xref: /openbmc/linux/fs/btrfs/super.c (revision 261a9af6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include "compat.h"
44 #include "delayed-inode.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "xattr.h"
52 #include "volumes.h"
53 #include "version.h"
54 #include "export.h"
55 #include "compression.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/btrfs.h>
59 
60 static const struct super_operations btrfs_super_ops;
61 
62 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
63 				      char nbuf[16])
64 {
65 	char *errstr = NULL;
66 
67 	switch (errno) {
68 	case -EIO:
69 		errstr = "IO failure";
70 		break;
71 	case -ENOMEM:
72 		errstr = "Out of memory";
73 		break;
74 	case -EROFS:
75 		errstr = "Readonly filesystem";
76 		break;
77 	default:
78 		if (nbuf) {
79 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
80 				errstr = nbuf;
81 		}
82 		break;
83 	}
84 
85 	return errstr;
86 }
87 
88 static void __save_error_info(struct btrfs_fs_info *fs_info)
89 {
90 	/*
91 	 * today we only save the error info into ram.  Long term we'll
92 	 * also send it down to the disk
93 	 */
94 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
95 }
96 
97 /* NOTE:
98  *	We move write_super stuff at umount in order to avoid deadlock
99  *	for umount hold all lock.
100  */
101 static void save_error_info(struct btrfs_fs_info *fs_info)
102 {
103 	__save_error_info(fs_info);
104 }
105 
106 /* btrfs handle error by forcing the filesystem readonly */
107 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
108 {
109 	struct super_block *sb = fs_info->sb;
110 
111 	if (sb->s_flags & MS_RDONLY)
112 		return;
113 
114 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
115 		sb->s_flags |= MS_RDONLY;
116 		printk(KERN_INFO "btrfs is forced readonly\n");
117 	}
118 }
119 
120 /*
121  * __btrfs_std_error decodes expected errors from the caller and
122  * invokes the approciate error response.
123  */
124 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
125 		     unsigned int line, int errno)
126 {
127 	struct super_block *sb = fs_info->sb;
128 	char nbuf[16];
129 	const char *errstr;
130 
131 	/*
132 	 * Special case: if the error is EROFS, and we're already
133 	 * under MS_RDONLY, then it is safe here.
134 	 */
135 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
136 		return;
137 
138 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
139 	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
140 		sb->s_id, function, line, errstr);
141 	save_error_info(fs_info);
142 
143 	btrfs_handle_error(fs_info);
144 }
145 
146 static void btrfs_put_super(struct super_block *sb)
147 {
148 	struct btrfs_root *root = btrfs_sb(sb);
149 	int ret;
150 
151 	ret = close_ctree(root);
152 	sb->s_fs_info = NULL;
153 
154 	(void)ret; /* FIXME: need to fix VFS to return error? */
155 }
156 
157 enum {
158 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
159 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
160 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
161 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
162 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
163 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
164 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
165 	Opt_inode_cache, Opt_err,
166 };
167 
168 static match_table_t tokens = {
169 	{Opt_degraded, "degraded"},
170 	{Opt_subvol, "subvol=%s"},
171 	{Opt_subvolid, "subvolid=%d"},
172 	{Opt_device, "device=%s"},
173 	{Opt_nodatasum, "nodatasum"},
174 	{Opt_nodatacow, "nodatacow"},
175 	{Opt_nobarrier, "nobarrier"},
176 	{Opt_max_inline, "max_inline=%s"},
177 	{Opt_alloc_start, "alloc_start=%s"},
178 	{Opt_thread_pool, "thread_pool=%d"},
179 	{Opt_compress, "compress"},
180 	{Opt_compress_type, "compress=%s"},
181 	{Opt_compress_force, "compress-force"},
182 	{Opt_compress_force_type, "compress-force=%s"},
183 	{Opt_ssd, "ssd"},
184 	{Opt_ssd_spread, "ssd_spread"},
185 	{Opt_nossd, "nossd"},
186 	{Opt_noacl, "noacl"},
187 	{Opt_notreelog, "notreelog"},
188 	{Opt_flushoncommit, "flushoncommit"},
189 	{Opt_ratio, "metadata_ratio=%d"},
190 	{Opt_discard, "discard"},
191 	{Opt_space_cache, "space_cache"},
192 	{Opt_clear_cache, "clear_cache"},
193 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
194 	{Opt_enospc_debug, "enospc_debug"},
195 	{Opt_subvolrootid, "subvolrootid=%d"},
196 	{Opt_defrag, "autodefrag"},
197 	{Opt_inode_cache, "inode_cache"},
198 	{Opt_err, NULL},
199 };
200 
201 /*
202  * Regular mount options parser.  Everything that is needed only when
203  * reading in a new superblock is parsed here.
