr = "Object already exists";
85 		break;
86 	case -ENOSPC:
87 		errstr = "No space left";
88 		break;
89 	case -ENOENT:
90 		errstr = "No such entry";
91 		break;
92 	}
93 
94 	return errstr;
95 }
96 
97 /*
98  * __btrfs_handle_fs_error decodes expected errors from the caller and
99  * invokes the appropriate error response.
100  */
101 __cold
102 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
103 		       unsigned int line, int errno, const char *fmt, ...)
104 {
105 	struct super_block *sb = fs_info->sb;
106 #ifdef CONFIG_PRINTK
107 	const char *errstr;
108 #endif
109 
110 	/*
111 	 * Special case: if the error is EROFS, and we're already
112 	 * under SB_RDONLY, then it is safe here.
113 	 */
114 	if (errno == -EROFS && sb_rdonly(sb))
115   		return;
116 
117 #ifdef CONFIG_PRINTK
118 	errstr = btrfs_decode_error(errno);
119 	if (fmt) {
120 		struct va_format vaf;
121 		va_list args;
122 
123 		va_start(args, fmt);
124 		vaf.fmt = fmt;
125 		vaf.va = &args;
126 
127 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
128 			sb->s_id, function, line, errno, errstr, &vaf);
129 		va_end(args);
130 	} else {
131 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
132 			sb->s_id, function, line, errno, errstr);
133 	}
134 #endif
135 
136 	/*
137 	 * Today we only save the error info to memory.  Long term we'll
138 	 * also send it down to the disk
139 	 */
140 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
141 
142 	/* Don't go through full error handling during mount */
143 	if (!(sb->s_flags & SB_BORN))
144 		return;
145 
146 	if (sb_rdonly(sb))
147 		return;
148 
149 	/* btrfs handle error by forcing the filesystem readonly */
150 	sb->s_flags |= SB_RDONLY;
151 	btrfs_info(fs_info, "forced readonly");
152 	/*
153 	 * Note that a running device replace operation is not canceled here
154 	 * although there is no way to update the progress. It would add the
155 	 * risk of a deadlock, therefore the canceling is omitted. The only
156 	 * penalty is that some I/O remains active until the procedure
157 	 * completes. The next time when the filesystem is mounted writable
158 	 * again, the device replace operation continues.
159 	 */
160 }
161 
162 #ifdef CONFIG_PRINTK
163 static const char * const logtypes[] = {
164 	"emergency",
165 	"alert",
166 	"critical",
167 	"error",
168 	"warning",
169 	"notice",
170 	"info",
171 	"debug",
172 };
173 
174 
175 /*
176  * Use one ratelimit state per log level so that a flood of less important
177  * messages doesn't cause more important ones to be dropped.
178  */
179 static struct ratelimit_state printk_limits[] = {
180 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
181 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
182 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
183 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
184 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
185 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
186 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
187 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
188 };
189 
190 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
191 {
192 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
193 	struct va_format vaf;
194 	va_list args;
195 	int kern_level;
196 	const char *type = logtypes[4];
197 	struct ratelimit_state *ratelimit = &printk_limits[4];
198 
199 	va_start(args, fmt);
200 
201 	while ((kern_level = printk_get_level(fmt)) != 0) {
202 		size_t size = printk_skip_level(fmt) - fmt;
203 
204 		if (kern_level >= '0' && kern_level <= '7') {
205 			memcpy(lvl, fmt,  size);
206 			lvl[size] = '\0';
207 			type = logtypes[kern_level - '0'];
208 			ratelimit = &printk_limits[kern_level - '0'];
209 		}
210 		fmt += size;
211 	}
212 
213 	vaf.fmt = fmt;
214 	vaf.va = &args;
215 
216 	if (__ratelimit(ratelimit))
217 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
218 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
219 
220 	va_end(args);
221 }
222 #endif
223 
224 /*
225  * We only mark the transaction aborted and then set the file system read-only.
226  * This will prevent new transactions from starting or trying to join this
227  * one.
228  *
229  * This means that error recovery at the call site is limited to freeing
230  * any local memory allocations and passing the error code up without
231  * further cleanup. The transaction should complete as it normally would
232  * in the call path but will return -EIO.
233  *
234  * We'll complete the cleanup in btrfs_end_transaction and
235  * btrfs_commit_transaction.
236  */
237 __cold
238 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
239 			       const char *function,
240 			       unsigned int line, int errno)
241 {
242 	struct btrfs_fs_info *fs_info = trans->fs_info;
243 
244 	trans->aborted = errno;
245 	/* Nothing used. The other threads that have joined this
246 	 * transaction may be able to continue. */
247 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
248 		const char *errstr;
249 
250 		errstr = btrfs_decode_error(errno);
251 		btrfs_warn(fs_info,
252 		           "%s:%d: Aborting unused transaction(%s).",
253 		           function, line, errstr);
254 		return;
255 	}
256 	WRITE_ONCE(trans->transaction->aborted, errno);
257 	/* Wake up anybody who may be waiting on this transaction */
258 	wake_up(&fs_info->transaction_wait);
259 	wake_up(&fs_info->transaction_blocked_wait);
260 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
261 }
262 /*
263  * __btrfs_panic decodes unexpected, fatal errors from the caller,
264  * issues an alert, and either panics or BUGs, depending on mount options.
265  */
266 __cold
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 		   unsigned int line, int errno, const char *fmt, ...)
269 {
270 	char *s_id = "<unknown>";
271 	const char *errstr;
272 	struct va_format vaf = { .fmt = fmt };
273 	va_list args;
274 
275 	if (fs_info)
276 		s_id = fs_info->sb->s_id;
277 
278 	va_start(args, fmt);
279 	vaf.va = &args;
280 
281 	errstr = btrfs_decode_error(errno);
282 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
283 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
284 			s_id, function, line, &vaf, errno, errstr);
285 
286 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
287 		   function, line, &vaf, errno, errstr);
288 	va_end(args);
289 	/* Caller calls BUG() */
290 }
291 
292 static void btrfs_put_super(struct super_block *sb)
293 {
294 	close_ctree(btrfs_sb(sb));
295 }
296 
297 enum {
298 	Opt_acl, Opt_noacl,
299 	Opt_clear_cache,
300 	Opt_commit_interval,
301 	Opt_compress,
302 	Opt_compress_force,
303 	Opt_compress_force_type,
304 	Opt_compress_type,
305 	Opt_degraded,
306 	Opt_device,
307 	Opt_fatal_errors,
308 	Opt_flushoncommit, Opt_noflushoncommit,
309 	Opt_inode_cache, Opt_noinode_cache,
310 	Opt_max_inline,
311 	Opt_barrier, Opt_nobarrier,
312 	Opt_datacow, Opt_nodatacow,
313 	Opt_datasum, Opt_nodatasum,
314 	Opt_defrag, Opt_nodefrag,
315 	Opt_discard, Opt_nodiscard,
316 	Opt_nologreplay,
317 	Opt_norecovery,
318 	Opt_ratio,
319 	Opt_rescan_uuid_tree,
320 	Opt_skip_balance,
321 	Opt_space_cache, Opt_no_space_cache,
322 	Opt_space_cache_version,
323 	Opt_ssd, Opt_nossd,
324 	Opt_ssd_spread, Opt_nossd_spread,
325 	Opt_subvol,
326 	Opt_subvol_empty,
327 	Opt_subvolid,
328 	Opt_thread_pool,
329 	Opt_treelog, Opt_notreelog,
330 	Opt_usebackuproot,
331 	Opt_user_subvol_rm_allowed,
332 
333 	/* Deprecated options */
334 	Opt_alloc_start,
335 	Opt_recovery,
336 	Opt_subvolrootid,
337 
338 	/* Debugging options */
339 	Opt_check_integrity,
340 	Opt_check_integrity_including_extent_data,
341 	Opt_check_integrity_print_mask,
342 	Opt_enospc_debug, Opt_noenospc_debug,
343 #ifdef CONFIG_BTRFS_DEBUG
344 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
345 #endif
346 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
347 	Opt_ref_verify,
348 #endif
349 	Opt_err,
350 };
351 
352 static const match_table_t tokens = {
353 	{Opt_acl, "acl"},
354 	{Opt_noacl, "noacl"},
355 	{Opt_clear_cache, "clear_cache"},
356 	{Opt_commit_interval, "commit=%u"},
357 	{Opt_compress, "compress"},
358 	{Opt_compress_type, "compress=%s"},
359 	{Opt_compress_force, "compress-force"},
360 	{Opt_compress_force_type, "compress-force=%s"},
361 	{Opt_degraded, "degraded"},
362 	{Opt_device, "device=%s"},
363 	{Opt_fatal_errors, "fatal_errors=%s"},
364 	{Opt_flushoncommit, "flushoncommit"},
365 	{Opt_noflushoncommit, "noflushoncommit"},
366 	{Opt_inode_cache, "inode_cache"},
367 	{Opt_noinode_cache, "noinode_cache"},
368 	{Opt_max_inline, "max_inline=%s"},
369 	{Opt_barrier, "barrier"},
370 	{Opt_nobarrier, "nobarrier"},
371 	{Opt_datacow, "datacow"},
372 	{Opt_nodatacow, "nodatacow"},
373 	{Opt_datasum, "datasum"},
374 	{Opt_nodatasum, "nodatasum"},
375 	{Opt_defrag, "autodefrag"},
376 	{Opt_nodefrag, "noautodefrag"},
377 	{Opt_discard, "discard"},
378 	{Opt_nodiscard, "nodiscard"},
379 	{Opt_nologreplay, "nologreplay"},
380 	{Opt_norecovery, "norecovery"},
381 	{Opt_ratio, "metadata_ratio=%u"},
382 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 	{Opt_skip_balance, "skip_balance"},
384 	{Opt_space_cache, "space_cache"},
385 	{Opt_no_space_cache, "nospace_cache"},
386 	{Opt_space_cache_version, "space_cache=%s"},
387 	{Opt_ssd, "ssd"},
388 	{Opt_nossd, "nossd"},
389 	{Opt_ssd_spread, "ssd_spread"},
390 	{Opt_nossd_spread, "nossd_spread"},
391 	{Opt_subvol, "subvol=%s"},
392 	{Opt_subvol_empty, "subvol="},
393 	{Opt_subvolid, "subvolid=%s"},
394 	{Opt_thread_pool, "thread_pool=%u"},
395 	{Opt_treelog, "treelog"},
396 	{Opt_notreelog, "notreelog"},
397 	{Opt_usebackuproot, "usebackuproot"},
398 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
399 
400 	/* Deprecated options */
401 	{Opt_alloc_start, "alloc_start=%s"},
402 	{Opt_recovery, "recovery"},
403 	{Opt_subvolrootid, "subvolrootid=%d"},
404 
405 	/* Debugging options */
406 	{Opt_check_integrity, "check_int"},
407 	{Opt_check_integrity_including_extent_data, "check_int_data"},
408 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
409 	{Opt_enospc_debug, "enospc_debug"},
410 	{Opt_noenospc_debug, "noenospc_debug"},
411 #ifdef CONFIG_BTRFS_DEBUG
412 	{Opt_fragment_data, "fragment=data"},
413 	{Opt_fragment_metadata, "fragment=metadata"},
414 	{Opt_fragment_all, "fragment=all"},
415 #endif
416 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
417 	{Opt_ref_verify, "ref_verify"},
418 #endif
419 	{Opt_err, NULL},
420 };
421 
422 /*
423  * Regular mount options parser.  Everything that is needed only when
424  * reading in a new superblock is parsed here.
