xref: /openbmc/linux/fs/btrfs/super.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "tests/btrfs-tests.h"
46 
47 #include "qgroup.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
50 
51 static const struct super_operations btrfs_super_ops;
52 
53 /*
54  * Types for mounting the default subvolume and a subvolume explicitly
55  * requested by subvol=/path. That way the callchain is straightforward and we
56  * don't have to play tricks with the mount options and recursive calls to
57  * btrfs_mount.
58  *
59  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
60  */
61 static struct file_system_type btrfs_fs_type;
62 static struct file_system_type btrfs_root_fs_type;
63 
64 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
65 
66 const char *btrfs_decode_error(int errno)
67 {
68 	char *errstr = "unknown";
69 
70 	switch (errno) {
71 	case -EIO:
72 		errstr = "IO failure";
73 		break;
74 	case -ENOMEM:
75 		errstr = "Out of memory";
76 		break;
77 	case -EROFS:
78 		errstr = "Readonly filesystem";
79 		break;
80 	case -EEXIST:
81 		errstr = "Object already exists";
82 		break;
83 	case -ENOSPC:
84 		errstr = "No space left";
85 		break;
86 	case -ENOENT:
87 		errstr = "No such entry";
88 		break;
89 	}
90 
91 	return errstr;
92 }
93 
94 /*
95  * __btrfs_handle_fs_error decodes expected errors from the caller and
96  * invokes the approciate error response.
97  */
98 __cold
99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
100 		       unsigned int line, int errno, const char *fmt, ...)
101 {
102 	struct super_block *sb = fs_info->sb;
103 #ifdef CONFIG_PRINTK
104 	const char *errstr;
105 #endif
106 
107 	/*
108 	 * Special case: if the error is EROFS, and we're already
109 	 * under SB_RDONLY, then it is safe here.
110 	 */
111 	if (errno == -EROFS && sb_rdonly(sb))
112   		return;
113 
114 #ifdef CONFIG_PRINTK
115 	errstr = btrfs_decode_error(errno);
116 	if (fmt) {
117 		struct va_format vaf;
118 		va_list args;
119 
120 		va_start(args, fmt);
121 		vaf.fmt = fmt;
122 		vaf.va = &args;
123 
124 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 			sb->s_id, function, line, errno, errstr, &vaf);
126 		va_end(args);
127 	} else {
128 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 			sb->s_id, function, line, errno, errstr);
130 	}
131 #endif
132 
133 	/*
134 	 * Today we only save the error info to memory.  Long term we'll
135 	 * also send it down to the disk
136 	 */
137 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
138 
139 	/* Don't go through full error handling during mount */
140 	if (!(sb->s_flags & SB_BORN))
141 		return;
142 
143 	if (sb_rdonly(sb))
144 		return;
145 
146 	/* btrfs handle error by forcing the filesystem readonly */
147 	sb->s_flags |= SB_RDONLY;
148 	btrfs_info(fs_info, "forced readonly");
149 	/*
150 	 * Note that a running device replace operation is not canceled here
151 	 * although there is no way to update the progress. It would add the
152 	 * risk of a deadlock, therefore the canceling is omitted. The only
153 	 * penalty is that some I/O remains active until the procedure
154 	 * completes. The next time when the filesystem is mounted writeable
155 	 * again, the device replace operation continues.
156 	 */
157 }
158 
159 #ifdef CONFIG_PRINTK
160 static const char * const logtypes[] = {
161 	"emergency",
162 	"alert",
163 	"critical",
164 	"error",
165 	"warning",
166 	"notice",
167 	"info",
168 	"debug",
169 };
170 
171 
172 /*
173  * Use one ratelimit state per log level so that a flood of less important
174  * messages doesn't cause more important ones to be dropped.
175  */
176 static struct ratelimit_state printk_limits[] = {
177 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
178 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
179 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
180 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
181 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
182 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
183 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
184 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
185 };
186 
187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
190 	struct va_format vaf;
191 	va_list args;
192 	int kern_level;
193 	const char *type = logtypes[4];
194 	struct ratelimit_state *ratelimit = &printk_limits[4];
195 
196 	va_start(args, fmt);
197 
198 	while ((kern_level = printk_get_level(fmt)) != 0) {
199 		size_t size = printk_skip_level(fmt) - fmt;
200 
201 		if (kern_level >= '0' && kern_level <= '7') {
202 			memcpy(lvl, fmt,  size);
203 			lvl[size] = '\0';
204 			type = logtypes[kern_level - '0'];
205 			ratelimit = &printk_limits[kern_level - '0'];
206 		}
207 		fmt += size;
208 	}
209 
210 	vaf.fmt = fmt;
211 	vaf.va = &args;
212 
213 	if (__ratelimit(ratelimit))
214 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
215 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
216 
217 	va_end(args);
218 }
219 #endif
220 
221 /*
222  * We only mark the transaction aborted and then set the file system read-only.
223  * This will prevent new transactions from starting or trying to join this
224  * one.
225  *
226  * This means that error recovery at the call site is limited to freeing
227  * any local memory allocations and passing the error code up without
228  * further cleanup. The transaction should complete as it normally would
229  * in the call path but will return -EIO.
230  *
231  * We'll complete the cleanup in btrfs_end_transaction and
232  * btrfs_commit_transaction.
233  */
234 __cold
235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 			       const char *function,
237 			       unsigned int line, int errno)
238 {
239 	struct btrfs_fs_info *fs_info = trans->fs_info;
240 
241 	trans->aborted = errno;
242 	/* Nothing used. The other threads that have joined this
243 	 * transaction may be able to continue. */
244 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
245 		const char *errstr;
246 
247 		errstr = btrfs_decode_error(errno);
248 		btrfs_warn(fs_info,
249 		           "%s:%d: Aborting unused transaction(%s).",
250 		           function, line, errstr);
251 		return;
252 	}
253 	WRITE_ONCE(trans->transaction->aborted, errno);
254 	/* Wake up anybody who may be waiting on this transaction */
255 	wake_up(&fs_info->transaction_wait);
256 	wake_up(&fs_info->transaction_blocked_wait);
257 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
258 }
259 /*
260  * __btrfs_panic decodes unexpected, fatal errors from the caller,
261  * issues an alert, and either panics or BUGs, depending on mount options.
262  */
263 __cold
264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
265 		   unsigned int line, int errno, const char *fmt, ...)
266 {
267 	char *s_id = "<unknown>";
268 	const char *errstr;
269 	struct va_format vaf = { .fmt = fmt };
270 	va_list args;
271 
272 	if (fs_info)
273 		s_id = fs_info->sb->s_id;
274 
275 	va_start(args, fmt);
276 	vaf.va = &args;
277 
278 	errstr = btrfs_decode_error(errno);
279 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
280 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 			s_id, function, line, &vaf, errno, errstr);
282 
283 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
284 		   function, line, &vaf, errno, errstr);
285 	va_end(args);
286 	/* Caller calls BUG() */
287 }
288 
289 static void btrfs_put_super(struct super_block *sb)
290 {
291 	close_ctree(btrfs_sb(sb));
292 }
293 
294 enum {
295 	Opt_acl, Opt_noacl,
296 	Opt_clear_cache,
297 	Opt_commit_interval,
298 	Opt_compress,
299 	Opt_compress_force,
300 	Opt_compress_force_type,
301 	Opt_compress_type,
302 	Opt_degraded,
303 	Opt_device,
304 	Opt_fatal_errors,
305 	Opt_flushoncommit, Opt_noflushoncommit,
306 	Opt_inode_cache, Opt_noinode_cache,
307 	Opt_max_inline,
308 	Opt_barrier, Opt_nobarrier,
309 	Opt_datacow, Opt_nodatacow,
310 	Opt_datasum, Opt_nodatasum,
311 	Opt_defrag, Opt_nodefrag,
312 	Opt_discard, Opt_nodiscard,
313 	Opt_nologreplay,
314 	Opt_norecovery,
315 	Opt_ratio,
316 	Opt_rescan_uuid_tree,
317 	Opt_skip_balance,
318 	Opt_space_cache, Opt_no_space_cache,
319 	Opt_space_cache_version,
320 	Opt_ssd, Opt_nossd,
321 	Opt_ssd_spread, Opt_nossd_spread,
322 	Opt_subvol,
323 	Opt_subvol_empty,
324 	Opt_subvolid,
325 	Opt_thread_pool,
326 	Opt_treelog, Opt_notreelog,
327 	Opt_usebackuproot,
328 	Opt_user_subvol_rm_allowed,
329 
330 	/* Deprecated options */
331 	Opt_alloc_start,
332 	Opt_recovery,
333 	Opt_subvolrootid,
334 
335 	/* Debugging options */
336 	Opt_check_integrity,
337 	Opt_check_integrity_including_extent_data,
338 	Opt_check_integrity_print_mask,
339 	Opt_enospc_debug, Opt_noenospc_debug,
340 #ifdef CONFIG_BTRFS_DEBUG
341 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
342 #endif
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
344 	Opt_ref_verify,
345 #endif
346 	Opt_err,
347 };
348 
349 static const match_table_t tokens = {
350 	{Opt_acl, "acl"},
351 	{Opt_noacl, "noacl"},
352 	{Opt_clear_cache, "clear_cache"},
353 	{Opt_commit_interval, "commit=%u"},
354 	{Opt_compress, "compress"},
355 	{Opt_compress_type, "compress=%s"},
356 	{Opt_compress_force, "compress-force"},
357 	{Opt_compress_force_type, "compress-force=%s"},
358 	{Opt_degraded, "degraded"},
359 	{Opt_device, "device=%s"},
360 	{Opt_fatal_errors, "fatal_errors=%s"},
361 	{Opt_flushoncommit, "flushoncommit"},
362 	{Opt_noflushoncommit, "noflushoncommit"},
363 	{Opt_inode_cache, "inode_cache"},
364 	{Opt_noinode_cache, "noinode_cache"},
365 	{Opt_max_inline, "max_inline=%s"},
366 	{Opt_barrier, "barrier"},
367 	{Opt_nobarrier, "nobarrier"},
368 	{Opt_datacow, "datacow"},
369 	{Opt_nodatacow, "nodatacow"},
370 	{Opt_datasum, "datasum"},
371 	{Opt_nodatasum, "nodatasum"},
372 	{Opt_defrag, "autodefrag"},
373 	{Opt_nodefrag, "noautodefrag"},
374 	{Opt_discard, "discard"},
375 	{Opt_nodiscard, "nodiscard"},
376 	{Opt_nologreplay, "nologreplay"},
377 	{Opt_norecovery, "norecovery"},
378 	{Opt_ratio, "metadata_ratio=%u"},
379 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
380 	{Opt_skip_balance, "skip_balance"},
381 	{Opt_space_cache, "space_cache"},
382 	{Opt_no_space_cache, "nospace_cache"},
383 	{Opt_space_cache_version, "space_cache=%s"},
384 	{Opt_ssd, "ssd"},
385 	{Opt_nossd, "nossd"},
386 	{Opt_ssd_spread, "ssd_spread"},
387 	{Opt_nossd_spread, "nossd_spread"},
388 	{Opt_subvol, "subvol=%s"},
389 	{Opt_subvol_empty, "subvol="},
390 	{Opt_subvolid, "subvolid=%s"},
391 	{Opt_thread_pool, "thread_pool=%u"},
392 	{Opt_treelog, "treelog"},
393 	{Opt_notreelog, "notreelog"},
394 	{Opt_usebackuproot, "usebackuproot"},
395 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
396 
397 	/* Deprecated options */
398 	{Opt_alloc_start, "alloc_start=%s"},
399 	{Opt_recovery, "recovery"},
400 	{Opt_subvolrootid, "subvolrootid=%d"},
401 
402 	/* Debugging options */
403 	{Opt_check_integrity, "check_int"},
404 	{Opt_check_integrity_including_extent_data, "check_int_data"},
405 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
406 	{Opt_enospc_debug, "enospc_debug"},
407 	{Opt_noenospc_debug, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409 	{Opt_fragment_data, "fragment=data"},
410 	{Opt_fragment_metadata, "fragment=metadata"},
411 	{Opt_fragment_all, "fragment=all"},
412 #endif
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 	{Opt_ref_verify, "ref_verify"},
415 #endif
416 	{Opt_err, NULL},
417 };
418 
419 /*
420  * Regular mount options parser.  Everything that is needed only when
421  * reading in a new superblock is parsed here.
