xref: /openbmc/linux/fs/btrfs/super.c (revision 20a2742e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #include "backref.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/btrfs.h>
67 
68 static const struct super_operations btrfs_super_ops;
69 static struct file_system_type btrfs_fs_type;
70 
71 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
72 
73 const char *btrfs_decode_error(int errno)
74 {
75 	char *errstr = "unknown";
76 
77 	switch (errno) {
78 	case -EIO:
79 		errstr = "IO failure";
80 		break;
81 	case -ENOMEM:
82 		errstr = "Out of memory";
83 		break;
84 	case -EROFS:
85 		errstr = "Readonly filesystem";
86 		break;
87 	case -EEXIST:
88 		errstr = "Object already exists";
89 		break;
90 	case -ENOSPC:
91 		errstr = "No space left";
92 		break;
93 	case -ENOENT:
94 		errstr = "No such entry";
95 		break;
96 	}
97 
98 	return errstr;
99 }
100 
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103 {
104 	struct super_block *sb = fs_info->sb;
105 
106 	if (sb_rdonly(sb))
107 		return;
108 
109 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
110 		sb->s_flags |= MS_RDONLY;
111 		btrfs_info(fs_info, "forced readonly");
112 		/*
113 		 * Note that a running device replace operation is not
114 		 * canceled here although there is no way to update
115 		 * the progress. It would add the risk of a deadlock,
116 		 * therefore the canceling is omitted. The only penalty
117 		 * is that some I/O remains active until the procedure
118 		 * completes. The next time when the filesystem is
119 		 * mounted writeable again, the device replace
120 		 * operation continues.
121 		 */
122 	}
123 }
124 
125 /*
126  * __btrfs_handle_fs_error decodes expected errors from the caller and
127  * invokes the approciate error response.
128  */
129 __cold
130 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
131 		       unsigned int line, int errno, const char *fmt, ...)
132 {
133 	struct super_block *sb = fs_info->sb;
134 #ifdef CONFIG_PRINTK
135 	const char *errstr;
136 #endif
137 
138 	/*
139 	 * Special case: if the error is EROFS, and we're already
140 	 * under MS_RDONLY, then it is safe here.
141 	 */
142 	if (errno == -EROFS && sb_rdonly(sb))
143   		return;
144 
145 #ifdef CONFIG_PRINTK
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 			sb->s_id, function, line, errno, errstr, &vaf);
157 		va_end(args);
158 	} else {
159 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
160 			sb->s_id, function, line, errno, errstr);
161 	}
162 #endif
163 
164 	/*
165 	 * Today we only save the error info to memory.  Long term we'll
166 	 * also send it down to the disk
167 	 */
168 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
169 
170 	/* Don't go through full error handling during mount */
171 	if (sb->s_flags & MS_BORN)
172 		btrfs_handle_error(fs_info);
173 }
174 
175 #ifdef CONFIG_PRINTK
176 static const char * const logtypes[] = {
177 	"emergency",
178 	"alert",
179 	"critical",
180 	"error",
181 	"warning",
182 	"notice",
183 	"info",
184 	"debug",
185 };
186 
187 
188 /*
189  * Use one ratelimit state per log level so that a flood of less important
190  * messages doesn't cause more important ones to be dropped.
191  */
192 static struct ratelimit_state printk_limits[] = {
193 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
200 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
201 };
202 
203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
204 {
205 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
206 	struct va_format vaf;
207 	va_list args;
208 	int kern_level;
209 	const char *type = logtypes[4];
210 	struct ratelimit_state *ratelimit = &printk_limits[4];
211 
212 	va_start(args, fmt);
213 
214 	while ((kern_level = printk_get_level(fmt)) != 0) {
215 		size_t size = printk_skip_level(fmt) - fmt;
216 
217 		if (kern_level >= '0' && kern_level <= '7') {
218 			memcpy(lvl, fmt,  size);
219 			lvl[size] = '\0';
220 			type = logtypes[kern_level - '0'];
221 			ratelimit = &printk_limits[kern_level - '0'];
222 		}
223 		fmt += size;
224 	}
225 
226 	vaf.fmt = fmt;
227 	vaf.va = &args;
228 
229 	if (__ratelimit(ratelimit))
230 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
231 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
232 
233 	va_end(args);
234 }
235 #endif
236 
237 /*
238  * We only mark the transaction aborted and then set the file system read-only.
239  * This will prevent new transactions from starting or trying to join this
240  * one.
241  *
242  * This means that error recovery at the call site is limited to freeing
243  * any local memory allocations and passing the error code up without
244  * further cleanup. The transaction should complete as it normally would
245  * in the call path but will return -EIO.
246  *
247  * We'll complete the cleanup in btrfs_end_transaction and
248  * btrfs_commit_transaction.
249  */
250 __cold
251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
252 			       const char *function,
253 			       unsigned int line, int errno)
254 {
255 	struct btrfs_fs_info *fs_info = trans->fs_info;
256 
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno);
264 		btrfs_warn(fs_info,
265 		           "%s:%d: Aborting unused transaction(%s).",
266 		           function, line, errstr);
267 		return;
268 	}
269 	WRITE_ONCE(trans->transaction->aborted, errno);
270 	/* Wake up anybody who may be waiting on this transaction */
271 	wake_up(&fs_info->transaction_wait);
272 	wake_up(&fs_info->transaction_blocked_wait);
273 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 __cold
280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
281 		   unsigned int line, int errno, const char *fmt, ...)
282 {
283 	char *s_id = "<unknown>";
284 	const char *errstr;
285 	struct va_format vaf = { .fmt = fmt };
286 	va_list args;
287 
288 	if (fs_info)
289 		s_id = fs_info->sb->s_id;
290 
291 	va_start(args, fmt);
292 	vaf.va = &args;
293 
294 	errstr = btrfs_decode_error(errno);
295 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
296 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
297 			s_id, function, line, &vaf, errno, errstr);
298 
299 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
300 		   function, line, &vaf, errno, errstr);
301 	va_end(args);
302 	/* Caller calls BUG() */
303 }
304 
305 static void btrfs_put_super(struct super_block *sb)
306 {
307 	close_ctree(btrfs_sb(sb));
308 }
309 
310 enum {
311 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
312 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
313 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
314 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
315 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
316 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
317 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
318 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
319 	Opt_skip_balance, Opt_check_integrity,
320 	Opt_check_integrity_including_extent_data,
321 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
322 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
323 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
324 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
325 	Opt_nologreplay, Opt_norecovery,
326 #ifdef CONFIG_BTRFS_DEBUG
327 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
328 #endif
329 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
330 	Opt_ref_verify,
331 #endif
332 	Opt_err,
333 };
334 
335 static const match_table_t tokens = {
336 	{Opt_degraded, "degraded"},
337 	{Opt_subvol, "subvol=%s"},
338 	{Opt_subvolid, "subvolid=%s"},
339 	{Opt_device, "device=%s"},
340 	{Opt_nodatasum, "nodatasum"},
341 	{Opt_datasum, "datasum"},
342 	{Opt_nodatacow, "nodatacow"},
343 	{Opt_datacow, "datacow"},
344 	{Opt_nobarrier, "nobarrier"},
345 	{Opt_barrier, "barrier"},
346 	{Opt_max_inline, "max_inline=%s"},
347 	{Opt_alloc_start, "alloc_start=%s"},
348 	{Opt_thread_pool, "thread_pool=%d"},
349 	{Opt_compress, "compress"},
350 	{Opt_compress_type, "compress=%s"},
351 	{Opt_compress_force, "compress-force"},
352 	{Opt_compress_force_type, "compress-force=%s"},
353 	{Opt_ssd, "ssd"},
354 	{Opt_ssd_spread, "ssd_spread"},
355 	{Opt_nossd, "nossd"},
356 	{Opt_acl, "acl"},
357 	{Opt_noacl, "noacl"},
358 	{Opt_notreelog, "notreelog"},
359 	{Opt_treelog, "treelog"},
360 	{Opt_nologreplay, "nologreplay"},
361 	{Opt_norecovery, "norecovery"},
362 	{Opt_flushoncommit, "flushoncommit"},
363 	{Opt_noflushoncommit, "noflushoncommit"},
364 	{Opt_ratio, "metadata_ratio=%d"},
365 	{Opt_discard, "discard"},
366 	{Opt_nodiscard, "nodiscard"},
367 	{Opt_space_cache, "space_cache"},
368 	{Opt_space_cache_version, "space_cache=%s"},
369 	{Opt_clear_cache, "clear_cache"},
370 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
371 	{Opt_enospc_debug, "enospc_debug"},
372 	{Opt_noenospc_debug, "noenospc_debug"},
373 	{Opt_subvolrootid, "subvolrootid=%d"},
374 	{Opt_defrag, "autodefrag"},
375 	{Opt_nodefrag, "noautodefrag"},
376 	{Opt_inode_cache, "inode_cache"},
377 	{Opt_noinode_cache, "noinode_cache"},
378 	{Opt_no_space_cache, "nospace_cache"},
379 	{Opt_recovery, "recovery"}, /* deprecated */
380 	{Opt_usebackuproot, "usebackuproot"},
381 	{Opt_skip_balance, "skip_balance"},
382 	{Opt_check_integrity, "check_int"},
383 	{Opt_check_integrity_including_extent_data, "check_int_data"},
384 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
385 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
386 	{Opt_fatal_errors, "fatal_errors=%s"},
387 	{Opt_commit_interval, "commit=%d"},
388 #ifdef CONFIG_BTRFS_DEBUG
389 	{Opt_fragment_data, "fragment=data"},
390 	{Opt_fragment_metadata, "fragment=metadata"},
391 	{Opt_fragment_all, "fragment=all"},
392 #endif
393 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
394 	{Opt_ref_verify, "ref_verify"},
395 #endif
396 	{Opt_err, NULL},
397 };
398 
399 /*
400  * Regular mount options parser.  Everything that is needed only when
401  * reading in a new superblock is parsed here.