425  * XXX JDM: This needs to be cleaned up for remount.
426  */
427 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
428 			unsigned long new_flags)
429 {
430 	substring_t args[MAX_OPT_ARGS];
431 	char *p, *num;
432 	u64 cache_gen;
433 	int intarg;
434 	int ret = 0;
435 	char *compress_type;
436 	bool compress_force = false;
437 	enum btrfs_compression_type saved_compress_type;
438 	bool saved_compress_force;
439 	int no_compress = 0;
440 
441 	cache_gen = btrfs_super_cache_generation(info->super_copy);
442 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
443 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
444 	else if (cache_gen)
445 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
446 
447 	/*
448 	 * Even the options are empty, we still need to do extra check
449 	 * against new flags
450 	 */
451 	if (!options)
452 		goto check;
453 
454 	while ((p = strsep(&options, ",")) != NULL) {
455 		int token;
456 		if (!*p)
457 			continue;
458 
459 		token = match_token(p, tokens, args);
460 		switch (token) {
461 		case Opt_degraded:
462 			btrfs_info(info, "allowing degraded mounts");
463 			btrfs_set_opt(info->mount_opt, DEGRADED);
464 			break;
465 		case Opt_subvol:
466 		case Opt_subvol_empty:
467 		case Opt_subvolid:
468 		case Opt_subvolrootid:
469 		case Opt_device:
470 			/*
471 			 * These are parsed by btrfs_parse_subvol_options or
472 			 * btrfs_parse_device_options and can be ignored here.
473 			 */
474 			break;
475 		case Opt_nodatasum:
476 			btrfs_set_and_info(info, NODATASUM,
477 					   "setting nodatasum");
478 			break;
479 		case Opt_datasum:
480 			if (btrfs_test_opt(info, NODATASUM)) {
481 				if (btrfs_test_opt(info, NODATACOW))
482 					btrfs_info(info,
483 						   "setting datasum, datacow enabled");
484 				else
485 					btrfs_info(info, "setting datasum");
486 			}
487 			btrfs_clear_opt(info->mount_opt, NODATACOW);
488 			btrfs_clear_opt(info->mount_opt, NODATASUM);
489 			break;
490 		case Opt_nodatacow:
491 			if (!btrfs_test_opt(info, NODATACOW)) {
492 				if (!btrfs_test_opt(info, COMPRESS) ||
493 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
494 					btrfs_info(info,
495 						   "setting nodatacow, compression disabled");
496 				} else {
497 					btrfs_info(info, "setting nodatacow");
498 				}
499 			}
500 			btrfs_clear_opt(info->mount_opt, COMPRESS);
501 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
502 			btrfs_set_opt(info->mount_opt, NODATACOW);
503 			btrfs_set_opt(info->mount_opt, NODATASUM);
504 			break;
505 		case Opt_datacow:
506 			btrfs_clear_and_info(info, NODATACOW,
507 					     "setting datacow");
508 			break;
509 		case Opt_compress_force:
510 		case Opt_compress_force_type:
511 			compress_force = true;
512 			/* Fallthrough */
513 		case Opt_compress:
514 		case Opt_compress_type:
515 			saved_compress_type = btrfs_test_opt(info,
516 							     COMPRESS) ?
517 				info->compress_type : BTRFS_COMPRESS_NONE;
518 			saved_compress_force =
519 				btrfs_test_opt(info, FORCE_COMPRESS);
520 			if (token == Opt_compress ||
521 			    token == Opt_compress_force ||
522 			    strncmp(args[0].from, "zlib", 4) == 0) {
523 				compress_type = "zlib";
524 
525 				info->compress_type = BTRFS_COMPRESS_ZLIB;
526 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
527 				/*
528 				 * args[0] contains uninitialized data since
529 				 * for these tokens we don't expect any
530 				 * parameter.
531 				 */
532 				if (token != Opt_compress &&
533 				    token != Opt_compress_force)
534 					info->compress_level =
535 					  btrfs_compress_str2level(
536 							BTRFS_COMPRESS_ZLIB,
537 							args[0].from + 4);
538 				btrfs_set_opt(info->mount_opt, COMPRESS);
539 				btrfs_clear_opt(info->mount_opt, NODATACOW);
540 				btrfs_clear_opt(info->mount_opt, NODATASUM);
541 				no_compress = 0;
542 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
543 				compress_type = "lzo";
544 				info->compress_type = BTRFS_COMPRESS_LZO;
545 				btrfs_set_opt(info->mount_opt, COMPRESS);
546 				btrfs_clear_opt(info->mount_opt, NODATACOW);
547 				btrfs_clear_opt(info->mount_opt, NODATASUM);
548 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
549 				no_compress = 0;
550 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
551 				compress_type = "zstd";
552 				info->compress_type = BTRFS_COMPRESS_ZSTD;
553 				info->compress_level =
554 					btrfs_compress_str2level(
555 							 BTRFS_COMPRESS_ZSTD,
556 							 args[0].from + 4);
557 				btrfs_set_opt(info->mount_opt, COMPRESS);
558 				btrfs_clear_opt(info->mount_opt, NODATACOW);
559 				btrfs_clear_opt(info->mount_opt, NODATASUM);
560 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
561 				no_compress = 0;
562 			} else if (strncmp(args[0].from, "no", 2) == 0) {
563 				compress_type = "no";
564 				btrfs_clear_opt(info->mount_opt, COMPRESS);
565 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
566 				compress_force = false;
567 				no_compress++;
568 			} else {
569 				ret = -EINVAL;
570 				goto out;
571 			}
572 
573 			if (compress_force) {
574 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
575 			} else {
576 				/*
577 				 * If we remount from compress-force=xxx to
578 				 * compress=xxx, we need clear FORCE_COMPRESS
579 				 * flag, otherwise, there is no way for users
580 				 * to disable forcible compression separately.