422  * XXX JDM: This needs to be cleaned up for remount.
423  */
424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
425 			unsigned long new_flags)
426 {
427 	substring_t args[MAX_OPT_ARGS];
428 	char *p, *num;
429 	u64 cache_gen;
430 	int intarg;
431 	int ret = 0;
432 	char *compress_type;
433 	bool compress_force = false;
434 	enum btrfs_compression_type saved_compress_type;
435 	bool saved_compress_force;
436 	int no_compress = 0;
437 
438 	cache_gen = btrfs_super_cache_generation(info->super_copy);
439 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
440 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
441 	else if (cache_gen)
442 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
443 
444 	/*
445 	 * Even the options are empty, we still need to do extra check
446 	 * against new flags
447 	 */
448 	if (!options)
449 		goto check;
450 
451 	while ((p = strsep(&options, ",")) != NULL) {
452 		int token;
453 		if (!*p)
454 			continue;
455 
456 		token = match_token(p, tokens, args);
457 		switch (token) {
458 		case Opt_degraded:
459 			btrfs_info(info, "allowing degraded mounts");
460 			btrfs_set_opt(info->mount_opt, DEGRADED);
461 			break;
462 		case Opt_subvol:
463 		case Opt_subvol_empty:
464 		case Opt_subvolid:
465 		case Opt_subvolrootid:
466 		case Opt_device:
467 			/*
468 			 * These are parsed by btrfs_parse_subvol_options or
469 			 * btrfs_parse_device_options and can be ignored here.
470 			 */
471 			break;
472 		case Opt_nodatasum:
473 			btrfs_set_and_info(info, NODATASUM,
474 					   "setting nodatasum");
475 			break;
476 		case Opt_datasum:
477 			if (btrfs_test_opt(info, NODATASUM)) {
478 				if (btrfs_test_opt(info, NODATACOW))
479 					btrfs_info(info,
480 						   "setting datasum, datacow enabled");
481 				else
482 					btrfs_info(info, "setting datasum");
483 			}
484 			btrfs_clear_opt(info->mount_opt, NODATACOW);
485 			btrfs_clear_opt(info->mount_opt, NODATASUM);
486 			break;
487 		case Opt_nodatacow:
488 			if (!btrfs_test_opt(info, NODATACOW)) {
489 				if (!btrfs_test_opt(info, COMPRESS) ||
490 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
491 					btrfs_info(info,
492 						   "setting nodatacow, compression disabled");
493 				} else {
494 					btrfs_info(info, "setting nodatacow");
495 				}
496 			}
497 			btrfs_clear_opt(info->mount_opt, COMPRESS);
498 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
499 			btrfs_set_opt(info->mount_opt, NODATACOW);
500 			btrfs_set_opt(info->mount_opt, NODATASUM);
501 			break;
502 		case Opt_datacow:
503 			btrfs_clear_and_info(info, NODATACOW,
504 					     "setting datacow");
505 			break;
506 		case Opt_compress_force:
507 		case Opt_compress_force_type:
508 			compress_force = true;
509 			/* Fallthrough */
510 		case Opt_compress:
511 		case Opt_compress_type:
512 			saved_compress_type = btrfs_test_opt(info,
513 							     COMPRESS) ?
514 				info->compress_type : BTRFS_COMPRESS_NONE;
515 			saved_compress_force =
516 				btrfs_test_opt(info, FORCE_COMPRESS);
517 			if (token == Opt_compress ||
518 			    token == Opt_compress_force ||
519 			    strncmp(args[0].from, "zlib", 4) == 0) {
520 				compress_type = "zlib";
521 
522 				info->compress_type = BTRFS_COMPRESS_ZLIB;
523 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
524 				/*
525 				 * args[0] contains uninitialized data since
526 				 * for these tokens we don't expect any
527 				 * parameter.
528 				 */
529 				if (token != Opt_compress &&
530 				    token != Opt_compress_force)
531 					info->compress_level =
532 					  btrfs_compress_str2level(args[0].from);
533 				btrfs_set_opt(info->mount_opt, COMPRESS);
534 				btrfs_clear_opt(info->mount_opt, NODATACOW);
535 				btrfs_clear_opt(info->mount_opt, NODATASUM);
536 				no_compress = 0;
537 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
538 				compress_type = "lzo";
539 				info->compress_type = BTRFS_COMPRESS_LZO;
540 				btrfs_set_opt(info->mount_opt, COMPRESS);
541 				btrfs_clear_opt(info->mount_opt, NODATACOW);
542 				btrfs_clear_opt(info->mount_opt, NODATASUM);
543 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
544 				no_compress = 0;
545 			} else if (strcmp(args[0].from, "zstd") == 0) {
546 				compress_type = "zstd";
547 				info->compress_type = BTRFS_COMPRESS_ZSTD;
548 				btrfs_set_opt(info->mount_opt, COMPRESS);
549 				btrfs_clear_opt(info->mount_opt, NODATACOW);
550 				btrfs_clear_opt(info->mount_opt, NODATASUM);
551 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
552 				no_compress = 0;
553 			} else if (strncmp(args[0].from, "no", 2) == 0) {
554 				compress_type = "no";
555 				btrfs_clear_opt(info->mount_opt, COMPRESS);
556 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
557 				compress_force = false;
558 				no_compress++;
559 			} else {
560 				ret = -EINVAL;
561 				goto out;
562 			}
563 
564 			if (compress_force) {
565 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
566 			} else {
567 				/*
568 				 * If we remount from compress-force=xxx to
569 				 * compress=xxx, we need clear FORCE_COMPRESS
570 				 * flag, otherwise, there is no way for users
571 				 * to disable forcible compression separately.