402  * XXX JDM: This needs to be cleaned up for remount.
403  */
404 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
405 			unsigned long new_flags)
406 {
407 	substring_t args[MAX_OPT_ARGS];
408 	char *p, *num, *orig = NULL;
409 	u64 cache_gen;
410 	int intarg;
411 	int ret = 0;
412 	char *compress_type;
413 	bool compress_force = false;
414 	enum btrfs_compression_type saved_compress_type;
415 	bool saved_compress_force;
416 	int no_compress = 0;
417 
418 	cache_gen = btrfs_super_cache_generation(info->super_copy);
419 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
420 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
421 	else if (cache_gen)
422 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
423 
424 	/*
425 	 * Even the options are empty, we still need to do extra check
426 	 * against new flags
427 	 */
428 	if (!options)
429 		goto check;
430 
431 	/*
432 	 * strsep changes the string, duplicate it because parse_options
433 	 * gets called twice
434 	 */
435 	options = kstrdup(options, GFP_KERNEL);
436 	if (!options)
437 		return -ENOMEM;
438 
439 	orig = options;
440 
441 	while ((p = strsep(&options, ",")) != NULL) {
442 		int token;
443 		if (!*p)
444 			continue;
445 
446 		token = match_token(p, tokens, args);
447 		switch (token) {
448 		case Opt_degraded:
449 			btrfs_info(info, "allowing degraded mounts");
450 			btrfs_set_opt(info->mount_opt, DEGRADED);
451 			break;
452 		case Opt_subvol:
453 		case Opt_subvolid:
454 		case Opt_subvolrootid:
455 		case Opt_device:
456 			/*
457 			 * These are parsed by btrfs_parse_early_options
458 			 * and can be happily ignored here.
459 			 */
460 			break;
461 		case Opt_nodatasum:
462 			btrfs_set_and_info(info, NODATASUM,
463 					   "setting nodatasum");
464 			break;
465 		case Opt_datasum:
466 			if (btrfs_test_opt(info, NODATASUM)) {
467 				if (btrfs_test_opt(info, NODATACOW))
468 					btrfs_info(info,
469 						   "setting datasum, datacow enabled");
470 				else
471 					btrfs_info(info, "setting datasum");
472 			}
473 			btrfs_clear_opt(info->mount_opt, NODATACOW);
474 			btrfs_clear_opt(info->mount_opt, NODATASUM);
475 			break;
476 		case Opt_nodatacow:
477 			if (!btrfs_test_opt(info, NODATACOW)) {
478 				if (!btrfs_test_opt(info, COMPRESS) ||
479 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
480 					btrfs_info(info,
481 						   "setting nodatacow, compression disabled");
482 				} else {
483 					btrfs_info(info, "setting nodatacow");
484 				}
485 			}
486 			btrfs_clear_opt(info->mount_opt, COMPRESS);
487 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
488 			btrfs_set_opt(info->mount_opt, NODATACOW);
489 			btrfs_set_opt(info->mount_opt, NODATASUM);
490 			break;
491 		case Opt_datacow:
492 			btrfs_clear_and_info(info, NODATACOW,
493 					     "setting datacow");
494 			break;
495 		case Opt_compress_force:
496 		case Opt_compress_force_type:
497 			compress_force = true;
498 			/* Fallthrough */
499 		case Opt_compress:
500 		case Opt_compress_type:
501 			saved_compress_type = btrfs_test_opt(info,
502 							     COMPRESS) ?
503 				info->compress_type : BTRFS_COMPRESS_NONE;
504 			saved_compress_force =
505 				btrfs_test_opt(info, FORCE_COMPRESS);
506 			if (token == Opt_compress ||
507 			    token == Opt_compress_force ||
508 			    strncmp(args[0].from, "zlib", 4) == 0) {
509 				compress_type = "zlib";
510 				info->compress_type = BTRFS_COMPRESS_ZLIB;
511 				info->compress_level =
512 					btrfs_compress_str2level(args[0].from);
513 				btrfs_set_opt(info->mount_opt, COMPRESS);
514 				btrfs_clear_opt(info->mount_opt, NODATACOW);
515 				btrfs_clear_opt(info->mount_opt, NODATASUM);
516 				no_compress = 0;
517 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
518 				compress_type = "lzo";
519 				info->compress_type = BTRFS_COMPRESS_LZO;
520 				btrfs_set_opt(info->mount_opt, COMPRESS);
521 				btrfs_clear_opt(info->mount_opt, NODATACOW);
522 				btrfs_clear_opt(info->mount_opt, NODATASUM);
523 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
524 				no_compress = 0;
525 			} else if (strcmp(args[0].from, "zstd") == 0) {
526 				compress_type = "zstd";
527 				info->compress_type = BTRFS_COMPRESS_ZSTD;
528 				btrfs_set_opt(info->mount_opt, COMPRESS);
529 				btrfs_clear_opt(info->mount_opt, NODATACOW);
530 				btrfs_clear_opt(info->mount_opt, NODATASUM);
531 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
532 				no_compress = 0;
533 			} else if (strncmp(args[0].from, "no", 2) == 0) {
534 				compress_type = "no";
535 				btrfs_clear_opt(info->mount_opt, COMPRESS);
536 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
537 				compress_force = false;
538 				no_compress++;
539 			} else {
540 				ret = -EINVAL;
541 				goto out;
542 			}
543 
544 			if (compress_force) {
545 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
546 			} else {
547 				/*
548 				 * If we remount from compress-force=xxx to
549 				 * compress=xxx, we need clear FORCE_COMPRESS
550 				 * flag, otherwise, there is no way for users
551 				 * to disable forcible compression separately.
552 				 */
553 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
554 			}
555 			if ((btrfs_test_opt(info, COMPRESS) &&
556 			     (info->compress_type != saved_compress_type ||
557 			      compress_force != saved_compress_force)) ||
558 			    (!btrfs_test_opt(info, COMPRESS) &&
559 			     no_compress == 1)) {
560 				btrfs_info(info, "%s %s compression, level %d",
561 					   (compress_force) ? "force" : "use",
562 					   compress_type, info->compress_level);
563 			}
564 			compress_force = false;
565 			break;
566 		case Opt_ssd:
567 			btrfs_set_and_info(info, SSD,
568 					   "enabling ssd optimizations");
569 			btrfs_clear_opt(info->mount_opt, NOSSD);
570 			break;
571 		case Opt_ssd_spread:
572 			btrfs_set_and_info(info, SSD,
573 					   "enabling ssd optimizations");
574 			btrfs_set_and_info(info, SSD_SPREAD,
575 					   "using spread ssd allocation scheme");
576 			btrfs_clear_opt(info->mount_opt, NOSSD);
577 			break;
578 		case Opt_nossd:
579 			btrfs_set_opt(info->mount_opt, NOSSD);
580 			btrfs_clear_and_info(info, SSD,
581 					     "not using ssd optimizations");
582 			btrfs_clear_and_info(info, SSD_SPREAD,
583 					     "not using spread ssd allocation scheme");
584 			break;
585 		case Opt_barrier:
586 			btrfs_clear_and_info(info, NOBARRIER,
587 					     "turning on barriers");
588 			break;
589 		case Opt_nobarrier:
590 			btrfs_set_and_info(info, NOBARRIER,
591 					   "turning off barriers");
592 			break;
593 		case Opt_thread_pool:
594 			ret = match_int(&args[0], &intarg);
595 			if (ret) {
596 				goto out;
597 			} else if (intarg > 0) {
598 				info->thread_pool_size = intarg;
599 			} else {
600 				ret = -EINVAL;
601 				goto out;
602 			}
603 			break;
604 		case Opt_max_inline:
605 			num = match_strdup(&args[0]);
606 			if (num) {
607 				info->max_inline = memparse(num, NULL);
608 				kfree(num);
609 
610 				if (info->max_inline) {
611 					info->max_inline = min_t(u64,
612 						info->max_inline,
613 						info->sectorsize);
614 				}
615 				btrfs_info(info, "max_inline at %llu",
616 					   info->max_inline);
617 			} else {
618 				ret = -ENOMEM;
619 				goto out;
620 			}
621 			break;
622 		case Opt_alloc_start:
623 			btrfs_info(info,
624 				"option alloc_start is obsolete, ignored");
625 			break;
626 		case Opt_acl:
627 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
628 			info->sb->s_flags |= MS_POSIXACL;
629 			break;
630 #else
631 			btrfs_err(info, "support for ACL not compiled in!");
632 			ret = -EINVAL;
633 			goto out;
634 #endif
635 		case Opt_noacl:
636 			info->sb->s_flags &= ~MS_POSIXACL;
637 			break;
638 		case Opt_notreelog:
639 			btrfs_set_and_info(info, NOTREELOG,
640 					   "disabling tree log");
641 			break;
642 		case Opt_treelog:
643 			btrfs_clear_and_info(info, NOTREELOG,
644 					     "enabling tree log");
645 			break;
646 		case Opt_norecovery:
647 		case Opt_nologreplay:
648 			btrfs_set_and_info(info, NOLOGREPLAY,
649 					   "disabling log replay at mount time");
650 			break;
651 		case Opt_flushoncommit:
652 			btrfs_set_and_info(info, FLUSHONCOMMIT,
653 					   "turning on flush-on-commit");
654 			break;
655 		case Opt_noflushoncommit:
656 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
657 					     "turning off flush-on-commit");
658 			break;
659 		case Opt_ratio:
660 			ret = match_int(&args[0], &intarg);
661 			if (ret) {
662 				goto out;
663 			} else if (intarg >= 0) {
664 				info->metadata_ratio = intarg;
665 				btrfs_info(info, "metadata ratio %d",
666 					   info->metadata_ratio);
667 			} else {
668 				ret = -EINVAL;
669 				goto out;
670 			}
671 			break;
672 		case Opt_discard:
673 			btrfs_set_and_info(info, DISCARD,
674 					   "turning on discard");
675 			break;
676 		case Opt_nodiscard:
677 			btrfs_clear_and_info(info, DISCARD,
678 					     "turning off discard");
679 			break;
680 		case Opt_space_cache:
681 		case Opt_space_cache_version:
682 			if (token == Opt_space_cache ||
683 			    strcmp(args[0].from, "v1") == 0) {