581 				 */
582 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
583 			}
584 			if ((btrfs_test_opt(info, COMPRESS) &&
585 			     (info->compress_type != saved_compress_type ||
586 			      compress_force != saved_compress_force)) ||
587 			    (!btrfs_test_opt(info, COMPRESS) &&
588 			     no_compress == 1)) {
589 				btrfs_info(info, "%s %s compression, level %d",
590 					   (compress_force) ? "force" : "use",
591 					   compress_type, info->compress_level);
592 			}
593 			compress_force = false;
594 			break;
595 		case Opt_ssd:
596 			btrfs_set_and_info(info, SSD,
597 					   "enabling ssd optimizations");
598 			btrfs_clear_opt(info->mount_opt, NOSSD);
599 			break;
600 		case Opt_ssd_spread:
601 			btrfs_set_and_info(info, SSD,
602 					   "enabling ssd optimizations");
603 			btrfs_set_and_info(info, SSD_SPREAD,
604 					   "using spread ssd allocation scheme");
605 			btrfs_clear_opt(info->mount_opt, NOSSD);
606 			break;
607 		case Opt_nossd:
608 			btrfs_set_opt(info->mount_opt, NOSSD);
609 			btrfs_clear_and_info(info, SSD,
610 					     "not using ssd optimizations");
611 			/* Fallthrough */
612 		case Opt_nossd_spread:
613 			btrfs_clear_and_info(info, SSD_SPREAD,
614 					     "not using spread ssd allocation scheme");
615 			break;
616 		case Opt_barrier:
617 			btrfs_clear_and_info(info, NOBARRIER,
618 					     "turning on barriers");
619 			break;
620 		case Opt_nobarrier:
621 			btrfs_set_and_info(info, NOBARRIER,
622 					   "turning off barriers");
623 			break;
624 		case Opt_thread_pool:
625 			ret = match_int(&args[0], &intarg);
626 			if (ret) {
627 				goto out;
628 			} else if (intarg == 0) {
629 				ret = -EINVAL;
630 				goto out;
631 			}
632 			info->thread_pool_size = intarg;
633 			break;
634 		case Opt_max_inline:
635 			num = match_strdup(&args[0]);
636 			if (num) {
637 				info->max_inline = memparse(num, NULL);
638 				kfree(num);
639 
640 				if (info->max_inline) {
641 					info->max_inline = min_t(u64,
642 						info->max_inline,
643 						info->sectorsize);
644 				}
645 				btrfs_info(info, "max_inline at %llu",
646 					   info->max_inline);
647 			} else {
648 				ret = -ENOMEM;
649 				goto out;
650 			}
651 			break;
652 		case Opt_alloc_start:
653 			btrfs_info(info,
654 				"option alloc_start is obsolete, ignored");
655 			break;
656 		case Opt_acl:
657 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
658 			info->sb->s_flags |= SB_POSIXACL;
659 			break;
660 #else
661 			btrfs_err(info, "support for ACL not compiled in!");
662 			ret = -EINVAL;
663 			goto out;
664 #endif
665 		case Opt_noacl:
666 			info->sb->s_flags &= ~SB_POSIXACL;
667 			break;
668 		case Opt_notreelog:
669 			btrfs_set_and_info(info, NOTREELOG,
670 					   "disabling tree log");
671 			break;
672 		case Opt_treelog:
673 			btrfs_clear_and_info(info, NOTREELOG,
674 					     "enabling tree log");
675 			break;
676 		case Opt_norecovery:
677 		case Opt_nologreplay:
678 			btrfs_set_and_info(info, NOLOGREPLAY,
679 					   "disabling log replay at mount time");
680 			break;
681 		case Opt_flushoncommit:
682 			btrfs_set_and_info(info, FLUSHONCOMMIT,
683 					   "turning on flush-on-commit");
684 			break;
685 		case Opt_noflushoncommit:
686 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
687 					     "turning off flush-on-commit");
688 			break;
689 		case Opt_ratio:
690 			ret = match_int(&args[0], &intarg);
691 			if (ret)
692 				goto out;
693 			info->metadata_ratio = intarg;
694 			btrfs_info(info, "metadata ratio %u",
695 				   info->metadata_ratio);
696 			break;
697 		case Opt_discard:
698 			btrfs_set_and_info(info, DISCARD,
699 					   "turning on discard");
700 			break;
701 		case Opt_nodiscard:
702 			btrfs_clear_and_info(info, DISCARD,
703 					     "turning off discard");
704 			break;
705 		case Opt_space_cache:
706 		case Opt_space_cache_version:
707 			if (token == Opt_space_cache ||
708 			    strcmp(args[0].from, "v1") == 0) {
709 				btrfs_clear_opt(info->mount_opt,
710 						FREE_SPACE_TREE);
711 				btrfs_set_and_info(info, SPACE_CACHE,
712 					   "enabling disk space caching");
713 			} else if (strcmp(args[0].from, "v2") == 0) {
714 				btrfs_clear_opt(info->mount_opt,
715 						SPACE_CACHE);
716 				btrfs_set_and_info(info, FREE_SPACE_TREE,
717 						   "enabling free space tree");
718 			} else {
719 				ret = -EINVAL;
720 				goto out;
721 			}
722 			break;
723 		case Opt_rescan_uuid_tree:
724 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
725 			break;
726 		case Opt_no_space_cache:
727 			if (btrfs_test_opt(info, SPACE_CACHE)) {
728 				btrfs_clear_and_info(info, SPACE_CACHE,
729 					     "disabling disk space caching");
730 			}
731 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
732 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
733 					     "disabling free space tree");
734 			}
735 			break;
736 		case Opt_inode_cache:
737 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
738 					   "enabling inode map caching");
739 			break;
740 		case Opt_noinode_cache:
741 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
742 					     "disabling inode map caching");
743 			break;
744 		case Opt_clear_cache:
745 			btrfs_set_and_info(info, CLEAR_CACHE,
746 					   "force clearing of disk cache");
747 			break;
748 		case Opt_user_subvol_rm_allowed:
749 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
750 			break;
751 		case Opt_enospc_debug:
752 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
753 			break;
754 		case Opt_noenospc_debug:
755 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
756 			break;
757 		case Opt_defrag:
758 			btrfs_set_and_info(info, AUTO_DEFRAG,
759 					   "enabling auto defrag");
760 			break;
761 		case Opt_nodefrag:
762 			btrfs_clear_and_info(info, AUTO_DEFRAG,
763 					     "disabling auto defrag");
764 			break;
765 		case Opt_recovery:
766 			btrfs_warn(info,
767 				   "'recovery' is deprecated, use 'usebackuproot' instead");
768 			/* fall through */
769 		case Opt_usebackuproot:
770 			btrfs_info(info,
771 				   "trying to use backup root at mount time");
772 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
773 			break;
774 		case Opt_skip_balance:
775 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
776 			break;
777 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
778 		case Opt_check_integrity_including_extent_data:
779 			btrfs_info(info,
780 				   "enabling check integrity including extent data");
781 			btrfs_set_opt(info->mount_opt,
782 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
783 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
784 			break;
785 		case Opt_check_integrity:
786 			btrfs_info(info, "enabling check integrity");
787 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
788 			break;
789 		case Opt_check_integrity_print_mask:
790 			ret = match_int(&args[0], &intarg);
791 			if (ret)
792 				goto out;
793 			info->check_integrity_print_mask = intarg;
794 			btrfs_info(info, "check_integrity_print_mask 0x%x",
795 				   info->check_integrity_print_mask);
796 			break;
797 #else
798 		case Opt_check_integrity_including_extent_data:
799 		case Opt_check_integrity:
800 		case Opt_check_integrity_print_mask:
801 			btrfs_err(info,
802 				  "support for check_integrity* not compiled in!");
803 			ret = -EINVAL;
804 			goto out;
805 #endif
806 		case Opt_fatal_errors:
807 			if (strcmp(args[0].from, "panic") == 0)
808 				btrfs_set_opt(info->mount_opt,
809 					      PANIC_ON_FATAL_ERROR);
810 			else if (strcmp(args[0].from, "bug") == 0)
811 				btrfs_clear_opt(info->mount_opt,
812 					      PANIC_ON_FATAL_ERROR);
813 			else {
814 				ret = -EINVAL;
815 				goto out;
816 			}
817 			break;
818 		case Opt_commit_interval:
819 			intarg = 0;
820 			ret = match_int(&args[0], &intarg);
821 			if (ret)
822 				goto out;
823 			if (intarg == 0) {
824 				btrfs_info(info,
825 					   "using default commit interval %us",
826 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
827 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
828 			} else if (intarg > 300) {
829 				btrfs_warn(info, "excessive commit interval %d",
830 					   intarg);
831 			}
832 			info->commit_interval = intarg;
833 			break;
834 #ifdef CONFIG_BTRFS_DEBUG
835 		case Opt_fragment_all:
836 			btrfs_info(info, "fragmenting all space");
837 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
838 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
839 			break;
840 		case Opt_fragment_metadata:
841 			btrfs_info(info, "fragmenting metadata");
842 			btrfs_set_opt(info->mount_opt,
843 				      FRAGMENT_METADATA);
844 			break;
845 		case Opt_fragment_data:
846 			btrfs_info(info, "fragmenting data");
847 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
848 			break;
849 #endif
850 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
851 		case Opt_ref_verify:
852 			btrfs_info(info, "doing ref verification");
853 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
854 			break;
855 #endif
856 		case Opt_err:
857 			btrfs_info(info, "unrecognized mount option '%s'", p);
858 			ret = -EINVAL;
859 			goto out;
860 		default:
861 			break;
862 		}
863 	}
864 check:
865 	/*
866 	 * Extra check for current option against current flag
867 	 */
868 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
869 		btrfs_err(info,
870 			  "nologreplay must be used with ro mount option");
871 		ret = -EINVAL;
872 	}
873 out:
874 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
875 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
876 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
877 		btrfs_err(info, "cannot disable free space tree");
878 		ret = -EINVAL;
879 
880 	}
881 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
882 		btrfs_info(info, "disk space caching is enabled");
883 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
884 		btrfs_info(info, "using free space tree");
885 	return ret;
886 }
887 
888 /*
889  * Parse mount options that are required early in the mount process.
890  *
891  * All other options will be parsed on much later in the mount process and
892  * only when we need to allocate a new super block.
