xref: /openbmc/linux/fs/btrfs/super.c (revision 0352f880)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "delayed-inode.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "props.h"
36 #include "xattr.h"
37 #include "volumes.h"
38 #include "export.h"
39 #include "compression.h"
40 #include "rcu-string.h"
41 #include "dev-replace.h"
42 #include "free-space-cache.h"
43 #include "backref.h"
44 #include "space-info.h"
45 #include "sysfs.h"
46 #include "zoned.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 #include "discard.h"
50 #include "qgroup.h"
51 #include "raid56.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67 
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69 
70 #ifdef CONFIG_PRINTK
71 
72 #define STATE_STRING_PREFACE	": state "
73 #define STATE_STRING_BUF_LEN	(sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT)
74 
75 /*
76  * Characters to print to indicate error conditions or uncommon filesystem state.
77  * RO is not an error.
78  */
79 static const char fs_state_chars[] = {
80 	[BTRFS_FS_STATE_ERROR]			= 'E',
81 	[BTRFS_FS_STATE_REMOUNTING]		= 'M',
82 	[BTRFS_FS_STATE_RO]			= 0,
83 	[BTRFS_FS_STATE_TRANS_ABORTED]		= 'A',
84 	[BTRFS_FS_STATE_DEV_REPLACING]		= 'R',
85 	[BTRFS_FS_STATE_DUMMY_FS_INFO]		= 0,
86 	[BTRFS_FS_STATE_NO_CSUMS]		= 'C',
87 	[BTRFS_FS_STATE_LOG_CLEANUP_ERROR]	= 'L',
88 };
89 
90 static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf)
91 {
92 	unsigned int bit;
93 	bool states_printed = false;
94 	unsigned long fs_state = READ_ONCE(info->fs_state);
95 	char *curr = buf;
96 
97 	memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE));
98 	curr += sizeof(STATE_STRING_PREFACE) - 1;
99 
100 	for_each_set_bit(bit, &fs_state, sizeof(fs_state)) {
101 		WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT);
102 		if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) {
103 			*curr++ = fs_state_chars[bit];
104 			states_printed = true;
105 		}
106 	}
107 
108 	/* If no states were printed, reset the buffer */
109 	if (!states_printed)
110 		curr = buf;
111 
112 	*curr++ = 0;
113 }
114 #endif
115 
116 /*
117  * Generally the error codes correspond to their respective errors, but there
118  * are a few special cases.
119  *
120  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
121  *          instance will return EUCLEAN if any of the blocks are corrupted in
122  *          a way that is problematic.  We want to reserve EUCLEAN for these
123  *          sort of corruptions.
124  *
125  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
126  *        need to use EROFS for this case.  We will have no idea of the
127  *        original failure, that will have been reported at the time we tripped
128  *        over the error.  Each subsequent error that doesn't have any context
129  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
130  */
131 const char * __attribute_const__ btrfs_decode_error(int errno)
132 {
133 	char *errstr = "unknown";
134 
135 	switch (errno) {
136 	case -ENOENT:		/* -2 */
137 		errstr = "No such entry";
138 		break;
139 	case -EIO:		/* -5 */
140 		errstr = "IO failure";
141 		break;
142 	case -ENOMEM:		/* -12*/
143 		errstr = "Out of memory";
144 		break;
145 	case -EEXIST:		/* -17 */
146 		errstr = "Object already exists";
147 		break;
148 	case -ENOSPC:		/* -28 */
149 		errstr = "No space left";
150 		break;
151 	case -EROFS:		/* -30 */
152 		errstr = "Readonly filesystem";
153 		break;
154 	case -EOPNOTSUPP:	/* -95 */
155 		errstr = "Operation not supported";
156 		break;
157 	case -EUCLEAN:		/* -117 */
158 		errstr = "Filesystem corrupted";
159 		break;
160 	case -EDQUOT:		/* -122 */
161 		errstr = "Quota exceeded";
162 		break;
163 	}
164 
165 	return errstr;
166 }
167 
168 /*
169  * __btrfs_handle_fs_error decodes expected errors from the caller and
170  * invokes the appropriate error response.
171  */
172 __cold
173 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
174 		       unsigned int line, int errno, const char *fmt, ...)
175 {
176 	struct super_block *sb = fs_info->sb;
177 #ifdef CONFIG_PRINTK
178 	char statestr[STATE_STRING_BUF_LEN];
179 	const char *errstr;
180 #endif
181 
182 	/*
183 	 * Special case: if the error is EROFS, and we're already
184 	 * under SB_RDONLY, then it is safe here.
185 	 */
186 	if (errno == -EROFS && sb_rdonly(sb))
187   		return;
188 
189 #ifdef CONFIG_PRINTK
190 	errstr = btrfs_decode_error(errno);
191 	btrfs_state_to_string(fs_info, statestr);
192 	if (fmt) {
193 		struct va_format vaf;
194 		va_list args;
195 
196 		va_start(args, fmt);
197 		vaf.fmt = fmt;
198 		vaf.va = &args;
199 
200 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n",
201 			sb->s_id, statestr, function, line, errno, errstr, &vaf);
202 		va_end(args);
203 	} else {
204 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n",
205 			sb->s_id, statestr, function, line, errno, errstr);
206 	}
207 #endif
208 
209 	/*
210 	 * Today we only save the error info to memory.  Long term we'll
211 	 * also send it down to the disk
212 	 */
213 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
214 
215 	/* Don't go through full error handling during mount */
216 	if (!(sb->s_flags & SB_BORN))
217 		return;
218 
219 	if (sb_rdonly(sb))
220 		return;
221 
222 	btrfs_discard_stop(fs_info);
223 
224 	/* btrfs handle error by forcing the filesystem readonly */
225 	btrfs_set_sb_rdonly(sb);
226 	btrfs_info(fs_info, "forced readonly");
227 	/*
228 	 * Note that a running device replace operation is not canceled here
229 	 * although there is no way to update the progress. It would add the
230 	 * risk of a deadlock, therefore the canceling is omitted. The only
231 	 * penalty is that some I/O remains active until the procedure
232 	 * completes. The next time when the filesystem is mounted writable
233 	 * again, the device replace operation continues.
234 	 */
235 }
236 
237 #ifdef CONFIG_PRINTK
238 static const char * const logtypes[] = {
239 	"emergency",
240 	"alert",
241 	"critical",
242 	"error",
243 	"warning",
244 	"notice",
245 	"info",
246 	"debug",
247 };
248 
249 
250 /*
251  * Use one ratelimit state per log level so that a flood of less important
252  * messages doesn't cause more important ones to be dropped.
253  */
254 static struct ratelimit_state printk_limits[] = {
255 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
256 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
257 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
258 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
259 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
260 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
261 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
262 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
263 };
264 
265 void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
266 {
267 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
268 	struct va_format vaf;
269 	va_list args;
270 	int kern_level;
271 	const char *type = logtypes[4];
272 	struct ratelimit_state *ratelimit = &printk_limits[4];
273 
274 	va_start(args, fmt);
275 
276 	while ((kern_level = printk_get_level(fmt)) != 0) {
277 		size_t size = printk_skip_level(fmt) - fmt;
278 
279 		if (kern_level >= '0' && kern_level <= '7') {
280 			memcpy(lvl, fmt,  size);
281 			lvl[size] = '\0';
282 			type = logtypes[kern_level - '0'];
283 			ratelimit = &printk_limits[kern_level - '0'];
284 		}
285 		fmt += size;
286 	}
287 
288 	vaf.fmt = fmt;
289 	vaf.va = &args;
290 
291 	if (__ratelimit(ratelimit)) {
292 		if (fs_info) {
293 			char statestr[STATE_STRING_BUF_LEN];
294 
295 			btrfs_state_to_string(fs_info, statestr);
296 			_printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type,
297 				fs_info->sb->s_id, statestr, &vaf);
298 		} else {
299 			_printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
300 		}
301 	}
302 
303 	va_end(args);
304 }
305 #endif
306 
307 #if BITS_PER_LONG == 32
308 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
309 {
310 	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
311 		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
312 		btrfs_warn(fs_info,
313 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
314 			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
315 		btrfs_warn(fs_info,
316 			   "please consider upgrading to 64bit kernel/hardware");
317 	}
318 }
319 
320 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
321 {
322 	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
323 		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
324 		btrfs_err(fs_info,
325 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
326 			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
327 		btrfs_err(fs_info,
328 			   "please consider upgrading to 64bit kernel/hardware");
329 	}
330 }
331 #endif
332 
333 /*
334  * We only mark the transaction aborted and then set the file system read-only.
335  * This will prevent new transactions from starting or trying to join this
336  * one.
337  *
338  * This means that error recovery at the call site is limited to freeing
339  * any local memory allocations and passing the error code up without
340  * further cleanup. The transaction should complete as it normally would
341  * in the call path but will return -EIO.
