1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/btrfs.h> 65 66 static const struct super_operations btrfs_super_ops; 67 static struct file_system_type btrfs_fs_type; 68 69 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 70 71 static const char *btrfs_decode_error(int errno) 72 { 73 char *errstr = "unknown"; 74 75 switch (errno) { 76 case -EIO: 77 errstr = "IO failure"; 78 break; 79 case -ENOMEM: 80 errstr = "Out of memory"; 81 break; 82 case -EROFS: 83 errstr = "Readonly filesystem"; 84 break; 85 case -EEXIST: 86 errstr = "Object already exists"; 87 break; 88 case -ENOSPC: 89 errstr = "No space left"; 90 break; 91 case -ENOENT: 92 errstr = "No such entry"; 93 break; 94 } 95 96 return errstr; 97 } 98 99 static void save_error_info(struct btrfs_fs_info *fs_info) 100 { 101 /* 102 * today we only save the error info into ram. Long term we'll 103 * also send it down to the disk 104 */ 105 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 106 } 107 108 /* btrfs handle error by forcing the filesystem readonly */ 109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 110 { 111 struct super_block *sb = fs_info->sb; 112 113 if (sb->s_flags & MS_RDONLY) 114 return; 115 116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 117 sb->s_flags |= MS_RDONLY; 118 btrfs_info(fs_info, "forced readonly"); 119 /* 120 * Note that a running device replace operation is not 121 * canceled here although there is no way to update 122 * the progress. It would add the risk of a deadlock, 123 * therefore the canceling is ommited. The only penalty 124 * is that some I/O remains active until the procedure 125 * completes. The next time when the filesystem is 126 * mounted writeable again, the device replace 127 * operation continues. 128 */ 129 } 130 } 131 132 #ifdef CONFIG_PRINTK 133 /* 134 * __btrfs_std_error decodes expected errors from the caller and 135 * invokes the approciate error response. 136 */ 137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 138 unsigned int line, int errno, const char *fmt, ...) 139 { 140 struct super_block *sb = fs_info->sb; 141 const char *errstr; 142 143 /* 144 * Special case: if the error is EROFS, and we're already 145 * under MS_RDONLY, then it is safe here. 146 */ 147 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 148 return; 149 150 errstr = btrfs_decode_error(errno); 151 if (fmt) { 152 struct va_format vaf; 153 va_list args; 154 155 va_start(args, fmt); 156 vaf.fmt = fmt; 157 vaf.va = &args; 158 159 printk(KERN_CRIT 160 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 161 sb->s_id, function, line, errno, errstr, &vaf); 162 va_end(args); 163 } else { 164 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 165 sb->s_id, function, line, errno, errstr); 166 } 167 168 /* Don't go through full error handling during mount */ 169 save_error_info(fs_info); 170 if (sb->s_flags & MS_BORN) 171 btrfs_handle_error(fs_info); 172 } 173 174 static const char * const logtypes[] = { 175 "emergency", 176 "alert", 177 "critical", 178 "error", 179 "warning", 180 "notice", 181 "info", 182 "debug", 183 }; 184 185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 186 { 187 struct super_block *sb = fs_info->sb; 188 char lvl[4]; 189 struct va_format vaf; 190 va_list args; 191 const char *type = logtypes[4]; 192 int kern_level; 193 194 va_start(args, fmt); 195 196 kern_level = printk_get_level(fmt); 197 if (kern_level) { 198 size_t size = printk_skip_level(fmt) - fmt; 199 memcpy(lvl, fmt, size); 200 lvl[size] = '\0'; 201 fmt += size; 202 type = logtypes[kern_level - '0']; 203 } else 204 *lvl = '\0'; 205 206 vaf.fmt = fmt; 207 vaf.va = &args; 208 209 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 210 211 va_end(args); 212 } 213 214 #else 215 216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 217 unsigned int line, int errno, const char *fmt, ...) 218 { 219 struct super_block *sb = fs_info->sb; 220 221 /* 222 * Special case: if the error is EROFS, and we're already 223 * under MS_RDONLY, then it is safe here. 224 */ 225 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 226 return; 227 228 /* Don't go through full error handling during mount */ 229 if (sb->s_flags & MS_BORN) { 230 save_error_info(fs_info); 231 btrfs_handle_error(fs_info); 232 } 233 } 234 #endif 235 236 /* 237 * We only mark the transaction aborted and then set the file system read-only. 238 * This will prevent new transactions from starting or trying to join this 239 * one. 240 * 241 * This means that error recovery at the call site is limited to freeing 242 * any local memory allocations and passing the error code up without 243 * further cleanup. The transaction should complete as it normally would 244 * in the call path but will return -EIO. 245 * 246 * We'll complete the cleanup in btrfs_end_transaction and 247 * btrfs_commit_transaction. 248 */ 249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 250 struct btrfs_root *root, const char *function, 251 unsigned int line, int errno) 252 { 253 /* 254 * Report first abort since mount 255 */ 256 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, 257 &root->fs_info->fs_state)) { 258 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n", 259 errno); 260 } 261 trans->aborted = errno; 262 /* Nothing used. The other threads that have joined this 263 * transaction may be able to continue. */ 264 if (!trans->blocks_used) { 265 const char *errstr; 266 267 errstr = btrfs_decode_error(errno); 268 btrfs_warn(root->fs_info, 269 "%s:%d: Aborting unused transaction(%s).", 270 function, line, errstr); 271 return; 272 } 273 ACCESS_ONCE(trans->transaction->aborted) = errno; 274 /* Wake up anybody who may be waiting on this transaction */ 275 wake_up(&root->fs_info->transaction_wait); 276 wake_up(&root->fs_info->transaction_blocked_wait); 277 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 278 } 279 /* 280 * __btrfs_panic decodes unexpected, fatal errors from the caller, 281 * issues an alert, and either panics or BUGs, depending on mount options. 282 */ 283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 284 unsigned int line, int errno, const char *fmt, ...) 