204  */
205 int btrfs_parse_options(struct btrfs_root *root, char *options)
206 {
207 	struct btrfs_fs_info *info = root->fs_info;
208 	substring_t args[MAX_OPT_ARGS];
209 	char *p, *num, *orig;
210 	int intarg;
211 	int ret = 0;
212 	char *compress_type;
213 	bool compress_force = false;
214 
215 	if (!options)
216 		return 0;
217 
218 	/*
219 	 * strsep changes the string, duplicate it because parse_options
220 	 * gets called twice
221 	 */
222 	options = kstrdup(options, GFP_NOFS);
223 	if (!options)
224 		return -ENOMEM;
225 
226 	orig = options;
227 
228 	while ((p = strsep(&options, ",")) != NULL) {
229 		int token;
230 		if (!*p)
231 			continue;
232 
233 		token = match_token(p, tokens, args);
234 		switch (token) {
235 		case Opt_degraded:
236 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
237 			btrfs_set_opt(info->mount_opt, DEGRADED);
238 			break;
239 		case Opt_subvol:
240 		case Opt_subvolid:
241 		case Opt_subvolrootid:
242 		case Opt_device:
243 			/*
244 			 * These are parsed by btrfs_parse_early_options
245 			 * and can be happily ignored here.
246 			 */
247 			break;
248 		case Opt_nodatasum:
249 			printk(KERN_INFO "btrfs: setting nodatasum\n");
250 			btrfs_set_opt(info->mount_opt, NODATASUM);
251 			break;
252 		case Opt_nodatacow:
253 			printk(KERN_INFO "btrfs: setting nodatacow\n");
254 			btrfs_set_opt(info->mount_opt, NODATACOW);
255 			btrfs_set_opt(info->mount_opt, NODATASUM);
256 			break;
257 		case Opt_compress_force:
258 		case Opt_compress_force_type:
259 			compress_force = true;
260 		case Opt_compress:
261 		case Opt_compress_type:
262 			if (token == Opt_compress ||
263 			    token == Opt_compress_force ||
264 			    strcmp(args[0].from, "zlib") == 0) {
265 				compress_type = "zlib";
266 				info->compress_type = BTRFS_COMPRESS_ZLIB;
267 			} else if (strcmp(args[0].from, "lzo") == 0) {
268 				compress_type = "lzo";
269 				info->compress_type = BTRFS_COMPRESS_LZO;
270 			} else {
271 				ret = -EINVAL;
272 				goto out;
273 			}
274 
275 			btrfs_set_opt(info->mount_opt, COMPRESS);
276 			if (compress_force) {
277 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
278 				pr_info("btrfs: force %s compression\n",
279 					compress_type);
280 			} else
281 				pr_info("btrfs: use %s compression\n",
282 					compress_type);
283 			break;
284 		case Opt_ssd:
285 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
286 			btrfs_set_opt(info->mount_opt, SSD);
287 			break;
288 		case Opt_ssd_spread:
289 			printk(KERN_INFO "btrfs: use spread ssd "
290 			       "allocation scheme\n");
291 			btrfs_set_opt(info->mount_opt, SSD);
292 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
293 			break;
294 		case Opt_nossd:
295 			printk(KERN_INFO "btrfs: not using ssd allocation "
296 			       "scheme\n");
297 			btrfs_set_opt(info->mount_opt, NOSSD);
298 			btrfs_clear_opt(info->mount_opt, SSD);
299 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
300 			break;
301 		case Opt_nobarrier:
302 			printk(KERN_INFO "btrfs: turning off barriers\n");
303 			btrfs_set_opt(info->mount_opt, NOBARRIER);
304 			break;
305 		case Opt_thread_pool:
306 			intarg = 0;
307 			match_int(&args[0], &intarg);
308 			if (intarg) {
309 				info->thread_pool_size = intarg;
310 				printk(KERN_INFO "btrfs: thread pool %d\n",
311 				       info->thread_pool_size);
312 			}
313 			break;
314 		case Opt_max_inline:
315 			num = match_strdup(&args[0]);
316 			if (num) {
317 				info->max_inline = memparse(num, NULL);
318 				kfree(num);
319 
320 				if (info->max_inline) {
321 					info->max_inline = max_t(u64,
322 						info->max_inline,
323 						root->sectorsize);
324 				}
325 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
326 					(unsigned long long)info->max_inline);
327 			}
328 			break;
329 		case Opt_alloc_start:
330 			num = match_strdup(&args[0]);
331 			if (num) {
332 				info->alloc_start = memparse(num, NULL);
333 				kfree(num);
334 				printk(KERN_INFO
335 					"btrfs: allocations start at %llu\n",
336 					(unsigned long long)info->alloc_start);
337 			}
338 			break;
339 		case Opt_noacl:
340 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
341 			break;
342 		case Opt_notreelog:
343 			printk(KERN_INFO "btrfs: disabling tree log\n");
344 			btrfs_set_opt(info->mount_opt, NOTREELOG);
345 			break;
346 		case Opt_flushoncommit:
347 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
348 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
349 			break;
350 		case Opt_ratio:
351 			intarg = 0;
352 			match_int(&args[0], &intarg);
353 			if (intarg) {
354 				info->metadata_ratio = intarg;
355 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
356 				       info->metadata_ratio);
357 			}
358 			break;
359 		case Opt_discard:
360 			btrfs_set_opt(info->mount_opt, DISCARD);
361 			break;
362 		case Opt_space_cache:
363 			printk(KERN_INFO "btrfs: enabling disk space caching\n");
364 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
365 			break;
366 		case Opt_inode_cache:
367 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
368 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
369 			break;
370 		case Opt_clear_cache:
371 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
372 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
373 			break;
374 		case Opt_user_subvol_rm_allowed:
375 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
376 			break;
377 		case Opt_enospc_debug:
378 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
379 			break;
380 		case Opt_defrag:
381 			printk(KERN_INFO "btrfs: enabling auto defrag");
382 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
383 			break;
384 		case Opt_err:
385 			printk(KERN_INFO "btrfs: unrecognized mount option "
386 			       "'%s'\n", p);
387 			ret = -EINVAL;
388 			goto out;
389 		default:
390 			break;
391 		}
392 	}
393 out:
394 	kfree(orig);
395 	return ret;
396 }
397 
398 /*
399  * Parse mount options that are required early in the mount process.