572 				 */
573 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
574 			}
575 			if ((btrfs_test_opt(info, COMPRESS) &&
576 			     (info->compress_type != saved_compress_type ||
577 			      compress_force != saved_compress_force)) ||
578 			    (!btrfs_test_opt(info, COMPRESS) &&
579 			     no_compress == 1)) {
580 				btrfs_info(info, "%s %s compression, level %d",
581 					   (compress_force) ? "force" : "use",
582 					   compress_type, info->compress_level);
583 			}
584 			compress_force = false;
585 			break;
586 		case Opt_ssd:
587 			btrfs_set_and_info(info, SSD,
588 					   "enabling ssd optimizations");
589 			btrfs_clear_opt(info->mount_opt, NOSSD);
590 			break;
591 		case Opt_ssd_spread:
592 			btrfs_set_and_info(info, SSD,
593 					   "enabling ssd optimizations");
594 			btrfs_set_and_info(info, SSD_SPREAD,
595 					   "using spread ssd allocation scheme");
596 			btrfs_clear_opt(info->mount_opt, NOSSD);
597 			break;
598 		case Opt_nossd:
599 			btrfs_set_opt(info->mount_opt, NOSSD);
600 			btrfs_clear_and_info(info, SSD,
601 					     "not using ssd optimizations");
602 			/* Fallthrough */
603 		case Opt_nossd_spread:
604 			btrfs_clear_and_info(info, SSD_SPREAD,
605 					     "not using spread ssd allocation scheme");
606 			break;
607 		case Opt_barrier:
608 			btrfs_clear_and_info(info, NOBARRIER,
609 					     "turning on barriers");
610 			break;
611 		case Opt_nobarrier:
612 			btrfs_set_and_info(info, NOBARRIER,
613 					   "turning off barriers");
614 			break;
615 		case Opt_thread_pool:
616 			ret = match_int(&args[0], &intarg);
617 			if (ret) {
618 				goto out;
619 			} else if (intarg == 0) {
620 				ret = -EINVAL;
621 				goto out;
622 			}
623 			info->thread_pool_size = intarg;
624 			break;
625 		case Opt_max_inline:
626 			num = match_strdup(&args[0]);
627 			if (num) {
628 				info->max_inline = memparse(num, NULL);
629 				kfree(num);
630 
631 				if (info->max_inline) {
632 					info->max_inline = min_t(u64,
633 						info->max_inline,
634 						info->sectorsize);
635 				}
636 				btrfs_info(info, "max_inline at %llu",
637 					   info->max_inline);
638 			} else {
639 				ret = -ENOMEM;
640 				goto out;
641 			}
642 			break;
643 		case Opt_alloc_start:
644 			btrfs_info(info,
645 				"option alloc_start is obsolete, ignored");
646 			break;
647 		case Opt_acl:
648 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
649 			info->sb->s_flags |= SB_POSIXACL;
650 			break;
651 #else
652 			btrfs_err(info, "support for ACL not compiled in!");
653 			ret = -EINVAL;
654 			goto out;
655 #endif
656 		case Opt_noacl:
657 			info->sb->s_flags &= ~SB_POSIXACL;
658 			break;
659 		case Opt_notreelog:
660 			btrfs_set_and_info(info, NOTREELOG,
661 					   "disabling tree log");
662 			break;
663 		case Opt_treelog:
664 			btrfs_clear_and_info(info, NOTREELOG,
665 					     "enabling tree log");
666 			break;
667 		case Opt_norecovery:
668 		case Opt_nologreplay:
669 			btrfs_set_and_info(info, NOLOGREPLAY,
670 					   "disabling log replay at mount time");
671 			break;
672 		case Opt_flushoncommit:
673 			btrfs_set_and_info(info, FLUSHONCOMMIT,
674 					   "turning on flush-on-commit");
675 			break;
676 		case Opt_noflushoncommit:
677 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
678 					     "turning off flush-on-commit");
679 			break;
680 		case Opt_ratio:
681 			ret = match_int(&args[0], &intarg);
682 			if (ret)
683 				goto out;
684 			info->metadata_ratio = intarg;
685 			btrfs_info(info, "metadata ratio %u",
686 				   info->metadata_ratio);
687 			break;
688 		case Opt_discard:
689 			btrfs_set_and_info(info, DISCARD,
690 					   "turning on discard");
691 			break;
692 		case Opt_nodiscard:
693 			btrfs_clear_and_info(info, DISCARD,
694 					     "turning off discard");
695 			break;
696 		case Opt_space_cache:
697 		case Opt_space_cache_version:
698 			if (token == Opt_space_cache ||
699 			    strcmp(args[0].from, "v1") == 0) {
700 				btrfs_clear_opt(info->mount_opt,
701 						FREE_SPACE_TREE);
702 				btrfs_set_and_info(info, SPACE_CACHE,
703 					   "enabling disk space caching");
704 			} else if (strcmp(args[0].from, "v2") == 0) {
705 				btrfs_clear_opt(info->mount_opt,
706 						SPACE_CACHE);
707 				btrfs_set_and_info(info, FREE_SPACE_TREE,
708 						   "enabling free space tree");
709 			} else {
710 				ret = -EINVAL;
711 				goto out;
712 			}
713 			break;
714 		case Opt_rescan_uuid_tree:
715 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
716 			break;
717 		case Opt_no_space_cache:
718 			if (btrfs_test_opt(info, SPACE_CACHE)) {
719 				btrfs_clear_and_info(info, SPACE_CACHE,
720 					     "disabling disk space caching");
721 			}
722 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
723 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
724 					     "disabling free space tree");
725 			}
726 			break;
727 		case Opt_inode_cache:
728 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
729 					   "enabling inode map caching");
730 			break;
731 		case Opt_noinode_cache:
732 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
733 					     "disabling inode map caching");
734 			break;
735 		case Opt_clear_cache:
736 			btrfs_set_and_info(info, CLEAR_CACHE,
737 					   "force clearing of disk cache");
738 			break;
739 		case Opt_user_subvol_rm_allowed:
740 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
741 			break;
742 		case Opt_enospc_debug:
743 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
744 			break;
745 		case Opt_noenospc_debug:
746 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
747 			break;
748 		case Opt_defrag:
749 			btrfs_set_and_info(info, AUTO_DEFRAG,
750 					   "enabling auto defrag");
751 			break;
752 		case Opt_nodefrag:
753 			btrfs_clear_and_info(info, AUTO_DEFRAG,
754 					     "disabling auto defrag");
755 			break;
756 		case Opt_recovery:
757 			btrfs_warn(info,
758 				   "'recovery' is deprecated, use 'usebackuproot' instead");
759 			/* fall through */
760 		case Opt_usebackuproot:
761 			btrfs_info(info,
762 				   "trying to use backup root at mount time");
763 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
764 			break;
765 		case Opt_skip_balance:
766 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
767 			break;
768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769 		case Opt_check_integrity_including_extent_data:
770 			btrfs_info(info,
771 				   "enabling check integrity including extent data");
772 			btrfs_set_opt(info->mount_opt,
773 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
774 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
775 			break;
776 		case Opt_check_integrity:
777 			btrfs_info(info, "enabling check integrity");
778 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
779 			break;
780 		case Opt_check_integrity_print_mask:
781 			ret = match_int(&args[0], &intarg);
782 			if (ret)
783 				goto out;
784 			info->check_integrity_print_mask = intarg;
785 			btrfs_info(info, "check_integrity_print_mask 0x%x",
786 				   info->check_integrity_print_mask);
787 			break;
788 #else
789 		case Opt_check_integrity_including_extent_data:
790 		case Opt_check_integrity:
791 		case Opt_check_integrity_print_mask:
792 			btrfs_err(info,
793 				  "support for check_integrity* not compiled in!");
794 			ret = -EINVAL;
795 			goto out;
796 #endif
797 		case Opt_fatal_errors:
798 			if (strcmp(args[0].from, "panic") == 0)
799 				btrfs_set_opt(info->mount_opt,
800 					      PANIC_ON_FATAL_ERROR);
801 			else if (strcmp(args[0].from, "bug") == 0)
802 				btrfs_clear_opt(info->mount_opt,
803 					      PANIC_ON_FATAL_ERROR);
804 			else {
805 				ret = -EINVAL;
806 				goto out;
807 			}
808 			break;
809 		case Opt_commit_interval:
810 			intarg = 0;
811 			ret = match_int(&args[0], &intarg);
812 			if (ret)
813 				goto out;
814 			if (intarg == 0) {
815 				btrfs_info(info,
816 					   "using default commit interval %us",
817 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
818 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
819 			} else if (intarg > 300) {
820 				btrfs_warn(info, "excessive commit interval %d",
821 					   intarg);
822 			}
823 			info->commit_interval = intarg;
824 			break;
825 #ifdef CONFIG_BTRFS_DEBUG
826 		case Opt_fragment_all:
827 			btrfs_info(info, "fragmenting all space");
828 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
829 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
830 			break;
831 		case Opt_fragment_metadata:
832 			btrfs_info(info, "fragmenting metadata");
833 			btrfs_set_opt(info->mount_opt,
834 				      FRAGMENT_METADATA);
835 			break;
836 		case Opt_fragment_data:
837 			btrfs_info(info, "fragmenting data");
838 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
839 			break;
840 #endif
841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
842 		case Opt_ref_verify:
843 			btrfs_info(info, "doing ref verification");
844 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
845 			break;
846 #endif
847 		case Opt_err:
848 			btrfs_info(info, "unrecognized mount option '%s'", p);
849 			ret = -EINVAL;
850 			goto out;
851 		default:
852 			break;
853 		}
854 	}
855 check:
856 	/*
857 	 * Extra check for current option against current flag
858 	 */
859 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
860 		btrfs_err(info,
861 			  "nologreplay must be used with ro mount option");
862 		ret = -EINVAL;
863 	}
864 out:
865 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
866 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
867 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
868 		btrfs_err(info, "cannot disable free space tree");
869 		ret = -EINVAL;
870 
871 	}
872 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
873 		btrfs_info(info, "disk space caching is enabled");
874 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
875 		btrfs_info(info, "using free space tree");
876 	return ret;
877 }
878 
879 /*
880  * Parse mount options that are required early in the mount process.
881  *
882  * All other options will be parsed on much later in the mount process and
883  * only when we need to allocate a new super block.
884  */
885 static int btrfs_parse_device_options(const char *options, fmode_t flags,
886 				      void *holder)
887 {
888 	substring_t args[MAX_OPT_ARGS];
889 	char *device_name, *opts, *orig, *p;
890 	struct btrfs_device *device = NULL;
891 	int error = 0;
892 
893 	lockdep_assert_held(&uuid_mutex);
894 
895 	if (!options)
896 		return 0;
897 
898 	/*
899 	 * strsep changes the string, duplicate it because btrfs_parse_options
900 	 * gets called later
901 	 */
902 	opts = kstrdup(options, GFP_KERNEL);
903 	if (!opts)
904 		return -ENOMEM;
905 	orig = opts;
906 
907 	while ((p = strsep(&opts, ",")) != NULL) {
908 		int token;
909 
910 		if (!*p)
911 			continue;
912 
913 		token = match_token(p, tokens, args);
914 		if (token == Opt_device) {
915 			device_name = match_strdup(&args[0]);
916 			if (!device_name) {
917 				error = -ENOMEM;
918 				goto out;
919 			}
920 			device = btrfs_scan_one_device(device_name, flags,
921 					holder);
922 			kfree(device_name);
923 			if (IS_ERR(device)) {
924 				error = PTR_ERR(device);
925 				goto out;
926 			}
927 		}
928 	}
929 
930 out:
931 	kfree(orig);
932 	return error;
933 }
934 
935 /*
936  * Parse mount options that are related to subvolume id
937  *
938  * The value is later passed to mount_subvol()
939  */
940 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
941 		u64 *subvol_objectid)
942 {
943 	substring_t args[MAX_OPT_ARGS];
944 	char *opts, *orig, *p;
945 	int error = 0;
946 	u64 subvolid;
947 
948 	if (!options)
949 		return 0;
950 
951 	/*
952 	 * strsep changes the string, duplicate it because
953 	 * btrfs_parse_device_options gets called later
954 	 */
955 	opts = kstrdup(options, GFP_KERNEL);
956 	if (!opts)
957 		return -ENOMEM;
958 	orig = opts;
959 
960 	while ((p = strsep(&opts, ",")) != NULL) {
961 		int token;
962 		if (!*p)
963 			continue;
964 
965 		token = match_token(p, tokens, args);
966 		switch (token) {
967 		case Opt_subvol:
968 			kfree(*subvol_name);
969 			*subvol_name = match_strdup(&args[0]);
970 			if (!*subvol_name) {
971 				error = -ENOMEM;
972 				goto out;
973 			}
974 			break;
975 		case Opt_subvolid:
976 			error = match_u64(&args[0], &subvolid);
977 			if (error)
978 				goto out;
979 
980 			/* we want the original fs_tree */
981 			if (subvolid == 0)
982 				subvolid = BTRFS_FS_TREE_OBJECTID;
983 
984 			*subvol_objectid = subvolid;
985 			break;
986 		case Opt_subvolrootid:
987 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
988 			break;
989 		default:
990 			break;
991 		}
992 	}
993 
994 out:
995 	kfree(orig);
996 	return error;
997 }
998 
999 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1000 					   u64 subvol_objectid)
1001 {
1002 	struct btrfs_root *root = fs_info->tree_root;
1003 	struct btrfs_root *fs_root;
1004 	struct btrfs_root_ref *root_ref;
1005 	struct btrfs_inode_ref *inode_ref;
1006 	struct btrfs_key key;
1007 	struct btrfs_path *path = NULL;
1008 	char *name = NULL, *ptr;
1009 	u64 dirid;
1010 	int len;
1011 	int ret;
1012 
1013 	path = btrfs_alloc_path();
1014 	if (!path) {
1015 		ret = -ENOMEM;
1016 		goto err;
1017 	}
1018 	path->leave_spinning = 1;
1019 
1020 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1021 	if (!name) {
1022 		ret = -ENOMEM;
1023 		goto err;
1024 	}
1025 	ptr = name + PATH_MAX - 1;
1026 	ptr[0] = '\0';
1027 
1028 	/*
1029 	 * Walk up the subvolume trees in the tree of tree roots by root
1030 	 * backrefs until we hit the top-level subvolume.