285 { 286 char *s_id = "<unknown>"; 287 const char *errstr; 288 struct va_format vaf = { .fmt = fmt }; 289 va_list args; 290 291 if (fs_info) 292 s_id = fs_info->sb->s_id; 293 294 va_start(args, fmt); 295 vaf.va = &args; 296 297 errstr = btrfs_decode_error(errno); 298 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 299 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 300 s_id, function, line, &vaf, errno, errstr); 301 302 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 303 function, line, &vaf, errno, errstr); 304 va_end(args); 305 /* Caller calls BUG() */ 306 } 307 308 static void btrfs_put_super(struct super_block *sb) 309 { 310 (void)close_ctree(btrfs_sb(sb)->tree_root); 311 /* FIXME: need to fix VFS to return error? */ 312 /* AV: return it _where_? ->put_super() can be triggered by any number 313 * of async events, up to and including delivery of SIGKILL to the 314 * last process that kept it busy. Or segfault in the aforementioned 315 * process... Whom would you report that to? 316 */ 317 } 318 319 enum { 320 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 321 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 322 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 323 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 324 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 325 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 326 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 327 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 328 Opt_check_integrity, Opt_check_integrity_including_extent_data, 329 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 330 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 331 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 332 Opt_datasum, Opt_treelog, Opt_noinode_cache, 333 Opt_err, 334 }; 335 336 static match_table_t tokens = { 337 {Opt_degraded, "degraded"}, 338 {Opt_subvol, "subvol=%s"}, 339 {Opt_subvolid, "subvolid=%s"}, 340 {Opt_device, "device=%s"}, 341 {Opt_nodatasum, "nodatasum"}, 342 {Opt_datasum, "datasum"}, 343 {Opt_nodatacow, "nodatacow"}, 344 {Opt_datacow, "datacow"}, 345 {Opt_nobarrier, "nobarrier"}, 346 {Opt_barrier, "barrier"}, 347 {Opt_max_inline, "max_inline=%s"}, 348 {Opt_alloc_start, "alloc_start=%s"}, 349 {Opt_thread_pool, "thread_pool=%d"}, 350 {Opt_compress, "compress"}, 351 {Opt_compress_type, "compress=%s"}, 352 {Opt_compress_force, "compress-force"}, 353 {Opt_compress_force_type, "compress-force=%s"}, 354 {Opt_ssd, "ssd"}, 355 {Opt_ssd_spread, "ssd_spread"}, 356 {Opt_nossd, "nossd"}, 357 {Opt_acl, "acl"}, 358 {Opt_noacl, "noacl"}, 359 {Opt_notreelog, "notreelog"}, 360 {Opt_treelog, "treelog"}, 361 {Opt_flushoncommit, "flushoncommit"}, 362 {Opt_noflushoncommit, "noflushoncommit"}, 363 {Opt_ratio, "metadata_ratio=%d"}, 364 {Opt_discard, "discard"}, 365 {Opt_nodiscard, "nodiscard"}, 366 {Opt_space_cache, "space_cache"}, 367 {Opt_clear_cache, "clear_cache"}, 368 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 369 {Opt_enospc_debug, "enospc_debug"}, 370 {Opt_noenospc_debug, "noenospc_debug"}, 371 {Opt_subvolrootid, "subvolrootid=%d"}, 372 {Opt_defrag, "autodefrag"}, 373 {Opt_nodefrag, "noautodefrag"}, 374 {Opt_inode_cache, "inode_cache"}, 375 {Opt_noinode_cache, "noinode_cache"}, 376 {Opt_no_space_cache, "nospace_cache"}, 377 {Opt_recovery, "recovery"}, 378 {Opt_skip_balance, "skip_balance"}, 379 {Opt_check_integrity, "check_int"}, 380 {Opt_check_integrity_including_extent_data, "check_int_data"}, 381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 383 {Opt_fatal_errors, "fatal_errors=%s"}, 384 {Opt_commit_interval, "commit=%d"}, 385 {Opt_err, NULL}, 386 }; 387 388 /* 389 * Regular mount options parser. Everything that is needed only when 390 * reading in a new superblock is parsed here. 391 * XXX JDM: This needs to be cleaned up for remount. 392 */ 393 int btrfs_parse_options(struct btrfs_root *root, char *options) 394 { 395 struct btrfs_fs_info *info = root->fs_info; 396 substring_t args[MAX_OPT_ARGS]; 397 char *p, *num, *orig = NULL; 398 u64 cache_gen; 399 int intarg; 400 int ret = 0; 401 char *compress_type; 402 bool compress_force = false; 403 bool compress = false; 404 405 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 406 if (cache_gen) 407 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 408 409 if (!options) 410 goto out; 411 412 /* 413 * strsep changes the string, duplicate it because parse_options 414 * gets called twice 415 */ 416 options = kstrdup(options, GFP_NOFS); 417 if (!options) 418 return -ENOMEM; 419 420 orig = options; 421 422 while ((p = strsep(&options, ",")) != NULL) { 423 int token; 424 if (!*p) 425 continue; 426 427 token = match_token(p, tokens, args); 428 switch (token) { 429 case Opt_degraded: 430 btrfs_info(root->fs_info, "allowing degraded mounts"); 431 btrfs_set_opt(info->mount_opt, DEGRADED); 432 break; 433 case Opt_subvol: 434 case Opt_subvolid: 435 case Opt_subvolrootid: 436 case Opt_device: 437 /* 438 * These are parsed by btrfs_parse_early_options 439 * and can be happily ignored here. 440 */ 441 break; 442 case Opt_nodatasum: 443 btrfs_set_and_info(root, NODATASUM, 444 "setting nodatasum"); 445 break; 446 case Opt_datasum: 447 if (btrfs_test_opt(root, NODATASUM)) { 448 if (btrfs_test_opt(root, NODATACOW)) 449 btrfs_info(root->fs_info, "setting datasum, datacow enabled"); 450 else 451 btrfs_info(root->fs_info, "setting datasum"); 452 } 453 btrfs_clear_opt(info->mount_opt, NODATACOW); 454 btrfs_clear_opt(info->mount_opt, NODATASUM); 455 break; 456 case Opt_nodatacow: 457 if (!btrfs_test_opt(root, NODATACOW)) { 458 if (!btrfs_test_opt(root, COMPRESS) || 459 !btrfs_test_opt(root, FORCE_COMPRESS)) { 460 btrfs_info(root->fs_info, 461 "setting nodatacow, compression disabled"); 462 } else { 463 btrfs_info(root->fs_info, "setting nodatacow"); 464 } 465 } 466 btrfs_clear_opt(info->mount_opt, COMPRESS); 467 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 468 btrfs_set_opt(info->mount_opt, NODATACOW); 469 btrfs_set_opt(info->mount_opt, NODATASUM); 470 break; 471 case Opt_datacow: 472 btrfs_clear_and_info(root, NODATACOW, 473 "setting datacow"); 474 break; 475 case Opt_compress_force: 476 case Opt_compress_force_type: 477 compress_force = true; 478 /* Fallthrough */ 479 case Opt_compress: 480 case Opt_compress_type: 481 compress = true; 482 if (token == Opt_compress || 483 token == Opt_compress_force || 484 strcmp(args[0].from, "zlib") == 0) { 485 compress_type = "zlib"; 486 info->compress_type = BTRFS_COMPRESS_ZLIB; 487 btrfs_set_opt(info->mount_opt, COMPRESS); 488 btrfs_clear_opt(info->mount_opt, NODATACOW); 489 btrfs_clear_opt(info->mount_opt, NODATASUM); 490 } else if (strcmp(args[0].from, "lzo") == 0) { 491 compress_type = "lzo"; 492 info->compress_type = BTRFS_COMPRESS_LZO; 493 btrfs_set_opt(info->mount_opt, COMPRESS); 494 btrfs_clear_opt(info->mount_opt, NODATACOW); 495 btrfs_clear_opt(info->mount_opt, NODATASUM); 496 btrfs_set_fs_incompat(info, COMPRESS_LZO); 497 } else if (strncmp(args[0].from, "no", 2) == 0) { 498 compress_type = "no"; 499 btrfs_clear_opt(info->mount_opt, COMPRESS); 500 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 501 compress_force = false; 502 } else { 503 ret = -EINVAL; 504 goto out; 505 } 506 507 if (compress_force) { 508 btrfs_set_and_info(root, FORCE_COMPRESS, 509 "force %s compression", 510 compress_type); 511 } else if (compress) { 512 if (!btrfs_test_opt(root, COMPRESS)) 513 btrfs_info(root->fs_info, 514 "btrfs: use %s compression", 515 compress_type); 516 } 517 break; 518 case Opt_ssd: 519 btrfs_set_and_info(root, SSD, 520 "use ssd allocation scheme"); 521 break; 522 case Opt_ssd_spread: 523 btrfs_set_and_info(root, SSD_SPREAD, 524 "use spread ssd allocation scheme"); 525 break; 526 case Opt_nossd: 527 btrfs_clear_and_info(root, NOSSD, 528 "not using ssd allocation scheme"); 529 