400  *
401  * All other options will be parsed on much later in the mount process and
402  * only when we need to allocate a new super block.
403  */
404 static int btrfs_parse_early_options(const char *options, fmode_t flags,
405 		void *holder, char **subvol_name, u64 *subvol_objectid,
406 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
407 {
408 	substring_t args[MAX_OPT_ARGS];
409 	char *opts, *orig, *p;
410 	int error = 0;
411 	int intarg;
412 
413 	if (!options)
414 		goto out;
415 
416 	/*
417 	 * strsep changes the string, duplicate it because parse_options
418 	 * gets called twice
419 	 */
420 	opts = kstrdup(options, GFP_KERNEL);
421 	if (!opts)
422 		return -ENOMEM;
423 	orig = opts;
424 
425 	while ((p = strsep(&opts, ",")) != NULL) {
426 		int token;
427 		if (!*p)
428 			continue;
429 
430 		token = match_token(p, tokens, args);
431 		switch (token) {
432 		case Opt_subvol:
433 			*subvol_name = match_strdup(&args[0]);
434 			break;
435 		case Opt_subvolid:
436 			intarg = 0;
437 			error = match_int(&args[0], &intarg);
438 			if (!error) {
439 				/* we want the original fs_tree */
440 				if (!intarg)
441 					*subvol_objectid =
442 						BTRFS_FS_TREE_OBJECTID;
443 				else
444 					*subvol_objectid = intarg;
445 			}
446 			break;
447 		case Opt_subvolrootid:
448 			intarg = 0;
449 			error = match_int(&args[0], &intarg);
450 			if (!error) {
451 				/* we want the original fs_tree */
452 				if (!intarg)
453 					*subvol_rootid =
454 						BTRFS_FS_TREE_OBJECTID;
455 				else
456 					*subvol_rootid = intarg;
457 			}
458 			break;
459 		case Opt_device:
460 			error = btrfs_scan_one_device(match_strdup(&args[0]),
461 					flags, holder, fs_devices);
462 			if (error)
463 				goto out_free_opts;
464 			break;
465 		default:
466 			break;
467 		}
468 	}
469 
470  out_free_opts:
471 	kfree(orig);
472  out:
473 	/*
474 	 * If no subvolume name is specified we use the default one.  Allocate
475 	 * a copy of the string "." here so that code later in the
476 	 * mount path doesn't care if it's the default volume or another one.
477 	 */
478 	if (!*subvol_name) {
479 		*subvol_name = kstrdup(".", GFP_KERNEL);
480 		if (!*subvol_name)
481 			return -ENOMEM;
482 	}
483 	return error;
484 }
485 
486 static struct dentry *get_default_root(struct super_block *sb,
487 				       u64 subvol_objectid)
488 {
489 	struct btrfs_root *root = sb->s_fs_info;
490 	struct btrfs_root *new_root;
491 	struct btrfs_dir_item *di;
492 	struct btrfs_path *path;
493 	struct btrfs_key location;
494 	struct inode *inode;
495 	struct dentry *dentry;
496 	u64 dir_id;
497 	int new = 0;
498 
499 	/*
500 	 * We have a specific subvol we want to mount, just setup location and
501 	 * go look up the root.
502 	 */
503 	if (subvol_objectid) {
504 		location.objectid = subvol_objectid;
505 		location.type = BTRFS_ROOT_ITEM_KEY;
506 		location.offset = (u64)-1;
507 		goto find_root;
508 	}
509 
510 	path = btrfs_alloc_path();
511 	if (!path)
512 		return ERR_PTR(-ENOMEM);
513 	path->leave_spinning = 1;
514 
515 	/*
516 	 * Find the "default" dir item which points to the root item that we
517 	 * will mount by default if we haven't been given a specific subvolume
518 	 * to mount.
519 	 */
520 	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
521 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
522 	if (IS_ERR(di)) {
523 		btrfs_free_path(path);
524 		return ERR_CAST(di);
525 	}
526 	if (!di) {
527 		/*
528 		 * Ok the default dir item isn't there.  This is weird since
529 		 * it's always been there, but don't freak out, just try and
530 		 * mount to root most subvolume.