684 				btrfs_clear_opt(info->mount_opt,
685 						FREE_SPACE_TREE);
686 				btrfs_set_and_info(info, SPACE_CACHE,
687 					   "enabling disk space caching");
688 			} else if (strcmp(args[0].from, "v2") == 0) {
689 				btrfs_clear_opt(info->mount_opt,
690 						SPACE_CACHE);
691 				btrfs_set_and_info(info, FREE_SPACE_TREE,
692 						   "enabling free space tree");
693 			} else {
694 				ret = -EINVAL;
695 				goto out;
696 			}
697 			break;
698 		case Opt_rescan_uuid_tree:
699 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
700 			break;
701 		case Opt_no_space_cache:
702 			if (btrfs_test_opt(info, SPACE_CACHE)) {
703 				btrfs_clear_and_info(info, SPACE_CACHE,
704 					     "disabling disk space caching");
705 			}
706 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
707 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
708 					     "disabling free space tree");
709 			}
710 			break;
711 		case Opt_inode_cache:
712 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
713 					   "enabling inode map caching");
714 			break;
715 		case Opt_noinode_cache:
716 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
717 					     "disabling inode map caching");
718 			break;
719 		case Opt_clear_cache:
720 			btrfs_set_and_info(info, CLEAR_CACHE,
721 					   "force clearing of disk cache");
722 			break;
723 		case Opt_user_subvol_rm_allowed:
724 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
725 			break;
726 		case Opt_enospc_debug:
727 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
728 			break;
729 		case Opt_noenospc_debug:
730 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
731 			break;
732 		case Opt_defrag:
733 			btrfs_set_and_info(info, AUTO_DEFRAG,
734 					   "enabling auto defrag");
735 			break;
736 		case Opt_nodefrag:
737 			btrfs_clear_and_info(info, AUTO_DEFRAG,
738 					     "disabling auto defrag");
739 			break;
740 		case Opt_recovery:
741 			btrfs_warn(info,
742 				   "'recovery' is deprecated, use 'usebackuproot' instead");
743 		case Opt_usebackuproot:
744 			btrfs_info(info,
745 				   "trying to use backup root at mount time");
746 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
747 			break;
748 		case Opt_skip_balance:
749 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
750 			break;
751 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
752 		case Opt_check_integrity_including_extent_data:
753 			btrfs_info(info,
754 				   "enabling check integrity including extent data");
755 			btrfs_set_opt(info->mount_opt,
756 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
757 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
758 			break;
759 		case Opt_check_integrity:
760 			btrfs_info(info, "enabling check integrity");
761 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
762 			break;
763 		case Opt_check_integrity_print_mask:
764 			ret = match_int(&args[0], &intarg);
765 			if (ret) {
766 				goto out;
767 			} else if (intarg >= 0) {
768 				info->check_integrity_print_mask = intarg;
769 				btrfs_info(info,
770 					   "check_integrity_print_mask 0x%x",
771 					   info->check_integrity_print_mask);
772 			} else {
773 				ret = -EINVAL;
774 				goto out;
775 			}
776 			break;
777 #else
778 		case Opt_check_integrity_including_extent_data:
779 		case Opt_check_integrity:
780 		case Opt_check_integrity_print_mask:
781 			btrfs_err(info,
782 				  "support for check_integrity* not compiled in!");
783 			ret = -EINVAL;
784 			goto out;
785 #endif
786 		case Opt_fatal_errors:
787 			if (strcmp(args[0].from, "panic") == 0)
788 				btrfs_set_opt(info->mount_opt,
789 					      PANIC_ON_FATAL_ERROR);
790 			else if (strcmp(args[0].from, "bug") == 0)
791 				btrfs_clear_opt(info->mount_opt,
792 					      PANIC_ON_FATAL_ERROR);
793 			else {
794 				ret = -EINVAL;
795 				goto out;
796 			}
797 			break;
798 		case Opt_commit_interval:
799 			intarg = 0;
800 			ret = match_int(&args[0], &intarg);
801 			if (ret < 0) {
802 				btrfs_err(info, "invalid commit interval");
803 				ret = -EINVAL;
804 				goto out;
805 			}
806 			if (intarg > 0) {
807 				if (intarg > 300) {
808 					btrfs_warn(info,
809 						"excessive commit interval %d",
810 						intarg);
811 				}
812 				info->commit_interval = intarg;
813 			} else {
814 				btrfs_info(info,
815 					   "using default commit interval %ds",
816 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
817 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
818 			}
819 			break;
820 #ifdef CONFIG_BTRFS_DEBUG
821 		case Opt_fragment_all:
822 			btrfs_info(info, "fragmenting all space");
823 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
824 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
825 			break;
826 		case Opt_fragment_metadata:
827 			btrfs_info(info, "fragmenting metadata");
828 			btrfs_set_opt(info->mount_opt,
829 				      FRAGMENT_METADATA);
830 			break;
831 		case Opt_fragment_data:
832 			btrfs_info(info, "fragmenting data");
833 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
834 			break;
835 #endif
836 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
837 		case Opt_ref_verify:
838 			btrfs_info(info, "doing ref verification");
839 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
840 			break;
841 #endif
842 		case Opt_err:
843 			btrfs_info(info, "unrecognized mount option '%s'", p);
844 			ret = -EINVAL;
845 			goto out;
846 		default:
847 			break;
848 		}
849 	}
850 check:
851 	/*
852 	 * Extra check for current option against current flag
853 	 */
854 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
855 		btrfs_err(info,
856 			  "nologreplay must be used with ro mount option");
857 		ret = -EINVAL;
858 	}
859 out:
860 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
861 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
862 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
863 		btrfs_err(info, "cannot disable free space tree");
864 		ret = -EINVAL;
865 
866 	}
867 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
868 		btrfs_info(info, "disk space caching is enabled");
869 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
870 		btrfs_info(info, "using free space tree");
871 	kfree(orig);
872 	return ret;
873 }
874 
875 /*
876  * Parse mount options that are required early in the mount process.
877  *
878  * All other options will be parsed on much later in the mount process and
879  * only when we need to allocate a new super block.
880  */
881 static int btrfs_parse_early_options(const char *options, fmode_t flags,
882 		void *holder, char **subvol_name, u64 *subvol_objectid,
883 		struct btrfs_fs_devices **fs_devices)
884 {
885 	substring_t args[MAX_OPT_ARGS];
886 	char *device_name, *opts, *orig, *p;
887 	char *num = NULL;
888 	int error = 0;
889 
890 	if (!options)
891 		return 0;
892 
893 	/*
894 	 * strsep changes the string, duplicate it because parse_options
895 	 * gets called twice
896 	 */
897 	opts = kstrdup(options, GFP_KERNEL);
898 	if (!opts)
899 		return -ENOMEM;
900 	orig = opts;
901 
902 	while ((p = strsep(&opts, ",")) != NULL) {
903 		int token;
904 		if (!*p)
905 			continue;
906 
907 		token = match_token(p, tokens, args);
908 		switch (token) {
909 		case Opt_subvol:
910 			kfree(*subvol_name);
911 			*subvol_name = match_strdup(&args[0]);
912 			if (!*subvol_name) {
913 				error = -ENOMEM;
914 				goto out;
915 			}
916 			break;
917 		case Opt_subvolid:
918 			num = match_strdup(&args[0]);
919 			if (num) {
920 				*subvol_objectid = memparse(num, NULL);
921 				kfree(num);
922 				/* we want the original fs_tree */
923 				if (!*subvol_objectid)
924 					*subvol_objectid =
925 						BTRFS_FS_TREE_OBJECTID;
926 			} else {
927 				error = -EINVAL;
928 				goto out;
929 			}
930 			break;
931 		case Opt_subvolrootid:
932 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
933 			break;
934 		case Opt_device:
935 			device_name = match_strdup(&args[0]);
936 			if (!device_name) {
937 				error = -ENOMEM;
938 				goto out;
939 			}
940 			error = btrfs_scan_one_device(device_name,
941 					flags, holder, fs_devices);
942 			kfree(device_name);
943 			if (error)
944 				goto out;
945 			break;
946 		default:
947 			break;
948 		}
949 	}
950 
951 out:
952 	kfree(orig);
953 	return error;
954 }
955 
956 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
957 					   u64 subvol_objectid)
958 {
959 	struct btrfs_root *root = fs_info->tree_root;
960 	struct btrfs_root *fs_root;
961 	struct btrfs_root_ref *root_ref;
962 	struct btrfs_inode_ref *inode_ref;
963 	struct btrfs_key key;
964 	struct btrfs_path *path = NULL;
965 	char *name = NULL, *ptr;
966 	u64 dirid;
967 	int len;
968 	int ret;
969 
970 	path = btrfs_alloc_path();
971 	if (!path) {
972 		ret = -ENOMEM;
973 		goto err;
974 	}
975 	path->leave_spinning = 1;
976 
977 	name = kmalloc(PATH_MAX, GFP_KERNEL);
978 	if (!name) {
979 		ret = -ENOMEM;
980 		goto err;
981 	}
982 	ptr = name + PATH_MAX - 1;
983 	ptr[0] = '\0';
984 
985 	/*
986 	 * Walk up the subvolume trees in the tree of tree roots by root
987 	 * backrefs until we hit the top-level subvolume.