1031 	 */
1032 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1033 		key.objectid = subvol_objectid;
1034 		key.type = BTRFS_ROOT_BACKREF_KEY;
1035 		key.offset = (u64)-1;
1036 
1037 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1038 		if (ret < 0) {
1039 			goto err;
1040 		} else if (ret > 0) {
1041 			ret = btrfs_previous_item(root, path, subvol_objectid,
1042 						  BTRFS_ROOT_BACKREF_KEY);
1043 			if (ret < 0) {
1044 				goto err;
1045 			} else if (ret > 0) {
1046 				ret = -ENOENT;
1047 				goto err;
1048 			}
1049 		}
1050 
1051 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1052 		subvol_objectid = key.offset;
1053 
1054 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1055 					  struct btrfs_root_ref);
1056 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1057 		ptr -= len + 1;
1058 		if (ptr < name) {
1059 			ret = -ENAMETOOLONG;
1060 			goto err;
1061 		}
1062 		read_extent_buffer(path->nodes[0], ptr + 1,
1063 				   (unsigned long)(root_ref + 1), len);
1064 		ptr[0] = '/';
1065 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1066 		btrfs_release_path(path);
1067 
1068 		key.objectid = subvol_objectid;
1069 		key.type = BTRFS_ROOT_ITEM_KEY;
1070 		key.offset = (u64)-1;
1071 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1072 		if (IS_ERR(fs_root)) {
1073 			ret = PTR_ERR(fs_root);
1074 			goto err;
1075 		}
1076 
1077 		/*
1078 		 * Walk up the filesystem tree by inode refs until we hit the
1079 		 * root directory.
1080 		 */
1081 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1082 			key.objectid = dirid;
1083 			key.type = BTRFS_INODE_REF_KEY;
1084 			key.offset = (u64)-1;
1085 
1086 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1087 			if (ret < 0) {
1088 				goto err;
1089 			} else if (ret > 0) {
1090 				ret = btrfs_previous_item(fs_root, path, dirid,
1091 							  BTRFS_INODE_REF_KEY);
1092 				if (ret < 0) {
1093 					goto err;
1094 				} else if (ret > 0) {
1095 					ret = -ENOENT;
1096 					goto err;
1097 				}
1098 			}
1099 
1100 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1101 			dirid = key.offset;
1102 
1103 			inode_ref = btrfs_item_ptr(path->nodes[0],
1104 						   path->slots[0],
1105 						   struct btrfs_inode_ref);
1106 			len = btrfs_inode_ref_name_len(path->nodes[0],
1107 						       inode_ref);
1108 			ptr -= len + 1;
1109 			if (ptr < name) {
1110 				ret = -ENAMETOOLONG;
1111 				goto err;
1112 			}
1113 			read_extent_buffer(path->nodes[0], ptr + 1,
1114 					   (unsigned long)(inode_ref + 1), len);
1115 			ptr[0] = '/';
1116 			btrfs_release_path(path);
1117 		}
1118 	}
1119 
1120 	btrfs_free_path(path);
1121 	if (ptr == name + PATH_MAX - 1) {
1122 		name[0] = '/';
1123 		name[1] = '\0';
1124 	} else {
1125 		memmove(name, ptr, name + PATH_MAX - ptr);
1126 	}
1127 	return name;
1128 
1129 err:
1130 	btrfs_free_path(path);
1131 	kfree(name);
1132 	return ERR_PTR(ret);
1133 }
1134 
1135 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1136 {
1137 	struct btrfs_root *root = fs_info->tree_root;
1138 	struct btrfs_dir_item *di;
1139 	struct btrfs_path *path;
1140 	struct btrfs_key location;
1141 	u64 dir_id;
1142 
1143 	path = btrfs_alloc_path();
1144 	if (!path)
1145 		return -ENOMEM;
1146 	path->leave_spinning = 1;
1147 
1148 	/*
1149 	 * Find the "default" dir item which points to the root item that we
1150 	 * will mount by default if we haven't been given a specific subvolume
1151 	 * to mount.
1152 	 */
1153 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1154 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1155 	if (IS_ERR(di)) {
1156 		btrfs_free_path(path);
1157 		return PTR_ERR(di);
1158 	}
1159 	if (!di) {
1160 		/*
1161 		 * Ok the default dir item isn't there.  This is weird since
1162 		 * it's always been there, but don't freak out, just try and
1163 		 * mount the top-level subvolume.
1164 		 */
1165 		btrfs_free_path(path);
1166 		*objectid = BTRFS_FS_TREE_OBJECTID;
1167 		return 0;
1168 	}
1169 
1170 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1171 	btrfs_free_path(path);
1172 	*objectid = location.objectid;
1173 	return 0;
1174 }
1175 
1176 static int btrfs_fill_super(struct super_block *sb,
1177 			    struct btrfs_fs_devices *fs_devices,
1178 			    void *data)
1179 {
1180 	struct inode *inode;
1181 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1182 	struct btrfs_key key;
1183 	int err;
1184 
1185 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1186 	sb->s_magic = BTRFS_SUPER_MAGIC;
1187 	sb->s_op = &btrfs_super_ops;
1188 	sb->s_d_op = &btrfs_dentry_operations;
1189 	sb->s_export_op = &btrfs_export_ops;
1190 	sb->s_xattr = btrfs_xattr_handlers;
1191 	sb->s_time_gran = 1;
1192 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1193 	sb->s_flags |= SB_POSIXACL;
1194 #endif
1195 	sb->s_flags |= SB_I_VERSION;
1196 	sb->s_iflags |= SB_I_CGROUPWB;
1197 
1198 	err = super_setup_bdi(sb);
1199 	if (err) {
1200 		btrfs_err(fs_info, "super_setup_bdi failed");
1201 		return err;
1202 	}
1203 
1204 	err = open_ctree(sb, fs_devices, (char *)data);
1205 	if (err) {
1206 		btrfs_err(fs_info, "open_ctree failed");
1207 		return err;
1208 	}
1209 
1210 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1211 	key.type = BTRFS_INODE_ITEM_KEY;
1212 	key.offset = 0;
1213 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1214 	if (IS_ERR(inode)) {
1215 		err = PTR_ERR(inode);
1216 		goto fail_close;
1217 	}
1218 
1219 	sb->s_root = d_make_root(inode);
1220 	if (!sb->s_root) {
1221 		err = -ENOMEM;
1222 		goto fail_close;
1223 	}
1224 
1225 	cleancache_init_fs(sb);
1226 	sb->s_flags |= SB_ACTIVE;
1227 	return 0;
1228 
1229 fail_close:
1230 	close_ctree(fs_info);
1231 	return err;
1232 }
1233 
1234 int btrfs_sync_fs(struct super_block *sb, int wait)
1235 {
1236 	struct btrfs_trans_handle *trans;
1237 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1238 	struct btrfs_root *root = fs_info->tree_root;
1239 
1240 	trace_btrfs_sync_fs(fs_info, wait);
1241 
1242 	if (!wait) {
1243 		filemap_flush(fs_info->btree_inode->i_mapping);
1244 		return 0;
1245 	}
1246 
1247 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1248 
1249 	trans = btrfs_attach_transaction_barrier(root);
1250 	if (IS_ERR(trans)) {
1251 		/* no transaction, don't bother */
1252 		if (PTR_ERR(trans) == -ENOENT) {
1253 			/*
1254 			 * Exit unless we have some pending changes
1255 			 * that need to go through commit
1256 			 */
1257 			if (fs_info->pending_changes == 0)
1258 				return 0;
1259 			/*
1260 			 * A non-blocking test if the fs is frozen. We must not
1261 			 * start a new transaction here otherwise a deadlock
1262 			 * happens. The pending operations are delayed to the
1263 			 * next commit after thawing.