893  */
894 static int btrfs_parse_device_options(const char *options, fmode_t flags,
895 				      void *holder)
896 {
897 	substring_t args[MAX_OPT_ARGS];
898 	char *device_name, *opts, *orig, *p;
899 	struct btrfs_device *device = NULL;
900 	int error = 0;
901 
902 	lockdep_assert_held(&uuid_mutex);
903 
904 	if (!options)
905 		return 0;
906 
907 	/*
908 	 * strsep changes the string, duplicate it because btrfs_parse_options
909 	 * gets called later
910 	 */
911 	opts = kstrdup(options, GFP_KERNEL);
912 	if (!opts)
913 		return -ENOMEM;
914 	orig = opts;
915 
916 	while ((p = strsep(&opts, ",")) != NULL) {
917 		int token;
918 
919 		if (!*p)
920 			continue;
921 
922 		token = match_token(p, tokens, args);
923 		if (token == Opt_device) {
924 			device_name = match_strdup(&args[0]);
925 			if (!device_name) {
926 				error = -ENOMEM;
927 				goto out;
928 			}
929 			device = btrfs_scan_one_device(device_name, flags,
930 					holder);
931 			kfree(device_name);
932 			if (IS_ERR(device)) {
933 				error = PTR_ERR(device);
934 				goto out;
935 			}
936 		}
937 	}
938 
939 out:
940 	kfree(orig);
941 	return error;
942 }
943 
944 /*
945  * Parse mount options that are related to subvolume id
946  *
947  * The value is later passed to mount_subvol()
948  */
949 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
950 		u64 *subvol_objectid)
951 {
952 	substring_t args[MAX_OPT_ARGS];
953 	char *opts, *orig, *p;
954 	int error = 0;
955 	u64 subvolid;
956 
957 	if (!options)
958 		return 0;
959 
960 	/*
961 	 * strsep changes the string, duplicate it because
962 	 * btrfs_parse_device_options gets called later
963 	 */
964 	opts = kstrdup(options, GFP_KERNEL);
965 	if (!opts)
966 		return -ENOMEM;
967 	orig = opts;
968 
969 	while ((p = strsep(&opts, ",")) != NULL) {
970 		int token;
971 		if (!*p)
972 			continue;
973 
974 		token = match_token(p, tokens, args);
975 		switch (token) {
976 		case Opt_subvol:
977 			kfree(*subvol_name);
978 			*subvol_name = match_strdup(&args[0]);
979 			if (!*subvol_name) {
980 				error = -ENOMEM;
981 				goto out;
982 			}
983 			break;
984 		case Opt_subvolid:
985 			error = match_u64(&args[0], &subvolid);
986 			if (error)
987 				goto out;
988 
989 			/* we want the original fs_tree */
990 			if (subvolid == 0)
991 				subvolid = BTRFS_FS_TREE_OBJECTID;
992 
993 			*subvol_objectid = subvolid;
994 			break;
995 		case Opt_subvolrootid:
996 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
997 			break;
998 		default:
999 			break;
1000 		}
1001 	}
1002 
1003 out:
1004 	kfree(orig);
1005 	return error;
1006 }
1007 
1008 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1009 					   u64 subvol_objectid)
1010 {
1011 	struct btrfs_root *root = fs_info->tree_root;
1012 	struct btrfs_root *fs_root;
1013 	struct btrfs_root_ref *root_ref;
1014 	struct btrfs_inode_ref *inode_ref;
1015 	struct btrfs_key key;
1016 	struct btrfs_path *path = NULL;
1017 	char *name = NULL, *ptr;
1018 	u64 dirid;
1019 	int len;
1020 	int ret;
1021 
1022 	path = btrfs_alloc_path();
1023 	if (!path) {
1024 		ret = -ENOMEM;
1025 		goto err;
1026 	}
1027 	path->leave_spinning = 1;
1028 
1029 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1030 	if (!name) {
1031 		ret = -ENOMEM;
1032 		goto err;
1033 	}
1034 	ptr = name + PATH_MAX - 1;
1035 	ptr[0] = '\0';
1036 
1037 	/*
1038 	 * Walk up the subvolume trees in the tree of tree roots by root
1039 	 * backrefs until we hit the top-level subvolume.
1040 	 */
1041 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1042 		key.objectid = subvol_objectid;
1043 		key.type = BTRFS_ROOT_BACKREF_KEY;
1044 		key.offset = (u64)-1;
1045 
1046 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1047 		if (ret < 0) {
1048 			goto err;
1049 		} else if (ret > 0) {
1050 			ret = btrfs_previous_item(root, path, subvol_objectid,
1051 						  BTRFS_ROOT_BACKREF_KEY);
1052 			if (ret < 0) {
1053 				goto err;
1054 			} else if (ret > 0) {
1055 				ret = -ENOENT;
1056 				goto err;
1057 			}
1058 		}
1059 
1060 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1061 		subvol_objectid = key.offset;
1062 
1063 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1064 					  struct btrfs_root_ref);
1065 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1066 		ptr -= len + 1;
1067 		if (ptr < name) {
1068 			ret = -ENAMETOOLONG;
1069 			goto err;
1070 		}
1071 		read_extent_buffer(path->nodes[0], ptr + 1,
1072 				   (unsigned long)(root_ref + 1), len);
1073 		ptr[0] = '/';
1074 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1075 		btrfs_release_path(path);
1076 
1077 		key.objectid = subvol_objectid;
1078 		key.type = BTRFS_ROOT_ITEM_KEY;
1079 		key.offset = (u64)-1;
1080 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1081 		if (IS_ERR(fs_root)) {
1082 			ret = PTR_ERR(fs_root);
1083 			goto err;
1084 		}
1085 
1086 		/*
1087 		 * Walk up the filesystem tree by inode refs until we hit the
1088 		 * root directory.
1089 		 */
1090 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1091 			key.objectid = dirid;
1092 			key.type = BTRFS_INODE_REF_KEY;
1093 			key.offset = (u64)-1;
1094 
1095 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1096 			if (ret < 0) {
1097 				goto err;
1098 			} else if (ret > 0) {
1099 				ret = btrfs_previous_item(fs_root, path, dirid,
1100 							  BTRFS_INODE_REF_KEY);
1101 				if (ret < 0) {
1102 					goto err;
1103 				} else if (ret > 0) {
1104 					ret = -ENOENT;
1105 					goto err;
1106 				}
1107 			}
1108 
1109 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1110 			dirid = key.offset;
1111 
1112 			inode_ref = btrfs_item_ptr(path->nodes[0],
1113 						   path->slots[0],
1114 						   struct btrfs_inode_ref);
1115 			len = btrfs_inode_ref_name_len(path->nodes[0],
1116 						       inode_ref);
1117 			ptr -= len + 1;
1118 			if (ptr < name) {
1119 				ret = -ENAMETOOLONG;
1120 				goto err;
1121 			}
1122 			read_extent_buffer(path->nodes[0], ptr + 1,
1123 					   (unsigned long)(inode_ref + 1), len);
1124 			ptr[0] = '/';
1125 			btrfs_release_path(path);
1126 		}
1127 	}
1128 
1129 	btrfs_free_path(path);
1130 	if (ptr == name + PATH_MAX - 1) {
1131 		name[0] = '/';
1132 		name[1] = '\0';
1133 	} else {
1134 		memmove(name, ptr, name + PATH_MAX - ptr);
1135 	}
1136 	return name;
1137 
1138 err:
1139 	btrfs_free_path(path);
1140 	kfree(name);
1141 	return ERR_PTR(ret);
1142 }
1143 
1144 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1145 {
1146 	struct btrfs_root *root = fs_info->tree_root;
1147 	struct btrfs_dir_item *di;
1148 	struct btrfs_path *path;
1149 	struct btrfs_key location;
1150 	u64 dir_id;
1151 
1152 	path = btrfs_alloc_path();
1153 	if (!path)
1154 		return -ENOMEM;
1155 	path->leave_spinning = 1;
1156 
1157 	/*
1158 	 * Find the "default" dir item which points to the root item that we
1159 	 * will mount by default if we haven't been given a specific subvolume
1160 	 * to mount.
1161 	 */
1162 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1163 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1164 	if (IS_ERR(di)) {
1165 		btrfs_free_path(path);
1166 		return PTR_ERR(di);
1167 	}
1168 	if (!di) {
1169 		/*
1170 		 * Ok the default dir item isn't there.  This is weird since
1171 		 * it's always been there, but don't freak out, just try and
1172 		 * mount the top-level subvolume.
1173 		 */
1174 		btrfs_free_path(path);
1175 		*objectid = BTRFS_FS_TREE_OBJECTID;
1176 		return 0;
1177 	}
1178 
1179 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1180 	btrfs_free_path(path);
1181 	*objectid = location.objectid;
1182 	return 0;
1183 }
1184 
1185 static int btrfs_fill_super(struct super_block *sb,
1186 			    struct btrfs_fs_devices *fs_devices,
1187 			    void *data)
1188 {
1189 	struct inode *inode;
1190 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1191 	struct btrfs_key key;
1192 	int err;
1193 
1194 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1195 	sb->s_magic = BTRFS_SUPER_MAGIC;
1196 	sb->s_op = &btrfs_super_ops;
1197 	sb->s_d_op = &btrfs_dentry_operations;
1198 	sb->s_export_op = &btrfs_export_ops;
1199 	sb->s_xattr = btrfs_xattr_handlers;
1200 	sb->s_time_gran = 1;
1201 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1202 	sb->s_flags |= SB_POSIXACL;
1203 #endif
1204 	sb->s_flags |= SB_I_VERSION;
1205 	sb->s_iflags |= SB_I_CGROUPWB;
1206 
1207 	err = super_setup_bdi(sb);
1208 	if (err) {
1209 		btrfs_err(fs_info, "super_setup_bdi failed");
1210 		return err;
1211 	}
1212 
1213 	err = open_ctree(sb, fs_devices, (char *)data);
1214 	if (err) {
1215 		btrfs_err(fs_info, "open_ctree failed");
1216 		return err;
1217 	}
1218 
1219 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1220 	key.type = BTRFS_INODE_ITEM_KEY;
1221 	key.offset = 0;
1222 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1223 	if (IS_ERR(inode)) {
1224 		err = PTR_ERR(inode);
1225 		goto fail_close;
1226 	}
1227 
1228 	sb->s_root = d_make_root(inode);
1229 	if (!sb->s_root) {
1230 		err = -ENOMEM;
1231 		goto fail_close;
1232 	}
1233 
1234 	cleancache_init_fs(sb);
1235 	sb->s_flags |= SB_ACTIVE;
1236 	return 0;
1237 
1238 fail_close:
1239 	close_ctree(fs_info);
1240 	return err;
1241 }
1242 
1243 int btrfs_sync_fs(struct super_block *sb, int wait)
1244 {
1245 	struct btrfs_trans_handle *trans;
1246 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1247 	struct btrfs_root *root = fs_info->tree_root;
1248 
1249 	trace_btrfs_sync_fs(fs_info, wait);
1250 
1251 	if (!wait) {
1252 		filemap_flush(fs_info->btree_inode->i_mapping);
1253 		return 0;
1254 	}
1255 
1256 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1257 
1258 	trans = btrfs_attach_transaction_barrier(root);
1259 	if (IS_ERR(trans)) {
1260 		/* no transaction, don't bother */
1261 		if (PTR_ERR(trans) == -ENOENT) {
1262 			/*
1263 			 * Exit unless we have some pending changes
1264 			 * that need to go through commit
1265 			 */
1266 			if (fs_info->pending_changes == 0)
1267 				return 0;
1268 			/*
1269 			 * A non-blocking test if the fs is frozen. We must not
1270 			 * start a new transaction here otherwise a deadlock
1271 			 * happens. The pending operations are delayed to the
1272 			 * next commit after thawing.