342  *
343  * We'll complete the cleanup in btrfs_end_transaction and
344  * btrfs_commit_transaction.
345  */
346 __cold
347 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
348 			       const char *function,
349 			       unsigned int line, int errno, bool first_hit)
350 {
351 	struct btrfs_fs_info *fs_info = trans->fs_info;
352 
353 	WRITE_ONCE(trans->aborted, errno);
354 	WRITE_ONCE(trans->transaction->aborted, errno);
355 	if (first_hit && errno == -ENOSPC)
356 		btrfs_dump_space_info_for_trans_abort(fs_info);
357 	/* Wake up anybody who may be waiting on this transaction */
358 	wake_up(&fs_info->transaction_wait);
359 	wake_up(&fs_info->transaction_blocked_wait);
360 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
361 }
362 /*
363  * __btrfs_panic decodes unexpected, fatal errors from the caller,
364  * issues an alert, and either panics or BUGs, depending on mount options.
365  */
366 __cold
367 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
368 		   unsigned int line, int errno, const char *fmt, ...)
369 {
370 	char *s_id = "<unknown>";
371 	const char *errstr;
372 	struct va_format vaf = { .fmt = fmt };
373 	va_list args;
374 
375 	if (fs_info)
376 		s_id = fs_info->sb->s_id;
377 
378 	va_start(args, fmt);
379 	vaf.va = &args;
380 
381 	errstr = btrfs_decode_error(errno);
382 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
383 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
384 			s_id, function, line, &vaf, errno, errstr);
385 
386 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
387 		   function, line, &vaf, errno, errstr);
388 	va_end(args);
389 	/* Caller calls BUG() */
390 }
391 
392 static void btrfs_put_super(struct super_block *sb)
393 {
394 	close_ctree(btrfs_sb(sb));
395 }
396 
397 enum {
398 	Opt_acl, Opt_noacl,
399 	Opt_clear_cache,
400 	Opt_commit_interval,
401 	Opt_compress,
402 	Opt_compress_force,
403 	Opt_compress_force_type,
404 	Opt_compress_type,
405 	Opt_degraded,
406 	Opt_device,
407 	Opt_fatal_errors,
408 	Opt_flushoncommit, Opt_noflushoncommit,
409 	Opt_max_inline,
410 	Opt_barrier, Opt_nobarrier,
411 	Opt_datacow, Opt_nodatacow,
412 	Opt_datasum, Opt_nodatasum,
413 	Opt_defrag, Opt_nodefrag,
414 	Opt_discard, Opt_nodiscard,
415 	Opt_discard_mode,
416 	Opt_norecovery,
417 	Opt_ratio,
418 	Opt_rescan_uuid_tree,
419 	Opt_skip_balance,
420 	Opt_space_cache, Opt_no_space_cache,
421 	Opt_space_cache_version,
422 	Opt_ssd, Opt_nossd,
423 	Opt_ssd_spread, Opt_nossd_spread,
424 	Opt_subvol,
425 	Opt_subvol_empty,
426 	Opt_subvolid,
427 	Opt_thread_pool,
428 	Opt_treelog, Opt_notreelog,
429 	Opt_user_subvol_rm_allowed,
430 
431 	/* Rescue options */
432 	Opt_rescue,
433 	Opt_usebackuproot,
434 	Opt_nologreplay,
435 	Opt_ignorebadroots,
436 	Opt_ignoredatacsums,
437 	Opt_rescue_all,
438 
439 	/* Deprecated options */
440 	Opt_recovery,
441 	Opt_inode_cache, Opt_noinode_cache,
442 
443 	/* Debugging options */
444 	Opt_check_integrity,
445 	Opt_check_integrity_including_extent_data,
446 	Opt_check_integrity_print_mask,
447 	Opt_enospc_debug, Opt_noenospc_debug,
448 #ifdef CONFIG_BTRFS_DEBUG
449 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
450 #endif
451 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
452 	Opt_ref_verify,
453 #endif
454 	Opt_err,
455 };
456 
457 static const match_table_t tokens = {
458 	{Opt_acl, "acl"},
459 	{Opt_noacl, "noacl"},
460 	{Opt_clear_cache, "clear_cache"},
461 	{Opt_commit_interval, "commit=%u"},
462 	{Opt_compress, "compress"},
463 	{Opt_compress_type, "compress=%s"},
464 	{Opt_compress_force, "compress-force"},
465 	{Opt_compress_force_type, "compress-force=%s"},
466 	{Opt_degraded, "degraded"},
467 	{Opt_device, "device=%s"},
468 	{Opt_fatal_errors, "fatal_errors=%s"},
469 	{Opt_flushoncommit, "flushoncommit"},
470 	{Opt_noflushoncommit, "noflushoncommit"},
471 	{Opt_inode_cache, "inode_cache"},
472 	{Opt_noinode_cache, "noinode_cache"},
473 	{Opt_max_inline, "max_inline=%s"},
474 	{Opt_barrier, "barrier"},
475 	{Opt_nobarrier, "nobarrier"},
476 	{Opt_datacow, "datacow"},
477 	{Opt_nodatacow, "nodatacow"},
478 	{Opt_datasum, "datasum"},
479 	{Opt_nodatasum, "nodatasum"},
480 	{Opt_defrag, "autodefrag"},
481 	{Opt_nodefrag, "noautodefrag"},
482 	{Opt_discard, "discard"},
483 	{Opt_discard_mode, "discard=%s"},
484 	{Opt_nodiscard, "nodiscard"},
485 	{Opt_norecovery, "norecovery"},
486 	{Opt_ratio, "metadata_ratio=%u"},
487 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
488 	{Opt_skip_balance, "skip_balance"},
489 	{Opt_space_cache, "space_cache"},
490 	{Opt_no_space_cache, "nospace_cache"},
491 	{Opt_space_cache_version, "space_cache=%s"},
492 	{Opt_ssd, "ssd"},
493 	{Opt_nossd, "nossd"},
494 	{Opt_ssd_spread, "ssd_spread"},
495 	{Opt_nossd_spread, "nossd_spread"},
496 	{Opt_subvol, "subvol=%s"},
497 	{Opt_subvol_empty, "subvol="},
498 	{Opt_subvolid, "subvolid=%s"},
499 	{Opt_thread_pool, "thread_pool=%u"},
500 	{Opt_treelog, "treelog"},
501 	{Opt_notreelog, "notreelog"},
502 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
503 
504 	/* Rescue options */
505 	{Opt_rescue, "rescue=%s"},
506 	/* Deprecated, with alias rescue=nologreplay */
507 	{Opt_nologreplay, "nologreplay"},
508 	/* Deprecated, with alias rescue=usebackuproot */
509 	{Opt_usebackuproot, "usebackuproot"},
510 
511 	/* Deprecated options */
512 	{Opt_recovery, "recovery"},
513 
514 	/* Debugging options */
515 	{Opt_check_integrity, "check_int"},
516 	{Opt_check_integrity_including_extent_data, "check_int_data"},
517 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
518 	{Opt_enospc_debug, "enospc_debug"},
519 	{Opt_noenospc_debug, "noenospc_debug"},
520 #ifdef CONFIG_BTRFS_DEBUG
521 	{Opt_fragment_data, "fragment=data"},
522 	{Opt_fragment_metadata, "fragment=metadata"},
523 	{Opt_fragment_all, "fragment=all"},
524 #endif
525 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
526 	{Opt_ref_verify, "ref_verify"},
527 #endif
528 	{Opt_err, NULL},
529 };
530 
531 static const match_table_t rescue_tokens = {
532 	{Opt_usebackuproot, "usebackuproot"},
533 	{Opt_nologreplay, "nologreplay"},
534 	{Opt_ignorebadroots, "ignorebadroots"},
535 	{Opt_ignorebadroots, "ibadroots"},
536 	{Opt_ignoredatacsums, "ignoredatacsums"},
537 	{Opt_ignoredatacsums, "idatacsums"},
538 	{Opt_rescue_all, "all"},
539 	{Opt_err, NULL},
540 };
541 
542 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
543 			    const char *opt_name)
544 {
545 	if (fs_info->mount_opt & opt) {
546 		btrfs_err(fs_info, "%s must be used with ro mount option",
547 			  opt_name);
548 		return true;
549 	}
550 	return false;
551 }
552 
553 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
554 {
555 	char *opts;
556 	char *orig;
557 	char *p;
558 	substring_t args[MAX_OPT_ARGS];
559 	int ret = 0;
560 
561 	opts = kstrdup(options, GFP_KERNEL);
562 	if (!opts)
563 		return -ENOMEM;
564 	orig = opts;
565 
566 	while ((p = strsep(&opts, ":")) != NULL) {
567 		int token;
568 
569 		if (!*p)
570 			continue;
571 		token = match_token(p, rescue_tokens, args);
572 		switch (token){
573 		case Opt_usebackuproot:
574 			btrfs_info(info,
575 				   "trying to use backup root at mount time");
576 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
577 			break;
578 		case Opt_nologreplay:
579 			btrfs_set_and_info(info, NOLOGREPLAY,
580 					   "disabling log replay at mount time");
581 			break;
582 		case Opt_ignorebadroots:
583 			btrfs_set_and_info(info, IGNOREBADROOTS,
584 					   "ignoring bad roots");
585 			break;
586 		case Opt_ignoredatacsums:
587 			btrfs_set_and_info(info, IGNOREDATACSUMS,
588 					   "ignoring data csums");
589 			break;
590 		case Opt_rescue_all:
591 			btrfs_info(info, "enabling all of the rescue options");
592 			btrfs_set_and_info(info, IGNOREDATACSUMS,
593 					   "ignoring data csums");
594 			btrfs_set_and_info(info, IGNOREBADROOTS,
595 					   "ignoring bad roots");
596 			btrfs_set_and_info(info, NOLOGREPLAY,
597 					   "disabling log replay at mount time");
598 			break;
599 		case Opt_err:
600 			btrfs_info(info, "unrecognized rescue option '%s'", p);
601 			ret = -EINVAL;
602 			goto out;
603 		default:
604 			break;
605 		}
606 
607 	}
608 out:
609 	kfree(orig);
610 	return ret;
611 }
612 
613 /*
614  * Regular mount options parser.  Everything that is needed only when
615  * reading in a new superblock is parsed here.