988 	 */
989 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
990 		key.objectid = subvol_objectid;
991 		key.type = BTRFS_ROOT_BACKREF_KEY;
992 		key.offset = (u64)-1;
993 
994 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
995 		if (ret < 0) {
996 			goto err;
997 		} else if (ret > 0) {
998 			ret = btrfs_previous_item(root, path, subvol_objectid,
999 						  BTRFS_ROOT_BACKREF_KEY);
1000 			if (ret < 0) {
1001 				goto err;
1002 			} else if (ret > 0) {
1003 				ret = -ENOENT;
1004 				goto err;
1005 			}
1006 		}
1007 
1008 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1009 		subvol_objectid = key.offset;
1010 
1011 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1012 					  struct btrfs_root_ref);
1013 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1014 		ptr -= len + 1;
1015 		if (ptr < name) {
1016 			ret = -ENAMETOOLONG;
1017 			goto err;
1018 		}
1019 		read_extent_buffer(path->nodes[0], ptr + 1,
1020 				   (unsigned long)(root_ref + 1), len);
1021 		ptr[0] = '/';
1022 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1023 		btrfs_release_path(path);
1024 
1025 		key.objectid = subvol_objectid;
1026 		key.type = BTRFS_ROOT_ITEM_KEY;
1027 		key.offset = (u64)-1;
1028 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1029 		if (IS_ERR(fs_root)) {
1030 			ret = PTR_ERR(fs_root);
1031 			goto err;
1032 		}
1033 
1034 		/*
1035 		 * Walk up the filesystem tree by inode refs until we hit the
1036 		 * root directory.
1037 		 */
1038 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1039 			key.objectid = dirid;
1040 			key.type = BTRFS_INODE_REF_KEY;
1041 			key.offset = (u64)-1;
1042 
1043 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1044 			if (ret < 0) {
1045 				goto err;
1046 			} else if (ret > 0) {
1047 				ret = btrfs_previous_item(fs_root, path, dirid,
1048 							  BTRFS_INODE_REF_KEY);
1049 				if (ret < 0) {
1050 					goto err;
1051 				} else if (ret > 0) {
1052 					ret = -ENOENT;
1053 					goto err;
1054 				}
1055 			}
1056 
1057 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1058 			dirid = key.offset;
1059 
1060 			inode_ref = btrfs_item_ptr(path->nodes[0],
1061 						   path->slots[0],
1062 						   struct btrfs_inode_ref);
1063 			len = btrfs_inode_ref_name_len(path->nodes[0],
1064 						       inode_ref);
1065 			ptr -= len + 1;
1066 			if (ptr < name) {
1067 				ret = -ENAMETOOLONG;
1068 				goto err;
1069 			}
1070 			read_extent_buffer(path->nodes[0], ptr + 1,
1071 					   (unsigned long)(inode_ref + 1), len);
1072 			ptr[0] = '/';
1073 			btrfs_release_path(path);
1074 		}
1075 	}
1076 
1077 	btrfs_free_path(path);
1078 	if (ptr == name + PATH_MAX - 1) {
1079 		name[0] = '/';
1080 		name[1] = '\0';
1081 	} else {
1082 		memmove(name, ptr, name + PATH_MAX - ptr);
1083 	}
1084 	return name;
1085 
1086 err:
1087 	btrfs_free_path(path);
1088 	kfree(name);
1089 	return ERR_PTR(ret);
1090 }
1091 
1092 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1093 {
1094 	struct btrfs_root *root = fs_info->tree_root;
1095 	struct btrfs_dir_item *di;
1096 	struct btrfs_path *path;
1097 	struct btrfs_key location;
1098 	u64 dir_id;
1099 
1100 	path = btrfs_alloc_path();
1101 	if (!path)
1102 		return -ENOMEM;
1103 	path->leave_spinning = 1;
1104 
1105 	/*
1106 	 * Find the "default" dir item which points to the root item that we
1107 	 * will mount by default if we haven't been given a specific subvolume
1108 	 * to mount.
1109 	 */
1110 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1111 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1112 	if (IS_ERR(di)) {
1113 		btrfs_free_path(path);
1114 		return PTR_ERR(di);
1115 	}
1116 	if (!di) {
1117 		/*
1118 		 * Ok the default dir item isn't there.  This is weird since
1119 		 * it's always been there, but don't freak out, just try and
1120 		 * mount the top-level subvolume.
1121 		 */
1122 		btrfs_free_path(path);
1123 		*objectid = BTRFS_FS_TREE_OBJECTID;
1124 		return 0;
1125 	}
1126 
1127 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1128 	btrfs_free_path(path);
1129 	*objectid = location.objectid;
1130 	return 0;
1131 }
1132 
1133 static int btrfs_fill_super(struct super_block *sb,
1134 			    struct btrfs_fs_devices *fs_devices,
1135 			    void *data)
1136 {
1137 	struct inode *inode;
1138 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1139 	struct btrfs_key key;
1140 	int err;
1141 
1142 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1143 	sb->s_magic = BTRFS_SUPER_MAGIC;
1144 	sb->s_op = &btrfs_super_ops;
1145 	sb->s_d_op = &btrfs_dentry_operations;
1146 	sb->s_export_op = &btrfs_export_ops;
1147 	sb->s_xattr = btrfs_xattr_handlers;
1148 	sb->s_time_gran = 1;
1149 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1150 	sb->s_flags |= MS_POSIXACL;
1151 #endif
1152 	sb->s_flags |= SB_I_VERSION;
1153 	sb->s_iflags |= SB_I_CGROUPWB;
1154 
1155 	err = super_setup_bdi(sb);
1156 	if (err) {
1157 		btrfs_err(fs_info, "super_setup_bdi failed");
1158 		return err;
1159 	}
1160 
1161 	err = open_ctree(sb, fs_devices, (char *)data);
1162 	if (err) {
1163 		btrfs_err(fs_info, "open_ctree failed");
1164 		return err;
1165 	}
1166 
1167 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1168 	key.type = BTRFS_INODE_ITEM_KEY;
1169 	key.offset = 0;
1170 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1171 	if (IS_ERR(inode)) {
1172 		err = PTR_ERR(inode);
1173 		goto fail_close;
1174 	}
1175 
1176 	sb->s_root = d_make_root(inode);
1177 	if (!sb->s_root) {
1178 		err = -ENOMEM;
1179 		goto fail_close;
1180 	}
1181 
1182 	cleancache_init_fs(sb);
1183 	sb->s_flags |= MS_ACTIVE;
1184 	return 0;
1185 
1186 fail_close:
1187 	close_ctree(fs_info);
1188 	return err;
1189 }
1190 
1191 int btrfs_sync_fs(struct super_block *sb, int wait)
1192 {
1193 	struct btrfs_trans_handle *trans;
1194 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1195 	struct btrfs_root *root = fs_info->tree_root;
1196 
1197 	trace_btrfs_sync_fs(fs_info, wait);
1198 
1199 	if (!wait) {
1200 		filemap_flush(fs_info->btree_inode->i_mapping);
1201 		return 0;
1202 	}
1203 
1204 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1205 
1206 	trans = btrfs_attach_transaction_barrier(root);
1207 	if (IS_ERR(trans)) {
1208 		/* no transaction, don't bother */
1209 		if (PTR_ERR(trans) == -ENOENT) {
1210 			/*
1211 			 * Exit unless we have some pending changes
1212 			 * that need to go through commit
1213 			 */
1214 			if (fs_info->pending_changes == 0)
1215 				return 0;
1216 			/*
1217 			 * A non-blocking test if the fs is frozen. We must not
1218 			 * start a new transaction here otherwise a deadlock
1219 			 * happens. The pending operations are delayed to the
1220 			 * next commit after thawing.