btrfs_clear_opt(info->mount_opt, SSD); 530 break; 531 case Opt_barrier: 532 btrfs_clear_and_info(root, NOBARRIER, 533 "turning on barriers"); 534 break; 535 case Opt_nobarrier: 536 btrfs_set_and_info(root, NOBARRIER, 537 "turning off barriers"); 538 break; 539 case Opt_thread_pool: 540 ret = match_int(&args[0], &intarg); 541 if (ret) { 542 goto out; 543 } else if (intarg > 0) { 544 info->thread_pool_size = intarg; 545 } else { 546 ret = -EINVAL; 547 goto out; 548 } 549 break; 550 case Opt_max_inline: 551 num = match_strdup(&args[0]); 552 if (num) { 553 info->max_inline = memparse(num, NULL); 554 kfree(num); 555 556 if (info->max_inline) { 557 info->max_inline = min_t(u64, 558 info->max_inline, 559 root->sectorsize); 560 } 561 btrfs_info(root->fs_info, "max_inline at %llu", 562 info->max_inline); 563 } else { 564 ret = -ENOMEM; 565 goto out; 566 } 567 break; 568 case Opt_alloc_start: 569 num = match_strdup(&args[0]); 570 if (num) { 571 mutex_lock(&info->chunk_mutex); 572 info->alloc_start = memparse(num, NULL); 573 mutex_unlock(&info->chunk_mutex); 574 kfree(num); 575 btrfs_info(root->fs_info, "allocations start at %llu", 576 info->alloc_start); 577 } else { 578 ret = -ENOMEM; 579 goto out; 580 } 581 break; 582 case Opt_acl: 583 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 584 root->fs_info->sb->s_flags |= MS_POSIXACL; 585 break; 586 #else 587 btrfs_err(root->fs_info, 588 "support for ACL not compiled in!"); 589 ret = -EINVAL; 590 goto out; 591 #endif 592 case Opt_noacl: 593 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 594 break; 595 case Opt_notreelog: 596 btrfs_set_and_info(root, NOTREELOG, 597 "disabling tree log"); 598 break; 599 case Opt_treelog: 600 btrfs_clear_and_info(root, NOTREELOG, 601 "enabling tree log"); 602 break; 603 case Opt_flushoncommit: 604 btrfs_set_and_info(root, FLUSHONCOMMIT, 605 "turning on flush-on-commit"); 606 break; 607 case Opt_noflushoncommit: 608 btrfs_clear_and_info(root, FLUSHONCOMMIT, 609 "turning off flush-on-commit"); 610 break; 611 case Opt_ratio: 612 ret = match_int(&args[0], &intarg); 613 if (ret) { 614 goto out; 615 } else if (intarg >= 0) { 616 info->metadata_ratio = intarg; 617 btrfs_info(root->fs_info, "metadata ratio %d", 618 info->metadata_ratio); 619 } else { 620 ret = -EINVAL; 621 goto out; 622 } 623 break; 624 case Opt_discard: 625 btrfs_set_and_info(root, DISCARD, 626 "turning on discard"); 627 break; 628 case Opt_nodiscard: 629 btrfs_clear_and_info(root, DISCARD, 630 "turning off discard"); 631 break; 632 case Opt_space_cache: 633 btrfs_set_and_info(root, SPACE_CACHE, 634 "enabling disk space caching"); 635 break; 636 case Opt_rescan_uuid_tree: 637 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 638 break; 639 case Opt_no_space_cache: 640 btrfs_clear_and_info(root, SPACE_CACHE, 641 "disabling disk space caching"); 642 break; 643 case Opt_inode_cache: 644 btrfs_set_and_info(root, CHANGE_INODE_CACHE, 645 "enabling inode map caching"); 646 break; 647 case Opt_noinode_cache: 648 btrfs_clear_and_info(root, CHANGE_INODE_CACHE, 649 "disabling inode map caching"); 650 break; 651 case Opt_clear_cache: 652 btrfs_set_and_info(root, CLEAR_CACHE, 653 "force clearing of disk cache"); 654 break; 655 case Opt_user_subvol_rm_allowed: 656 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 657 break; 658 case Opt_enospc_debug: 659 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 660 break; 661 case Opt_noenospc_debug: 662 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 663 break; 664 case Opt_defrag: 665 btrfs_set_and_info(root, AUTO_DEFRAG, 666 "enabling auto defrag"); 667 break; 668 case Opt_nodefrag: 669 btrfs_clear_and_info(root, AUTO_DEFRAG, 670 "disabling auto defrag"); 671 break; 672 case Opt_recovery: 673 btrfs_info(root->fs_info, "enabling auto recovery"); 674 btrfs_set_opt(info->mount_opt, RECOVERY); 675 break; 676 case Opt_skip_balance: 677 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 678 break; 679 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 680 case Opt_check_integrity_including_extent_data: 681 btrfs_info(root->fs_info, 682 "enabling check integrity including extent data"); 683 btrfs_set_opt(info->mount_opt, 684 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 685 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 686 break; 687 case Opt_check_integrity: 688 btrfs_info(root->fs_info, "enabling check integrity"); 689 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 690 break; 691 case Opt_check_integrity_print_mask: 692 ret = match_int(&args[0], &intarg); 693 if (ret) { 694 goto out; 695 } else if (intarg >= 0) { 696 info->check_integrity_print_mask = intarg; 697 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x", 698 info->check_integrity_print_mask); 699 } else { 700 ret = -EINVAL; 701 goto out; 702 } 703 break; 704 #else 705 case Opt_check_integrity_including_extent_data: 706 case Opt_check_integrity: 707 case Opt_check_integrity_print_mask: 708 btrfs_err(root->fs_info, 709 "support for check_integrity* not compiled in!"); 710 ret = -EINVAL; 711 goto out; 712 #endif 713 case Opt_fatal_errors: 714 if (strcmp(args[0].from, "panic") == 0) 715 btrfs_set_opt(info->mount_opt, 716 PANIC_ON_FATAL_ERROR); 717 else if (strcmp(args[0].from, "bug") == 0) 718 btrfs_clear_opt(info->mount_opt, 719 PANIC_ON_FATAL_ERROR); 720 else { 721 ret = -EINVAL; 722 goto out; 723 } 724 break; 725 case Opt_commit_interval: 726 intarg = 0; 727 ret = match_int(&args[0], &intarg); 728 if (ret < 0) { 729 btrfs_err(root->fs_info, "invalid commit interval"); 730 ret = -EINVAL; 731 goto out; 732 } 733 if (intarg > 0) { 734 if (intarg > 300) { 735 btrfs_warn(root->fs_info, "excessive commit interval %d", 736 intarg); 737 } 738 info->commit_interval = intarg; 739 } else { 740 btrfs_info(root->fs_info, "using default commit interval %ds", 741 BTRFS_DEFAULT_COMMIT_INTERVAL); 742 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 743 } 744 break; 745 case Opt_err: 746 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p); 747 ret = -EINVAL; 748 goto out; 749 default: 750 break; 751 } 752 } 753 out: 754 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 755 btrfs_info(root->fs_info, "disk space caching is enabled"); 756 kfree(orig); 757 return ret; 758 } 759 760 /* 761 * Parse mount options that are required early in the mount process. 762 * 763 * All other options will be parsed on much later in the mount process and 764 * only when we need to allocate a new super block. 765 */ 766 static int btrfs_parse_early_options(const char *options, fmode_t flags, 767 void *holder, char **subvol_name, u64 *subvol_objectid, 768 struct btrfs_fs_devices **fs_devices) 769 { 770 substring_t args[MAX_OPT_ARGS]; 771 char *device_name, *opts, *orig, *p; 772 char *num = NULL; 773 int error = 0; 774 775 if (!options) 776 return 0; 777 778 /* 779 * strsep changes the string, duplicate it because parse_options 780 * gets called twice 781 */ 782 opts = kstrdup(options, GFP_KERNEL); 783 if (!opts) 784 return -ENOMEM; 785 orig = opts; 786 787 while ((p = strsep(&opts, ",")) != NULL) { 788 int token; 789 if (!