1273 			 */
1274 			if (sb_start_write_trylock(sb))
1275 				sb_end_write(sb);
1276 			else
1277 				return 0;
1278 			trans = btrfs_start_transaction(root, 0);
1279 		}
1280 		if (IS_ERR(trans))
1281 			return PTR_ERR(trans);
1282 	}
1283 	return btrfs_commit_transaction(trans);
1284 }
1285 
1286 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1287 {
1288 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1289 	const char *compress_type;
1290 
1291 	if (btrfs_test_opt(info, DEGRADED))
1292 		seq_puts(seq, ",degraded");
1293 	if (btrfs_test_opt(info, NODATASUM))
1294 		seq_puts(seq, ",nodatasum");
1295 	if (btrfs_test_opt(info, NODATACOW))
1296 		seq_puts(seq, ",nodatacow");
1297 	if (btrfs_test_opt(info, NOBARRIER))
1298 		seq_puts(seq, ",nobarrier");
1299 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1300 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1301 	if (info->thread_pool_size !=  min_t(unsigned long,
1302 					     num_online_cpus() + 2, 8))
1303 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1304 	if (btrfs_test_opt(info, COMPRESS)) {
1305 		compress_type = btrfs_compress_type2str(info->compress_type);
1306 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1307 			seq_printf(seq, ",compress-force=%s", compress_type);
1308 		else
1309 			seq_printf(seq, ",compress=%s", compress_type);
1310 		if (info->compress_level)
1311 			seq_printf(seq, ":%d", info->compress_level);
1312 	}
1313 	if (btrfs_test_opt(info, NOSSD))
1314 		seq_puts(seq, ",nossd");
1315 	if (btrfs_test_opt(info, SSD_SPREAD))
1316 		seq_puts(seq, ",ssd_spread");
1317 	else if (btrfs_test_opt(info, SSD))
1318 		seq_puts(seq, ",ssd");
1319 	if (btrfs_test_opt(info, NOTREELOG))
1320 		seq_puts(seq, ",notreelog");
1321 	if (btrfs_test_opt(info, NOLOGREPLAY))
1322 		seq_puts(seq, ",nologreplay");
1323 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1324 		seq_puts(seq, ",flushoncommit");
1325 	if (btrfs_test_opt(info, DISCARD))
1326 		seq_puts(seq, ",discard");
1327 	if (!(info->sb->s_flags & SB_POSIXACL))
1328 		seq_puts(seq, ",noacl");
1329 	if (btrfs_test_opt(info, SPACE_CACHE))
1330 		seq_puts(seq, ",space_cache");
1331 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1332 		seq_puts(seq, ",space_cache=v2");
1333 	else
1334 		seq_puts(seq, ",nospace_cache");
1335 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1336 		seq_puts(seq, ",rescan_uuid_tree");
1337 	if (btrfs_test_opt(info, CLEAR_CACHE))
1338 		seq_puts(seq, ",clear_cache");
1339 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1340 		seq_puts(seq, ",user_subvol_rm_allowed");
1341 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1342 		seq_puts(seq, ",enospc_debug");
1343 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1344 		seq_puts(seq, ",autodefrag");
1345 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1346 		seq_puts(seq, ",inode_cache");
1347 	if (btrfs_test_opt(info, SKIP_BALANCE))
1348 		seq_puts(seq, ",skip_balance");
1349 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1350 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1351 		seq_puts(seq, ",check_int_data");
1352 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1353 		seq_puts(seq, ",check_int");
1354 	if (info->check_integrity_print_mask)
1355 		seq_printf(seq, ",check_int_print_mask=%d",
1356 				info->check_integrity_print_mask);
1357 #endif
1358 	if (info->metadata_ratio)
1359 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1360 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1361 		seq_puts(seq, ",fatal_errors=panic");
1362 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1363 		seq_printf(seq, ",commit=%u", info->commit_interval);
1364 #ifdef CONFIG_BTRFS_DEBUG
1365 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1366 		seq_puts(seq, ",fragment=data");
1367 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1368 		seq_puts(seq, ",fragment=metadata");
1369 #endif
1370 	if (btrfs_test_opt(info, REF_VERIFY))
1371 		seq_puts(seq, ",ref_verify");
1372 	seq_printf(seq, ",subvolid=%llu",
1373 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1374 	seq_puts(seq, ",subvol=");
1375 	seq_dentry(seq, dentry, " \t\n\\");
1376 	return 0;
1377 }
1378 
1379 static int btrfs_test_super(struct super_block *s, void *data)
1380 {
1381 	struct btrfs_fs_info *p = data;
1382 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1383 
1384 	return fs_info->fs_devices == p->fs_devices;
1385 }
1386 
1387 static int btrfs_set_super(struct super_block *s, void *data)
1388 {
1389 	int err = set_anon_super(s, data);
1390 	if (!err)
1391 		s->s_fs_info = data;
1392 	return err;
1393 }
1394 
1395 /*
1396  * subvolumes are identified by ino 256
1397  */
1398 static inline int is_subvolume_inode(struct inode *inode)
1399 {
1400 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1401 		return 1;
1402 	return 0;
1403 }
1404 
1405 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1406 				   struct vfsmount *mnt)
1407 {
1408 	struct dentry *root;
1409 	int ret;
1410 
1411 	if (!subvol_name) {
1412 		if (!subvol_objectid) {
1413 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1414 							  &subvol_objectid);
1415 			if (ret) {
1416 				root = ERR_PTR(ret);
1417 				goto out;
1418 			}
1419 		}
1420 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1421 							    subvol_objectid);
1422 		if (IS_ERR(subvol_name)) {
1423 			root = ERR_CAST(subvol_name);
1424 			subvol_name = NULL;
1425 			goto out;
1426 		}
1427 
1428 	}
1429 
1430 	root = mount_subtree(mnt, subvol_name);
1431 	/* mount_subtree() drops our reference on the vfsmount. */
1432 	mnt = NULL;
1433 
1434 	if (!IS_ERR(root)) {
1435 		struct super_block *s = root->d_sb;
1436 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1437 		struct inode *root_inode = d_inode(root);
1438 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1439 
1440 		ret = 0;
1441 		if (!is_subvolume_inode(root_inode)) {
1442 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1443 			       subvol_name);
1444 			ret = -EINVAL;
1445 		}
1446 		if (subvol_objectid && root_objectid != subvol_objectid) {
1447 			/*
1448 			 * This will also catch a race condition where a
1449 			 * subvolume which was passed by ID is renamed and
1450 			 * another subvolume is renamed over the old location.
1451 			 */
1452 			btrfs_err(fs_info,
1453 				  "subvol '%s' does not match subvolid %llu",
1454 				  subvol_name, subvol_objectid);
1455 			ret = -EINVAL;
1456 		}
1457 		if (ret) {
1458 			dput(root);
1459 			root = ERR_PTR(ret);
1460 			deactivate_locked_super(s);
1461 		}
1462 	}
1463 
1464 out:
1465 	mntput(mnt);
1466 	kfree(subvol_name);
1467 	return root;
1468 }
1469 
1470 /*
1471  * Find a superblock for the given device / mount point.
1472  *
1473  * Note: This is based on mount_bdev from fs/super.c with a few additions
1474  *       for multiple device setup.  Make sure to keep it in sync.
1475  */
1476 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1477 		int flags, const char *device_name, void *data)
1478 {
1479 	struct block_device *bdev = NULL;
1480 	struct super_block *s;
1481 	struct btrfs_device *device = NULL;
1482 	struct btrfs_fs_devices *fs_devices = NULL;
1483 	struct btrfs_fs_info *fs_info = NULL;
1484 	void *new_sec_opts = NULL;
1485 	fmode_t mode = FMODE_READ;
1486 	int error = 0;
1487 
1488 	if (!(flags & SB_RDONLY))
1489 		mode |= FMODE_WRITE;
1490 
1491 	if (data) {
1492 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1493 		if (error)
1494 			return ERR_PTR(error);
1495 	}
1496 
1497 	/*
1498 	 * Setup a dummy root and fs_info for test/set super.  This is because
1499 	 * we don't actually fill this stuff out until open_ctree, but we need
1500 	 * it for searching for existing supers, so this lets us do that and
1501 	 * then open_ctree will properly initialize everything later.