1264 			 */
1265 			if (sb_start_write_trylock(sb))
1266 				sb_end_write(sb);
1267 			else
1268 				return 0;
1269 			trans = btrfs_start_transaction(root, 0);
1270 		}
1271 		if (IS_ERR(trans))
1272 			return PTR_ERR(trans);
1273 	}
1274 	return btrfs_commit_transaction(trans);
1275 }
1276 
1277 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1278 {
1279 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1280 	const char *compress_type;
1281 
1282 	if (btrfs_test_opt(info, DEGRADED))
1283 		seq_puts(seq, ",degraded");
1284 	if (btrfs_test_opt(info, NODATASUM))
1285 		seq_puts(seq, ",nodatasum");
1286 	if (btrfs_test_opt(info, NODATACOW))
1287 		seq_puts(seq, ",nodatacow");
1288 	if (btrfs_test_opt(info, NOBARRIER))
1289 		seq_puts(seq, ",nobarrier");
1290 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1291 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1292 	if (info->thread_pool_size !=  min_t(unsigned long,
1293 					     num_online_cpus() + 2, 8))
1294 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1295 	if (btrfs_test_opt(info, COMPRESS)) {
1296 		compress_type = btrfs_compress_type2str(info->compress_type);
1297 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1298 			seq_printf(seq, ",compress-force=%s", compress_type);
1299 		else
1300 			seq_printf(seq, ",compress=%s", compress_type);
1301 		if (info->compress_level)
1302 			seq_printf(seq, ":%d", info->compress_level);
1303 	}
1304 	if (btrfs_test_opt(info, NOSSD))
1305 		seq_puts(seq, ",nossd");
1306 	if (btrfs_test_opt(info, SSD_SPREAD))
1307 		seq_puts(seq, ",ssd_spread");
1308 	else if (btrfs_test_opt(info, SSD))
1309 		seq_puts(seq, ",ssd");
1310 	if (btrfs_test_opt(info, NOTREELOG))
1311 		seq_puts(seq, ",notreelog");
1312 	if (btrfs_test_opt(info, NOLOGREPLAY))
1313 		seq_puts(seq, ",nologreplay");
1314 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1315 		seq_puts(seq, ",flushoncommit");
1316 	if (btrfs_test_opt(info, DISCARD))
1317 		seq_puts(seq, ",discard");
1318 	if (!(info->sb->s_flags & SB_POSIXACL))
1319 		seq_puts(seq, ",noacl");
1320 	if (btrfs_test_opt(info, SPACE_CACHE))
1321 		seq_puts(seq, ",space_cache");
1322 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1323 		seq_puts(seq, ",space_cache=v2");
1324 	else
1325 		seq_puts(seq, ",nospace_cache");
1326 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1327 		seq_puts(seq, ",rescan_uuid_tree");
1328 	if (btrfs_test_opt(info, CLEAR_CACHE))
1329 		seq_puts(seq, ",clear_cache");
1330 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1331 		seq_puts(seq, ",user_subvol_rm_allowed");
1332 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1333 		seq_puts(seq, ",enospc_debug");
1334 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1335 		seq_puts(seq, ",autodefrag");
1336 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1337 		seq_puts(seq, ",inode_cache");
1338 	if (btrfs_test_opt(info, SKIP_BALANCE))
1339 		seq_puts(seq, ",skip_balance");
1340 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1341 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1342 		seq_puts(seq, ",check_int_data");
1343 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1344 		seq_puts(seq, ",check_int");
1345 	if (info->check_integrity_print_mask)
1346 		seq_printf(seq, ",check_int_print_mask=%d",
1347 				info->check_integrity_print_mask);
1348 #endif
1349 	if (info->metadata_ratio)
1350 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1351 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1352 		seq_puts(seq, ",fatal_errors=panic");
1353 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1354 		seq_printf(seq, ",commit=%u", info->commit_interval);
1355 #ifdef CONFIG_BTRFS_DEBUG
1356 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1357 		seq_puts(seq, ",fragment=data");
1358 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1359 		seq_puts(seq, ",fragment=metadata");
1360 #endif
1361 	if (btrfs_test_opt(info, REF_VERIFY))
1362 		seq_puts(seq, ",ref_verify");
1363 	seq_printf(seq, ",subvolid=%llu",
1364 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1365 	seq_puts(seq, ",subvol=");
1366 	seq_dentry(seq, dentry, " \t\n\\");
1367 	return 0;
1368 }
1369 
1370 static int btrfs_test_super(struct super_block *s, void *data)
1371 {
1372 	struct btrfs_fs_info *p = data;
1373 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1374 
1375 	return fs_info->fs_devices == p->fs_devices;
1376 }
1377 
1378 static int btrfs_set_super(struct super_block *s, void *data)
1379 {
1380 	int err = set_anon_super(s, data);
1381 	if (!err)
1382 		s->s_fs_info = data;
1383 	return err;
1384 }
1385 
1386 /*
1387  * subvolumes are identified by ino 256
1388  */
1389 static inline int is_subvolume_inode(struct inode *inode)
1390 {
1391 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1392 		return 1;
1393 	return 0;
1394 }
1395 
1396 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1397 				   const char *device_name, struct vfsmount *mnt)
1398 {
1399 	struct dentry *root;
1400 	int ret;
1401 
1402 	if (!subvol_name) {
1403 		if (!subvol_objectid) {
1404 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1405 							  &subvol_objectid);
1406 			if (ret) {
1407 				root = ERR_PTR(ret);
1408 				goto out;
1409 			}
1410 		}
1411 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1412 							    subvol_objectid);
1413 		if (IS_ERR(subvol_name)) {
1414 			root = ERR_CAST(subvol_name);
1415 			subvol_name = NULL;
1416 			goto out;
1417 		}
1418 
1419 	}
1420 
1421 	root = mount_subtree(mnt, subvol_name);
1422 	/* mount_subtree() drops our reference on the vfsmount. */
1423 	mnt = NULL;
1424 
1425 	if (!IS_ERR(root)) {
1426 		struct super_block *s = root->d_sb;
1427 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1428 		struct inode *root_inode = d_inode(root);
1429 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1430 
1431 		ret = 0;
1432 		if (!is_subvolume_inode(root_inode)) {
1433 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1434 			       subvol_name);
1435 			ret = -EINVAL;
1436 		}
1437 		if (subvol_objectid && root_objectid != subvol_objectid) {
1438 			/*
1439 			 * This will also catch a race condition where a
1440 			 * subvolume which was passed by ID is renamed and
1441 			 * another subvolume is renamed over the old location.
1442 			 */
1443 			btrfs_err(fs_info,
1444 				  "subvol '%s' does not match subvolid %llu",
1445 				  subvol_name, subvol_objectid);
1446 			ret = -EINVAL;
1447 		}
1448 		if (ret) {
1449 			dput(root);
1450 			root = ERR_PTR(ret);
1451 			deactivate_locked_super(s);
1452 		}
1453 	}
1454 
1455 out:
1456 	mntput(mnt);
1457 	kfree(subvol_name);
1458 	return root;
1459 }
1460 
1461 static int parse_security_options(char *orig_opts,
1462 				  struct security_mnt_opts *sec_opts)
1463 {
1464 	char *secdata = NULL;
1465 	int ret = 0;
1466 
1467 	secdata = alloc_secdata();
1468 	if (!secdata)
1469 		return -ENOMEM;
1470 	ret = security_sb_copy_data(orig_opts, secdata);
1471 	if (ret) {
1472 		free_secdata(secdata);
1473 		return ret;
1474 	}
1475 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1476 	free_secdata(secdata);
1477 	return ret;
1478 }
1479 
1480 static int setup_security_options(struct btrfs_fs_info *fs_info,
1481 				  struct super_block *sb,
1482 				  struct security_mnt_opts *sec_opts)
1483 {
1484 	int ret = 0;
1485 
1486 	/*
1487 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1488 	 * is valid.
1489 	 */
1490 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1491 	if (ret)
1492 		return ret;
1493 
1494 #ifdef CONFIG_SECURITY
1495 	if (!fs_info->security_opts.num_mnt_opts) {
1496 		/* first time security setup, copy sec_opts to fs_info */
1497 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1498 	} else {
1499 		/*
1500 		 * Since SELinux (the only one supporting security_mnt_opts)
1501 		 * does NOT support changing context during remount/mount of
1502 		 * the same sb, this must be the same or part of the same
1503 		 * security options, just free it.
1504 		 */
1505 		security_free_mnt_opts(sec_opts);
1506 	}
1507 #endif
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Find a superblock for the given device / mount point.
1513  *
1514  * Note: This is based on mount_bdev from fs/super.c with a few additions
1515  *       for multiple device setup.  Make sure to keep it in sync.
1516  */
1517 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1518 		int flags, const char *device_name, void *data)
1519 {
1520 	struct block_device *bdev = NULL;
1521 	struct super_block *s;
1522 	struct btrfs_device *device = NULL;
1523 	struct btrfs_fs_devices *fs_devices = NULL;
1524 	struct btrfs_fs_info *fs_info = NULL;
1525 	struct security_mnt_opts new_sec_opts;
1526 	fmode_t mode = FMODE_READ;
1527 	int error = 0;
1528 
1529 	if (!(flags & SB_RDONLY))
1530 		mode |= FMODE_WRITE;
1531 
1532 	security_init_mnt_opts(&new_sec_opts);
1533 	if (data) {
1534 		error = parse_security_options(data, &new_sec_opts);
1535 		if (error)
1536 			return ERR_PTR(error);
1537 	}
1538 
1539 	/*
1540 	 * Setup a dummy root and fs_info for test/set super.  This is because
1541 	 * we don't actually fill this stuff out until open_ctree, but we need
1542 	 * it for searching for existing supers, so this lets us do that and
1543 	 * then open_ctree will properly initialize everything later.