616  * XXX JDM: This needs to be cleaned up for remount.
617  */
618 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
619 			unsigned long new_flags)
620 {
621 	substring_t args[MAX_OPT_ARGS];
622 	char *p, *num;
623 	int intarg;
624 	int ret = 0;
625 	char *compress_type;
626 	bool compress_force = false;
627 	enum btrfs_compression_type saved_compress_type;
628 	int saved_compress_level;
629 	bool saved_compress_force;
630 	int no_compress = 0;
631 	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
632 
633 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
634 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
635 	else if (btrfs_free_space_cache_v1_active(info)) {
636 		if (btrfs_is_zoned(info)) {
637 			btrfs_info(info,
638 			"zoned: clearing existing space cache");
639 			btrfs_set_super_cache_generation(info->super_copy, 0);
640 		} else {
641 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
642 		}
643 	}
644 
645 	/*
646 	 * Even the options are empty, we still need to do extra check
647 	 * against new flags
648 	 */
649 	if (!options)
650 		goto check;
651 
652 	while ((p = strsep(&options, ",")) != NULL) {
653 		int token;
654 		if (!*p)
655 			continue;
656 
657 		token = match_token(p, tokens, args);
658 		switch (token) {
659 		case Opt_degraded:
660 			btrfs_info(info, "allowing degraded mounts");
661 			btrfs_set_opt(info->mount_opt, DEGRADED);
662 			break;
663 		case Opt_subvol:
664 		case Opt_subvol_empty:
665 		case Opt_subvolid:
666 		case Opt_device:
667 			/*
668 			 * These are parsed by btrfs_parse_subvol_options or
669 			 * btrfs_parse_device_options and can be ignored here.
670 			 */
671 			break;
672 		case Opt_nodatasum:
673 			btrfs_set_and_info(info, NODATASUM,
674 					   "setting nodatasum");
675 			break;
676 		case Opt_datasum:
677 			if (btrfs_test_opt(info, NODATASUM)) {
678 				if (btrfs_test_opt(info, NODATACOW))
679 					btrfs_info(info,
680 						   "setting datasum, datacow enabled");
681 				else
682 					btrfs_info(info, "setting datasum");
683 			}
684 			btrfs_clear_opt(info->mount_opt, NODATACOW);
685 			btrfs_clear_opt(info->mount_opt, NODATASUM);
686 			break;
687 		case Opt_nodatacow:
688 			if (!btrfs_test_opt(info, NODATACOW)) {
689 				if (!btrfs_test_opt(info, COMPRESS) ||
690 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
691 					btrfs_info(info,
692 						   "setting nodatacow, compression disabled");
693 				} else {
694 					btrfs_info(info, "setting nodatacow");
695 				}
696 			}
697 			btrfs_clear_opt(info->mount_opt, COMPRESS);
698 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
699 			btrfs_set_opt(info->mount_opt, NODATACOW);
700 			btrfs_set_opt(info->mount_opt, NODATASUM);
701 			break;
702 		case Opt_datacow:
703 			btrfs_clear_and_info(info, NODATACOW,
704 					     "setting datacow");
705 			break;
706 		case Opt_compress_force:
707 		case Opt_compress_force_type:
708 			compress_force = true;
709 			fallthrough;
710 		case Opt_compress:
711 		case Opt_compress_type:
712 			saved_compress_type = btrfs_test_opt(info,
713 							     COMPRESS) ?
714 				info->compress_type : BTRFS_COMPRESS_NONE;
715 			saved_compress_force =
716 				btrfs_test_opt(info, FORCE_COMPRESS);
717 			saved_compress_level = info->compress_level;
718 			if (token == Opt_compress ||
719 			    token == Opt_compress_force ||
720 			    strncmp(args[0].from, "zlib", 4) == 0) {
721 				compress_type = "zlib";
722 
723 				info->compress_type = BTRFS_COMPRESS_ZLIB;
724 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
725 				/*
726 				 * args[0] contains uninitialized data since
727 				 * for these tokens we don't expect any
728 				 * parameter.
729 				 */
730 				if (token != Opt_compress &&
731 				    token != Opt_compress_force)
732 					info->compress_level =
733 					  btrfs_compress_str2level(
734 							BTRFS_COMPRESS_ZLIB,
735 							args[0].from + 4);
736 				btrfs_set_opt(info->mount_opt, COMPRESS);
737 				btrfs_clear_opt(info->mount_opt, NODATACOW);
738 				btrfs_clear_opt(info->mount_opt, NODATASUM);
739 				no_compress = 0;
740 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
741 				compress_type = "lzo";
742 				info->compress_type = BTRFS_COMPRESS_LZO;
743 				info->compress_level = 0;
744 				btrfs_set_opt(info->mount_opt, COMPRESS);
745 				btrfs_clear_opt(info->mount_opt, NODATACOW);
746 				btrfs_clear_opt(info->mount_opt, NODATASUM);
747 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
748 				no_compress = 0;
749 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
750 				compress_type = "zstd";
751 				info->compress_type = BTRFS_COMPRESS_ZSTD;
752 				info->compress_level =
753 					btrfs_compress_str2level(
754 							 BTRFS_COMPRESS_ZSTD,
755 							 args[0].from + 4);
756 				btrfs_set_opt(info->mount_opt, COMPRESS);
757 				btrfs_clear_opt(info->mount_opt, NODATACOW);
758 				btrfs_clear_opt(info->mount_opt, NODATASUM);
759 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
760 				no_compress = 0;
761 			} else if (strncmp(args[0].from, "no", 2) == 0) {
762 				compress_type = "no";
763 				info->compress_level = 0;
764 				info->compress_type = 0;
765 				btrfs_clear_opt(info->mount_opt, COMPRESS);
766 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
767 				compress_force = false;
768 				no_compress++;
769 			} else {
770 				btrfs_err(info, "unrecognized compression value %s",
771 					  args[0].from);
772 				ret = -EINVAL;
773 				goto out;
774 			}
775 
776 			if (compress_force) {
777 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
778 			} else {
779 				/*
780 				 * If we remount from compress-force=xxx to
781 				 * compress=xxx, we need clear FORCE_COMPRESS
782 				 * flag, otherwise, there is no way for users
783 				 * to disable forcible compression separately.