*p) 790 continue; 791 792 token = match_token(p, tokens, args); 793 switch (token) { 794 case Opt_subvol: 795 kfree(*subvol_name); 796 *subvol_name = match_strdup(&args[0]); 797 if (!*subvol_name) { 798 error = -ENOMEM; 799 goto out; 800 } 801 break; 802 case Opt_subvolid: 803 num = match_strdup(&args[0]); 804 if (num) { 805 *subvol_objectid = memparse(num, NULL); 806 kfree(num); 807 /* we want the original fs_tree */ 808 if (!*subvol_objectid) 809 *subvol_objectid = 810 BTRFS_FS_TREE_OBJECTID; 811 } else { 812 error = -EINVAL; 813 goto out; 814 } 815 break; 816 case Opt_subvolrootid: 817 printk(KERN_WARNING 818 "BTRFS: 'subvolrootid' mount option is deprecated and has " 819 "no effect\n"); 820 break; 821 case Opt_device: 822 device_name = match_strdup(&args[0]); 823 if (!device_name) { 824 error = -ENOMEM; 825 goto out; 826 } 827 error = btrfs_scan_one_device(device_name, 828 flags, holder, fs_devices); 829 kfree(device_name); 830 if (error) 831 goto out; 832 break; 833 default: 834 break; 835 } 836 } 837 838 out: 839 kfree(orig); 840 return error; 841 } 842 843 static struct dentry *get_default_root(struct super_block *sb, 844 u64 subvol_objectid) 845 { 846 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 847 struct btrfs_root *root = fs_info->tree_root; 848 struct btrfs_root *new_root; 849 struct btrfs_dir_item *di; 850 struct btrfs_path *path; 851 struct btrfs_key location; 852 struct inode *inode; 853 struct dentry *dentry; 854 u64 dir_id; 855 int new = 0; 856 857 /* 858 * We have a specific subvol we want to mount, just setup location and 859 * go look up the root. 860 */ 861 if (subvol_objectid) { 862 location.objectid = subvol_objectid; 863 location.type = BTRFS_ROOT_ITEM_KEY; 864 location.offset = (u64)-1; 865 goto find_root; 866 } 867 868 path = btrfs_alloc_path(); 869 if (!path) 870 return ERR_PTR(-ENOMEM); 871 path->leave_spinning = 1; 872 873 /* 874 * Find the "default" dir item which points to the root item that we 875 * will mount by default if we haven't been given a specific subvolume 876 * to mount. 877 */ 878 dir_id = btrfs_super_root_dir(fs_info->super_copy); 879 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 880 if (IS_ERR(di)) { 881 btrfs_free_path(path); 882 return ERR_CAST(di); 883 } 884 if (!di) { 885 /* 886 * Ok the default dir item isn't there. This is weird since 887 * it's always been there, but don't freak out, just try and 888 * mount to root most subvolume. 889 */ 890 btrfs_free_path(path); 891 dir_id = BTRFS_FIRST_FREE_OBJECTID; 892 new_root = fs_info->fs_root; 893 goto setup_root; 894 } 895 896 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 897 btrfs_free_path(path); 898 899 find_root: 900 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 901 if (IS_ERR(new_root)) 902 return ERR_CAST(new_root); 903 904 dir_id = btrfs_root_dirid(&new_root->root_item); 905 setup_root: 906 location.objectid = dir_id; 907 location.type = BTRFS_INODE_ITEM_KEY; 908 location.offset = 0; 909 910 inode = btrfs_iget(sb, &location, new_root, &new); 911 if (IS_ERR(inode)) 912 return ERR_CAST(inode); 913 914 /* 915 * If we're just mounting the root most subvol put the inode and return 916 * a reference to the dentry. We will have already gotten a reference 917 * to the inode in btrfs_fill_super so we're good to go. 918 */ 919 if (!new && sb->s_root->d_inode == inode) { 920 iput(inode); 921 return dget(sb->s_root); 922 } 923 924 dentry = d_obtain_alias(inode); 925 if (!IS_ERR(dentry)) { 926 spin_lock(&dentry->d_lock); 927 dentry->d_flags &= ~DCACHE_DISCONNECTED; 928 spin_unlock(&dentry->d_lock); 929 } 930 return dentry; 931 } 932 933 static int btrfs_fill_super(struct super_block *sb, 934 struct btrfs_fs_devices *fs_devices, 935 void *data, int silent) 936 { 937 struct inode *inode; 938 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 939 struct btrfs_key key; 940 int err; 941 942 sb->s_maxbytes = MAX_LFS_FILESIZE; 943 sb->s_magic = BTRFS_SUPER_MAGIC; 944 sb->s_op = &btrfs_super_ops; 945 sb->s_d_op = &btrfs_dentry_operations; 946 sb->s_export_op = &btrfs_export_ops; 947 sb->s_xattr = btrfs_xattr_handlers; 948 sb->s_time_gran = 1; 949 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 950 sb->s_flags |= MS_POSIXACL; 951 #endif 952 sb->s_flags |= MS_I_VERSION; 953 err = open_ctree(sb, fs_devices, (char *)data); 954 if (err) { 955 printk(KERN_ERR "BTRFS: open_ctree failed\n"); 956 return err; 957 } 958 959 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 960 key.type = BTRFS_INODE_ITEM_KEY; 961 key.offset = 0; 962 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 963 if (IS_ERR(inode)) { 964 err = PTR_ERR(inode); 965 goto fail_close; 966 } 967 968 sb->s_root = d_make_root(inode); 969 if (!sb->s_root) { 970 err = -ENOMEM; 971 goto fail_close; 972 } 973 974 save_mount_options(sb, data); 975 cleancache_init_fs(sb); 976 sb->s_flags |= MS_ACTIVE; 977 return 0; 978 979 fail_close: 980 close_ctree(fs_info->tree_root); 981 return err; 982 } 983 984 int btrfs_sync_fs(struct super_block *sb, int wait) 985 { 986 struct btrfs_trans_handle *trans; 987 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 988 struct btrfs_root *root = fs_info->tree_root; 989 990 trace_btrfs_sync_fs(wait); 991 992 if (!wait) { 993 filemap_flush(fs_info->btree_inode->i_mapping); 994 return 0; 995 } 996 997 btrfs_wait_ordered_roots(fs_info, -1); 998 999 trans = btrfs_attach_transaction_barrier(root); 1000 if (IS_ERR(trans)) { 1001 /* no transaction, don't bother */ 1002 if (PTR_ERR(trans) == -ENOENT) 1003 return 0; 1004 return PTR_ERR(trans); 1005 } 1006 return btrfs_commit_transaction(trans, root); 1007 } 1008 1009 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1010 { 1011 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1012 struct btrfs_root *root = info->tree_root; 1013 char *compress_type; 1014 1015 if (btrfs_test_opt(root, DEGRADED)) 1016 seq_puts(seq, ",degraded"); 1017 if (btrfs_test_opt(root, NODATASUM)) 1018 seq_puts(seq, ",nodatasum"); 1019 if (btrfs_test_opt(root, NODATACOW)) 1020 seq_puts(seq, ",nodatacow"); 1021 if (btrfs_test_opt(root, NOBARRIER)) 1022 seq_puts(seq, ",nobarrier"); 1023 if (info->max_inline != 8192 * 1024) 1024 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1025 if (info->alloc_start != 0) 1026 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1027 if (info->thread_pool_size != min_t(unsigned long, 1028 num_online_cpus() + 2, 8)) 1029 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1030 if (btrfs_test_opt(root, COMPRESS)) { 1031 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1032 compress_type = "zlib"; 1033 else 1034 compress_type = "lzo"; 1035 if (btrfs_test_opt(root, FORCE_COMPRESS)) 1036 seq_printf(seq, ",compress-force=%s", compress_type); 1037 else 1038 seq_printf(seq, ",compress=%s", compress_type); 1039 } 1040 if (btrfs_test_opt(root, NOSSD)) 1041 seq_puts(seq, ",nossd"); 