1544 	 */
1545 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1546 	if (!fs_info) {
1547 		error = -ENOMEM;
1548 		goto error_sec_opts;
1549 	}
1550 
1551 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1552 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1553 	security_init_mnt_opts(&fs_info->security_opts);
1554 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1555 		error = -ENOMEM;
1556 		goto error_fs_info;
1557 	}
1558 
1559 	mutex_lock(&uuid_mutex);
1560 	error = btrfs_parse_device_options(data, mode, fs_type);
1561 	if (error) {
1562 		mutex_unlock(&uuid_mutex);
1563 		goto error_fs_info;
1564 	}
1565 
1566 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1567 	if (IS_ERR(device)) {
1568 		mutex_unlock(&uuid_mutex);
1569 		error = PTR_ERR(device);
1570 		goto error_fs_info;
1571 	}
1572 
1573 	fs_devices = device->fs_devices;
1574 	fs_info->fs_devices = fs_devices;
1575 
1576 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1577 	mutex_unlock(&uuid_mutex);
1578 	if (error)
1579 		goto error_fs_info;
1580 
1581 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1582 		error = -EACCES;
1583 		goto error_close_devices;
1584 	}
1585 
1586 	bdev = fs_devices->latest_bdev;
1587 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1588 		 fs_info);
1589 	if (IS_ERR(s)) {
1590 		error = PTR_ERR(s);
1591 		goto error_close_devices;
1592 	}
1593 
1594 	if (s->s_root) {
1595 		btrfs_close_devices(fs_devices);
1596 		free_fs_info(fs_info);
1597 		if ((flags ^ s->s_flags) & SB_RDONLY)
1598 			error = -EBUSY;
1599 	} else {
1600 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1601 		btrfs_sb(s)->bdev_holder = fs_type;
1602 		error = btrfs_fill_super(s, fs_devices, data);
1603 	}
1604 	if (error) {
1605 		deactivate_locked_super(s);
1606 		goto error_sec_opts;
1607 	}
1608 
1609 	fs_info = btrfs_sb(s);
1610 	error = setup_security_options(fs_info, s, &new_sec_opts);
1611 	if (error) {
1612 		deactivate_locked_super(s);
1613 		goto error_sec_opts;
1614 	}
1615 
1616 	return dget(s->s_root);
1617 
1618 error_close_devices:
1619 	btrfs_close_devices(fs_devices);
1620 error_fs_info:
1621 	free_fs_info(fs_info);
1622 error_sec_opts:
1623 	security_free_mnt_opts(&new_sec_opts);
1624 	return ERR_PTR(error);
1625 }
1626 
1627 /*
1628  * Mount function which is called by VFS layer.
1629  *
1630  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1631  * which needs vfsmount* of device's root (/).  This means device's root has to
1632  * be mounted internally in any case.
1633  *
1634  * Operation flow:
1635  *   1. Parse subvol id related options for later use in mount_subvol().
1636  *
1637  *   2. Mount device's root (/) by calling vfs_kern_mount().
1638  *
1639  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1640  *      first place. In order to avoid calling btrfs_mount() again, we use
1641  *      different file_system_type which is not registered to VFS by
1642  *      register_filesystem() (btrfs_root_fs_type). As a result,
1643  *      btrfs_mount_root() is called. The return value will be used by
1644  *      mount_subtree() in mount_subvol().
1645  *
1646  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1647  *      "btrfs subvolume set-default", mount_subvol() is called always.
1648  */
1649 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1650 		const char *device_name, void *data)
1651 {
1652 	struct vfsmount *mnt_root;
1653 	struct dentry *root;
1654 	fmode_t mode = FMODE_READ;
1655 	char *subvol_name = NULL;
1656 	u64 subvol_objectid = 0;
1657 	int error = 0;
1658 
1659 	if (!(flags & SB_RDONLY))
1660 		mode |= FMODE_WRITE;
1661 
1662 	error = btrfs_parse_subvol_options(data, &subvol_name,
1663 					&subvol_objectid);
1664 	if (error) {
1665 		kfree(subvol_name);
1666 		return ERR_PTR(error);
1667 	}
1668 
1669 	/* mount device's root (/) */
1670 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1671 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1672 		if (flags & SB_RDONLY) {
1673 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1674 				flags & ~SB_RDONLY, device_name, data);
1675 		} else {
1676 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1677 				flags | SB_RDONLY, device_name, data);
1678 			if (IS_ERR(mnt_root)) {
1679 				root = ERR_CAST(mnt_root);
1680 				goto out;
1681 			}
1682 
1683 			down_write(&mnt_root->mnt_sb->s_umount);
1684 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1685 			up_write(&mnt_root->mnt_sb->s_umount);
1686 			if (error < 0) {
1687 				root = ERR_PTR(error);
1688 				mntput(mnt_root);
1689 				goto out;
1690 			}
1691 		}
1692 	}
1693 	if (IS_ERR(mnt_root)) {
1694 		root = ERR_CAST(mnt_root);
1695 		goto out;
1696 	}
1697 
1698 	/* mount_subvol() will free subvol_name and mnt_root */
1699 	root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1700 
1701 out:
1702 	return root;
1703 }
1704 
1705 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1706 				     u32 new_pool_size, u32 old_pool_size)
1707 {
1708 	if (new_pool_size == old_pool_size)
1709 		return;
1710 
1711 	fs_info->thread_pool_size = new_pool_size;
1712 
1713 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1714 	       old_pool_size, new_pool_size);
1715 
1716 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1717 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1718 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1719 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1720 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1721 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1722 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1723 				new_pool_size);
1724 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1725 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1726 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1727 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1728 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1729 				new_pool_size);
1730 }
1731 
1732 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1733 {
1734 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1735 }
1736 
1737 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1738 				       unsigned long old_opts, int flags)
1739 {
1740 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1741 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1742 	     (flags & SB_RDONLY))) {
1743 		/* wait for any defraggers to finish */
1744 		wait_event(fs_info->transaction_wait,
1745 			   (atomic_read(&fs_info->defrag_running) == 0));
1746 		if (flags & SB_RDONLY)
1747 			sync_filesystem(fs_info->sb);
1748 	}
1749 }
1750 
1751 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1752 					 unsigned long old_opts)
1753 {
1754 	/*
1755 	 * We need to cleanup all defragable inodes if the autodefragment is
1756 	 * close or the filesystem is read only.
1757 	 */
1758 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1759 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1760 		btrfs_cleanup_defrag_inodes(fs_info);
1761 	}
1762 
1763 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1764 }
1765 
1766 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1767 {
1768 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1769 	struct btrfs_root *root = fs_info->tree_root;
1770 	unsigned old_flags = sb->s_flags;
1771 	unsigned long old_opts = fs_info->mount_opt;
1772 	unsigned long old_compress_type = fs_info->compress_type;
1773 	u64 old_max_inline = fs_info->max_inline;
1774 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1775 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1776 	int ret;
1777 
1778 	sync_filesystem(sb);
1779 	btrfs_remount_prepare(fs_info);
1780 
1781 	if (data) {
1782 		struct security_mnt_opts new_sec_opts;
1783 
1784 		security_init_mnt_opts(&new_sec_opts);
1785 		ret = parse_security_options(data, &new_sec_opts);
1786 		if (ret)
1787 			goto restore;
1788 		ret = setup_security_options(fs_info, sb,
1789 					     &new_sec_opts);
1790 		if (ret) {
1791 			security_free_mnt_opts(&new_sec_opts);
1792 			goto restore;
1793 		}
1794 	}
1795 
1796 	ret = btrfs_parse_options(fs_info, data, *flags);
1797 	if (ret)
1798 		goto restore;
1799 
1800 	btrfs_remount_begin(fs_info, old_opts, *flags);
1801 	btrfs_resize_thread_pool(fs_info,
1802 		fs_info->thread_pool_size, old_thread_pool_size);
1803 
1804 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1805 		goto out;
1806 
1807 	if (*flags & SB_RDONLY) {
1808 		/*
1809 		 * this also happens on 'umount -rf' or on shutdown, when
1810 		 * the filesystem is busy.
1811 		 */
1812 		cancel_work_sync(&fs_info->async_reclaim_work);
1813 
1814 		/* wait for the uuid_scan task to finish */
1815 		down(&fs_info->uuid_tree_rescan_sem);
1816 		/* avoid complains from lockdep et al. */
1817 		up(&fs_info->uuid_tree_rescan_sem);
1818 
1819 		sb->s_flags |= SB_RDONLY;
1820 
1821 		/*
1822 		 * Setting SB_RDONLY will put the cleaner thread to
1823 		 * sleep at the next loop if it's already active.
1824 		 * If it's already asleep, we'll leave unused block
1825 		 * groups on disk until we're mounted read-write again
1826 		 * unless we clean them up here.
1827 		 */
1828 		btrfs_delete_unused_bgs(fs_info);
1829 
1830 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1831 		btrfs_scrub_cancel(fs_info);
1832 		btrfs_pause_balance(fs_info);
1833 
1834 		ret = btrfs_commit_super(fs_info);
1835 		if (ret)
1836 			goto restore;
1837 	} else {
1838 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1839 			btrfs_err(fs_info,
1840 				"Remounting read-write after error is not allowed");
1841 			ret = -EINVAL;
1842 			goto restore;
1843 		}
1844 		if (fs_info->fs_devices->rw_devices == 0) {
1845 			ret = -EACCES;
1846 			goto restore;
1847 		}
1848 
1849 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1850 			btrfs_warn(fs_info,
1851 				"too many missing devices, writeable remount is not allowed");
1852 			ret = -EACCES;
1853 			goto restore;
1854 		}
1855 
1856 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1857 			ret = -EINVAL;
1858 			goto restore;
1859 		}
1860 
1861 		ret = btrfs_cleanup_fs_roots(fs_info);
1862 		if (ret)
1863 			goto restore;
1864 
1865 		/* recover relocation */
1866 		mutex_lock(&fs_info->cleaner_mutex);
1867 		ret = btrfs_recover_relocation(root);
1868 		mutex_unlock(&fs_info->cleaner_mutex);
1869 		if (ret)
1870 			goto restore;
1871 
1872 		ret = btrfs_resume_balance_async(fs_info);
1873 		if (ret)
1874 			goto restore;
1875 
1876 		ret = btrfs_resume_dev_replace_async(fs_info);
1877 		if (ret) {
1878 			btrfs_warn(fs_info, "failed to resume dev_replace");
1879 			goto restore;
1880 		}
1881 
1882 		btrfs_qgroup_rescan_resume(fs_info);
1883 
1884 		if (!fs_info->uuid_root) {
1885 			btrfs_info(fs_info, "creating UUID tree");
1886 			ret = btrfs_create_uuid_tree(fs_info);
1887 			if (ret) {
1888 				btrfs_warn(fs_info,
1889 					   "failed to create the UUID tree %d",
1890 					   ret);
1891 				goto restore;
1892 			}
1893 		}
1894 		sb->s_flags &= ~SB_RDONLY;
1895 
1896 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1897 	}
1898 out:
1899 	wake_up_process(fs_info->transaction_kthread);
1900 	btrfs_remount_cleanup(fs_info, old_opts);
1901 	return 0;
1902 
1903 restore:
1904 	/* We've hit an error - don't reset SB_RDONLY */
1905 	if (sb_rdonly(sb))
1906 		old_flags |= SB_RDONLY;
1907 	sb->s_flags = old_flags;
1908 	fs_info->mount_opt = old_opts;
1909 	fs_info->compress_type = old_compress_type;
1910 	fs_info->max_inline = old_max_inline;
1911 	btrfs_resize_thread_pool(fs_info,
1912 		old_thread_pool_size, fs_info->thread_pool_size);
1913 	fs_info->metadata_ratio = old_metadata_ratio;
1914 	btrfs_remount_cleanup(fs_info, old_opts);
1915 	return ret;
1916 }
1917 
1918 /* Used to sort the devices by max_avail(descending sort) */
1919 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1920 				       const void *dev_info2)
1921 {
1922 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1923 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1924 		return -1;
1925 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1926 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1927 		return 1;
1928 	else
1929 	return 0;
1930 }
1931 
1932 /*
1933  * sort the devices by max_avail, in which max free extent size of each device
1934  * is stored.(Descending Sort)
1935  */
1936 static inline void btrfs_descending_sort_devices(
1937 					struct btrfs_device_info *devices,
1938 					size_t nr_devices)
1939 {
1940 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1941 	     btrfs_cmp_device_free_bytes, NULL);
1942 }
1943 
1944 /*
1945  * The helper to calc the free space on the devices that can be used to store
1946  * file data.