784 				 */
785 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
786 			}
787 			if (no_compress == 1) {
788 				btrfs_info(info, "use no compression");
789 			} else if ((info->compress_type != saved_compress_type) ||
790 				   (compress_force != saved_compress_force) ||
791 				   (info->compress_level != saved_compress_level)) {
792 				btrfs_info(info, "%s %s compression, level %d",
793 					   (compress_force) ? "force" : "use",
794 					   compress_type, info->compress_level);
795 			}
796 			compress_force = false;
797 			break;
798 		case Opt_ssd:
799 			btrfs_set_and_info(info, SSD,
800 					   "enabling ssd optimizations");
801 			btrfs_clear_opt(info->mount_opt, NOSSD);
802 			break;
803 		case Opt_ssd_spread:
804 			btrfs_set_and_info(info, SSD,
805 					   "enabling ssd optimizations");
806 			btrfs_set_and_info(info, SSD_SPREAD,
807 					   "using spread ssd allocation scheme");
808 			btrfs_clear_opt(info->mount_opt, NOSSD);
809 			break;
810 		case Opt_nossd:
811 			btrfs_set_opt(info->mount_opt, NOSSD);
812 			btrfs_clear_and_info(info, SSD,
813 					     "not using ssd optimizations");
814 			fallthrough;
815 		case Opt_nossd_spread:
816 			btrfs_clear_and_info(info, SSD_SPREAD,
817 					     "not using spread ssd allocation scheme");
818 			break;
819 		case Opt_barrier:
820 			btrfs_clear_and_info(info, NOBARRIER,
821 					     "turning on barriers");
822 			break;
823 		case Opt_nobarrier:
824 			btrfs_set_and_info(info, NOBARRIER,
825 					   "turning off barriers");
826 			break;
827 		case Opt_thread_pool:
828 			ret = match_int(&args[0], &intarg);
829 			if (ret) {
830 				btrfs_err(info, "unrecognized thread_pool value %s",
831 					  args[0].from);
832 				goto out;
833 			} else if (intarg == 0) {
834 				btrfs_err(info, "invalid value 0 for thread_pool");
835 				ret = -EINVAL;
836 				goto out;
837 			}
838 			info->thread_pool_size = intarg;
839 			break;
840 		case Opt_max_inline:
841 			num = match_strdup(&args[0]);
842 			if (num) {
843 				info->max_inline = memparse(num, NULL);
844 				kfree(num);
845 
846 				if (info->max_inline) {
847 					info->max_inline = min_t(u64,
848 						info->max_inline,
849 						info->sectorsize);
850 				}
851 				btrfs_info(info, "max_inline at %llu",
852 					   info->max_inline);
853 			} else {
854 				ret = -ENOMEM;
855 				goto out;
856 			}
857 			break;
858 		case Opt_acl:
859 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
860 			info->sb->s_flags |= SB_POSIXACL;
861 			break;
862 #else
863 			btrfs_err(info, "support for ACL not compiled in!");
864 			ret = -EINVAL;
865 			goto out;
866 #endif
867 		case Opt_noacl:
868 			info->sb->s_flags &= ~SB_POSIXACL;
869 			break;
870 		case Opt_notreelog:
871 			btrfs_set_and_info(info, NOTREELOG,
872 					   "disabling tree log");
873 			break;
874 		case Opt_treelog:
875 			btrfs_clear_and_info(info, NOTREELOG,
876 					     "enabling tree log");
877 			break;
878 		case Opt_norecovery:
879 		case Opt_nologreplay:
880 			btrfs_warn(info,
881 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
882 			btrfs_set_and_info(info, NOLOGREPLAY,
883 					   "disabling log replay at mount time");
884 			break;
885 		case Opt_flushoncommit:
886 			btrfs_set_and_info(info, FLUSHONCOMMIT,
887 					   "turning on flush-on-commit");
888 			break;
889 		case Opt_noflushoncommit:
890 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
891 					     "turning off flush-on-commit");
892 			break;
893 		case Opt_ratio:
894 			ret = match_int(&args[0], &intarg);
895 			if (ret) {
896 				btrfs_err(info, "unrecognized metadata_ratio value %s",
897 					  args[0].from);
898 				goto out;
899 			}
900 			info->metadata_ratio = intarg;
901 			btrfs_info(info, "metadata ratio %u",
902 				   info->metadata_ratio);
903 			break;
904 		case Opt_discard:
905 		case Opt_discard_mode:
906 			if (token == Opt_discard ||
907 			    strcmp(args[0].from, "sync") == 0) {
908 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
909 				btrfs_set_and_info(info, DISCARD_SYNC,
910 						   "turning on sync discard");
911 			} else if (strcmp(args[0].from, "async") == 0) {
912 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
913 				btrfs_set_and_info(info, DISCARD_ASYNC,
914 						   "turning on async discard");
915 			} else {
916 				btrfs_err(info, "unrecognized discard mode value %s",
917 					  args[0].from);
918 				ret = -EINVAL;
919 				goto out;
920 			}
921 			break;
922 		case Opt_nodiscard:
923 			btrfs_clear_and_info(info, DISCARD_SYNC,
924 					     "turning off discard");
925 			btrfs_clear_and_info(info, DISCARD_ASYNC,
926 					     "turning off async discard");
927 			break;
928 		case Opt_space_cache:
929 		case Opt_space_cache_version:
930 			/*
931 			 * We already set FREE_SPACE_TREE above because we have
932 			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
933 			 * to allow v1 to be set for extent tree v2, simply
934 			 * ignore this setting if we're extent tree v2.
935 			 */
936 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
937 				break;
938 			if (token == Opt_space_cache ||
939 			    strcmp(args[0].from, "v1") == 0) {
940 				btrfs_clear_opt(info->mount_opt,
941 						FREE_SPACE_TREE);
942 				btrfs_set_and_info(info, SPACE_CACHE,
943 					   "enabling disk space caching");
944 			} else if (strcmp(args[0].from, "v2") == 0) {
945 				btrfs_clear_opt(info->mount_opt,
946 						SPACE_CACHE);
947 				btrfs_set_and_info(info, FREE_SPACE_TREE,
948 						   "enabling free space tree");
949 			} else {
950 				btrfs_err(info, "unrecognized space_cache value %s",
951 					  args[0].from);
952 				ret = -EINVAL;
953 				goto out;
954 			}
955 			break;
956 		case Opt_rescan_uuid_tree:
957 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
958 			break;
959 		case Opt_no_space_cache:
960 			/*
961 			 * We cannot operate without the free space tree with
962 			 * extent tree v2, ignore this option.
963 			 */
964 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
965 				break;
966 			if (btrfs_test_opt(info, SPACE_CACHE)) {
967 				btrfs_clear_and_info(info, SPACE_CACHE,
968 					     "disabling disk space caching");
969 			}
970 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
971 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
972 					     "disabling free space tree");
973 			}
974 			break;
975 		case Opt_inode_cache:
976 		case Opt_noinode_cache:
977 			btrfs_warn(info,
978 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
979 			break;
980 		case Opt_clear_cache:
981 			/*
982 			 * We cannot clear the free space tree with extent tree
983 			 * v2, ignore this option.