1502 	 */
1503 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1504 	if (!fs_info) {
1505 		error = -ENOMEM;
1506 		goto error_sec_opts;
1507 	}
1508 
1509 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1510 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1511 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1512 		error = -ENOMEM;
1513 		goto error_fs_info;
1514 	}
1515 
1516 	mutex_lock(&uuid_mutex);
1517 	error = btrfs_parse_device_options(data, mode, fs_type);
1518 	if (error) {
1519 		mutex_unlock(&uuid_mutex);
1520 		goto error_fs_info;
1521 	}
1522 
1523 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1524 	if (IS_ERR(device)) {
1525 		mutex_unlock(&uuid_mutex);
1526 		error = PTR_ERR(device);
1527 		goto error_fs_info;
1528 	}
1529 
1530 	fs_devices = device->fs_devices;
1531 	fs_info->fs_devices = fs_devices;
1532 
1533 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1534 	mutex_unlock(&uuid_mutex);
1535 	if (error)
1536 		goto error_fs_info;
1537 
1538 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1539 		error = -EACCES;
1540 		goto error_close_devices;
1541 	}
1542 
1543 	bdev = fs_devices->latest_bdev;
1544 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1545 		 fs_info);
1546 	if (IS_ERR(s)) {
1547 		error = PTR_ERR(s);
1548 		goto error_close_devices;
1549 	}
1550 
1551 	if (s->s_root) {
1552 		btrfs_close_devices(fs_devices);
1553 		free_fs_info(fs_info);
1554 		if ((flags ^ s->s_flags) & SB_RDONLY)
1555 			error = -EBUSY;
1556 	} else {
1557 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1558 		btrfs_sb(s)->bdev_holder = fs_type;
1559 		if (!strstr(crc32c_impl(), "generic"))
1560 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1561 		error = btrfs_fill_super(s, fs_devices, data);
1562 	}
1563 	if (!error)
1564 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1565 	security_free_mnt_opts(&new_sec_opts);
1566 	if (error) {
1567 		deactivate_locked_super(s);
1568 		return ERR_PTR(error);
1569 	}
1570 
1571 	return dget(s->s_root);
1572 
1573 error_close_devices:
1574 	btrfs_close_devices(fs_devices);
1575 error_fs_info:
1576 	free_fs_info(fs_info);
1577 error_sec_opts:
1578 	security_free_mnt_opts(&new_sec_opts);
1579 	return ERR_PTR(error);
1580 }
1581 
1582 /*
1583  * Mount function which is called by VFS layer.
1584  *
1585  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1586  * which needs vfsmount* of device's root (/).  This means device's root has to
1587  * be mounted internally in any case.
1588  *
1589  * Operation flow:
1590  *   1. Parse subvol id related options for later use in mount_subvol().
1591  *
1592  *   2. Mount device's root (/) by calling vfs_kern_mount().
1593  *
1594  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1595  *      first place. In order to avoid calling btrfs_mount() again, we use
1596  *      different file_system_type which is not registered to VFS by
1597  *      register_filesystem() (btrfs_root_fs_type). As a result,
1598  *      btrfs_mount_root() is called. The return value will be used by
1599  *      mount_subtree() in mount_subvol().
1600  *
1601  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1602  *      "btrfs subvolume set-default", mount_subvol() is called always.
1603  */
1604 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1605 		const char *device_name, void *data)
1606 {
1607 	struct vfsmount *mnt_root;
1608 	struct dentry *root;
1609 	char *subvol_name = NULL;
1610 	u64 subvol_objectid = 0;
1611 	int error = 0;
1612 
1613 	error = btrfs_parse_subvol_options(data, &subvol_name,
1614 					&subvol_objectid);
1615 	if (error) {
1616 		kfree(subvol_name);
1617 		return ERR_PTR(error);
1618 	}
1619 
1620 	/* mount device's root (/) */
1621 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1622 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1623 		if (flags & SB_RDONLY) {
1624 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1625 				flags & ~SB_RDONLY, device_name, data);
1626 		} else {
1627 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1628 				flags | SB_RDONLY, device_name, data);
1629 			if (IS_ERR(mnt_root)) {
1630 				root = ERR_CAST(mnt_root);
1631 				kfree(subvol_name);
1632 				goto out;
1633 			}
1634 
1635 			down_write(&mnt_root->mnt_sb->s_umount);
1636 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1637 			up_write(&mnt_root->mnt_sb->s_umount);
1638 			if (error < 0) {
1639 				root = ERR_PTR(error);
1640 				mntput(mnt_root);
1641 				kfree(subvol_name);
1642 				goto out;
1643 			}
1644 		}
1645 	}
1646 	if (IS_ERR(mnt_root)) {
1647 		root = ERR_CAST(mnt_root);
1648 		kfree(subvol_name);
1649 		goto out;
1650 	}
1651 
1652 	/* mount_subvol() will free subvol_name and mnt_root */
1653 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1654 
1655 out:
1656 	return root;
1657 }
1658 
1659 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1660 				     u32 new_pool_size, u32 old_pool_size)
1661 {
1662 	if (new_pool_size == old_pool_size)
1663 		return;
1664 
1665 	fs_info->thread_pool_size = new_pool_size;
1666 
1667 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1668 	       old_pool_size, new_pool_size);
1669 
1670 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1671 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1672 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1673 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1674 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1675 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1676 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1677 				new_pool_size);
1678 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1679 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1680 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1681 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1682 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1683 				new_pool_size);
1684 }
1685 
1686 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1687 {
1688 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1689 }
1690 
1691 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1692 				       unsigned long old_opts, int flags)
1693 {
1694 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1695 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1696 	     (flags & SB_RDONLY))) {
1697 		/* wait for any defraggers to finish */
1698 		wait_event(fs_info->transaction_wait,
1699 			   (atomic_read(&fs_info->defrag_running) == 0));
1700 		if (flags & SB_RDONLY)
1701 			sync_filesystem(fs_info->sb);
1702 	}
1703 }
1704 
1705 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1706 					 unsigned long old_opts)
1707 {
1708 	/*
1709 	 * We need to cleanup all defragable inodes if the autodefragment is
1710 	 * close or the filesystem is read only.
1711 	 */
1712 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1713 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1714 		btrfs_cleanup_defrag_inodes(fs_info);
1715 	}
1716 
1717 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1718 }
1719 
1720 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1721 {
1722 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1723 	struct btrfs_root *root = fs_info->tree_root;
1724 	unsigned old_flags = sb->s_flags;
1725 	unsigned long old_opts = fs_info->mount_opt;
1726 	unsigned long old_compress_type = fs_info->compress_type;
1727 	u64 old_max_inline = fs_info->max_inline;
1728 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1729 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1730 	int ret;
1731 
1732 	sync_filesystem(sb);
1733 	btrfs_remount_prepare(fs_info);
1734 
1735 	if (data) {
1736 		void *new_sec_opts = NULL;
1737 
1738 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1739 		if (!ret)
1740 			ret = security_sb_remount(sb, new_sec_opts);
1741 		security_free_mnt_opts(&new_sec_opts);
1742 		if (ret)
1743 			goto restore;
1744 	}
1745 
1746 	ret = btrfs_parse_options(fs_info, data, *flags);
1747 	if (ret)
1748 		goto restore;
1749 
1750 	btrfs_remount_begin(fs_info, old_opts, *flags);
1751 	btrfs_resize_thread_pool(fs_info,
1752 		fs_info->thread_pool_size, old_thread_pool_size);
1753 
1754 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1755 		goto out;
1756 
1757 	if (*flags & SB_RDONLY) {
1758 		/*
1759 		 * this also happens on 'umount -rf' or on shutdown, when
1760 		 * the filesystem is busy.
1761 		 */
1762 		cancel_work_sync(&fs_info->async_reclaim_work);
1763 
1764 		/* wait for the uuid_scan task to finish */
1765 		down(&fs_info->uuid_tree_rescan_sem);
1766 		/* avoid complains from lockdep et al. */
1767 		up(&fs_info->uuid_tree_rescan_sem);
1768 
1769 		sb->s_flags |= SB_RDONLY;
1770 
1771 		/*
1772 		 * Setting SB_RDONLY will put the cleaner thread to
1773 		 * sleep at the next loop if it's already active.
1774 		 * If it's already asleep, we'll leave unused block
1775 		 * groups on disk until we're mounted read-write again
1776 		 * unless we clean them up here.
1777 		 */
1778 		btrfs_delete_unused_bgs(fs_info);
1779 
1780 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1781 		btrfs_scrub_cancel(fs_info);
1782 		btrfs_pause_balance(fs_info);
1783 
1784 		ret = btrfs_commit_super(fs_info);
1785 		if (ret)
1786 			goto restore;
1787 	} else {
1788 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1789 			btrfs_err(fs_info,
1790 				"Remounting read-write after error is not allowed");
1791 			ret = -EINVAL;
1792 			goto restore;
1793 		}
1794 		if (fs_info->fs_devices->rw_devices == 0) {
1795 			ret = -EACCES;
1796 			goto restore;
1797 		}
1798 
1799 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1800 			btrfs_warn(fs_info,
1801 		"too many missing devices, writable remount is not allowed");
1802 			ret = -EACCES;
1803 			goto restore;
1804 		}
1805 
1806 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1807 			ret = -EINVAL;
1808 			goto restore;
1809 		}
1810 
1811 		ret = btrfs_cleanup_fs_roots(fs_info);
1812 		if (ret)
1813 			goto restore;
1814 
1815 		/* recover relocation */
1816 		mutex_lock(&fs_info->cleaner_mutex);
1817 		ret = btrfs_recover_relocation(root);
1818 		mutex_unlock(&fs_info->cleaner_mutex);
1819 		if (ret)
1820 			goto restore;
1821 
1822 		ret = btrfs_resume_balance_async(fs_info);
1823 		if (ret)
1824 			goto restore;
1825 
1826 		ret = btrfs_resume_dev_replace_async(fs_info);
1827 		if (ret) {
1828 			btrfs_warn(fs_info, "failed to resume dev_replace");
1829 			goto restore;
1830 		}
1831 
1832 		btrfs_qgroup_rescan_resume(fs_info);
1833 
1834 		if (!fs_info->uuid_root) {
1835 			btrfs_info(fs_info, "creating UUID tree");
1836 			ret = btrfs_create_uuid_tree(fs_info);
1837 			if (ret) {
1838 				btrfs_warn(fs_info,
1839 					   "failed to create the UUID tree %d",
1840 					   ret);
1841 				goto restore;
1842 			}
1843 		}
1844 		sb->s_flags &= ~SB_RDONLY;
1845 
1846 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1847 	}
1848 out:
1849 	wake_up_process(fs_info->transaction_kthread);
1850 	btrfs_remount_cleanup(fs_info, old_opts);
1851 	return 0;
1852 
1853 restore:
1854 	/* We've hit an error - don't reset SB_RDONLY */
1855 	if (sb_rdonly(sb))
1856 		old_flags |= SB_RDONLY;
1857 	sb->s_flags = old_flags;
1858 	fs_info->mount_opt = old_opts;
1859 	fs_info->compress_type = old_compress_type;
1860 	fs_info->max_inline = old_max_inline;
1861 	btrfs_resize_thread_pool(fs_info,
1862 		old_thread_pool_size, fs_info->thread_pool_size);
1863 	fs_info->metadata_ratio = old_metadata_ratio;
1864 	btrfs_remount_cleanup(fs_info, old_opts);
1865 	return ret;
1866 }
1867 
1868 /* Used to sort the devices by max_avail(descending sort) */
1869 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1870 				       const void *dev_info2)
1871 {
1872 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1873 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1874 		return -1;
1875 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1876 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1877 		return 1;
1878 	else
1879 	return 0;
1880 }
1881 
1882 /*
1883  * sort the devices by max_avail, in which max free extent size of each device
1884  * is stored.(Descending Sort)
1885  */
1886 static inline void btrfs_descending_sort_devices(
1887 					struct btrfs_device_info *devices,
1888 					size_t nr_devices)
1889 {
1890 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1891 	     btrfs_cmp_device_free_bytes, NULL);
1892 }
1893 
1894 /*
1895  * The helper to calc the free space on the devices that can be used to store
1896  * file data.