1947  */
1948 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1949 					      u64 *free_bytes)
1950 {
1951 	struct btrfs_device_info *devices_info;
1952 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1953 	struct btrfs_device *device;
1954 	u64 skip_space;
1955 	u64 type;
1956 	u64 avail_space;
1957 	u64 min_stripe_size;
1958 	int min_stripes = 1, num_stripes = 1;
1959 	int i = 0, nr_devices;
1960 
1961 	/*
1962 	 * We aren't under the device list lock, so this is racy-ish, but good
1963 	 * enough for our purposes.
1964 	 */
1965 	nr_devices = fs_info->fs_devices->open_devices;
1966 	if (!nr_devices) {
1967 		smp_mb();
1968 		nr_devices = fs_info->fs_devices->open_devices;
1969 		ASSERT(nr_devices);
1970 		if (!nr_devices) {
1971 			*free_bytes = 0;
1972 			return 0;
1973 		}
1974 	}
1975 
1976 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1977 			       GFP_KERNEL);
1978 	if (!devices_info)
1979 		return -ENOMEM;
1980 
1981 	/* calc min stripe number for data space allocation */
1982 	type = btrfs_data_alloc_profile(fs_info);
1983 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1984 		min_stripes = 2;
1985 		num_stripes = nr_devices;
1986 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1987 		min_stripes = 2;
1988 		num_stripes = 2;
1989 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1990 		min_stripes = 4;
1991 		num_stripes = 4;
1992 	}
1993 
1994 	if (type & BTRFS_BLOCK_GROUP_DUP)
1995 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1996 	else
1997 		min_stripe_size = BTRFS_STRIPE_LEN;
1998 
1999 	rcu_read_lock();
2000 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2001 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2002 						&device->dev_state) ||
2003 		    !device->bdev ||
2004 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2005 			continue;
2006 
2007 		if (i >= nr_devices)
2008 			break;
2009 
2010 		avail_space = device->total_bytes - device->bytes_used;
2011 
2012 		/* align with stripe_len */
2013 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2014 		avail_space *= BTRFS_STRIPE_LEN;
2015 
2016 		/*
2017 		 * In order to avoid overwriting the superblock on the drive,
2018 		 * btrfs starts at an offset of at least 1MB when doing chunk
2019 		 * allocation.
2020 		 */
2021 		skip_space = SZ_1M;
2022 
2023 		/*
2024 		 * we can use the free space in [0, skip_space - 1], subtract
2025 		 * it from the total.
2026 		 */
2027 		if (avail_space && avail_space >= skip_space)
2028 			avail_space -= skip_space;
2029 		else
2030 			avail_space = 0;
2031 
2032 		if (avail_space < min_stripe_size)
2033 			continue;
2034 
2035 		devices_info[i].dev = device;
2036 		devices_info[i].max_avail = avail_space;
2037 
2038 		i++;
2039 	}
2040 	rcu_read_unlock();
2041 
2042 	nr_devices = i;
2043 
2044 	btrfs_descending_sort_devices(devices_info, nr_devices);
2045 
2046 	i = nr_devices - 1;
2047 	avail_space = 0;
2048 	while (nr_devices >= min_stripes) {
2049 		if (num_stripes > nr_devices)
2050 			num_stripes = nr_devices;
2051 
2052 		if (devices_info[i].max_avail >= min_stripe_size) {
2053 			int j;
2054 			u64 alloc_size;
2055 
2056 			avail_space += devices_info[i].max_avail * num_stripes;
2057 			alloc_size = devices_info[i].max_avail;
2058 			for (j = i + 1 - num_stripes; j <= i; j++)
2059 				devices_info[j].max_avail -= alloc_size;
2060 		}
2061 		i--;
2062 		nr_devices--;
2063 	}
2064 
2065 	kfree(devices_info);
2066 	*free_bytes = avail_space;
2067 	return 0;
2068 }
2069 
2070 /*
2071  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2072  *
2073  * If there's a redundant raid level at DATA block groups, use the respective
2074  * multiplier to scale the sizes.
2075  *
2076  * Unused device space usage is based on simulating the chunk allocator
2077  * algorithm that respects the device sizes and order of allocations.  This is
2078  * a close approximation of the actual use but there are other factors that may
2079  * change the result (like a new metadata chunk).
2080  *
2081  * If metadata is exhausted, f_bavail will be 0.
2082  */
2083 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2084 {
2085 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2086 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2087 	struct list_head *head = &fs_info->space_info;
2088 	struct btrfs_space_info *found;
2089 	u64 total_used = 0;
2090 	u64 total_free_data = 0;
2091 	u64 total_free_meta = 0;
2092 	int bits = dentry->d_sb->s_blocksize_bits;
2093 	__be32 *fsid = (__be32 *)fs_info->fsid;
2094 	unsigned factor = 1;
2095 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2096 	int ret;
2097 	u64 thresh = 0;
2098 	int mixed = 0;
2099 
2100 	rcu_read_lock();
2101 	list_for_each_entry_rcu(found, head, list) {
2102 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2103 			int i;
2104 
2105 			total_free_data += found->disk_total - found->disk_used;
2106 			total_free_data -=
2107 				btrfs_account_ro_block_groups_free_space(found);
2108 
2109 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2110 				if (!list_empty(&found->block_groups[i]))
2111 					factor = btrfs_bg_type_to_factor(
2112 						btrfs_raid_array[i].bg_flag);
2113 			}
2114 		}
2115 
2116 		/*
2117 		 * Metadata in mixed block goup profiles are accounted in data
2118 		 */
2119 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2120 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2121 				mixed = 1;
2122 			else
2123 				total_free_meta += found->disk_total -
2124 					found->disk_used;
2125 		}
2126 
2127 		total_used += found->disk_used;
2128 	}
2129 
2130 	rcu_read_unlock();
2131 
2132 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2133 	buf->f_blocks >>= bits;
2134 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2135 
2136 	/* Account global block reserve as used, it's in logical size already */
2137 	spin_lock(&block_rsv->lock);
2138 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2139 	if (buf->f_bfree >= block_rsv->size >> bits)
2140 		buf->f_bfree -= block_rsv->size >> bits;
2141 	else
2142 		buf->f_bfree = 0;
2143 	spin_unlock(&block_rsv->lock);
2144 
2145 	buf->f_bavail = div_u64(total_free_data, factor);
2146 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2147 	if (ret)
2148 		return ret;
2149 	buf->f_bavail += div_u64(total_free_data, factor);
2150 	buf->f_bavail = buf->f_bavail >> bits;
2151 
2152 	/*
2153 	 * We calculate the remaining metadata space minus global reserve. If
2154 	 * this is (supposedly) smaller than zero, there's no space. But this
2155 	 * does not hold in practice, the exhausted state happens where's still
2156 	 * some positive delta. So we apply some guesswork and compare the
2157 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2158 	 *
2159 	 * We probably cannot calculate the exact threshold value because this
2160 	 * depends on the internal reservations requested by various
2161 	 * operations, so some operations that consume a few metadata will
2162 	 * succeed even if the Avail is zero. But this is better than the other
2163 	 * way around.
2164 	 */
2165 	thresh = SZ_4M;
2166 
2167 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2168 		buf->f_bavail = 0;
2169 
2170 	buf->f_type = BTRFS_SUPER_MAGIC;
2171 	buf->f_bsize = dentry->d_sb->s_blocksize;
2172 	buf->f_namelen = BTRFS_NAME_LEN;
2173 
2174 	/* We treat it as constant endianness (it doesn't matter _which_)
2175 	   because we want the fsid to come out the same whether mounted
2176 	   on a big-endian or little-endian host */
2177 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2178 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2179 	/* Mask in the root object ID too, to disambiguate subvols */
2180 	buf->f_fsid.val[0] ^=
2181 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2182 	buf->f_fsid.val[1] ^=
2183 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2184 
2185 	return 0;
2186 }
2187 
2188 static void btrfs_kill_super(struct super_block *sb)
2189 {
2190 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2191 	kill_anon_super(sb);
2192 	free_fs_info(fs_info);
2193 }
2194 
2195 static struct file_system_type btrfs_fs_type = {
2196 	.owner		= THIS_MODULE,
2197 	.name		= "btrfs",
2198 	.mount		= btrfs_mount,
2199 	.kill_sb	= btrfs_kill_super,
2200 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2201 };
2202 
2203 static struct file_system_type btrfs_root_fs_type = {
2204 	.owner		= THIS_MODULE,
2205 	.name		= "btrfs",
2206 	.mount		= btrfs_mount_root,
2207 	.kill_sb	= btrfs_kill_super,
2208 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2209 };
2210 
2211 MODULE_ALIAS_FS("btrfs");
2212 
2213 static int btrfs_control_open(struct inode *inode, struct file *file)
2214 {
2215 	/*
2216 	 * The control file's private_data is used to hold the
2217 	 * transaction when it is started and is used to keep
2218 	 * track of whether a transaction is already in progress.