984 			 */
985 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
986 				break;
987 			btrfs_set_and_info(info, CLEAR_CACHE,
988 					   "force clearing of disk cache");
989 			break;
990 		case Opt_user_subvol_rm_allowed:
991 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
992 			break;
993 		case Opt_enospc_debug:
994 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
995 			break;
996 		case Opt_noenospc_debug:
997 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
998 			break;
999 		case Opt_defrag:
1000 			btrfs_set_and_info(info, AUTO_DEFRAG,
1001 					   "enabling auto defrag");
1002 			break;
1003 		case Opt_nodefrag:
1004 			btrfs_clear_and_info(info, AUTO_DEFRAG,
1005 					     "disabling auto defrag");
1006 			break;
1007 		case Opt_recovery:
1008 		case Opt_usebackuproot:
1009 			btrfs_warn(info,
1010 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
1011 				   token == Opt_recovery ? "recovery" :
1012 				   "usebackuproot");
1013 			btrfs_info(info,
1014 				   "trying to use backup root at mount time");
1015 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
1016 			break;
1017 		case Opt_skip_balance:
1018 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
1019 			break;
1020 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1021 		case Opt_check_integrity_including_extent_data:
1022 			btrfs_info(info,
1023 				   "enabling check integrity including extent data");
1024 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
1025 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
1026 			break;
1027 		case Opt_check_integrity:
1028 			btrfs_info(info, "enabling check integrity");
1029 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
1030 			break;
1031 		case Opt_check_integrity_print_mask:
1032 			ret = match_int(&args[0], &intarg);
1033 			if (ret) {
1034 				btrfs_err(info,
1035 				"unrecognized check_integrity_print_mask value %s",
1036 					args[0].from);
1037 				goto out;
1038 			}
1039 			info->check_integrity_print_mask = intarg;
1040 			btrfs_info(info, "check_integrity_print_mask 0x%x",
1041 				   info->check_integrity_print_mask);
1042 			break;
1043 #else
1044 		case Opt_check_integrity_including_extent_data:
1045 		case Opt_check_integrity:
1046 		case Opt_check_integrity_print_mask:
1047 			btrfs_err(info,
1048 				  "support for check_integrity* not compiled in!");
1049 			ret = -EINVAL;
1050 			goto out;
1051 #endif
1052 		case Opt_fatal_errors:
1053 			if (strcmp(args[0].from, "panic") == 0) {
1054 				btrfs_set_opt(info->mount_opt,
1055 					      PANIC_ON_FATAL_ERROR);
1056 			} else if (strcmp(args[0].from, "bug") == 0) {
1057 				btrfs_clear_opt(info->mount_opt,
1058 					      PANIC_ON_FATAL_ERROR);
1059 			} else {
1060 				btrfs_err(info, "unrecognized fatal_errors value %s",
1061 					  args[0].from);
1062 				ret = -EINVAL;
1063 				goto out;
1064 			}
1065 			break;
1066 		case Opt_commit_interval:
1067 			intarg = 0;
1068 			ret = match_int(&args[0], &intarg);
1069 			if (ret) {
1070 				btrfs_err(info, "unrecognized commit_interval value %s",
1071 					  args[0].from);
1072 				ret = -EINVAL;
1073 				goto out;
1074 			}
1075 			if (intarg == 0) {
1076 				btrfs_info(info,
1077 					   "using default commit interval %us",
1078 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
1079 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
1080 			} else if (intarg > 300) {
1081 				btrfs_warn(info, "excessive commit interval %d",
1082 					   intarg);
1083 			}
1084 			info->commit_interval = intarg;
1085 			break;
1086 		case Opt_rescue:
1087 			ret = parse_rescue_options(info, args[0].from);
1088 			if (ret < 0) {
1089 				btrfs_err(info, "unrecognized rescue value %s",
1090 					  args[0].from);
1091 				goto out;
1092 			}
1093 			break;
1094 #ifdef CONFIG_BTRFS_DEBUG
1095 		case Opt_fragment_all:
1096 			btrfs_info(info, "fragmenting all space");
1097 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1098 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
1099 			break;
1100 		case Opt_fragment_metadata:
1101 			btrfs_info(info, "fragmenting metadata");
1102 			btrfs_set_opt(info->mount_opt,
1103 				      FRAGMENT_METADATA);
1104 			break;
1105 		case Opt_fragment_data:
1106 			btrfs_info(info, "fragmenting data");
1107 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1108 			break;
1109 #endif
1110 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1111 		case Opt_ref_verify:
1112 			btrfs_info(info, "doing ref verification");
1113 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1114 			break;
1115 #endif
1116 		case Opt_err:
1117 			btrfs_err(info, "unrecognized mount option '%s'", p);
1118 			ret = -EINVAL;
1119 			goto out;
1120 		default:
1121 			break;
1122 		}
1123 	}
1124 check:
1125 	/* We're read-only, don't have to check. */
1126 	if (new_flags & SB_RDONLY)
1127 		goto out;
1128 
1129 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1130 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1131 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1132 		ret = -EINVAL;
1133 out:
1134 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1135 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1136 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1137 		btrfs_err(info, "cannot disable free space tree");
1138 		ret = -EINVAL;
1139 
1140 	}
1141 	if (!ret)
1142 		ret = btrfs_check_mountopts_zoned(info);
1143 	if (!ret && !remounting) {
1144 		if (btrfs_test_opt(info, SPACE_CACHE))
1145 			btrfs_info(info, "disk space caching is enabled");
1146 		if (btrfs_test_opt(info, FREE_SPACE_TREE))
1147 			btrfs_info(info, "using free space tree");
1148 	}
1149 	return ret;
1150 }
1151 
1152 /*
1153  * Parse mount options that are required early in the mount process.
1154  *
1155  * All other options will be parsed on much later in the mount process and
1156  * only when we need to allocate a new super block.
1157  */
1158 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1159 				      void *holder)
1160 {
1161 	substring_t args[MAX_OPT_ARGS];
1162 	char *device_name, *opts, *orig, *p;
1163 	struct btrfs_device *device = NULL;
1164 	int error = 0;
1165 
1166 	lockdep_assert_held(&uuid_mutex);
1167 
1168 	if (!options)
1169 		return 0;
1170 
1171 	/*
1172 	 * strsep changes the string, duplicate it because btrfs_parse_options
1173 	 * gets called later
1174 	 */
1175 	opts = kstrdup(options, GFP_KERNEL);
1176 	if (!opts)
1177 		return -ENOMEM;
1178 	orig = opts;
1179 
1180 	while ((p = strsep(&opts, ",")) != NULL) {
1181 		int token;
1182 
1183 		if (!*p)
1184 			continue;
1185 
1186 		token = match_token(p, tokens, args);
1187 		if (token == Opt_device) {
1188 			device_name = match_strdup(&args[0]);
1189 			if (!device_name) {
1190 				error = -ENOMEM;
1191 				goto out;
1192 			}
1193 			device = btrfs_scan_one_device(device_name, flags,
1194 					holder);
1195 			kfree(device_name);
1196 			if (IS_ERR(device)) {
1197 				error = PTR_ERR(device);
1198 				goto out;
1199 			}
1200 		}
1201 	}
1202 
1203 out:
1204 	kfree(orig);
1205 	return error;
1206 }
1207 
1208 /*
1209  * Parse mount options that are related to subvolume id
1210  *
1211  * The value is later passed to mount_subvol()
1212  */
1213 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1214 		u64 *subvol_objectid)
1215 {
1216 	substring_t args[MAX_OPT_ARGS];
1217 	char *opts, *orig, *p;
1218 	int error = 0;
1219 	u64 subvolid;
1220 
1221 	if (!options)
1222 		return 0;
1223 
1224 	/*
1225 	 * strsep changes the string, duplicate it because
1226 	 * btrfs_parse_device_options gets called later
1227 	 */
1228 	opts = kstrdup(options, GFP_KERNEL);
1229 	if (!opts)
1230 		return -ENOMEM;
1231 	orig = opts;
1232 
1233 	while ((p = strsep(&opts, ",")) != NULL) {
1234 		int token;
1235 		if (!*p)
1236 			continue;
1237 
1238 		token = match_token(p, tokens, args);
1239 		switch (token) {
1240 		case Opt_subvol:
1241 			kfree(*subvol_name);
1242 			*subvol_name = match_strdup(&args[0]);
1243 			if (!*subvol_name) {
1244 				error = -ENOMEM;
1245 				goto out;
1246 			}
1247 			break;
1248 		case Opt_subvolid:
1249 			error = match_u64(&args[0], &subvolid);
1250 			if (error)
1251 				goto out;
1252 
1253 			/* we want the original fs_tree */
1254 			if (subvolid == 0)
1255 				subvolid = BTRFS_FS_TREE_OBJECTID;
1256 
1257 			*subvol_objectid = subvolid;
1258 			break;
1259 		default:
1260 			break;
1261 		}
1262 	}
1263 
1264 out:
1265 	kfree(orig);
1266 	return error;
1267 }
1268 
1269 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1270 					  u64 subvol_objectid)
1271 {
1272 	struct btrfs_root *root = fs_info->tree_root;
1273 	struct btrfs_root *fs_root = NULL;
1274 	struct btrfs_root_ref *root_ref;
1275 	struct btrfs_inode_ref *inode_ref;
1276 	struct btrfs_key key;
1277 	struct btrfs_path *path = NULL;
1278 	char *name = NULL, *ptr;
1279 	u64 dirid;
1280 	int len;
1281 	int ret;
1282 
1283 	path = btrfs_alloc_path();
1284 	if (!path) {
1285 		ret = -ENOMEM;
1286 		goto err;
1287 	}
1288 
1289 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1290 	if (!name) {
1291 		ret = -ENOMEM;
1292 		goto err;
1293 	}
1294 	ptr = name + PATH_MAX - 1;
1295 	ptr[0] = '\0';
1296 
1297 	/*
1298 	 * Walk up the subvolume trees in the tree of tree roots by root
1299 	 * backrefs until we hit the top-level subvolume.
1300 	 */
1301 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1302 		key.objectid = subvol_objectid;
1303 		key.type = BTRFS_ROOT_BACKREF_KEY;
1304 		key.offset = (u64)-1;
1305 
1306 		ret = btrfs_search_backwards(root, &key, path);
1307 		if (ret < 0) {
1308 			goto err;
1309 		} else if (ret > 0) {
1310 			ret = -ENOENT;
1311 			goto err;
1312 		}
1313 
1314 		subvol_objectid = key.offset;
1315 
1316 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1317 					  struct btrfs_root_ref);
1318 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1319 		ptr -= len + 1;
1320 		if (ptr < name) {
1321 			ret = -ENAMETOOLONG;
1322 			goto err;
1323 		}
1324 		read_extent_buffer(path->nodes[0], ptr + 1,
1325 				   (unsigned long)(root_ref + 1), len);
1326 		ptr[0] = '/';
1327 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1328 		btrfs_release_path(path);
1329 
1330 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1331 		if (IS_ERR(fs_root)) {
1332 			ret = PTR_ERR(fs_root);
1333 			fs_root = NULL;
1334 			goto err;
1335 		}
1336 
1337 		/*
1338 		 * Walk up the filesystem tree by inode refs until we hit the
1339 		 * root directory.