531 		 */
532 		btrfs_free_path(path);
533 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
534 		new_root = root->fs_info->fs_root;
535 		goto setup_root;
536 	}
537 
538 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
539 	btrfs_free_path(path);
540 
541 find_root:
542 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
543 	if (IS_ERR(new_root))
544 		return ERR_CAST(new_root);
545 
546 	if (btrfs_root_refs(&new_root->root_item) == 0)
547 		return ERR_PTR(-ENOENT);
548 
549 	dir_id = btrfs_root_dirid(&new_root->root_item);
550 setup_root:
551 	location.objectid = dir_id;
552 	location.type = BTRFS_INODE_ITEM_KEY;
553 	location.offset = 0;
554 
555 	inode = btrfs_iget(sb, &location, new_root, &new);
556 	if (IS_ERR(inode))
557 		return ERR_CAST(inode);
558 
559 	/*
560 	 * If we're just mounting the root most subvol put the inode and return
561 	 * a reference to the dentry.  We will have already gotten a reference
562 	 * to the inode in btrfs_fill_super so we're good to go.
563 	 */
564 	if (!new && sb->s_root->d_inode == inode) {
565 		iput(inode);
566 		return dget(sb->s_root);
567 	}
568 
569 	if (new) {
570 		const struct qstr name = { .name = "/", .len = 1 };
571 
572 		/*
573 		 * New inode, we need to make the dentry a sibling of s_root so
574 		 * everything gets cleaned up properly on unmount.
575 		 */
576 		dentry = d_alloc(sb->s_root, &name);
577 		if (!dentry) {
578 			iput(inode);
579 			return ERR_PTR(-ENOMEM);
580 		}
581 		d_splice_alias(inode, dentry);
582 	} else {
583 		/*
584 		 * We found the inode in cache, just find a dentry for it and
585 		 * put the reference to the inode we just got.
586 		 */
587 		dentry = d_find_alias(inode);
588 		iput(inode);
589 	}
590 
591 	return dentry;
592 }
593 
594 static int btrfs_fill_super(struct super_block *sb,
595 			    struct btrfs_fs_devices *fs_devices,
596 			    void *data, int silent)
597 {
598 	struct inode *inode;
599 	struct dentry *root_dentry;
600 	struct btrfs_root *tree_root;
601 	struct btrfs_key key;
602 	int err;
603 
604 	sb->s_maxbytes = MAX_LFS_FILESIZE;
605 	sb->s_magic = BTRFS_SUPER_MAGIC;
606 	sb->s_op = &btrfs_super_ops;
607 	sb->s_d_op = &btrfs_dentry_operations;
608 	sb->s_export_op = &btrfs_export_ops;
609 	sb->s_xattr = btrfs_xattr_handlers;
610 	sb->s_time_gran = 1;
611 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
612 	sb->s_flags |= MS_POSIXACL;
613 #endif
614 
615 	tree_root = open_ctree(sb, fs_devices, (char *)data);
616 
617 	if (IS_ERR(tree_root)) {
618 		printk("btrfs: open_ctree failed\n");
619 		return PTR_ERR(tree_root);
620 	}
621 	sb->s_fs_info = tree_root;
622 
623 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
624 	key.type = BTRFS_INODE_ITEM_KEY;
625 	key.offset = 0;
626 	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
627 	if (IS_ERR(inode)) {
628 		err = PTR_ERR(inode);
629 		goto fail_close;
630 	}
631 
632 	root_dentry = d_alloc_root(inode);
633 	if (!root_dentry) {
634 		iput(inode);
635 		err = -ENOMEM;
636 		goto fail_close;
637 	}
638 
639 	sb->s_root = root_dentry;
640 
641 	save_mount_options(sb, data);
642 	cleancache_init_fs(sb);
643 	return 0;
644 
645 fail_close:
646 	close_ctree(tree_root);
647 	return err;
648 }
649 
650 int btrfs_sync_fs(struct super_block *sb, int wait)
651 {
652 	struct btrfs_trans_handle *trans;
653 	struct btrfs_root *root = btrfs_sb(sb);
654 	int ret;
655 
656 	trace_btrfs_sync_fs(wait);
657 
658 	if (!wait) {
659 		filemap_flush(root->fs_info->btree_inode->i_mapping);
660 		return 0;
661 	}
662 
663 	btrfs_start_delalloc_inodes(root, 0);
664 	btrfs_wait_ordered_extents(root, 0, 0);
665 
666 	trans = btrfs_start_transaction(root, 0);
667 	if (IS_ERR(trans))
668 		return PTR_ERR(trans);
669 	ret = btrfs_commit_transaction(trans, root);
670 	return ret;
671 }
672 
673 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
674 {
675 	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
676 	struct btrfs_fs_info *info = root->fs_info;
677 	char *compress_type;
678 
679 	if (btrfs_test_opt(root, DEGRADED))