1221 			 */
1222 			if (sb_start_write_trylock(sb))
1223 				sb_end_write(sb);
1224 			else
1225 				return 0;
1226 			trans = btrfs_start_transaction(root, 0);
1227 		}
1228 		if (IS_ERR(trans))
1229 			return PTR_ERR(trans);
1230 	}
1231 	return btrfs_commit_transaction(trans);
1232 }
1233 
1234 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1235 {
1236 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1237 	char *compress_type;
1238 
1239 	if (btrfs_test_opt(info, DEGRADED))
1240 		seq_puts(seq, ",degraded");
1241 	if (btrfs_test_opt(info, NODATASUM))
1242 		seq_puts(seq, ",nodatasum");
1243 	if (btrfs_test_opt(info, NODATACOW))
1244 		seq_puts(seq, ",nodatacow");
1245 	if (btrfs_test_opt(info, NOBARRIER))
1246 		seq_puts(seq, ",nobarrier");
1247 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1248 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1249 	if (info->thread_pool_size !=  min_t(unsigned long,
1250 					     num_online_cpus() + 2, 8))
1251 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1252 	if (btrfs_test_opt(info, COMPRESS)) {
1253 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1254 			compress_type = "zlib";
1255 		else if (info->compress_type == BTRFS_COMPRESS_LZO)
1256 			compress_type = "lzo";
1257 		else
1258 			compress_type = "zstd";
1259 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1260 			seq_printf(seq, ",compress-force=%s", compress_type);
1261 		else
1262 			seq_printf(seq, ",compress=%s", compress_type);
1263 		if (info->compress_level)
1264 			seq_printf(seq, ":%d", info->compress_level);
1265 	}
1266 	if (btrfs_test_opt(info, NOSSD))
1267 		seq_puts(seq, ",nossd");
1268 	if (btrfs_test_opt(info, SSD_SPREAD))
1269 		seq_puts(seq, ",ssd_spread");
1270 	else if (btrfs_test_opt(info, SSD))
1271 		seq_puts(seq, ",ssd");
1272 	if (btrfs_test_opt(info, NOTREELOG))
1273 		seq_puts(seq, ",notreelog");
1274 	if (btrfs_test_opt(info, NOLOGREPLAY))
1275 		seq_puts(seq, ",nologreplay");
1276 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1277 		seq_puts(seq, ",flushoncommit");
1278 	if (btrfs_test_opt(info, DISCARD))
1279 		seq_puts(seq, ",discard");
1280 	if (!(info->sb->s_flags & MS_POSIXACL))
1281 		seq_puts(seq, ",noacl");
1282 	if (btrfs_test_opt(info, SPACE_CACHE))
1283 		seq_puts(seq, ",space_cache");
1284 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1285 		seq_puts(seq, ",space_cache=v2");
1286 	else
1287 		seq_puts(seq, ",nospace_cache");
1288 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1289 		seq_puts(seq, ",rescan_uuid_tree");
1290 	if (btrfs_test_opt(info, CLEAR_CACHE))
1291 		seq_puts(seq, ",clear_cache");
1292 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1293 		seq_puts(seq, ",user_subvol_rm_allowed");
1294 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1295 		seq_puts(seq, ",enospc_debug");
1296 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1297 		seq_puts(seq, ",autodefrag");
1298 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1299 		seq_puts(seq, ",inode_cache");
1300 	if (btrfs_test_opt(info, SKIP_BALANCE))
1301 		seq_puts(seq, ",skip_balance");
1302 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1303 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1304 		seq_puts(seq, ",check_int_data");
1305 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1306 		seq_puts(seq, ",check_int");
1307 	if (info->check_integrity_print_mask)
1308 		seq_printf(seq, ",check_int_print_mask=%d",
1309 				info->check_integrity_print_mask);
1310 #endif
1311 	if (info->metadata_ratio)
1312 		seq_printf(seq, ",metadata_ratio=%d",
1313 				info->metadata_ratio);
1314 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1315 		seq_puts(seq, ",fatal_errors=panic");
1316 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1317 		seq_printf(seq, ",commit=%d", info->commit_interval);
1318 #ifdef CONFIG_BTRFS_DEBUG
1319 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1320 		seq_puts(seq, ",fragment=data");
1321 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1322 		seq_puts(seq, ",fragment=metadata");
1323 #endif
1324 	if (btrfs_test_opt(info, REF_VERIFY))
1325 		seq_puts(seq, ",ref_verify");
1326 	seq_printf(seq, ",subvolid=%llu",
1327 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1328 	seq_puts(seq, ",subvol=");
1329 	seq_dentry(seq, dentry, " \t\n\\");
1330 	return 0;
1331 }
1332 
1333 static int btrfs_test_super(struct super_block *s, void *data)
1334 {
1335 	struct btrfs_fs_info *p = data;
1336 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1337 
1338 	return fs_info->fs_devices == p->fs_devices;
1339 }
1340 
1341 static int btrfs_set_super(struct super_block *s, void *data)
1342 {
1343 	int err = set_anon_super(s, data);
1344 	if (!err)
1345 		s->s_fs_info = data;
1346 	return err;
1347 }
1348 
1349 /*
1350  * subvolumes are identified by ino 256
1351  */
1352 static inline int is_subvolume_inode(struct inode *inode)
1353 {
1354 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1355 		return 1;
1356 	return 0;
1357 }
1358 
1359 /*
1360  * This will add subvolid=0 to the argument string while removing any subvol=
1361  * and subvolid= arguments to make sure we get the top-level root for path
1362  * walking to the subvol we want.
1363  */
1364 static char *setup_root_args(char *args)
1365 {
1366 	char *buf, *dst, *sep;
1367 
1368 	if (!args)
1369 		return kstrdup("subvolid=0", GFP_KERNEL);
1370 
1371 	/* The worst case is that we add ",subvolid=0" to the end. */
1372 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1,
1373 			GFP_KERNEL);
1374 	if (!buf)
1375 		return NULL;
1376 
1377 	while (1) {
1378 		sep = strchrnul(args, ',');
1379 		if (!strstarts(args, "subvol=") &&
1380 		    !strstarts(args, "subvolid=")) {
1381 			memcpy(dst, args, sep - args);
1382 			dst += sep - args;
1383 			*dst++ = ',';
1384 		}
1385 		if (*sep)
1386 			args = sep + 1;
1387 		else
1388 			break;
1389 	}
1390 	strcpy(dst, "subvolid=0");
1391 
1392 	return buf;
1393 }
1394 
1395 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1396 				   int flags, const char *device_name,
1397 				   char *data)
1398 {
1399 	struct dentry *root;
1400 	struct vfsmount *mnt = NULL;
1401 	char *newargs;
1402 	int ret;
1403 
1404 	newargs = setup_root_args(data);
1405 	if (!newargs) {
1406 		root = ERR_PTR(-ENOMEM);
1407 		goto out;
1408 	}
1409 
1410 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1411 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1412 		if (flags & MS_RDONLY) {
1413 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1414 					     device_name, newargs);
1415 		} else {
1416 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1417 					     device_name, newargs);
1418 			if (IS_ERR(mnt)) {
1419 				root = ERR_CAST(mnt);
1420 				mnt = NULL;
1421 				goto out;
1422 			}
1423 
1424 			down_write(&mnt->mnt_sb->s_umount);
1425 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1426 			up_write(&mnt->mnt_sb->s_umount);
1427 			if (ret < 0) {
1428 				root = ERR_PTR(ret);
1429 				goto out;
1430 			}
1431 		}
1432 	}
1433 	if (IS_ERR(mnt)) {
1434 		root = ERR_CAST(mnt);
1435 		mnt = NULL;
1436 		goto out;
1437 	}
1438 
1439 	if (!subvol_name) {
1440 		if (!subvol_objectid) {
1441 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1442 							  &subvol_objectid);
1443 			if (ret) {
1444 				root = ERR_PTR(ret);
1445 				goto out;
1446 			}
1447 		}
1448 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1449 							    subvol_objectid);
1450 		if (IS_ERR(subvol_name)) {
1451 			root = ERR_CAST(subvol_name);
1452 			subvol_name = NULL;
1453 			goto out;
1454 		}
1455 
1456 	}
1457 
1458 	root = mount_subtree(mnt, subvol_name);
1459 	/* mount_subtree() drops our reference on the vfsmount. */
1460 	mnt = NULL;
1461 
1462 	if (!IS_ERR(root)) {
1463 		struct super_block *s = root->d_sb;
1464 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1465 		struct inode *root_inode = d_inode(root);
1466 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1467 
1468 		ret = 0;
1469 		if (!is_subvolume_inode(root_inode)) {
1470 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1471 			       subvol_name);
1472 			ret = -EINVAL;
1473 		}
1474 		if (subvol_objectid && root_objectid != subvol_objectid) {
1475 			/*
1476 			 * This will also catch a race condition where a
1477 			 * subvolume which was passed by ID is renamed and
1478 			 * another subvolume is renamed over the old location.
1479 			 */
1480 			btrfs_err(fs_info,
1481 				  "subvol '%s' does not match subvolid %llu",
1482 				  subvol_name, subvol_objectid);
1483 			ret = -EINVAL;
1484 		}
1485 		if (ret) {
1486 			dput(root);
1487 			root = ERR_PTR(ret);
1488 			deactivate_locked_super(s);
1489 		}
1490 	}
1491 
1492 out:
1493 	mntput(mnt);
1494 	kfree(newargs);
1495 	kfree(subvol_name);
1496 	return root;
1497 }
1498 
1499 static int parse_security_options(char *orig_opts,
1500 				  struct security_mnt_opts *sec_opts)
1501 {
1502 	char *secdata = NULL;
1503 	int ret = 0;
1504 
1505 	secdata = alloc_secdata();
1506 	if (!secdata)
1507 		return -ENOMEM;
1508 	ret = security_sb_copy_data(orig_opts, secdata);
1509 	if (ret) {
1510 		free_secdata(secdata);
1511 		return ret;
1512 	}
1513 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1514 	free_secdata(secdata);
1515 	return ret;
1516 }
1517 
1518 static int setup_security_options(struct btrfs_fs_info *fs_info,
1519 				  struct super_block *sb,
1520 				  struct security_mnt_opts *sec_opts)
1521 {
1522 	int ret = 0;
1523 
1524 	/*
1525 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1526 	 * is valid.
1527 	 */
1528 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1529 	if (ret)
1530 		return ret;
1531 
1532 #ifdef CONFIG_SECURITY
1533 	if (!fs_info->security_opts.num_mnt_opts) {
1534 		/* first time security setup, copy sec_opts to fs_info */
1535 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1536 	} else {
1537 		/*
1538 		 * Since SELinux (the only one supporting security_mnt_opts)
1539 		 * does NOT support changing context during remount/mount of
1540 		 * the same sb, this must be the same or part of the same
1541 		 * security options, just free it.
1542 		 */
1543 		security_free_mnt_opts(sec_opts);
1544 	}
1545 #endif
1546 	return ret;
1547 }
1548 
1549 /*
1550  * Find a superblock for the given device / mount point.
1551  *
1552  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1553  *	  for multiple device setup.  Make sure to keep it in sync.