1042 if (btrfs_test_opt(root, SSD_SPREAD)) 1043 seq_puts(seq, ",ssd_spread"); 1044 else if (btrfs_test_opt(root, SSD)) 1045 seq_puts(seq, ",ssd"); 1046 if (btrfs_test_opt(root, NOTREELOG)) 1047 seq_puts(seq, ",notreelog"); 1048 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 1049 seq_puts(seq, ",flushoncommit"); 1050 if (btrfs_test_opt(root, DISCARD)) 1051 seq_puts(seq, ",discard"); 1052 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 1053 seq_puts(seq, ",noacl"); 1054 if (btrfs_test_opt(root, SPACE_CACHE)) 1055 seq_puts(seq, ",space_cache"); 1056 else 1057 seq_puts(seq, ",nospace_cache"); 1058 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 1059 seq_puts(seq, ",rescan_uuid_tree"); 1060 if (btrfs_test_opt(root, CLEAR_CACHE)) 1061 seq_puts(seq, ",clear_cache"); 1062 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1063 seq_puts(seq, ",user_subvol_rm_allowed"); 1064 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 1065 seq_puts(seq, ",enospc_debug"); 1066 if (btrfs_test_opt(root, AUTO_DEFRAG)) 1067 seq_puts(seq, ",autodefrag"); 1068 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 1069 seq_puts(seq, ",inode_cache"); 1070 if (btrfs_test_opt(root, SKIP_BALANCE)) 1071 seq_puts(seq, ",skip_balance"); 1072 if (btrfs_test_opt(root, RECOVERY)) 1073 seq_puts(seq, ",recovery"); 1074 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1075 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1076 seq_puts(seq, ",check_int_data"); 1077 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1078 seq_puts(seq, ",check_int"); 1079 if (info->check_integrity_print_mask) 1080 seq_printf(seq, ",check_int_print_mask=%d", 1081 info->check_integrity_print_mask); 1082 #endif 1083 if (info->metadata_ratio) 1084 seq_printf(seq, ",metadata_ratio=%d", 1085 info->metadata_ratio); 1086 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1087 seq_puts(seq, ",fatal_errors=panic"); 1088 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1089 seq_printf(seq, ",commit=%d", info->commit_interval); 1090 return 0; 1091 } 1092 1093 static int btrfs_test_super(struct super_block *s, void *data) 1094 { 1095 struct btrfs_fs_info *p = data; 1096 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1097 1098 return fs_info->fs_devices == p->fs_devices; 1099 } 1100 1101 static int btrfs_set_super(struct super_block *s, void *data) 1102 { 1103 int err = set_anon_super(s, data); 1104 if (!err) 1105 s->s_fs_info = data; 1106 return err; 1107 } 1108 1109 /* 1110 * subvolumes are identified by ino 256 1111 */ 1112 static inline int is_subvolume_inode(struct inode *inode) 1113 { 1114 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1115 return 1; 1116 return 0; 1117 } 1118 1119 /* 1120 * This will strip out the subvol=%s argument for an argument string and add 1121 * subvolid=0 to make sure we get the actual tree root for path walking to the 1122 * subvol we want. 1123 */ 1124 static char *setup_root_args(char *args) 1125 { 1126 unsigned len = strlen(args) + 2 + 1; 1127 char *src, *dst, *buf; 1128 1129 /* 1130 * We need the same args as before, but with this substitution: 1131 * s!subvol=[^,]+!subvolid=0! 1132 * 1133 * Since the replacement string is up to 2 bytes longer than the 1134 * original, allocate strlen(args) + 2 + 1 bytes. 1135 */ 1136 1137 src = strstr(args, "subvol="); 1138 /* This shouldn't happen, but just in case.. */ 1139 if (!src) 1140 return NULL; 1141 1142 buf = dst = kmalloc(len, GFP_NOFS); 1143 if (!buf) 1144 return NULL; 1145 1146 /* 1147 * If the subvol= arg is not at the start of the string, 1148 * copy whatever precedes it into buf. 1149 */ 1150 if (src != args) { 1151 *src++ = '\0'; 1152 strcpy(buf, args); 1153 dst += strlen(args); 1154 } 1155 1156 strcpy(dst, "subvolid=0"); 1157 dst += strlen("subvolid=0"); 1158 1159 /* 1160 * If there is a "," after the original subvol=... string, 1161 * copy that suffix into our buffer. Otherwise, we're done. 1162 */ 1163 src = strchr(src, ','); 1164 if (src) 1165 strcpy(dst, src); 1166 1167 return buf; 1168 } 1169 1170 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1171 const char *device_name, char *data) 1172 { 1173 struct dentry *root; 1174 struct vfsmount *mnt; 1175 char *newargs; 1176 1177 newargs = setup_root_args(data); 1178 if (!newargs) 1179 return ERR_PTR(-ENOMEM); 1180 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1181 newargs); 1182 1183 if (PTR_RET(mnt) == -EBUSY) { 1184 if (flags & MS_RDONLY) { 1185 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name, 1186 newargs); 1187 } else { 1188 int r; 1189 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name, 1190 newargs); 1191 if (IS_ERR(mnt)) { 1192 kfree(newargs); 1193 return ERR_CAST(mnt); 1194 } 1195 1196 r = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1197 if (r < 0) { 1198 /* FIXME: release vfsmount mnt ??*/ 1199 kfree(newargs); 1200 return ERR_PTR(r); 1201 } 1202 } 1203 } 1204 1205 kfree(newargs); 1206 1207 if (IS_ERR(mnt)) 1208 return ERR_CAST(mnt); 1209 1210 root = mount_subtree(mnt, subvol_name); 1211 1212 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1213 struct super_block *s = root->d_sb; 1214 dput(root); 1215 root = ERR_PTR(-EINVAL); 1216 deactivate_locked_super(s); 1217 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n", 1218 subvol_name); 1219 } 1220 1221 return root; 1222 } 1223 1224 /* 1225 * Find a superblock for the given device / mount point. 1226 * 1227 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1228 * for multiple device setup. Make sure to keep it in sync. 1229 */ 1230 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1231 const char *device_name, void *data) 1232 { 1233 struct block_device *bdev = NULL; 1234 struct super_block *s; 1235 struct dentry *root; 1236 struct btrfs_fs_devices *fs_devices = NULL; 1237 struct btrfs_fs_info *fs_info = NULL; 1238 fmode_t mode = FMODE_READ; 1239 char *subvol_name = NULL; 1240 u64 subvol_objectid = 0; 1241 int error = 0; 1242 1243 if (!(flags & MS_RDONLY)) 1244 mode |= FMODE_WRITE; 1245 1246 error = btrfs_parse_early_options(data, mode, fs_type, 1247 &subvol_name, &subvol_objectid, 1248 &fs_devices); 1249 if (error) { 1250 kfree(subvol_name); 1251 return ERR_PTR(error); 1252 } 1253 1254 if (subvol_name) { 1255 root = mount_subvol(subvol_name, flags, device_name, data); 1256 kfree(subvol_name); 1257 return root; 1258 } 1259 1260 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1261 if (error) 1262 return ERR_PTR(error); 1263 1264 /* 1265 * Setup a dummy root and fs_info for test/set super. This is because 1266 * we don't actually fill this stuff out until open_ctree, but we need 1267 * it for searching for existing supers, so this lets us do that and 1268 * then open_ctree will properly initialize everything later. 