680 		seq_puts(seq, ",degraded");
681 	if (btrfs_test_opt(root, NODATASUM))
682 		seq_puts(seq, ",nodatasum");
683 	if (btrfs_test_opt(root, NODATACOW))
684 		seq_puts(seq, ",nodatacow");
685 	if (btrfs_test_opt(root, NOBARRIER))
686 		seq_puts(seq, ",nobarrier");
687 	if (info->max_inline != 8192 * 1024)
688 		seq_printf(seq, ",max_inline=%llu",
689 			   (unsigned long long)info->max_inline);
690 	if (info->alloc_start != 0)
691 		seq_printf(seq, ",alloc_start=%llu",
692 			   (unsigned long long)info->alloc_start);
693 	if (info->thread_pool_size !=  min_t(unsigned long,
694 					     num_online_cpus() + 2, 8))
695 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
696 	if (btrfs_test_opt(root, COMPRESS)) {
697 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
698 			compress_type = "zlib";
699 		else
700 			compress_type = "lzo";
701 		if (btrfs_test_opt(root, FORCE_COMPRESS))
702 			seq_printf(seq, ",compress-force=%s", compress_type);
703 		else
704 			seq_printf(seq, ",compress=%s", compress_type);
705 	}
706 	if (btrfs_test_opt(root, NOSSD))
707 		seq_puts(seq, ",nossd");
708 	if (btrfs_test_opt(root, SSD_SPREAD))
709 		seq_puts(seq, ",ssd_spread");
710 	else if (btrfs_test_opt(root, SSD))
711 		seq_puts(seq, ",ssd");
712 	if (btrfs_test_opt(root, NOTREELOG))
713 		seq_puts(seq, ",notreelog");
714 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
715 		seq_puts(seq, ",flushoncommit");
716 	if (btrfs_test_opt(root, DISCARD))
717 		seq_puts(seq, ",discard");
718 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
719 		seq_puts(seq, ",noacl");
720 	if (btrfs_test_opt(root, SPACE_CACHE))
721 		seq_puts(seq, ",space_cache");
722 	if (btrfs_test_opt(root, CLEAR_CACHE))
723 		seq_puts(seq, ",clear_cache");
724 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
725 		seq_puts(seq, ",user_subvol_rm_allowed");
726 	return 0;
727 }
728 
729 static int btrfs_test_super(struct super_block *s, void *data)
730 {
731 	struct btrfs_root *test_root = data;
732 	struct btrfs_root *root = btrfs_sb(s);
733 
734 	/*
735 	 * If this super block is going away, return false as it
736 	 * can't match as an existing super block.
737 	 */
738 	if (!atomic_read(&s->s_active))
739 		return 0;
740 	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
741 }
742 
743 static int btrfs_set_super(struct super_block *s, void *data)
744 {
745 	s->s_fs_info = data;
746 
747 	return set_anon_super(s, data);
748 }
749 
750 
751 /*
752  * Find a superblock for the given device / mount point.
753  *
754  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
755  *	  for multiple device setup.  Make sure to keep it in sync.
756  */
757 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
758 		const char *device_name, void *data)
759 {
760 	struct block_device *bdev = NULL;
761 	struct super_block *s;
762 	struct dentry *root;
763 	struct btrfs_fs_devices *fs_devices = NULL;
764 	struct btrfs_root *tree_root = NULL;
765 	struct btrfs_fs_info *fs_info = NULL;
766 	fmode_t mode = FMODE_READ;
767 	char *subvol_name = NULL;
768 	u64 subvol_objectid = 0;
769 	u64 subvol_rootid = 0;
770 	int error = 0;
771 
772 	if (!(flags & MS_RDONLY))
773 		mode |= FMODE_WRITE;
774 
775 	error = btrfs_parse_early_options(data, mode, fs_type,
776 					  &subvol_name, &subvol_objectid,
777 					  &subvol_rootid, &fs_devices);
778 	if (error)
779 		return ERR_PTR(error);
780 
781 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
782 	if (error)
783 		goto error_free_subvol_name;
784 
785 	error = btrfs_open_devices(fs_devices, mode, fs_type);
786 	if (error)
787 		goto error_free_subvol_name;
788 
789 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
790 		error = -EACCES;
791 		goto error_close_devices;
792 	}
793 
794 	/*
795 	 * Setup a dummy root and fs_info for test/set super.  This is because
796 	 * we don't actually fill this stuff out until open_ctree, but we need
797 	 * it for searching for existing supers, so this lets us do that and
798 	 * then open_ctree will properly initialize everything later.