1554  */
1555 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1556 		const char *device_name, void *data)
1557 {
1558 	struct block_device *bdev = NULL;
1559 	struct super_block *s;
1560 	struct btrfs_fs_devices *fs_devices = NULL;
1561 	struct btrfs_fs_info *fs_info = NULL;
1562 	struct security_mnt_opts new_sec_opts;
1563 	fmode_t mode = FMODE_READ;
1564 	char *subvol_name = NULL;
1565 	u64 subvol_objectid = 0;
1566 	int error = 0;
1567 
1568 	if (!(flags & MS_RDONLY))
1569 		mode |= FMODE_WRITE;
1570 
1571 	error = btrfs_parse_early_options(data, mode, fs_type,
1572 					  &subvol_name, &subvol_objectid,
1573 					  &fs_devices);
1574 	if (error) {
1575 		kfree(subvol_name);
1576 		return ERR_PTR(error);
1577 	}
1578 
1579 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1580 		/* mount_subvol() will free subvol_name. */
1581 		return mount_subvol(subvol_name, subvol_objectid, flags,
1582 				    device_name, data);
1583 	}
1584 
1585 	security_init_mnt_opts(&new_sec_opts);
1586 	if (data) {
1587 		error = parse_security_options(data, &new_sec_opts);
1588 		if (error)
1589 			return ERR_PTR(error);
1590 	}
1591 
1592 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1593 	if (error)
1594 		goto error_sec_opts;
1595 
1596 	/*
1597 	 * Setup a dummy root and fs_info for test/set super.  This is because
1598 	 * we don't actually fill this stuff out until open_ctree, but we need
1599 	 * it for searching for existing supers, so this lets us do that and
1600 	 * then open_ctree will properly initialize everything later.
1601 	 */
1602 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1603 	if (!fs_info) {
1604 		error = -ENOMEM;
1605 		goto error_sec_opts;
1606 	}
1607 
1608 	fs_info->fs_devices = fs_devices;
1609 
1610 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1611 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1612 	security_init_mnt_opts(&fs_info->security_opts);
1613 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1614 		error = -ENOMEM;
1615 		goto error_fs_info;
1616 	}
1617 
1618 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1619 	if (error)
1620 		goto error_fs_info;
1621 
1622 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1623 		error = -EACCES;
1624 		goto error_close_devices;
1625 	}
1626 
1627 	bdev = fs_devices->latest_bdev;
1628 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1629 		 fs_info);
1630 	if (IS_ERR(s)) {
1631 		error = PTR_ERR(s);
1632 		goto error_close_devices;
1633 	}
1634 
1635 	if (s->s_root) {
1636 		btrfs_close_devices(fs_devices);
1637 		free_fs_info(fs_info);
1638 		if ((flags ^ s->s_flags) & MS_RDONLY)
1639 			error = -EBUSY;
1640 	} else {
1641 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1642 		btrfs_sb(s)->bdev_holder = fs_type;
1643 		error = btrfs_fill_super(s, fs_devices, data);
1644 	}
1645 	if (error) {
1646 		deactivate_locked_super(s);
1647 		goto error_sec_opts;
1648 	}
1649 
1650 	fs_info = btrfs_sb(s);
1651 	error = setup_security_options(fs_info, s, &new_sec_opts);
1652 	if (error) {
1653 		deactivate_locked_super(s);
1654 		goto error_sec_opts;
1655 	}
1656 
1657 	return dget(s->s_root);
1658 
1659 error_close_devices:
1660 	btrfs_close_devices(fs_devices);
1661 error_fs_info:
1662 	free_fs_info(fs_info);
1663 error_sec_opts:
1664 	security_free_mnt_opts(&new_sec_opts);
1665 	return ERR_PTR(error);
1666 }
1667 
1668 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1669 				     int new_pool_size, int old_pool_size)
1670 {
1671 	if (new_pool_size == old_pool_size)
1672 		return;
1673 
1674 	fs_info->thread_pool_size = new_pool_size;
1675 
1676 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1677 	       old_pool_size, new_pool_size);
1678 
1679 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1680 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1681 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1682 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1683 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1684 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1685 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1686 				new_pool_size);
1687 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1688 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1689 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1690 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1691 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1692 				new_pool_size);
1693 }
1694 
1695 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1696 {
1697 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1698 }
1699 
1700 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1701 				       unsigned long old_opts, int flags)
1702 {
1703 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1704 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1705 	     (flags & MS_RDONLY))) {
1706 		/* wait for any defraggers to finish */
1707 		wait_event(fs_info->transaction_wait,
1708 			   (atomic_read(&fs_info->defrag_running) == 0));
1709 		if (flags & MS_RDONLY)
1710 			sync_filesystem(fs_info->sb);
1711 	}
1712 }
1713 
1714 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1715 					 unsigned long old_opts)
1716 {
1717 	/*
1718 	 * We need to cleanup all defragable inodes if the autodefragment is
1719 	 * close or the filesystem is read only.
1720 	 */
1721 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1722 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1723 		btrfs_cleanup_defrag_inodes(fs_info);
1724 	}
1725 
1726 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1727 }
1728 
1729 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1730 {
1731 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1732 	struct btrfs_root *root = fs_info->tree_root;
1733 	unsigned old_flags = sb->s_flags;
1734 	unsigned long old_opts = fs_info->mount_opt;
1735 	unsigned long old_compress_type = fs_info->compress_type;
1736 	u64 old_max_inline = fs_info->max_inline;
1737 	int old_thread_pool_size = fs_info->thread_pool_size;
1738 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1739 	int ret;
1740 
1741 	sync_filesystem(sb);
1742 	btrfs_remount_prepare(fs_info);
1743 
1744 	if (data) {
1745 		struct security_mnt_opts new_sec_opts;
1746 
1747 		security_init_mnt_opts(&new_sec_opts);
1748 		ret = parse_security_options(data, &new_sec_opts);
1749 		if (ret)
1750 			goto restore;
1751 		ret = setup_security_options(fs_info, sb,
1752 					     &new_sec_opts);
1753 		if (ret) {
1754 			security_free_mnt_opts(&new_sec_opts);
1755 			goto restore;
1756 		}
1757 	}
1758 
1759 	ret = btrfs_parse_options(fs_info, data, *flags);
1760 	if (ret) {
1761 		ret = -EINVAL;
1762 		goto restore;
1763 	}
1764 
1765 	btrfs_remount_begin(fs_info, old_opts, *flags);
1766 	btrfs_resize_thread_pool(fs_info,
1767 		fs_info->thread_pool_size, old_thread_pool_size);
1768 
1769 	if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb))
1770 		goto out;
1771 
1772 	if (*flags & MS_RDONLY) {
1773 		/*
1774 		 * this also happens on 'umount -rf' or on shutdown, when
1775 		 * the filesystem is busy.
1776 		 */
1777 		cancel_work_sync(&fs_info->async_reclaim_work);
1778 
1779 		/* wait for the uuid_scan task to finish */
1780 		down(&fs_info->uuid_tree_rescan_sem);
1781 		/* avoid complains from lockdep et al. */
1782 		up(&fs_info->uuid_tree_rescan_sem);
1783 
1784 		sb->s_flags |= MS_RDONLY;
1785 
1786 		/*
1787 		 * Setting MS_RDONLY will put the cleaner thread to
1788 		 * sleep at the next loop if it's already active.
1789 		 * If it's already asleep, we'll leave unused block
1790 		 * groups on disk until we're mounted read-write again
1791 		 * unless we clean them up here.
1792 		 */
1793 		btrfs_delete_unused_bgs(fs_info);
1794 
1795 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1796 		btrfs_scrub_cancel(fs_info);
1797 		btrfs_pause_balance(fs_info);
1798 
1799 		ret = btrfs_commit_super(fs_info);
1800 		if (ret)
1801 			goto restore;
1802 	} else {
1803 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1804 			btrfs_err(fs_info,
1805 				"Remounting read-write after error is not allowed");
1806 			ret = -EINVAL;
1807 			goto restore;
1808 		}
1809 		if (fs_info->fs_devices->rw_devices == 0) {
1810 			ret = -EACCES;
1811 			goto restore;
1812 		}
1813 
1814 		if (!btrfs_check_rw_degradable(fs_info)) {
1815 			btrfs_warn(fs_info,
1816 				"too many missing devices, writeable remount is not allowed");
1817 			ret = -EACCES;
1818 			goto restore;
1819 		}
1820 
1821 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1822 			ret = -EINVAL;
1823 			goto restore;
1824 		}
1825 
1826 		ret = btrfs_cleanup_fs_roots(fs_info);
1827 		if (ret)
1828 			goto restore;
1829 
1830 		/* recover relocation */
1831 		mutex_lock(&fs_info->cleaner_mutex);
1832 		ret = btrfs_recover_relocation(root);
1833 		mutex_unlock(&fs_info->cleaner_mutex);
1834 		if (ret)
1835 			goto restore;
1836 
1837 		ret = btrfs_resume_balance_async(fs_info);
1838 		if (ret)
1839 			goto restore;
1840 
1841 		ret = btrfs_resume_dev_replace_async(fs_info);
1842 		if (ret) {
1843 			btrfs_warn(fs_info, "failed to resume dev_replace");
1844 			goto restore;
1845 		}
1846 
1847 		btrfs_qgroup_rescan_resume(fs_info);
1848 
1849 		if (!fs_info->uuid_root) {
1850 			btrfs_info(fs_info, "creating UUID tree");
1851 			ret = btrfs_create_uuid_tree(fs_info);
1852 			if (ret) {
1853 				btrfs_warn(fs_info,
1854 					   "failed to create the UUID tree %d",
1855 					   ret);
1856 				goto restore;
1857 			}
1858 		}
1859 		sb->s_flags &= ~MS_RDONLY;
1860 
1861 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1862 	}
1863 out:
1864 	wake_up_process(fs_info->transaction_kthread);
1865 	btrfs_remount_cleanup(fs_info, old_opts);
1866 	return 0;
1867 
1868 restore:
1869 	/* We've hit an error - don't reset MS_RDONLY */
1870 	if (sb_rdonly(sb))
1871 		old_flags |= MS_RDONLY;
1872 	sb->s_flags = old_flags;
1873 	fs_info->mount_opt = old_opts;
1874 	fs_info->compress_type = old_compress_type;
1875 	fs_info->max_inline = old_max_inline;
1876 	btrfs_resize_thread_pool(fs_info,
1877 		old_thread_pool_size, fs_info->thread_pool_size);
1878 	fs_info->metadata_ratio = old_metadata_ratio;
1879 	btrfs_remount_cleanup(fs_info, old_opts);
1880 	return ret;
1881 }
1882 
1883 /* Used to sort the devices by max_avail(descending sort) */
1884 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1885 				       const void *dev_info2)
1886 {
1887 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1888 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1889 		return -1;
1890 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1891 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1892 		return 1;
1893 	else
1894 	return 0;
1895 }
1896 
1897 /*
1898  * sort the devices by max_avail, in which max free extent size of each device
1899  * is stored.(Descending Sort)
1900  */
1901 static inline void btrfs_descending_sort_devices(
1902 					struct btrfs_device_info *devices,
1903 					size_t nr_devices)
1904 {
1905 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1906 	     btrfs_cmp_device_free_bytes, NULL);
1907 }
1908 
1909 /*
1910  * The helper to calc the free space on the devices that can be used to store
1911  * file data.