1340 		 */
1341 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1342 			key.objectid = dirid;
1343 			key.type = BTRFS_INODE_REF_KEY;
1344 			key.offset = (u64)-1;
1345 
1346 			ret = btrfs_search_backwards(fs_root, &key, path);
1347 			if (ret < 0) {
1348 				goto err;
1349 			} else if (ret > 0) {
1350 				ret = -ENOENT;
1351 				goto err;
1352 			}
1353 
1354 			dirid = key.offset;
1355 
1356 			inode_ref = btrfs_item_ptr(path->nodes[0],
1357 						   path->slots[0],
1358 						   struct btrfs_inode_ref);
1359 			len = btrfs_inode_ref_name_len(path->nodes[0],
1360 						       inode_ref);
1361 			ptr -= len + 1;
1362 			if (ptr < name) {
1363 				ret = -ENAMETOOLONG;
1364 				goto err;
1365 			}
1366 			read_extent_buffer(path->nodes[0], ptr + 1,
1367 					   (unsigned long)(inode_ref + 1), len);
1368 			ptr[0] = '/';
1369 			btrfs_release_path(path);
1370 		}
1371 		btrfs_put_root(fs_root);
1372 		fs_root = NULL;
1373 	}
1374 
1375 	btrfs_free_path(path);
1376 	if (ptr == name + PATH_MAX - 1) {
1377 		name[0] = '/';
1378 		name[1] = '\0';
1379 	} else {
1380 		memmove(name, ptr, name + PATH_MAX - ptr);
1381 	}
1382 	return name;
1383 
1384 err:
1385 	btrfs_put_root(fs_root);
1386 	btrfs_free_path(path);
1387 	kfree(name);
1388 	return ERR_PTR(ret);
1389 }
1390 
1391 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1392 {
1393 	struct btrfs_root *root = fs_info->tree_root;
1394 	struct btrfs_dir_item *di;
1395 	struct btrfs_path *path;
1396 	struct btrfs_key location;
1397 	u64 dir_id;
1398 
1399 	path = btrfs_alloc_path();
1400 	if (!path)
1401 		return -ENOMEM;
1402 
1403 	/*
1404 	 * Find the "default" dir item which points to the root item that we
1405 	 * will mount by default if we haven't been given a specific subvolume
1406 	 * to mount.
1407 	 */
1408 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1409 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1410 	if (IS_ERR(di)) {
1411 		btrfs_free_path(path);
1412 		return PTR_ERR(di);
1413 	}
1414 	if (!di) {
1415 		/*
1416 		 * Ok the default dir item isn't there.  This is weird since
1417 		 * it's always been there, but don't freak out, just try and
1418 		 * mount the top-level subvolume.
1419 		 */
1420 		btrfs_free_path(path);
1421 		*objectid = BTRFS_FS_TREE_OBJECTID;
1422 		return 0;
1423 	}
1424 
1425 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1426 	btrfs_free_path(path);
1427 	*objectid = location.objectid;
1428 	return 0;
1429 }
1430 
1431 static int btrfs_fill_super(struct super_block *sb,
1432 			    struct btrfs_fs_devices *fs_devices,
1433 			    void *data)
1434 {
1435 	struct inode *inode;
1436 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1437 	int err;
1438 
1439 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1440 	sb->s_magic = BTRFS_SUPER_MAGIC;
1441 	sb->s_op = &btrfs_super_ops;
1442 	sb->s_d_op = &btrfs_dentry_operations;
1443 	sb->s_export_op = &btrfs_export_ops;
1444 #ifdef CONFIG_FS_VERITY
1445 	sb->s_vop = &btrfs_verityops;
1446 #endif
1447 	sb->s_xattr = btrfs_xattr_handlers;
1448 	sb->s_time_gran = 1;
1449 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1450 	sb->s_flags |= SB_POSIXACL;
1451 #endif
1452 	sb->s_flags |= SB_I_VERSION;
1453 	sb->s_iflags |= SB_I_CGROUPWB;
1454 
1455 	err = super_setup_bdi(sb);
1456 	if (err) {
1457 		btrfs_err(fs_info, "super_setup_bdi failed");
1458 		return err;
1459 	}
1460 
1461 	err = open_ctree(sb, fs_devices, (char *)data);
1462 	if (err) {
1463 		btrfs_err(fs_info, "open_ctree failed");
1464 		return err;
1465 	}
1466 
1467 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1468 	if (IS_ERR(inode)) {
1469 		err = PTR_ERR(inode);
1470 		goto fail_close;
1471 	}
1472 
1473 	sb->s_root = d_make_root(inode);
1474 	if (!sb->s_root) {
1475 		err = -ENOMEM;
1476 		goto fail_close;
1477 	}
1478 
1479 	sb->s_flags |= SB_ACTIVE;
1480 	return 0;
1481 
1482 fail_close:
1483 	close_ctree(fs_info);
1484 	return err;
1485 }
1486 
1487 int btrfs_sync_fs(struct super_block *sb, int wait)
1488 {
1489 	struct btrfs_trans_handle *trans;
1490 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1491 	struct btrfs_root *root = fs_info->tree_root;
1492 
1493 	trace_btrfs_sync_fs(fs_info, wait);
1494 
1495 	if (!wait) {
1496 		filemap_flush(fs_info->btree_inode->i_mapping);
1497 		return 0;
1498 	}
1499 
1500 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1501 
1502 	trans = btrfs_attach_transaction_barrier(root);
1503 	if (IS_ERR(trans)) {
1504 		/* no transaction, don't bother */
1505 		if (PTR_ERR(trans) == -ENOENT) {
1506 			/*
1507 			 * Exit unless we have some pending changes
1508 			 * that need to go through commit
1509 			 */
1510 			if (fs_info->pending_changes == 0)
1511 				return 0;
1512 			/*
1513 			 * A non-blocking test if the fs is frozen. We must not
1514 			 * start a new transaction here otherwise a deadlock
1515 			 * happens. The pending operations are delayed to the
1516 			 * next commit after thawing.
1517 			 */
1518 			if (sb_start_write_trylock(sb))
1519 				sb_end_write(sb);
1520 			else
1521 				return 0;
1522 			trans = btrfs_start_transaction(root, 0);
1523 		}
1524 		if (IS_ERR(trans))
1525 			return PTR_ERR(trans);
1526 	}
1527 	return btrfs_commit_transaction(trans);
1528 }
1529 
1530 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1531 {
1532 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1533 	*printed = true;
1534 }
1535 
1536 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1537 {
1538 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1539 	const char *compress_type;
1540 	const char *subvol_name;
1541 	bool printed = false;
1542 
1543 	if (btrfs_test_opt(info, DEGRADED))
1544 		seq_puts(seq, ",degraded");
1545 	if (btrfs_test_opt(info, NODATASUM))
1546 		seq_puts(seq, ",nodatasum");
1547 	if (btrfs_test_opt(info, NODATACOW))
1548 		seq_puts(seq, ",nodatacow");
1549 	if (btrfs_test_opt(info, NOBARRIER))
1550 		seq_puts(seq, ",nobarrier");
1551 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1552 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1553 	if (info->thread_pool_size !=  min_t(unsigned long,
1554 					     num_online_cpus() + 2, 8))
1555 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1556 	if (btrfs_test_opt(info, COMPRESS)) {
1557 		compress_type = btrfs_compress_type2str(info->compress_type);
1558 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1559 			seq_printf(seq, ",compress-force=%s", compress_type);
1560 		else
1561 			seq_printf(seq, ",compress=%s", compress_type);
1562 		if (info->compress_level)
1563 			seq_printf(seq, ":%d", info->compress_level);
1564 	}
1565 	if (btrfs_test_opt(info, NOSSD))
1566 		seq_puts(seq, ",nossd");
1567 	if (btrfs_test_opt(info, SSD_SPREAD))
1568 		seq_puts(seq, ",ssd_spread");
1569 	else if (btrfs_test_opt(info, SSD))
1570 		seq_puts(seq, ",ssd");
1571 	if (btrfs_test_opt(info, NOTREELOG))
1572 		seq_puts(seq, ",notreelog");
1573 	if (btrfs_test_opt(info, NOLOGREPLAY))
1574 		print_rescue_option(seq, "nologreplay", &printed);
1575 	if (btrfs_test_opt(info, USEBACKUPROOT))
1576 		print_rescue_option(seq, "usebackuproot", &printed);
1577 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1578 		print_rescue_option(seq, "ignorebadroots", &printed);
1579 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1580 		print_rescue_option(seq, "ignoredatacsums", &printed);
1581 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1582 		seq_puts(seq, ",flushoncommit");
1583 	if (btrfs_test_opt(info, DISCARD_SYNC))
1584 		seq_puts(seq, ",discard");
1585 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1586 		seq_puts(seq, ",discard=async");
1587 	if (!(info->sb->s_flags & SB_POSIXACL))
1588 		seq_puts(seq, ",noacl");
1589 	if (btrfs_free_space_cache_v1_active(info))
1590 		seq_puts(seq, ",space_cache");
1591 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1592 		seq_puts(seq, ",space_cache=v2");
1593 	else
1594 		seq_puts(seq, ",nospace_cache");
1595 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1596 		seq_puts(seq, ",rescan_uuid_tree");
1597 	if (btrfs_test_opt(info, CLEAR_CACHE))
1598 		seq_puts(seq, ",clear_cache");
1599 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1600 		seq_puts(seq, ",user_subvol_rm_allowed");