799 	 */
800 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
801 	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
802 	if (!fs_info || !tree_root) {
803 		error = -ENOMEM;
804 		goto error_close_devices;
805 	}
806 	fs_info->tree_root = tree_root;
807 	fs_info->fs_devices = fs_devices;
808 	tree_root->fs_info = fs_info;
809 
810 	bdev = fs_devices->latest_bdev;
811 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
812 	if (IS_ERR(s))
813 		goto error_s;
814 
815 	if (s->s_root) {
816 		if ((flags ^ s->s_flags) & MS_RDONLY) {
817 			deactivate_locked_super(s);
818 			error = -EBUSY;
819 			goto error_close_devices;
820 		}
821 
822 		btrfs_close_devices(fs_devices);
823 		kfree(fs_info);
824 		kfree(tree_root);
825 	} else {
826 		char b[BDEVNAME_SIZE];
827 
828 		s->s_flags = flags | MS_NOSEC;
829 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
830 		error = btrfs_fill_super(s, fs_devices, data,
831 					 flags & MS_SILENT ? 1 : 0);
832 		if (error) {
833 			deactivate_locked_super(s);
834 			goto error_free_subvol_name;
835 		}
836 
837 		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
838 		s->s_flags |= MS_ACTIVE;
839 	}
840 
841 	/* if they gave us a subvolume name bind mount into that */
842 	if (strcmp(subvol_name, ".")) {
843 		struct dentry *new_root;
844 
845 		root = get_default_root(s, subvol_rootid);
846 		if (IS_ERR(root)) {
847 			error = PTR_ERR(root);
848 			deactivate_locked_super(s);
849 			goto error_free_subvol_name;
850 		}
851 
852 		mutex_lock(&root->d_inode->i_mutex);
853 		new_root = lookup_one_len(subvol_name, root,
854 				      strlen(subvol_name));
855 		mutex_unlock(&root->d_inode->i_mutex);
856 
857 		if (IS_ERR(new_root)) {
858 			dput(root);
859 			deactivate_locked_super(s);
860 			error = PTR_ERR(new_root);
861 			goto error_free_subvol_name;
862 		}
863 		if (!new_root->d_inode) {
864 			dput(root);
865 			dput(new_root);
866 			deactivate_locked_super(s);
867 			error = -ENXIO;
868 			goto error_free_subvol_name;
869 		}
870 		dput(root);
871 		root = new_root;
872 	} else {
873 		root = get_default_root(s, subvol_objectid);
874 		if (IS_ERR(root)) {
875 			error = PTR_ERR(root);
876 			deactivate_locked_super(s);
877 			goto error_free_subvol_name;
878 		}
879 	}
880 
881 	kfree(subvol_name);
882 	return root;
883 
884 error_s:
885 	error = PTR_ERR(s);
886 error_close_devices:
887 	btrfs_close_devices(fs_devices);
888 	kfree(fs_info);
889 	kfree(tree_root);
890 error_free_subvol_name:
891 	kfree(subvol_name);
892 	return ERR_PTR(error);
893 }
894 
895 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
896 {
897 	struct btrfs_root *root = btrfs_sb(sb);
898 	int ret;
899 
900 	ret = btrfs_parse_options(root, data);
901 	if (ret)
902 		return -EINVAL;
903 
904 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
905 		return 0;
906 
907 	if (*flags & MS_RDONLY) {
908 		sb->s_flags |= MS_RDONLY;
909 
910 		ret =  btrfs_commit_super(root);
911 		WARN_ON(ret);
912 	} else {
913 		if (root->fs_info->fs_devices->rw_devices == 0)
914 			return -EACCES;
915 
916 		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
917 			return -EINVAL;
918 
919 		ret = btrfs_cleanup_fs_roots(root->fs_info);
920 		WARN_ON(ret);
921 
922 		/* recover relocation */
923 		ret = btrfs_recover_relocation(root);
924 		WARN_ON(ret);
925 
926 		sb->s_flags &= ~MS_RDONLY;
927 	}
928 
929 	return 0;
930 }
931 
932 /* Used to sort the devices by max_avail(descending sort) */
933 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
934 				       const void *dev_info2)
935 {
936 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
937 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
938 		return -1;
939 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
940 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
941 		return 1;
942 	else
943 	return 0;
944 }
945 
946 /*
947  * sort the devices by max_avail, in which max free extent size of each device
948  * is stored.(Descending Sort)
949  */
950 static inline void btrfs_descending_sort_devices(
951 					struct btrfs_device_info *devices,
952 					size_t nr_devices)
953 {
954 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
955 	     btrfs_cmp_device_free_bytes, NULL);
956 }
957 
958 /*
959  * The helper to calc the free space on the devices that can be used to store
960  * file data.
961  */
962 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
963 {
964 	struct btrfs_fs_info *fs_info = root->fs_info;
965 	struct btrfs_device_info *devices_info;
966 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
967 	struct btrfs_device *device;
968 	u64 skip_space;
969 	u64 type;
970 	u64 avail_space;
971 	u64 used_space;
972 	u64 min_stripe_size;
973 	int min_stripes = 1;
974 	int i = 0, nr_devices;
975 	int ret;
976 
977 	nr_devices = fs_info->fs_devices->rw_devices;
978 	BUG_ON(!nr_devices);
979 
980 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
981 			       GFP_NOFS);
982 	if (!devices_info)
983 		return -ENOMEM;
984 
985 	/* calc min stripe number for data space alloction */
986 	type = btrfs_get_alloc_profile(root, 1);
987 	if (type & BTRFS_BLOCK_GROUP_RAID0)
988 		min_stripes = 2;
989 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
990 		min_stripes = 2;
991 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
992 		min_stripes = 4;
993 
994 	if (type & BTRFS_BLOCK_GROUP_DUP)
995 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
996 	else
997 		min_stripe_size = BTRFS_STRIPE_LEN;
998 
999 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1000 		if (!device->in_fs_metadata)
1001 			continue;
1002 
1003 		avail_space = device->total_bytes - device->bytes_used;
1004 
1005 		/* align with stripe_len */
1006 		do_div(avail_space, BTRFS_STRIPE_LEN);
1007 		avail_space *= BTRFS_STRIPE_LEN;
1008 
1009 		/*
1010 		 * In order to avoid overwritting the superblock on the drive,
1011 		 * btrfs starts at an offset of at least 1MB when doing chunk
1012 		 * allocation.