1912  */
1913 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1914 				       u64 *free_bytes)
1915 {
1916 	struct btrfs_device_info *devices_info;
1917 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1918 	struct btrfs_device *device;
1919 	u64 skip_space;
1920 	u64 type;
1921 	u64 avail_space;
1922 	u64 min_stripe_size;
1923 	int min_stripes = 1, num_stripes = 1;
1924 	int i = 0, nr_devices;
1925 
1926 	/*
1927 	 * We aren't under the device list lock, so this is racy-ish, but good
1928 	 * enough for our purposes.
1929 	 */
1930 	nr_devices = fs_info->fs_devices->open_devices;
1931 	if (!nr_devices) {
1932 		smp_mb();
1933 		nr_devices = fs_info->fs_devices->open_devices;
1934 		ASSERT(nr_devices);
1935 		if (!nr_devices) {
1936 			*free_bytes = 0;
1937 			return 0;
1938 		}
1939 	}
1940 
1941 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1942 			       GFP_KERNEL);
1943 	if (!devices_info)
1944 		return -ENOMEM;
1945 
1946 	/* calc min stripe number for data space allocation */
1947 	type = btrfs_data_alloc_profile(fs_info);
1948 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1949 		min_stripes = 2;
1950 		num_stripes = nr_devices;
1951 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1952 		min_stripes = 2;
1953 		num_stripes = 2;
1954 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1955 		min_stripes = 4;
1956 		num_stripes = 4;
1957 	}
1958 
1959 	if (type & BTRFS_BLOCK_GROUP_DUP)
1960 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1961 	else
1962 		min_stripe_size = BTRFS_STRIPE_LEN;
1963 
1964 	rcu_read_lock();
1965 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1966 		if (!device->in_fs_metadata || !device->bdev ||
1967 		    device->is_tgtdev_for_dev_replace)
1968 			continue;
1969 
1970 		if (i >= nr_devices)
1971 			break;
1972 
1973 		avail_space = device->total_bytes - device->bytes_used;
1974 
1975 		/* align with stripe_len */
1976 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1977 		avail_space *= BTRFS_STRIPE_LEN;
1978 
1979 		/*
1980 		 * In order to avoid overwriting the superblock on the drive,
1981 		 * btrfs starts at an offset of at least 1MB when doing chunk
1982 		 * allocation.
1983 		 */
1984 		skip_space = SZ_1M;
1985 
1986 		/*
1987 		 * we can use the free space in [0, skip_space - 1], subtract
1988 		 * it from the total.
1989 		 */
1990 		if (avail_space && avail_space >= skip_space)
1991 			avail_space -= skip_space;
1992 		else
1993 			avail_space = 0;
1994 
1995 		if (avail_space < min_stripe_size)
1996 			continue;
1997 
1998 		devices_info[i].dev = device;
1999 		devices_info[i].max_avail = avail_space;
2000 
2001 		i++;
2002 	}
2003 	rcu_read_unlock();
2004 
2005 	nr_devices = i;
2006 
2007 	btrfs_descending_sort_devices(devices_info, nr_devices);
2008 
2009 	i = nr_devices - 1;
2010 	avail_space = 0;
2011 	while (nr_devices >= min_stripes) {
2012 		if (num_stripes > nr_devices)
2013 			num_stripes = nr_devices;
2014 
2015 		if (devices_info[i].max_avail >= min_stripe_size) {
2016 			int j;
2017 			u64 alloc_size;
2018 
2019 			avail_space += devices_info[i].max_avail * num_stripes;
2020 			alloc_size = devices_info[i].max_avail;
2021 			for (j = i + 1 - num_stripes; j <= i; j++)
2022 				devices_info[j].max_avail -= alloc_size;
2023 		}
2024 		i--;
2025 		nr_devices--;
2026 	}
2027 
2028 	kfree(devices_info);
2029 	*free_bytes = avail_space;
2030 	return 0;
2031 }
2032 
2033 /*
2034  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2035  *
2036  * If there's a redundant raid level at DATA block groups, use the respective
2037  * multiplier to scale the sizes.
2038  *
2039  * Unused device space usage is based on simulating the chunk allocator
2040  * algorithm that respects the device sizes and order of allocations.  This is
2041  * a close approximation of the actual use but there are other factors that may
2042  * change the result (like a new metadata chunk).
2043  *
2044  * If metadata is exhausted, f_bavail will be 0.
2045  */
2046 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2047 {
2048 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2049 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2050 	struct list_head *head = &fs_info->space_info;
2051 	struct btrfs_space_info *found;
2052 	u64 total_used = 0;
2053 	u64 total_free_data = 0;
2054 	u64 total_free_meta = 0;
2055 	int bits = dentry->d_sb->s_blocksize_bits;
2056 	__be32 *fsid = (__be32 *)fs_info->fsid;
2057 	unsigned factor = 1;
2058 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2059 	int ret;
2060 	u64 thresh = 0;
2061 	int mixed = 0;
2062 
2063 	rcu_read_lock();
2064 	list_for_each_entry_rcu(found, head, list) {
2065 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2066 			int i;
2067 
2068 			total_free_data += found->disk_total - found->disk_used;
2069 			total_free_data -=
2070 				btrfs_account_ro_block_groups_free_space(found);
2071 
2072 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2073 				if (!list_empty(&found->block_groups[i])) {
2074 					switch (i) {
2075 					case BTRFS_RAID_DUP:
2076 					case BTRFS_RAID_RAID1:
2077 					case BTRFS_RAID_RAID10:
2078 						factor = 2;
2079 					}
2080 				}
2081 			}
2082 		}
2083 
2084 		/*
2085 		 * Metadata in mixed block goup profiles are accounted in data
2086 		 */
2087 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2088 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2089 				mixed = 1;
2090 			else
2091 				total_free_meta += found->disk_total -
2092 					found->disk_used;
2093 		}
2094 
2095 		total_used += found->disk_used;
2096 	}
2097 
2098 	rcu_read_unlock();
2099 
2100 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2101 	buf->f_blocks >>= bits;
2102 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2103 
2104 	/* Account global block reserve as used, it's in logical size already */
2105 	spin_lock(&block_rsv->lock);
2106 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2107 	if (buf->f_bfree >= block_rsv->size >> bits)
2108 		buf->f_bfree -= block_rsv->size >> bits;
2109 	else
2110 		buf->f_bfree = 0;
2111 	spin_unlock(&block_rsv->lock);
2112 
2113 	buf->f_bavail = div_u64(total_free_data, factor);
2114 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2115 	if (ret)
2116 		return ret;
2117 	buf->f_bavail += div_u64(total_free_data, factor);
2118 	buf->f_bavail = buf->f_bavail >> bits;
2119 
2120 	/*
2121 	 * We calculate the remaining metadata space minus global reserve. If
2122 	 * this is (supposedly) smaller than zero, there's no space. But this
2123 	 * does not hold in practice, the exhausted state happens where's still
2124 	 * some positive delta. So we apply some guesswork and compare the
2125 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2126 	 *
2127 	 * We probably cannot calculate the exact threshold value because this
2128 	 * depends on the internal reservations requested by various
2129 	 * operations, so some operations that consume a few metadata will
2130 	 * succeed even if the Avail is zero. But this is better than the other
2131 	 * way around.
2132 	 */
2133 	thresh = SZ_4M;
2134 
2135 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2136 		buf->f_bavail = 0;
2137 
2138 	buf->f_type = BTRFS_SUPER_MAGIC;
2139 	buf->f_bsize = dentry->d_sb->s_blocksize;
2140 	buf->f_namelen = BTRFS_NAME_LEN;
2141 
2142 	/* We treat it as constant endianness (it doesn't matter _which_)
2143 	   because we want the fsid to come out the same whether mounted
2144 	   on a big-endian or little-endian host */
2145 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2146 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2147 	/* Mask in the root object ID too, to disambiguate subvols */
2148 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2149 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2150 
2151 	return 0;
2152 }
2153 
2154 static void btrfs_kill_super(struct super_block *sb)
2155 {
2156 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2157 	kill_anon_super(sb);
2158 	free_fs_info(fs_info);
2159 }
2160 
2161 static struct file_system_type btrfs_fs_type = {
2162 	.owner		= THIS_MODULE,
2163 	.name		= "btrfs",
2164 	.mount		= btrfs_mount,
2165 	.kill_sb	= btrfs_kill_super,
2166 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2167 };
2168 MODULE_ALIAS_FS("btrfs");
2169 
2170 static int btrfs_control_open(struct inode *inode, struct file *file)
2171 {
2172 	/*
2173 	 * The control file's private_data is used to hold the
2174 	 * transaction when it is started and is used to keep
2175 	 * track of whether a transaction is already in progress.