2219 	 */
2220 	file->private_data = NULL;
2221 	return 0;
2222 }
2223 
2224 /*
2225  * used by btrfsctl to scan devices when no FS is mounted
2226  */
2227 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2228 				unsigned long arg)
2229 {
2230 	struct btrfs_ioctl_vol_args *vol;
2231 	struct btrfs_device *device = NULL;
2232 	int ret = -ENOTTY;
2233 
2234 	if (!capable(CAP_SYS_ADMIN))
2235 		return -EPERM;
2236 
2237 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2238 	if (IS_ERR(vol))
2239 		return PTR_ERR(vol);
2240 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2241 
2242 	switch (cmd) {
2243 	case BTRFS_IOC_SCAN_DEV:
2244 		mutex_lock(&uuid_mutex);
2245 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2246 					       &btrfs_root_fs_type);
2247 		ret = PTR_ERR_OR_ZERO(device);
2248 		mutex_unlock(&uuid_mutex);
2249 		break;
2250 	case BTRFS_IOC_DEVICES_READY:
2251 		mutex_lock(&uuid_mutex);
2252 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2253 					       &btrfs_root_fs_type);
2254 		if (IS_ERR(device)) {
2255 			mutex_unlock(&uuid_mutex);
2256 			ret = PTR_ERR(device);
2257 			break;
2258 		}
2259 		ret = !(device->fs_devices->num_devices ==
2260 			device->fs_devices->total_devices);
2261 		mutex_unlock(&uuid_mutex);
2262 		break;
2263 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2264 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2265 		break;
2266 	}
2267 
2268 	kfree(vol);
2269 	return ret;
2270 }
2271 
2272 static int btrfs_freeze(struct super_block *sb)
2273 {
2274 	struct btrfs_trans_handle *trans;
2275 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2276 	struct btrfs_root *root = fs_info->tree_root;
2277 
2278 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2279 	/*
2280 	 * We don't need a barrier here, we'll wait for any transaction that
2281 	 * could be in progress on other threads (and do delayed iputs that
2282 	 * we want to avoid on a frozen filesystem), or do the commit
2283 	 * ourselves.
2284 	 */
2285 	trans = btrfs_attach_transaction_barrier(root);
2286 	if (IS_ERR(trans)) {
2287 		/* no transaction, don't bother */
2288 		if (PTR_ERR(trans) == -ENOENT)
2289 			return 0;
2290 		return PTR_ERR(trans);
2291 	}
2292 	return btrfs_commit_transaction(trans);
2293 }
2294 
2295 static int btrfs_unfreeze(struct super_block *sb)
2296 {
2297 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2298 
2299 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2300 	return 0;
2301 }
2302 
2303 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2304 {
2305 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2306 	struct btrfs_fs_devices *cur_devices;
2307 	struct btrfs_device *dev, *first_dev = NULL;
2308 	struct list_head *head;
2309 
2310 	/*
2311 	 * Lightweight locking of the devices. We should not need
2312 	 * device_list_mutex here as we only read the device data and the list
2313 	 * is protected by RCU.  Even if a device is deleted during the list
2314 	 * traversals, we'll get valid data, the freeing callback will wait at
2315 	 * least until until the rcu_read_unlock.
2316 	 */
2317 	rcu_read_lock();
2318 	cur_devices = fs_info->fs_devices;
2319 	while (cur_devices) {
2320 		head = &cur_devices->devices;
2321 		list_for_each_entry_rcu(dev, head, dev_list) {
2322 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2323 				continue;
2324 			if (!dev->name)
2325 				continue;
2326 			if (!first_dev || dev->devid < first_dev->devid)
2327 				first_dev = dev;
2328 		}
2329 		cur_devices = cur_devices->seed;
2330 	}
2331 
2332 	if (first_dev)
2333 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2334 	else
2335 		WARN_ON(1);
2336 	rcu_read_unlock();
2337 	return 0;
2338 }
2339 
2340 static const struct super_operations btrfs_super_ops = {
2341 	.drop_inode	= btrfs_drop_inode,
2342 	.evict_inode	= btrfs_evict_inode,
2343 	.put_super	= btrfs_put_super,
2344 	.sync_fs	= btrfs_sync_fs,
2345 	.show_options	= btrfs_show_options,
2346 	.show_devname	= btrfs_show_devname,
2347 	.alloc_inode	= btrfs_alloc_inode,
2348 	.destroy_inode	= btrfs_destroy_inode,
2349 	.statfs		= btrfs_statfs,
2350 	.remount_fs	= btrfs_remount,
2351 	.freeze_fs	= btrfs_freeze,
2352 	.unfreeze_fs	= btrfs_unfreeze,
2353 };
2354 
2355 static const struct file_operations btrfs_ctl_fops = {
2356 	.open = btrfs_control_open,
2357 	.unlocked_ioctl	 = btrfs_control_ioctl,
2358 	.compat_ioctl = btrfs_control_ioctl,
2359 	.owner	 = THIS_MODULE,
2360 	.llseek = noop_llseek,
2361 };
2362 
2363 static struct miscdevice btrfs_misc = {
2364 	.minor		= BTRFS_MINOR,
2365 	.name		= "btrfs-control",
2366 	.fops		= &btrfs_ctl_fops
2367 };
2368 
2369 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2370 MODULE_ALIAS("devname:btrfs-control");
2371 
2372 static int __init btrfs_interface_init(void)
2373 {
2374 	return misc_register(&btrfs_misc);
2375 }
2376 
2377 static __cold void btrfs_interface_exit(void)
2378 {
2379 	misc_deregister(&btrfs_misc);
2380 }
2381 
2382 static void __init btrfs_print_mod_info(void)
2383 {
2384 	static const char options[] = ""
2385 #ifdef CONFIG_BTRFS_DEBUG
2386 			", debug=on"
2387 #endif
2388 #ifdef CONFIG_BTRFS_ASSERT
2389 			", assert=on"
2390 #endif
2391 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2392 			", integrity-checker=on"
2393 #endif
2394 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2395 			", ref-verify=on"
2396 #endif
2397 			;
2398 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2399 }
2400 
2401 static int __init init_btrfs_fs(void)
2402 {
2403 	int err;
2404 
2405 	btrfs_props_init();
2406 
2407 	err = btrfs_init_sysfs();
2408 	if (err)
2409 		return err;
2410 
2411 	btrfs_init_compress();
2412 
2413 	err = btrfs_init_cachep();
2414 	if (err)
2415 		goto free_compress;
2416 
2417 	err = extent_io_init();
2418 	if (err)
2419 		goto free_cachep;
2420 
2421 	err = extent_map_init();
2422 	if (err)
2423 		goto free_extent_io;
2424 
2425 	err = ordered_data_init();
2426 	if (err)
2427 		goto free_extent_map;
2428 
2429 	err = btrfs_delayed_inode_init();
2430 	if (err)
2431 		goto free_ordered_data;
2432 
2433 	err = btrfs_auto_defrag_init();
2434 	if (err)
2435 		goto free_delayed_inode;
2436 
2437 	err = btrfs_delayed_ref_init();
2438 	if (err)
2439 		goto free_auto_defrag;
2440 
2441 	err = btrfs_prelim_ref_init();
2442 	if (err)
2443 		goto free_delayed_ref;
2444 
2445 	err = btrfs_end_io_wq_init();
2446 	if (err)
2447 		goto free_prelim_ref;
2448 
2449 	err = btrfs_interface_init();
2450 	if (err)
2451 		goto free_end_io_wq;
2452 
2453 	btrfs_init_lockdep();
2454 
2455 	btrfs_print_mod_info();
2456 
2457 	err = btrfs_run_sanity_tests();
2458 	if (err)
2459 		goto unregister_ioctl;
2460 
2461 	err = register_filesystem(&btrfs_fs_type);
2462 	if (err)
2463 		goto unregister_ioctl;
2464 
2465 	return 0;
2466 
2467 unregister_ioctl:
2468 	btrfs_interface_exit();
2469 free_end_io_wq:
2470 	btrfs_end_io_wq_exit();
2471 free_prelim_ref:
2472 	btrfs_prelim_ref_exit();
2473 free_delayed_ref:
2474 	btrfs_delayed_ref_exit();
2475 free_auto_defrag:
2476 	btrfs_auto_defrag_exit();
2477 free_delayed_inode:
2478 	btrfs_delayed_inode_exit();
2479 free_ordered_data:
2480 	ordered_data_exit();
2481 free_extent_map:
2482 	extent_map_exit();
2483 free_extent_io:
2484 	extent_io_exit();
2485 free_cachep:
2486 	btrfs_destroy_cachep();
2487 free_compress:
2488 	btrfs_exit_compress();
2489 	btrfs_exit_sysfs();
2490 
2491 	return err;
2492 }
2493 
2494 static void __exit exit_btrfs_fs(void)
2495 {
2496 	btrfs_destroy_cachep();
2497 	btrfs_delayed_ref_exit();
2498 	btrfs_auto_defrag_exit();
2499 	btrfs_delayed_inode_exit();
2500 	btrfs_prelim_ref_exit();
2501 	ordered_data_exit();
2502 	extent_map_exit();
2503 	extent_io_exit();
2504 	btrfs_interface_exit();
2505 	btrfs_end_io_wq_exit();
2506 	unregister_filesystem(&btrfs_fs_type);
2507 	btrfs_exit_sysfs();
2508 	btrfs_cleanup_fs_uuids();
2509 	btrfs_exit_compress();
2510 }
2511 
2512 late_initcall(init_btrfs_fs);
2513 module_exit(exit_btrfs_fs)
2514 
2515 MODULE_LICENSE("GPL");
2516