1013 		 */
1014 		skip_space = 1024 * 1024;
1015 
1016 		/* user can set the offset in fs_info->alloc_start. */
1017 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1018 		    device->total_bytes)
1019 			skip_space = max(fs_info->alloc_start, skip_space);
1020 
1021 		/*
1022 		 * btrfs can not use the free space in [0, skip_space - 1],
1023 		 * we must subtract it from the total. In order to implement
1024 		 * it, we account the used space in this range first.
1025 		 */
1026 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1027 						     &used_space);
1028 		if (ret) {
1029 			kfree(devices_info);
1030 			return ret;
1031 		}
1032 
1033 		/* calc the free space in [0, skip_space - 1] */
1034 		skip_space -= used_space;
1035 
1036 		/*
1037 		 * we can use the free space in [0, skip_space - 1], subtract
1038 		 * it from the total.
1039 		 */
1040 		if (avail_space && avail_space >= skip_space)
1041 			avail_space -= skip_space;
1042 		else
1043 			avail_space = 0;
1044 
1045 		if (avail_space < min_stripe_size)
1046 			continue;
1047 
1048 		devices_info[i].dev = device;
1049 		devices_info[i].max_avail = avail_space;
1050 
1051 		i++;
1052 	}
1053 
1054 	nr_devices = i;
1055 
1056 	btrfs_descending_sort_devices(devices_info, nr_devices);
1057 
1058 	i = nr_devices - 1;
1059 	avail_space = 0;
1060 	while (nr_devices >= min_stripes) {
1061 		if (devices_info[i].max_avail >= min_stripe_size) {
1062 			int j;
1063 			u64 alloc_size;
1064 
1065 			avail_space += devices_info[i].max_avail * min_stripes;
1066 			alloc_size = devices_info[i].max_avail;
1067 			for (j = i + 1 - min_stripes; j <= i; j++)
1068 				devices_info[j].max_avail -= alloc_size;
1069 		}
1070 		i--;
1071 		nr_devices--;
1072 	}
1073 
1074 	kfree(devices_info);
1075 	*free_bytes = avail_space;
1076 	return 0;
1077 }
1078 
1079 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1080 {
1081 	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1082 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1083 	struct list_head *head = &root->fs_info->space_info;
1084 	struct btrfs_space_info *found;
1085 	u64 total_used = 0;
1086 	u64 total_free_data = 0;
1087 	int bits = dentry->d_sb->s_blocksize_bits;
1088 	__be32 *fsid = (__be32 *)root->fs_info->fsid;
1089 	int ret;
1090 
1091 	/* holding chunk_muext to avoid allocating new chunks */
1092 	mutex_lock(&root->fs_info->chunk_mutex);
1093 	rcu_read_lock();
1094 	list_for_each_entry_rcu(found, head, list) {
1095 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1096 			total_free_data += found->disk_total - found->disk_used;
1097 			total_free_data -=
1098 				btrfs_account_ro_block_groups_free_space(found);
1099 		}
1100 
1101 		total_used += found->disk_used;
1102 	}
1103 	rcu_read_unlock();
1104 
1105 	buf->f_namelen = BTRFS_NAME_LEN;
1106 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1107 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1108 	buf->f_bsize = dentry->d_sb->s_blocksize;
1109 	buf->f_type = BTRFS_SUPER_MAGIC;
1110 	buf->f_bavail = total_free_data;
1111 	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1112 	if (ret) {
1113 		mutex_unlock(&root->fs_info->chunk_mutex);
1114 		return ret;
1115 	}
1116 	buf->f_bavail += total_free_data;
1117 	buf->f_bavail = buf->f_bavail >> bits;
1118 	mutex_unlock(&root->fs_info->chunk_mutex);
1119 
1120 	/* We treat it as constant endianness (it doesn't matter _which_)
1121 	   because we want the fsid to come out the same whether mounted
1122 	   on a big-endian or little-endian host */
1123 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1124 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1125 	/* Mask in the root object ID too, to disambiguate subvols */
1126 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1127 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1128 
1129 	return 0;
1130 }
1131 
1132 static struct file_system_type btrfs_fs_type = {
1133 	.owner		= THIS_MODULE,
1134 	.name		= "btrfs",
1135 	.mount		= btrfs_mount,
1136 	.kill_sb	= kill_anon_super,
1137 	.fs_flags	= FS_REQUIRES_DEV,
1138 };
1139 
1140 /*