2176 	 */
2177 	file->private_data = NULL;
2178 	return 0;
2179 }
2180 
2181 /*
2182  * used by btrfsctl to scan devices when no FS is mounted
2183  */
2184 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2185 				unsigned long arg)
2186 {
2187 	struct btrfs_ioctl_vol_args *vol;
2188 	struct btrfs_fs_devices *fs_devices;
2189 	int ret = -ENOTTY;
2190 
2191 	if (!capable(CAP_SYS_ADMIN))
2192 		return -EPERM;
2193 
2194 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2195 	if (IS_ERR(vol))
2196 		return PTR_ERR(vol);
2197 
2198 	switch (cmd) {
2199 	case BTRFS_IOC_SCAN_DEV:
2200 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2201 					    &btrfs_fs_type, &fs_devices);
2202 		break;
2203 	case BTRFS_IOC_DEVICES_READY:
2204 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2205 					    &btrfs_fs_type, &fs_devices);
2206 		if (ret)
2207 			break;
2208 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2209 		break;
2210 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2211 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2212 		break;
2213 	}
2214 
2215 	kfree(vol);
2216 	return ret;
2217 }
2218 
2219 static int btrfs_freeze(struct super_block *sb)
2220 {
2221 	struct btrfs_trans_handle *trans;
2222 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2223 	struct btrfs_root *root = fs_info->tree_root;
2224 
2225 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2226 	/*
2227 	 * We don't need a barrier here, we'll wait for any transaction that
2228 	 * could be in progress on other threads (and do delayed iputs that
2229 	 * we want to avoid on a frozen filesystem), or do the commit
2230 	 * ourselves.
2231 	 */
2232 	trans = btrfs_attach_transaction_barrier(root);
2233 	if (IS_ERR(trans)) {
2234 		/* no transaction, don't bother */
2235 		if (PTR_ERR(trans) == -ENOENT)
2236 			return 0;
2237 		return PTR_ERR(trans);
2238 	}
2239 	return btrfs_commit_transaction(trans);
2240 }
2241 
2242 static int btrfs_unfreeze(struct super_block *sb)
2243 {
2244 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2245 
2246 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2247 	return 0;
2248 }
2249 
2250 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2251 {
2252 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2253 	struct btrfs_fs_devices *cur_devices;
2254 	struct btrfs_device *dev, *first_dev = NULL;
2255 	struct list_head *head;
2256 	struct rcu_string *name;
2257 
2258 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2259 	cur_devices = fs_info->fs_devices;
2260 	while (cur_devices) {
2261 		head = &cur_devices->devices;
2262 		list_for_each_entry(dev, head, dev_list) {
2263 			if (dev->missing)
2264 				continue;
2265 			if (!dev->name)
2266 				continue;
2267 			if (!first_dev || dev->devid < first_dev->devid)
2268 				first_dev = dev;
2269 		}
2270 		cur_devices = cur_devices->seed;
2271 	}
2272 
2273 	if (first_dev) {
2274 		rcu_read_lock();
2275 		name = rcu_dereference(first_dev->name);
2276 		seq_escape(m, name->str, " \t\n\\");
2277 		rcu_read_unlock();
2278 	} else {
2279 		WARN_ON(1);
2280 	}
2281 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2282 	return 0;
2283 }
2284 
2285 static const struct super_operations btrfs_super_ops = {
2286 	.drop_inode	= btrfs_drop_inode,
2287 	.evict_inode	= btrfs_evict_inode,
2288 	.put_super	= btrfs_put_super,
2289 	.sync_fs	= btrfs_sync_fs,
2290 	.show_options	= btrfs_show_options,
2291 	.show_devname	= btrfs_show_devname,
2292 	.write_inode	= btrfs_write_inode,
2293 	.alloc_inode	= btrfs_alloc_inode,
2294 	.destroy_inode	= btrfs_destroy_inode,
2295 	.statfs		= btrfs_statfs,
2296 	.remount_fs	= btrfs_remount,
2297 	.freeze_fs	= btrfs_freeze,
2298 	.unfreeze_fs	= btrfs_unfreeze,
2299 };
2300 
2301 static const struct file_operations btrfs_ctl_fops = {
2302 	.open = btrfs_control_open,
2303 	.unlocked_ioctl	 = btrfs_control_ioctl,
2304 	.compat_ioctl = btrfs_control_ioctl,
2305 	.owner	 = THIS_MODULE,
2306 	.llseek = noop_llseek,
2307 };
2308 
2309 static struct miscdevice btrfs_misc = {
2310 	.minor		= BTRFS_MINOR,
2311 	.name		= "btrfs-control",
2312 	.fops		= &btrfs_ctl_fops
2313 };
2314 
2315 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2316 MODULE_ALIAS("devname:btrfs-control");
2317 
2318 static int btrfs_interface_init(void)
2319 {
2320 	return misc_register(&btrfs_misc);
2321 }
2322 
2323 static void btrfs_interface_exit(void)
2324 {
2325 	misc_deregister(&btrfs_misc);
2326 }
2327 
2328 static void btrfs_print_mod_info(void)
2329 {
2330 	pr_info("Btrfs loaded, crc32c=%s"
2331 #ifdef CONFIG_BTRFS_DEBUG
2332 			", debug=on"
2333 #endif
2334 #ifdef CONFIG_BTRFS_ASSERT
2335 			", assert=on"
2336 #endif
2337 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2338 			", integrity-checker=on"
2339 #endif
2340 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2341 			", ref-verify=on"
2342 #endif
2343 			"\n",
2344 			btrfs_crc32c_impl());
2345 }
2346 
2347 static int __init init_btrfs_fs(void)
2348 {
2349 	int err;
2350 
2351 	err = btrfs_hash_init();
2352 	if (err)
2353 		return err;
2354 
2355 	btrfs_props_init();
2356 
2357 	err = btrfs_init_sysfs();
2358 	if (err)
2359 		goto free_hash;
2360 
2361 	btrfs_init_compress();
2362 
2363 	err = btrfs_init_cachep();
2364 	if (err)
2365 		goto free_compress;
2366 
2367 	err = extent_io_init();
2368 	if (err)
2369 		goto free_cachep;
2370 
2371 	err = extent_map_init();
2372 	if (err)
2373 		goto free_extent_io;
2374 
2375 	err = ordered_data_init();
2376 	if (err)
2377 		goto free_extent_map;
2378 
2379 	err = btrfs_delayed_inode_init();
2380 	if (err)
2381 		goto free_ordered_data;
2382 
2383 	err = btrfs_auto_defrag_init();
2384 	if (err)
2385 		goto free_delayed_inode;
2386 
2387 	err = btrfs_delayed_ref_init();
2388 	if (err)
2389 		goto free_auto_defrag;
2390 
2391 	err = btrfs_prelim_ref_init();
2392 	if (err)
2393 		goto free_delayed_ref;
2394 
2395 	err = btrfs_end_io_wq_init();
2396 	if (err)
2397 		goto free_prelim_ref;
2398 
2399 	err = btrfs_interface_init();
2400 	if (err)
2401 		goto free_end_io_wq;
2402 
2403 	btrfs_init_lockdep();
2404 
2405 	btrfs_print_mod_info();
2406 
2407 	err = btrfs_run_sanity_tests();
2408 	if (err)
2409 		goto unregister_ioctl;
2410 
2411 	err = register_filesystem(&btrfs_fs_type);
2412 	if (err)
2413 		goto unregister_ioctl;
2414 
2415 	return 0;
2416 
2417 unregister_ioctl:
2418 	btrfs_interface_exit();
2419 free_end_io_wq:
2420 	btrfs_end_io_wq_exit();
2421 free_prelim_ref:
2422 	btrfs_prelim_ref_exit();
2423 free_delayed_ref:
2424 	btrfs_delayed_ref_exit();
2425 free_auto_defrag:
2426 	btrfs_auto_defrag_exit();
2427 free_delayed_inode:
2428 	btrfs_delayed_inode_exit();
2429 free_ordered_data:
2430 	ordered_data_exit();
2431 free_extent_map:
2432 	extent_map_exit();
2433 free_extent_io:
2434 	extent_io_exit();
2435 free_cachep:
2436 	btrfs_destroy_cachep();
2437 free_compress:
2438 	btrfs_exit_compress();
2439 	btrfs_exit_sysfs();
2440 free_hash:
2441 	btrfs_hash_exit();
2442 	return err;
2443 }
2444 
2445 static void __exit exit_btrfs_fs(void)
2446 {
2447 	btrfs_destroy_cachep();
2448 	btrfs_delayed_ref_exit();
2449 	btrfs_auto_defrag_exit();
2450 	btrfs_delayed_inode_exit();
2451 	btrfs_prelim_ref_exit();
2452 	ordered_data_exit();
2453 	extent_map_exit();
2454 	extent_io_exit();
2455 	btrfs_interface_exit();
2456 	btrfs_end_io_wq_exit();
2457 	unregister_filesystem(&btrfs_fs_type);
2458 	btrfs_exit_sysfs();
2459 	btrfs_cleanup_fs_uuids();
2460 	btrfs_exit_compress();
2461 	btrfs_hash_exit();
2462 }
2463 
2464 late_initcall(init_btrfs_fs);
2465 module_exit(exit_btrfs_fs)
2466 
2467 MODULE_LICENSE("GPL");
2468