1897  */
1898 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1899 					      u64 *free_bytes)
1900 {
1901 	struct btrfs_device_info *devices_info;
1902 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1903 	struct btrfs_device *device;
1904 	u64 type;
1905 	u64 avail_space;
1906 	u64 min_stripe_size;
1907 	int num_stripes = 1;
1908 	int i = 0, nr_devices;
1909 	const struct btrfs_raid_attr *rattr;
1910 
1911 	/*
1912 	 * We aren't under the device list lock, so this is racy-ish, but good
1913 	 * enough for our purposes.
1914 	 */
1915 	nr_devices = fs_info->fs_devices->open_devices;
1916 	if (!nr_devices) {
1917 		smp_mb();
1918 		nr_devices = fs_info->fs_devices->open_devices;
1919 		ASSERT(nr_devices);
1920 		if (!nr_devices) {
1921 			*free_bytes = 0;
1922 			return 0;
1923 		}
1924 	}
1925 
1926 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1927 			       GFP_KERNEL);
1928 	if (!devices_info)
1929 		return -ENOMEM;
1930 
1931 	/* calc min stripe number for data space allocation */
1932 	type = btrfs_data_alloc_profile(fs_info);
1933 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1934 
1935 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1936 		num_stripes = nr_devices;
1937 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
1938 		num_stripes = 2;
1939 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1940 		num_stripes = 4;
1941 
1942 	/* Adjust for more than 1 stripe per device */
1943 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1944 
1945 	rcu_read_lock();
1946 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1947 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1948 						&device->dev_state) ||
1949 		    !device->bdev ||
1950 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1951 			continue;
1952 
1953 		if (i >= nr_devices)
1954 			break;
1955 
1956 		avail_space = device->total_bytes - device->bytes_used;
1957 
1958 		/* align with stripe_len */
1959 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1960 
1961 		/*
1962 		 * In order to avoid overwriting the superblock on the drive,
1963 		 * btrfs starts at an offset of at least 1MB when doing chunk
1964 		 * allocation.
1965 		 *
1966 		 * This ensures we have at least min_stripe_size free space
1967 		 * after excluding 1MB.
1968 		 */
1969 		if (avail_space <= SZ_1M + min_stripe_size)
1970 			continue;
1971 
1972 		avail_space -= SZ_1M;
1973 
1974 		devices_info[i].dev = device;
1975 		devices_info[i].max_avail = avail_space;
1976 
1977 		i++;
1978 	}
1979 	rcu_read_unlock();
1980 
1981 	nr_devices = i;
1982 
1983 	btrfs_descending_sort_devices(devices_info, nr_devices);
1984 
1985 	i = nr_devices - 1;
1986 	avail_space = 0;
1987 	while (nr_devices >= rattr->devs_min) {
1988 		num_stripes = min(num_stripes, nr_devices);
1989 
1990 		if (devices_info[i].max_avail >= min_stripe_size) {
1991 			int j;
1992 			u64 alloc_size;
1993 
1994 			avail_space += devices_info[i].max_avail * num_stripes;
1995 			alloc_size = devices_info[i].max_avail;
1996 			for (j = i + 1 - num_stripes; j <= i; j++)
1997 				devices_info[j].max_avail -= alloc_size;
1998 		}
1999 		i--;
2000 		nr_devices--;
2001 	}
2002 
2003 	kfree(devices_info);
2004 	*free_bytes = avail_space;
2005 	return 0;
2006 }
2007 
2008 /*
2009  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2010  *
2011  * If there's a redundant raid level at DATA block groups, use the respective
2012  * multiplier to scale the sizes.
2013  *
2014  * Unused device space usage is based on simulating the chunk allocator
2015  * algorithm that respects the device sizes and order of allocations.  This is
2016  * a close approximation of the actual use but there are other factors that may
2017  * change the result (like a new metadata chunk).
2018  *
2019  * If metadata is exhausted, f_bavail will be 0.
2020  */
2021 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2022 {
2023 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2024 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2025 	struct list_head *head = &fs_info->space_info;
2026 	struct btrfs_space_info *found;
2027 	u64 total_used = 0;
2028 	u64 total_free_data = 0;
2029 	u64 total_free_meta = 0;
2030 	int bits = dentry->d_sb->s_blocksize_bits;
2031 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2032 	unsigned factor = 1;
2033 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2034 	int ret;
2035 	u64 thresh = 0;
2036 	int mixed = 0;
2037 
2038 	rcu_read_lock();
2039 	list_for_each_entry_rcu(found, head, list) {
2040 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2041 			int i;
2042 
2043 			total_free_data += found->disk_total - found->disk_used;
2044 			total_free_data -=
2045 				btrfs_account_ro_block_groups_free_space(found);
2046 
2047 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2048 				if (!list_empty(&found->block_groups[i]))
2049 					factor = btrfs_bg_type_to_factor(
2050 						btrfs_raid_array[i].bg_flag);
2051 			}
2052 		}
2053 
2054 		/*
2055 		 * Metadata in mixed block goup profiles are accounted in data
2056 		 */
2057 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2058 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2059 				mixed = 1;
2060 			else
2061 				total_free_meta += found->disk_total -
2062 					found->disk_used;
2063 		}
2064 
2065 		total_used += found->disk_used;
2066 	}
2067 
2068 	rcu_read_unlock();
2069 
2070 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2071 	buf->f_blocks >>= bits;
2072 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2073 
2074 	/* Account global block reserve as used, it's in logical size already */
2075 	spin_lock(&block_rsv->lock);
2076 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2077 	if (buf->f_bfree >= block_rsv->size >> bits)
2078 		buf->f_bfree -= block_rsv->size >> bits;
2079 	else
2080 		buf->f_bfree = 0;
2081 	spin_unlock(&block_rsv->lock);
2082 
2083 	buf->f_bavail = div_u64(total_free_data, factor);
2084 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2085 	if (ret)
2086 		return ret;
2087 	buf->f_bavail += div_u64(total_free_data, factor);
2088 	buf->f_bavail = buf->f_bavail >> bits;
2089 
2090 	/*
2091 	 * We calculate the remaining metadata space minus global reserve. If
2092 	 * this is (supposedly) smaller than zero, there's no space. But this
2093 	 * does not hold in practice, the exhausted state happens where's still
2094 	 * some positive delta. So we apply some guesswork and compare the
2095 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2096 	 *
2097 	 * We probably cannot calculate the exact threshold value because this
2098 	 * depends on the internal reservations requested by various
2099 	 * operations, so some operations that consume a few metadata will
2100 	 * succeed even if the Avail is zero. But this is better than the other
2101 	 * way around.
2102 	 */
2103 	thresh = SZ_4M;
2104 
2105 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2106 		buf->f_bavail = 0;
2107 
2108 	buf->f_type = BTRFS_SUPER_MAGIC;
2109 	buf->f_bsize = dentry->d_sb->s_blocksize;
2110 	buf->f_namelen = BTRFS_NAME_LEN;
2111 
2112 	/* We treat it as constant endianness (it doesn't matter _which_)
2113 	   because we want the fsid to come out the same whether mounted
2114 	   on a big-endian or little-endian host */
2115 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2116 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2117 	/* Mask in the root object ID too, to disambiguate subvols */
2118 	buf->f_fsid.val[0] ^=
2119 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2120 	buf->f_fsid.val[1] ^=
2121 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2122 
2123 	return 0;
2124 }
2125 
2126 static void btrfs_kill_super(struct super_block *sb)
2127 {
2128 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2129 	kill_anon_super(sb);
2130 	free_fs_info(fs_info);
2131 }
2132 
2133 static struct file_system_type btrfs_fs_type = {
2134 	.owner		= THIS_MODULE,
2135 	.name		= "btrfs",
2136 	.mount		= btrfs_mount,
2137 	.kill_sb	= btrfs_kill_super,
2138 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2139 };
2140 
2141 static struct file_system_type btrfs_root_fs_type = {
2142 	.owner		= THIS_MODULE,
2143 	.name		= "btrfs",
2144 	.mount		= btrfs_mount_root,
2145 	.kill_sb	= btrfs_kill_super,
2146 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2147 };
2148 
2149 MODULE_ALIAS_FS("btrfs");
2150 
2151 static int btrfs_control_open(struct inode *inode, struct file *file)
2152 {
2153 	/*
2154 	 * The control file's private_data is used to hold the
2155 	 * transaction when it is started and is used to keep
2156 	 * track of whether a transaction is already in progress.