1141  * used by btrfsctl to scan devices when no FS is mounted
1142  */
1143 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1144 				unsigned long arg)
1145 {
1146 	struct btrfs_ioctl_vol_args *vol;
1147 	struct btrfs_fs_devices *fs_devices;
1148 	int ret = -ENOTTY;
1149 
1150 	if (!capable(CAP_SYS_ADMIN))
1151 		return -EPERM;
1152 
1153 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1154 	if (IS_ERR(vol))
1155 		return PTR_ERR(vol);
1156 
1157 	switch (cmd) {
1158 	case BTRFS_IOC_SCAN_DEV:
1159 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1160 					    &btrfs_fs_type, &fs_devices);
1161 		break;
1162 	}
1163 
1164 	kfree(vol);
1165 	return ret;
1166 }
1167 
1168 static int btrfs_freeze(struct super_block *sb)
1169 {
1170 	struct btrfs_root *root = btrfs_sb(sb);
1171 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1172 	mutex_lock(&root->fs_info->cleaner_mutex);
1173 	return 0;
1174 }
1175 
1176 static int btrfs_unfreeze(struct super_block *sb)
1177 {
1178 	struct btrfs_root *root = btrfs_sb(sb);
1179 	mutex_unlock(&root->fs_info->cleaner_mutex);
1180 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1181 	return 0;
1182 }
1183 
1184 static const struct super_operations btrfs_super_ops = {
1185 	.drop_inode	= btrfs_drop_inode,
1186 	.evict_inode	= btrfs_evict_inode,
1187 	.put_super	= btrfs_put_super,
1188 	.sync_fs	= btrfs_sync_fs,
1189 	.show_options	= btrfs_show_options,
1190 	.write_inode	= btrfs_write_inode,
1191 	.dirty_inode	= btrfs_dirty_inode,
1192 	.alloc_inode	= btrfs_alloc_inode,
1193 	.destroy_inode	= btrfs_destroy_inode,
1194 	.statfs		= btrfs_statfs,
1195 	.remount_fs	= btrfs_remount,
1196 	.freeze_fs	= btrfs_freeze,
1197 	.unfreeze_fs	= btrfs_unfreeze,
1198 };
1199 
1200 static const struct file_operations btrfs_ctl_fops = {
1201 	.unlocked_ioctl	 = btrfs_control_ioctl,
1202 	.compat_ioctl = btrfs_control_ioctl,
1203 	.owner	 = THIS_MODULE,
1204 	.llseek = noop_llseek,
1205 };
1206 
1207 static struct miscdevice btrfs_misc = {
1208 	.minor		= BTRFS_MINOR,
1209 	.name		= "btrfs-control",
1210 	.fops		= &btrfs_ctl_fops
1211 };
1212 
1213 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1214 MODULE_ALIAS("devname:btrfs-control");
1215 
1216 static int btrfs_interface_init(void)
1217 {
1218 	return misc_register(&btrfs_misc);
1219 }
1220 
1221 static void btrfs_interface_exit(void)
1222 {
1223 	if (misc_deregister(&btrfs_misc) < 0)
1224 		printk(KERN_INFO "misc_deregister failed for control device");
1225 }
1226 
1227 static int __init init_btrfs_fs(void)
1228 {
1229 	int err;
1230 
1231 	err = btrfs_init_sysfs();
1232 	if (err)
1233 		return err;
1234 
1235 	err = btrfs_init_compress();
1236 	if (err)
1237 		goto free_sysfs;
1238 
1239 	err = btrfs_init_cachep();
1240 	if (err)
1241 		goto free_compress;
1242 
1243 	err = extent_io_init();
1244 	if (err)
1245 		goto free_cachep;
1246 
1247 	err = extent_map_init();
1248 	if (err)
1249 		goto free_extent_io;
1250 
1251 	err = btrfs_delayed_inode_init();
1252 	if (err)
1253 		goto free_extent_map;
1254 
1255 	err = btrfs_interface_init();
1256 	if (err)
1257 		goto free_delayed_inode;
1258 
1259 	err = register_filesystem(&btrfs_fs_type);
1260 	if (err)
1261 		goto unregister_ioctl;
1262 
1263 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1264 	return 0;
1265 
1266 unregister_ioctl:
1267 	btrfs_interface_exit();
1268 free_delayed_inode:
1269 	btrfs_delayed_inode_exit();
1270 free_extent_map:
1271 	extent_map_exit();
1272 free_extent_io:
1273 	extent_io_exit();
1274 free_cachep:
1275 	btrfs_destroy_cachep();
1276 free_compress:
1277 	btrfs_exit_compress();
1278 free_sysfs:
1279 	btrfs_exit_sysfs();
1280 	return err;
1281 }
1282 
1283 static void __exit exit_btrfs_fs(void)
1284 {
1285 	btrfs_destroy_cachep();
1286 	btrfs_delayed_inode_exit();
1287 	extent_map_exit();
1288 	extent_io_exit();
1289 	btrfs_interface_exit();
1290 	unregister_filesystem(&btrfs_fs_type);
1291 	btrfs_exit_sysfs();
1292 	btrfs_cleanup_fs_uuids();
1293 	btrfs_exit_compress();
1294 }
1295 
1296 module_init(init_btrfs_fs)
1297 module_exit(exit_btrfs_fs)
1298 
1299 MODULE_LICENSE("GPL");
1300