1269 */ 1270 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1271 if (!fs_info) 1272 return ERR_PTR(-ENOMEM); 1273 1274 fs_info->fs_devices = fs_devices; 1275 1276 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1277 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1278 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1279 error = -ENOMEM; 1280 goto error_fs_info; 1281 } 1282 1283 error = btrfs_open_devices(fs_devices, mode, fs_type); 1284 if (error) 1285 goto error_fs_info; 1286 1287 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1288 error = -EACCES; 1289 goto error_close_devices; 1290 } 1291 1292 bdev = fs_devices->latest_bdev; 1293 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1294 fs_info); 1295 if (IS_ERR(s)) { 1296 error = PTR_ERR(s); 1297 goto error_close_devices; 1298 } 1299 1300 if (s->s_root) { 1301 btrfs_close_devices(fs_devices); 1302 free_fs_info(fs_info); 1303 if ((flags ^ s->s_flags) & MS_RDONLY) 1304 error = -EBUSY; 1305 } else { 1306 char b[BDEVNAME_SIZE]; 1307 1308 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1309 btrfs_sb(s)->bdev_holder = fs_type; 1310 error = btrfs_fill_super(s, fs_devices, data, 1311 flags & MS_SILENT ? 1 : 0); 1312 } 1313 1314 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1315 if (IS_ERR(root)) 1316 deactivate_locked_super(s); 1317 1318 return root; 1319 1320 error_close_devices: 1321 btrfs_close_devices(fs_devices); 1322 error_fs_info: 1323 free_fs_info(fs_info); 1324 return ERR_PTR(error); 1325 } 1326 1327 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1328 int new_pool_size, int old_pool_size) 1329 { 1330 if (new_pool_size == old_pool_size) 1331 return; 1332 1333 fs_info->thread_pool_size = new_pool_size; 1334 1335 btrfs_info(fs_info, "resize thread pool %d -> %d", 1336 old_pool_size, new_pool_size); 1337 1338 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1339 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1340 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1341 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1342 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1343 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1344 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1345 new_pool_size); 1346 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1347 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1348 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1349 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1350 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1351 new_pool_size); 1352 } 1353 1354 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1355 { 1356 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1357 } 1358 1359 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1360 unsigned long old_opts, int flags) 1361 { 1362 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1363 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1364 (flags & MS_RDONLY))) { 1365 /* wait for any defraggers to finish */ 1366 wait_event(fs_info->transaction_wait, 1367 (atomic_read(&fs_info->defrag_running) == 0)); 1368 if (flags & MS_RDONLY) 1369 sync_filesystem(fs_info->sb); 1370 } 1371 } 1372 1373 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1374 unsigned long old_opts) 1375 { 1376 /* 1377 * We need cleanup all defragable inodes if the autodefragment is 1378 * close or the fs is R/O. 1379 */ 1380 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1381 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1382 (fs_info->sb->s_flags & MS_RDONLY))) { 1383 btrfs_cleanup_defrag_inodes(fs_info); 1384 } 1385 1386 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1387 } 1388 1389 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1390 { 1391 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1392 struct btrfs_root *root = fs_info->tree_root; 1393 unsigned old_flags = sb->s_flags; 1394 unsigned long old_opts = fs_info->mount_opt; 1395 unsigned long old_compress_type = fs_info->compress_type; 1396 u64 old_max_inline = fs_info->max_inline; 1397 u64 old_alloc_start = fs_info->alloc_start; 1398 int old_thread_pool_size = fs_info->thread_pool_size; 1399 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1400 int ret; 1401 1402 sync_filesystem(sb); 1403 btrfs_remount_prepare(fs_info); 1404 1405 ret = btrfs_parse_options(root, data); 1406 if (ret) { 1407 ret = -EINVAL; 1408 goto restore; 1409 } 1410 1411 btrfs_remount_begin(fs_info, old_opts, *flags); 1412 btrfs_resize_thread_pool(fs_info, 1413 fs_info->thread_pool_size, old_thread_pool_size); 1414 1415 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1416 goto out; 1417 1418 if (*flags & MS_RDONLY) { 1419 /* 1420 * this also happens on 'umount -rf' or on shutdown, when 1421 * the filesystem is busy. 1422 */ 1423 cancel_work_sync(&fs_info->async_reclaim_work); 1424 1425 /* wait for the uuid_scan task to finish */ 1426 down(&fs_info->uuid_tree_rescan_sem); 1427 /* avoid complains from lockdep et al. */ 1428 up(&fs_info->uuid_tree_rescan_sem); 1429 1430 sb->s_flags |= MS_RDONLY; 1431 1432 btrfs_dev_replace_suspend_for_unmount(fs_info); 1433 btrfs_scrub_cancel(fs_info); 1434 btrfs_pause_balance(fs_info); 1435 1436 ret = btrfs_commit_super(root); 1437 if (ret) 1438 goto restore; 1439 } else { 1440 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1441 btrfs_err(fs_info, 1442 "Remounting read-write after error is not allowed"); 1443 ret = -EINVAL; 1444 goto restore; 1445 } 1446 if (fs_info->fs_devices->rw_devices == 0) { 1447 ret = -EACCES; 1448 goto restore; 1449 } 1450 1451 if (fs_info->fs_devices->missing_devices > 1452 fs_info->num_tolerated_disk_barrier_failures && 1453 !(*flags & MS_RDONLY)) { 1454 btrfs_warn(fs_info, 1455 "too many missing devices, writeable remount is not allowed"); 1456 ret = -EACCES; 1457 goto restore; 1458 } 1459 1460 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1461 ret = -EINVAL; 1462 goto restore; 1463 } 1464 1465 ret = btrfs_cleanup_fs_roots(fs_info); 1466 if (ret) 1467 goto restore; 1468 1469 /* recover relocation */ 1470 ret = btrfs_recover_relocation(root); 1471 if (ret) 1472 goto restore; 1473 1474 ret = btrfs_resume_balance_async(fs_info); 1475 if (ret) 1476 goto restore; 1477 1478 ret = btrfs_resume_dev_replace_async(fs_info); 1479 if (ret) { 1480 btrfs_warn(fs_info, "failed to resume dev_replace"); 1481 goto restore; 1482 } 1483 1484 if (!fs_info->uuid_root) { 1485 btrfs_info(fs_info, "creating UUID tree"); 1486 ret = btrfs_create_uuid_tree(fs_info); 1487 if (ret) { 1488 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret); 1489 goto restore; 1490 } 1491 } 1492 sb->s_flags &= ~MS_RDONLY; 1493 } 1494 out: 1495 wake_up_process(fs_info->transaction_kthread); 1496 btrfs_remount_cleanup(fs_info, old_opts); 1497 return 0; 1498 1499 restore: 1500 /* We've hit an error - don't reset MS_RDONLY */ 1501 if (sb->s_flags & MS_RDONLY) 1502 old_flags |= MS_RDONLY; 1503 sb->s_flags = old_flags; 1504 fs_info->mount_opt = old_opts; 1505 fs_info->compress_type = old_compress_type; 1506 fs_info->max_inline = old_max_inline; 1507 mutex_lock(&fs_info->chunk_mutex); 1508 fs_info->alloc_start = old_alloc_start; 1509 mutex_unlock(&fs_info->chunk_mutex); 1510 btrfs_resize_thread_pool(fs_info, 1511 old_thread_pool_size, fs_info->thread_pool_size); 1512 fs_info->metadata_ratio = old_metadata_ratio; 1513 btrfs_remount_cleanup(fs_info, old_opts); 1514 return ret; 1515 } 1516 1517 /* Used to sort the devices by max_avail(descending sort) */ 1518 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1519 const void *dev_info2) 1520 { 1521 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1522 ((struct btrfs_device_info *)dev_info2)->max_avail) 1523 return -1; 1524 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1525 ((struct btrfs_device_info *)dev_info2)->max_avail) 1526 return 1; 1527 else 1528 return 0; 1529 } 1530 1531 /* 1532 * sort the devices by max_avail, in which max free extent size of each device 1533 * is stored.