1601 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1602 		seq_puts(seq, ",enospc_debug");
1603 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1604 		seq_puts(seq, ",autodefrag");
1605 	if (btrfs_test_opt(info, SKIP_BALANCE))
1606 		seq_puts(seq, ",skip_balance");
1607 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1608 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1609 		seq_puts(seq, ",check_int_data");
1610 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1611 		seq_puts(seq, ",check_int");
1612 	if (info->check_integrity_print_mask)
1613 		seq_printf(seq, ",check_int_print_mask=%d",
1614 				info->check_integrity_print_mask);
1615 #endif
1616 	if (info->metadata_ratio)
1617 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1618 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1619 		seq_puts(seq, ",fatal_errors=panic");
1620 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1621 		seq_printf(seq, ",commit=%u", info->commit_interval);
1622 #ifdef CONFIG_BTRFS_DEBUG
1623 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1624 		seq_puts(seq, ",fragment=data");
1625 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1626 		seq_puts(seq, ",fragment=metadata");
1627 #endif
1628 	if (btrfs_test_opt(info, REF_VERIFY))
1629 		seq_puts(seq, ",ref_verify");
1630 	seq_printf(seq, ",subvolid=%llu",
1631 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1632 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1633 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1634 	if (!IS_ERR(subvol_name)) {
1635 		seq_puts(seq, ",subvol=");
1636 		seq_escape(seq, subvol_name, " \t\n\\");
1637 		kfree(subvol_name);
1638 	}
1639 	return 0;
1640 }
1641 
1642 static int btrfs_test_super(struct super_block *s, void *data)
1643 {
1644 	struct btrfs_fs_info *p = data;
1645 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1646 
1647 	return fs_info->fs_devices == p->fs_devices;
1648 }
1649 
1650 static int btrfs_set_super(struct super_block *s, void *data)
1651 {
1652 	int err = set_anon_super(s, data);
1653 	if (!err)
1654 		s->s_fs_info = data;
1655 	return err;
1656 }
1657 
1658 /*
1659  * subvolumes are identified by ino 256
1660  */
1661 static inline int is_subvolume_inode(struct inode *inode)
1662 {
1663 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1664 		return 1;
1665 	return 0;
1666 }
1667 
1668 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1669 				   struct vfsmount *mnt)
1670 {
1671 	struct dentry *root;
1672 	int ret;
1673 
1674 	if (!subvol_name) {
1675 		if (!subvol_objectid) {
1676 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1677 							  &subvol_objectid);
1678 			if (ret) {
1679 				root = ERR_PTR(ret);
1680 				goto out;
1681 			}
1682 		}
1683 		subvol_name = btrfs_get_subvol_name_from_objectid(
1684 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1685 		if (IS_ERR(subvol_name)) {
1686 			root = ERR_CAST(subvol_name);
1687 			subvol_name = NULL;
1688 			goto out;
1689 		}
1690 
1691 	}
1692 
1693 	root = mount_subtree(mnt, subvol_name);
1694 	/* mount_subtree() drops our reference on the vfsmount. */
1695 	mnt = NULL;
1696 
1697 	if (!IS_ERR(root)) {
1698 		struct super_block *s = root->d_sb;
1699 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1700 		struct inode *root_inode = d_inode(root);
1701 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1702 
1703 		ret = 0;
1704 		if (!is_subvolume_inode(root_inode)) {
1705 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1706 			       subvol_name);
1707 			ret = -EINVAL;
1708 		}
1709 		if (subvol_objectid && root_objectid != subvol_objectid) {
1710 			/*
1711 			 * This will also catch a race condition where a
1712 			 * subvolume which was passed by ID is renamed and
1713 			 * another subvolume is renamed over the old location.
1714 			 */
1715 			btrfs_err(fs_info,
1716 				  "subvol '%s' does not match subvolid %llu",
1717 				  subvol_name, subvol_objectid);
1718 			ret = -EINVAL;
1719 		}
1720 		if (ret) {
1721 			dput(root);
1722 			root = ERR_PTR(ret);
1723 			deactivate_locked_super(s);
1724 		}
1725 	}
1726 
1727 out:
1728 	mntput(mnt);
1729 	kfree(subvol_name);
1730 	return root;
1731 }
1732 
1733 /*
1734  * Find a superblock for the given device / mount point.
1735  *
1736  * Note: This is based on mount_bdev from fs/super.c with a few additions
1737  *       for multiple device setup.  Make sure to keep it in sync.
1738  */
1739 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1740 		int flags, const char *device_name, void *data)
1741 {
1742 	struct block_device *bdev = NULL;
1743 	struct super_block *s;
1744 	struct btrfs_device *device = NULL;
1745 	struct btrfs_fs_devices *fs_devices = NULL;
1746 	struct btrfs_fs_info *fs_info = NULL;
1747 	void *new_sec_opts = NULL;
1748 	fmode_t mode = FMODE_READ;
1749 	int error = 0;
1750 
1751 	if (!(flags & SB_RDONLY))
1752 		mode |= FMODE_WRITE;
1753 
1754 	if (data) {
1755 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1756 		if (error)
1757 			return ERR_PTR(error);
1758 	}
1759 
1760 	/*
1761 	 * Setup a dummy root and fs_info for test/set super.  This is because
1762 	 * we don't actually fill this stuff out until open_ctree, but we need
1763 	 * then open_ctree will properly initialize the file system specific
1764 	 * settings later.  btrfs_init_fs_info initializes the static elements
1765 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1766 	 * superblock with our given fs_devices later on at sget() time.
1767 	 */
1768 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1769 	if (!fs_info) {
1770 		error = -ENOMEM;
1771 		goto error_sec_opts;
1772 	}
1773 	btrfs_init_fs_info(fs_info);
1774 
1775 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1776 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1777 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1778 		error = -ENOMEM;
1779 		goto error_fs_info;
1780 	}
1781 
1782 	mutex_lock(&uuid_mutex);
1783 	error = btrfs_parse_device_options(data, mode, fs_type);
1784 	if (error) {
1785 		mutex_unlock(&uuid_mutex);
1786 		goto error_fs_info;
1787 	}
1788 
1789 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1790 	if (IS_ERR(device)) {
1791 		mutex_unlock(&uuid_mutex);
1792 		error = PTR_ERR(device);
1793 		goto error_fs_info;
1794 	}
1795 
1796 	fs_devices = device->fs_devices;
1797 	fs_info->fs_devices = fs_devices;
1798 
1799 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1800 	mutex_unlock(&uuid_mutex);
1801 	if (error)
1802 		goto error_fs_info;
1803 
1804 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1805 		error = -EACCES;
1806 		goto error_close_devices;
1807 	}
1808 
1809 	bdev = fs_devices->latest_dev->bdev;
1810 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1811 		 fs_info);
1812 	if (IS_ERR(s)) {
1813 		error = PTR_ERR(s);
1814 		goto error_close_devices;
1815 	}
1816 
1817 	if (s->s_root) {
1818 		btrfs_close_devices(fs_devices);
1819 		btrfs_free_fs_info(fs_info);
1820 		if ((flags ^ s->s_flags) & SB_RDONLY)
1821 			error = -EBUSY;
1822 	} else {
1823 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1824 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1825 					s->s_id);
1826 		btrfs_sb(s)->bdev_holder = fs_type;
1827 		if (!strstr(crc32c_impl(), "generic"))
1828 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1829 		error = btrfs_fill_super(s, fs_devices, data);
1830 	}
1831 	if (!error)
1832 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1833 	security_free_mnt_opts(&new_sec_opts);
1834 	if (error) {
1835 		deactivate_locked_super(s);
1836 		return ERR_PTR(error);
1837 	}
1838 
1839 	return dget(s->s_root);
1840 
1841 error_close_devices:
1842 	btrfs_close_devices(fs_devices);
1843 error_fs_info:
1844 	btrfs_free_fs_info(fs_info);
1845 error_sec_opts:
1846 	security_free_mnt_opts(&new_sec_opts);
1847 	return ERR_PTR(error);
1848 }
1849 
1850 /*
1851  * Mount function which is called by VFS layer.
1852  *
1853  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1854  * which needs vfsmount* of device's root (/).  This means device's root has to
1855  * be mounted internally in any case.