2157 	 */
2158 	file->private_data = NULL;
2159 	return 0;
2160 }
2161 
2162 /*
2163  * used by btrfsctl to scan devices when no FS is mounted
2164  */
2165 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2166 				unsigned long arg)
2167 {
2168 	struct btrfs_ioctl_vol_args *vol;
2169 	struct btrfs_device *device = NULL;
2170 	int ret = -ENOTTY;
2171 
2172 	if (!capable(CAP_SYS_ADMIN))
2173 		return -EPERM;
2174 
2175 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2176 	if (IS_ERR(vol))
2177 		return PTR_ERR(vol);
2178 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2179 
2180 	switch (cmd) {
2181 	case BTRFS_IOC_SCAN_DEV:
2182 		mutex_lock(&uuid_mutex);
2183 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2184 					       &btrfs_root_fs_type);
2185 		ret = PTR_ERR_OR_ZERO(device);
2186 		mutex_unlock(&uuid_mutex);
2187 		break;
2188 	case BTRFS_IOC_FORGET_DEV:
2189 		ret = btrfs_forget_devices(vol->name);
2190 		break;
2191 	case BTRFS_IOC_DEVICES_READY:
2192 		mutex_lock(&uuid_mutex);
2193 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2194 					       &btrfs_root_fs_type);
2195 		if (IS_ERR(device)) {
2196 			mutex_unlock(&uuid_mutex);
2197 			ret = PTR_ERR(device);
2198 			break;
2199 		}
2200 		ret = !(device->fs_devices->num_devices ==
2201 			device->fs_devices->total_devices);
2202 		mutex_unlock(&uuid_mutex);
2203 		break;
2204 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2205 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2206 		break;
2207 	}
2208 
2209 	kfree(vol);
2210 	return ret;
2211 }
2212 
2213 static int btrfs_freeze(struct super_block *sb)
2214 {
2215 	struct btrfs_trans_handle *trans;
2216 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2217 	struct btrfs_root *root = fs_info->tree_root;
2218 
2219 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2220 	/*
2221 	 * We don't need a barrier here, we'll wait for any transaction that
2222 	 * could be in progress on other threads (and do delayed iputs that
2223 	 * we want to avoid on a frozen filesystem), or do the commit
2224 	 * ourselves.
2225 	 */
2226 	trans = btrfs_attach_transaction_barrier(root);
2227 	if (IS_ERR(trans)) {
2228 		/* no transaction, don't bother */
2229 		if (PTR_ERR(trans) == -ENOENT)
2230 			return 0;
2231 		return PTR_ERR(trans);
2232 	}
2233 	return btrfs_commit_transaction(trans);
2234 }
2235 
2236 static int btrfs_unfreeze(struct super_block *sb)
2237 {
2238 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2239 
2240 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2241 	return 0;
2242 }
2243 
2244 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2245 {
2246 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2247 	struct btrfs_fs_devices *cur_devices;
2248 	struct btrfs_device *dev, *first_dev = NULL;
2249 	struct list_head *head;
2250 
2251 	/*
2252 	 * Lightweight locking of the devices. We should not need
2253 	 * device_list_mutex here as we only read the device data and the list
2254 	 * is protected by RCU.  Even if a device is deleted during the list
2255 	 * traversals, we'll get valid data, the freeing callback will wait at
2256 	 * least until the rcu_read_unlock.
2257 	 */
2258 	rcu_read_lock();
2259 	cur_devices = fs_info->fs_devices;
2260 	while (cur_devices) {
2261 		head = &cur_devices->devices;
2262 		list_for_each_entry_rcu(dev, head, dev_list) {
2263 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2264 				continue;
2265 			if (!dev->name)
2266 				continue;
2267 			if (!first_dev || dev->devid < first_dev->devid)
2268 				first_dev = dev;
2269 		}
2270 		cur_devices = cur_devices->seed;
2271 	}
2272 
2273 	if (first_dev)
2274 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2275 	else
2276 		WARN_ON(1);
2277 	rcu_read_unlock();
2278 	return 0;
2279 }
2280 
2281 static const struct super_operations btrfs_super_ops = {
2282 	.drop_inode	= btrfs_drop_inode,
2283 	.evict_inode	= btrfs_evict_inode,
2284 	.put_super	= btrfs_put_super,
2285 	.sync_fs	= btrfs_sync_fs,
2286 	.show_options	= btrfs_show_options,
2287 	.show_devname	= btrfs_show_devname,
2288 	.alloc_inode	= btrfs_alloc_inode,
2289 	.destroy_inode	= btrfs_destroy_inode,
2290 	.free_inode	= btrfs_free_inode,
2291 	.statfs		= btrfs_statfs,
2292 	.remount_fs	= btrfs_remount,
2293 	.freeze_fs	= btrfs_freeze,
2294 	.unfreeze_fs	= btrfs_unfreeze,
2295 };
2296 
2297 static const struct file_operations btrfs_ctl_fops = {
2298 	.open = btrfs_control_open,
2299 	.unlocked_ioctl	 = btrfs_control_ioctl,
2300 	.compat_ioctl = btrfs_control_ioctl,
2301 	.owner	 = THIS_MODULE,
2302 	.llseek = noop_llseek,
2303 };
2304 
2305 static struct miscdevice btrfs_misc = {
2306 	.minor		= BTRFS_MINOR,
2307 	.name		= "btrfs-control",
2308 	.fops		= &btrfs_ctl_fops
2309 };
2310 
2311 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2312 MODULE_ALIAS("devname:btrfs-control");
2313 
2314 static int __init btrfs_interface_init(void)
2315 {
2316 	return misc_register(&btrfs_misc);
2317 }
2318 
2319 static __cold void btrfs_interface_exit(void)
2320 {
2321 	misc_deregister(&btrfs_misc);
2322 }
2323 
2324 static void __init btrfs_print_mod_info(void)
2325 {
2326 	static const char options[] = ""
2327 #ifdef CONFIG_BTRFS_DEBUG
2328 			", debug=on"
2329 #endif
2330 #ifdef CONFIG_BTRFS_ASSERT
2331 			", assert=on"
2332 #endif
2333 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2334 			", integrity-checker=on"
2335 #endif
2336 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2337 			", ref-verify=on"
2338 #endif
2339 			;
2340 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2341 }
2342 
2343 static int __init init_btrfs_fs(void)
2344 {
2345 	int err;
2346 
2347 	btrfs_props_init();
2348 
2349 	err = btrfs_init_sysfs();
2350 	if (err)
2351 		return err;
2352 
2353 	btrfs_init_compress();
2354 
2355 	err = btrfs_init_cachep();
2356 	if (err)
2357 		goto free_compress;
2358 
2359 	err = extent_io_init();
2360 	if (err)
2361 		goto free_cachep;
2362 
2363 	err = extent_map_init();
2364 	if (err)
2365 		goto free_extent_io;
2366 
2367 	err = ordered_data_init();
2368 	if (err)
2369 		goto free_extent_map;
2370 
2371 	err = btrfs_delayed_inode_init();
2372 	if (err)
2373 		goto free_ordered_data;
2374 
2375 	err = btrfs_auto_defrag_init();
2376 	if (err)
2377 		goto free_delayed_inode;
2378 
2379 	err = btrfs_delayed_ref_init();
2380 	if (err)
2381 		goto free_auto_defrag;
2382 
2383 	err = btrfs_prelim_ref_init();
2384 	if (err)
2385 		goto free_delayed_ref;
2386 
2387 	err = btrfs_end_io_wq_init();
2388 	if (err)
2389 		goto free_prelim_ref;
2390 
2391 	err = btrfs_interface_init();
2392 	if (err)
2393 		goto free_end_io_wq;
2394 
2395 	btrfs_init_lockdep();
2396 
2397 	btrfs_print_mod_info();
2398 
2399 	err = btrfs_run_sanity_tests();
2400 	if (err)
2401 		goto unregister_ioctl;
2402 
2403 	err = register_filesystem(&btrfs_fs_type);
2404 	if (err)
2405 		goto unregister_ioctl;
2406 
2407 	return 0;
2408 
2409 unregister_ioctl:
2410 	btrfs_interface_exit();
2411 free_end_io_wq:
2412 	btrfs_end_io_wq_exit();
2413 free_prelim_ref:
2414 	btrfs_prelim_ref_exit();
2415 free_delayed_ref:
2416 	btrfs_delayed_ref_exit();
2417 free_auto_defrag:
2418 	btrfs_auto_defrag_exit();
2419 free_delayed_inode:
2420 	btrfs_delayed_inode_exit();
2421 free_ordered_data:
2422 	ordered_data_exit();
2423 free_extent_map:
2424 	extent_map_exit();
2425 free_extent_io:
2426 	extent_io_exit();
2427 free_cachep:
2428 	btrfs_destroy_cachep();
2429 free_compress:
2430 	btrfs_exit_compress();
2431 	btrfs_exit_sysfs();
2432 
2433 	return err;
2434 }
2435 
2436 static void __exit exit_btrfs_fs(void)
2437 {
2438 	btrfs_destroy_cachep();
2439 	btrfs_delayed_ref_exit();
2440 	btrfs_auto_defrag_exit();
2441 	btrfs_delayed_inode_exit();
2442 	btrfs_prelim_ref_exit();
2443 	ordered_data_exit();
2444 	extent_map_exit();
2445 	extent_io_exit();
2446 	btrfs_interface_exit();
2447 	btrfs_end_io_wq_exit();
2448 	unregister_filesystem(&btrfs_fs_type);
2449 	btrfs_exit_sysfs();
2450 	btrfs_cleanup_fs_uuids();
2451 	btrfs_exit_compress();
2452 }
2453 
2454 late_initcall(init_btrfs_fs);
2455 module_exit(exit_btrfs_fs)
2456 
2457 MODULE_LICENSE("GPL");
2458 MODULE_SOFTDEP("pre: crc32c");
2459