(Descending Sort) 1534 */ 1535 static inline void btrfs_descending_sort_devices( 1536 struct btrfs_device_info *devices, 1537 size_t nr_devices) 1538 { 1539 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1540 btrfs_cmp_device_free_bytes, NULL); 1541 } 1542 1543 /* 1544 * The helper to calc the free space on the devices that can be used to store 1545 * file data. 1546 */ 1547 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1548 { 1549 struct btrfs_fs_info *fs_info = root->fs_info; 1550 struct btrfs_device_info *devices_info; 1551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1552 struct btrfs_device *device; 1553 u64 skip_space; 1554 u64 type; 1555 u64 avail_space; 1556 u64 used_space; 1557 u64 min_stripe_size; 1558 int min_stripes = 1, num_stripes = 1; 1559 int i = 0, nr_devices; 1560 int ret; 1561 1562 nr_devices = fs_info->fs_devices->open_devices; 1563 BUG_ON(!nr_devices); 1564 1565 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1566 GFP_NOFS); 1567 if (!devices_info) 1568 return -ENOMEM; 1569 1570 /* calc min stripe number for data space alloction */ 1571 type = btrfs_get_alloc_profile(root, 1); 1572 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1573 min_stripes = 2; 1574 num_stripes = nr_devices; 1575 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1576 min_stripes = 2; 1577 num_stripes = 2; 1578 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1579 min_stripes = 4; 1580 num_stripes = 4; 1581 } 1582 1583 if (type & BTRFS_BLOCK_GROUP_DUP) 1584 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1585 else 1586 min_stripe_size = BTRFS_STRIPE_LEN; 1587 1588 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1589 if (!device->in_fs_metadata || !device->bdev || 1590 device->is_tgtdev_for_dev_replace) 1591 continue; 1592 1593 avail_space = device->total_bytes - device->bytes_used; 1594 1595 /* align with stripe_len */ 1596 do_div(avail_space, BTRFS_STRIPE_LEN); 1597 avail_space *= BTRFS_STRIPE_LEN; 1598 1599 /* 1600 * In order to avoid overwritting the superblock on the drive, 1601 * btrfs starts at an offset of at least 1MB when doing chunk 1602 * allocation. 1603 */ 1604 skip_space = 1024 * 1024; 1605 1606 /* user can set the offset in fs_info->alloc_start. */ 1607 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1608 device->total_bytes) 1609 skip_space = max(fs_info->alloc_start, skip_space); 1610 1611 /* 1612 * btrfs can not use the free space in [0, skip_space - 1], 1613 * we must subtract it from the total. In order to implement 1614 * it, we account the used space in this range first. 1615 */ 1616 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1617 &used_space); 1618 if (ret) { 1619 kfree(devices_info); 1620 return ret; 1621 } 1622 1623 /* calc the free space in [0, skip_space - 1] */ 1624 skip_space -= used_space; 1625 1626 /* 1627 * we can use the free space in [0, skip_space - 1], subtract 1628 * it from the total. 1629 */ 1630 if (avail_space && avail_space >= skip_space) 1631 avail_space -= skip_space; 1632 else 1633 avail_space = 0; 1634 1635 if (avail_space < min_stripe_size) 1636 continue; 1637 1638 devices_info[i].dev = device; 1639 devices_info[i].max_avail = avail_space; 1640 1641 i++; 1642 } 1643 1644 nr_devices = i; 1645 1646 btrfs_descending_sort_devices(devices_info, nr_devices); 1647 1648 i = nr_devices - 1; 1649 avail_space = 0; 1650 while (nr_devices >= min_stripes) { 1651 if (num_stripes > nr_devices) 1652 num_stripes = nr_devices; 1653 1654 if (devices_info[i].max_avail >= min_stripe_size) { 1655 int j; 1656 u64 alloc_size; 1657 1658 avail_space += devices_info[i].max_avail * num_stripes; 1659 alloc_size = devices_info[i].max_avail; 1660 for (j = i + 1 - num_stripes; j <= i; j++) 1661 devices_info[j].max_avail -= alloc_size; 1662 } 1663 i--; 1664 nr_devices--; 1665 } 1666 1667 kfree(devices_info); 1668 *free_bytes = avail_space; 1669 return 0; 1670 } 1671 1672 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1673 { 1674 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1675 struct btrfs_super_block *disk_super = fs_info->super_copy; 1676 struct list_head *head = &fs_info->space_info; 1677 struct btrfs_space_info *found; 1678 u64 total_used = 0; 1679 u64 total_free_data = 0; 1680 int bits = dentry->d_sb->s_blocksize_bits; 1681 __be32 *fsid = (__be32 *)fs_info->fsid; 1682 int ret; 1683 1684 /* holding chunk_muext to avoid allocating new chunks */ 1685 mutex_lock(&fs_info->chunk_mutex); 1686 rcu_read_lock(); 1687 list_for_each_entry_rcu(found, head, list) { 1688 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1689 total_free_data += found->disk_total - found->disk_used; 1690 total_free_data -= 1691 btrfs_account_ro_block_groups_free_space(found); 1692 } 1693 1694 total_used += found->disk_used; 1695 } 1696 rcu_read_unlock(); 1697 1698 buf->f_namelen = BTRFS_NAME_LEN; 1699 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1700 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1701 buf->f_bsize = dentry->d_sb->s_blocksize; 1702 buf->f_type = BTRFS_SUPER_MAGIC; 1703 buf->f_bavail = total_free_data; 1704 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1705 if (ret) { 1706 mutex_unlock(&fs_info->chunk_mutex); 1707 return ret; 1708 } 1709 buf->f_bavail += total_free_data; 1710 buf->f_bavail = buf->f_bavail >> bits; 1711 mutex_unlock(&fs_info->chunk_mutex); 1712 1713 /* We treat it as constant endianness (it doesn't matter _which_) 1714 because we want the fsid to come out the same whether mounted 1715 on a big-endian or little-endian host */ 1716 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1717 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1718 /* Mask in the root object ID too, to disambiguate subvols */ 1719 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1720 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1721 1722 return 0; 1723 } 1724 1725 static void btrfs_kill_super(struct super_block *sb) 1726 { 1727 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1728 kill_anon_super(sb); 1729 free_fs_info(fs_info); 1730 } 1731 1732 static struct file_system_type btrfs_fs_type = { 1733 .owner = THIS_MODULE, 1734 .name = "btrfs", 1735 .mount = btrfs_mount, 1736 .kill_sb = btrfs_kill_super, 1737 .fs_flags = FS_REQUIRES_DEV, 1738 }; 1739 MODULE_ALIAS_FS("btrfs"); 1740 1741 /* 1742 * used by btrfsctl to scan devices when no FS is mounted 1743 */ 1744 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1745 unsigned long arg) 1746 { 1747 struct btrfs_ioctl_vol_args *vol; 1748 struct btrfs_fs_devices *fs_devices; 1749 int ret = -ENOTTY; 1750 1751 if (!capable(CAP_SYS_ADMIN)) 1752 return -EPERM; 1753 1754 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1755 if (IS_ERR(vol)) 1756 return PTR_ERR(vol); 1757 1758 switch (cmd) { 1759 case BTRFS_IOC_SCAN_DEV: 1760 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1761 &btrfs_fs_type, &fs_devices); 1762 break; 1763 case BTRFS_IOC_DEVICES_READY: 1764 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1765 &btrfs_fs_type, &fs_devices); 1766 if (ret) 1767 break; 1768 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1769 break; 1770 } 1771 1772 kfree(vol); 1773 return ret; 1774 } 1775 1776 static int btrfs_freeze(struct super_block *sb) 1777 { 1778 struct btrfs_trans_handle *trans; 1779 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1780 1781 trans = btrfs_attach_transaction_barrier(root); 1782 if (IS_ERR(trans)) { 1783 /* no transaction, don't bother */ 1784 if (PTR_ERR(trans) == -ENOENT) 1785 return 0; 1786 return PTR_ERR(trans); 1787 } 1788 return btrfs_commit_transaction(trans, root); 1789 } 1790 1791 static int btrfs_unfreeze(struct super_block *sb) 1792 { 1793 return 0; 1794 } 1795 1796 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1797 { 1798 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1799 struct btrfs_fs_devices *cur_devices; 1800 struct btrfs_device *dev, *first_dev = NULL; 1801 struct list_head *head; 1802 struct rcu_string *name; 1803 1804 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1805 cur_devices = fs_info->fs_devices; 1806 while (cur_devices) { 1807 head = &cur_devices->devices; 1808 list_for_each_entry(dev, head, dev_list) { 1809 if (dev->missing) 1810 continue; 1811 if (!first_dev || dev->devid < first_dev->devid) 1812 first_dev = dev; 1813 } 1814 cur_devices = cur_devices->seed; 1815 } 1816 1817 if (first_dev) { 1818 rcu_read_lock(); 1819 name = rcu_dereference(first_dev->name); 1820 seq_escape(m, name->str, " \t\n\\"); 1821 rcu_read_unlock(); 1822 } else { 1823 WARN_ON(1); 1824 } 1825 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1826 return 0; 1827 } 1828 1829 static const struct super_operations btrfs_super_ops = { 1830 .drop_inode = btrfs_drop_inode, 1831 .evict_inode = btrfs_evict_inode, 1832 .put_super = btrfs_put_super, 1833 .sync_fs = btrfs_sync_fs, 1834 .show_options = btrfs_show_options, 1835 .show_devname = btrfs_show_devname, 1836 .write_inode = btrfs_write_inode, 1837 .alloc_inode = btrfs_alloc_inode, 1838 .destroy_inode = btrfs_destroy_inode, 1839 .statfs = btrfs_statfs, 1840 .remount_fs = btrfs_remount, 1841 .freeze_fs = btrfs_freeze, 1842 .unfreeze_fs = btrfs_unfreeze, 1843 }; 1844 1845 static const struct file_operations btrfs_ctl_fops = { 1846 .unlocked_ioctl = btrfs_control_ioctl, 1847 .compat_ioctl = btrfs_control_ioctl, 1848 .owner = THIS_MODULE, 1849 .llseek = noop_llseek, 1850 }; 1851 1852 static struct miscdevice btrfs_misc = { 1853 .minor = BTRFS_MINOR, 1854 .name = "btrfs-control", 1855 .fops = &btrfs_ctl_fops 1856 }; 1857 1858 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1859 MODULE_ALIAS("devname:btrfs-control"); 1860 1861 static int btrfs_interface_init(void) 1862 { 1863 return misc_register(&btrfs_misc); 1864 } 1865 1866 static void btrfs_interface_exit(void) 1867 { 1868 if (misc_deregister(&btrfs_misc) < 0) 1869 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n"); 1870 } 1871 1872 static void btrfs_print_info(void) 1873 { 1874 printk(KERN_INFO "Btrfs loaded" 1875 #ifdef CONFIG_BTRFS_DEBUG 1876 ", debug=on" 1877 #endif 1878 #ifdef CONFIG_BTRFS_ASSERT 1879 ", assert=on" 1880 #endif 1881 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1882 ", integrity-checker=on" 1883 #endif 1884 "\n"); 1885 } 1886 1887 static int btrfs_run_sanity_tests(void) 1888 { 1889 int ret; 1890 1891 ret = btrfs_init_test_fs(); 1892 if (ret) 1893 return ret; 1894 1895 ret = btrfs_test_free_space_cache(); 1896 if (ret) 1897 goto out; 1898 ret = btrfs_test_extent_buffer_operations(); 1899 if (ret) 1900 goto out; 1901 ret = btrfs_test_extent_io(); 1902 if (ret) 1903 goto out; 1904 ret = btrfs_test_inodes(); 1905 if (ret) 1906 goto out; 1907 ret = btrfs_test_qgroups(); 1908 out: 1909 btrfs_destroy_test_fs(); 1910 return ret; 1911 } 1912 1913 static int __init init_btrfs_fs(void) 1914 { 1915 int err; 1916 1917 err = btrfs_hash_init(); 1918 if (err) 1919 return err; 1920 1921 btrfs_props_init(); 1922 1923 err = btrfs_init_sysfs(); 1924 if (err) 1925 goto free_hash; 1926 1927 btrfs_init_compress(); 1928 1929 err = btrfs_init_cachep(); 1930 if (err) 1931 goto free_compress; 1932 1933 err = extent_io_init(); 1934 if (err) 1935 goto free_cachep; 1936 1937 err = extent_map_init(); 1938 if (err) 1939 goto free_extent_io; 1940 1941 err = ordered_data_init(); 1942 if (err) 1943 goto free_extent_map; 1944 1945 err = btrfs_delayed_inode_init(); 1946 if (err) 1947 goto free_ordered_data; 1948 1949 err = btrfs_auto_defrag_init(); 1950 if (err) 1951 goto free_delayed_inode; 1952 1953 err = btrfs_delayed_ref_init(); 1954 if (err) 1955 goto free_auto_defrag; 1956 1957 err = btrfs_prelim_ref_init(); 1958 if (err) 1959 goto free_prelim_ref; 1960 1961 err = btrfs_interface_init(); 1962 if (err) 1963 goto free_delayed_ref; 1964 1965 btrfs_init_lockdep(); 1966 1967 btrfs_print_info(); 1968 1969 err = btrfs_run_sanity_tests(); 1970 if (err) 1971 goto unregister_ioctl; 1972 1973 err = register_filesystem(&btrfs_fs_type); 1974 if (err) 1975 goto unregister_ioctl; 1976 1977 return 0; 1978 1979 unregister_ioctl: 1980 btrfs_interface_exit(); 1981 free_prelim_ref: 1982 btrfs_prelim_ref_exit(); 1983 free_delayed_ref: 1984 btrfs_delayed_ref_exit(); 1985 free_auto_defrag: 1986 btrfs_auto_defrag_exit(); 1987 free_delayed_inode: 1988 btrfs_delayed_inode_exit(); 1989 free_ordered_data: 1990 ordered_data_exit(); 1991 free_extent_map: 1992 extent_map_exit(); 1993 free_extent_io: 1994 extent_io_exit(); 1995 free_cachep: 1996 btrfs_destroy_cachep(); 1997 free_compress: 1998 btrfs_exit_compress(); 1999 btrfs_exit_sysfs(); 2000 free_hash: 2001 btrfs_hash_exit(); 2002 return err; 2003 } 2004 2005 static void __exit exit_btrfs_fs(void) 2006 { 2007 btrfs_destroy_cachep(); 2008 btrfs_delayed_ref_exit(); 2009 btrfs_auto_defrag_exit(); 2010 btrfs_delayed_inode_exit(); 2011 btrfs_prelim_ref_exit(); 2012 ordered_data_exit(); 2013 extent_map_exit(); 2014 extent_io_exit(); 2015 btrfs_interface_exit(); 2016 unregister_filesystem(&btrfs_fs_type); 2017 btrfs_exit_sysfs(); 2018 btrfs_cleanup_fs_uuids(); 2019 btrfs_exit_compress(); 2020 btrfs_hash_exit(); 2021 } 2022 2023 late_initcall(init_btrfs_fs); 2024 module_exit(exit_btrfs_fs) 2025 2026 MODULE_LICENSE("GPL"); 2027