1856  *
1857  * Operation flow:
1858  *   1. Parse subvol id related options for later use in mount_subvol().
1859  *
1860  *   2. Mount device's root (/) by calling vfs_kern_mount().
1861  *
1862  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1863  *      first place. In order to avoid calling btrfs_mount() again, we use
1864  *      different file_system_type which is not registered to VFS by
1865  *      register_filesystem() (btrfs_root_fs_type). As a result,
1866  *      btrfs_mount_root() is called. The return value will be used by
1867  *      mount_subtree() in mount_subvol().
1868  *
1869  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1870  *      "btrfs subvolume set-default", mount_subvol() is called always.
1871  */
1872 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1873 		const char *device_name, void *data)
1874 {
1875 	struct vfsmount *mnt_root;
1876 	struct dentry *root;
1877 	char *subvol_name = NULL;
1878 	u64 subvol_objectid = 0;
1879 	int error = 0;
1880 
1881 	error = btrfs_parse_subvol_options(data, &subvol_name,
1882 					&subvol_objectid);
1883 	if (error) {
1884 		kfree(subvol_name);
1885 		return ERR_PTR(error);
1886 	}
1887 
1888 	/* mount device's root (/) */
1889 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1890 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1891 		if (flags & SB_RDONLY) {
1892 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1893 				flags & ~SB_RDONLY, device_name, data);
1894 		} else {
1895 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1896 				flags | SB_RDONLY, device_name, data);
1897 			if (IS_ERR(mnt_root)) {
1898 				root = ERR_CAST(mnt_root);
1899 				kfree(subvol_name);
1900 				goto out;
1901 			}
1902 
1903 			down_write(&mnt_root->mnt_sb->s_umount);
1904 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1905 			up_write(&mnt_root->mnt_sb->s_umount);
1906 			if (error < 0) {
1907 				root = ERR_PTR(error);
1908 				mntput(mnt_root);
1909 				kfree(subvol_name);
1910 				goto out;
1911 			}
1912 		}
1913 	}
1914 	if (IS_ERR(mnt_root)) {
1915 		root = ERR_CAST(mnt_root);
1916 		kfree(subvol_name);
1917 		goto out;
1918 	}
1919 
1920 	/* mount_subvol() will free subvol_name and mnt_root */
1921 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1922 
1923 out:
1924 	return root;
1925 }
1926 
1927 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1928 				     u32 new_pool_size, u32 old_pool_size)
1929 {
1930 	if (new_pool_size == old_pool_size)
1931 		return;
1932 
1933 	fs_info->thread_pool_size = new_pool_size;
1934 
1935 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1936 	       old_pool_size, new_pool_size);
1937 
1938 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1939 	btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1940 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1941 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1942 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1943 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1944 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1945 }
1946 
1947 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1948 				       unsigned long old_opts, int flags)
1949 {
1950 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1951 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1952 	     (flags & SB_RDONLY))) {
1953 		/* wait for any defraggers to finish */
1954 		wait_event(fs_info->transaction_wait,
1955 			   (atomic_read(&fs_info->defrag_running) == 0));
1956 		if (flags & SB_RDONLY)
1957 			sync_filesystem(fs_info->sb);
1958 	}
1959 }
1960 
1961 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1962 					 unsigned long old_opts)
1963 {
1964 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1965 
1966 	/*
1967 	 * We need to cleanup all defragable inodes if the autodefragment is
1968 	 * close or the filesystem is read only.
1969 	 */
1970 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1971 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1972 		btrfs_cleanup_defrag_inodes(fs_info);
1973 	}
1974 
1975 	/* If we toggled discard async */
1976 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1977 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1978 		btrfs_discard_resume(fs_info);
1979 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1980 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1981 		btrfs_discard_cleanup(fs_info);
1982 
1983 	/* If we toggled space cache */
1984 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1985 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1986 }
1987 
1988 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1989 {
1990 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1991 	unsigned old_flags = sb->s_flags;
1992 	unsigned long old_opts = fs_info->mount_opt;
1993 	unsigned long old_compress_type = fs_info->compress_type;
1994 	u64 old_max_inline = fs_info->max_inline;
1995 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1996 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1997 	int ret;
1998 
1999 	sync_filesystem(sb);
2000 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2001 
2002 	if (data) {
2003 		void *new_sec_opts = NULL;
2004 
2005 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
2006 		if (!ret)
2007 			ret = security_sb_remount(sb, new_sec_opts);
2008 		security_free_mnt_opts(&new_sec_opts);
2009 		if (ret)
2010 			goto restore;
2011 	}
2012 
2013 	ret = btrfs_parse_options(fs_info, data, *flags);
2014 	if (ret)
2015 		goto restore;
2016 
2017 	ret = btrfs_check_features(fs_info, sb);
2018 	if (ret < 0)
2019 		goto restore;
2020 
2021 	btrfs_remount_begin(fs_info, old_opts, *flags);
2022 	btrfs_resize_thread_pool(fs_info,
2023 		fs_info->thread_pool_size, old_thread_pool_size);
2024 
2025 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
2026 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2027 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
2028 		btrfs_warn(fs_info,
2029 		"remount supports changing free space tree only from ro to rw");
2030 		/* Make sure free space cache options match the state on disk */
2031 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2032 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
2033 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
2034 		}
2035 		if (btrfs_free_space_cache_v1_active(fs_info)) {
2036 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
2037 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
2038 		}
2039 	}
2040 
2041 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
2042 		goto out;
2043 
2044 	if (*flags & SB_RDONLY) {
2045 		/*
2046 		 * this also happens on 'umount -rf' or on shutdown, when
2047 		 * the filesystem is busy.
2048 		 */
2049 		cancel_work_sync(&fs_info->async_reclaim_work);
2050 		cancel_work_sync(&fs_info->async_data_reclaim_work);
2051 
2052 		btrfs_discard_cleanup(fs_info);
2053 
2054 		/* wait for the uuid_scan task to finish */
2055 		down(&fs_info->uuid_tree_rescan_sem);
2056 		/* avoid complains from lockdep et al. */
2057 		up(&fs_info->uuid_tree_rescan_sem);
2058 
2059 		btrfs_set_sb_rdonly(sb);
2060 
2061 		/*
2062 		 * Setting SB_RDONLY will put the cleaner thread to
2063 		 * sleep at the next loop if it's already active.
2064 		 * If it's already asleep, we'll leave unused block
2065 		 * groups on disk until we're mounted read-write again
2066 		 * unless we clean them up here.
2067 		 */
2068 		btrfs_delete_unused_bgs(fs_info);
2069 
2070 		/*
2071 		 * The cleaner task could be already running before we set the
2072 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
2073 		 * We must make sure that after we finish the remount, i.e. after
2074 		 * we call btrfs_commit_super(), the cleaner can no longer start
2075 		 * a transaction - either because it was dropping a dead root,
2076 		 * running delayed iputs or deleting an unused block group (the
2077 		 * cleaner picked a block group from the list of unused block
2078 		 * groups before we were able to in the previous call to
2079 		 * btrfs_delete_unused_bgs()).
2080 		 */
2081 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
2082 			    TASK_UNINTERRUPTIBLE);
2083 
2084 		/*
2085 		 * We've set the superblock to RO mode, so we might have made
2086 		 * the cleaner task sleep without running all pending delayed
2087 		 * iputs. Go through all the delayed iputs here, so that if an
2088 		 * unmount happens without remounting RW we don't end up at
2089 		 * finishing close_ctree() with a non-empty list of delayed
2090 		 * iputs.
2091 		 */
2092 		btrfs_run_delayed_iputs(fs_info);
2093 
2094 		btrfs_dev_replace_suspend_for_unmount(fs_info);
2095 		btrfs_scrub_cancel(fs_info);
2096 		btrfs_pause_balance(fs_info);
2097 
2098 		/*
2099 		 * Pause the qgroup rescan worker if it is running. We don't want
2100 		 * it to be still running after we are in RO mode, as after that,
2101 		 * by the time we unmount, it might have left a transaction open,
2102 		 * so we would leak the transaction and/or crash.
2103 		 */
2104 		btrfs_qgroup_wait_for_completion(fs_info, false);
2105 
2106 		ret = btrfs_commit_super(fs_info);
2107 		if (ret)
2108 			goto restore;
2109 	} else {
2110 		if (BTRFS_FS_ERROR(fs_info)) {
2111 			btrfs_err(fs_info,
2112 				"Remounting read-write after error is not allowed");
2113 			ret = -EINVAL;
2114 			goto restore;
2115 		}
2116 		if (fs_info->fs_devices->rw_devices == 0) {
2117 			ret = -EACCES;
2118 			goto restore;
2119 		}
2120 
2121 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2122 			btrfs_warn(fs_info,
2123 		"too many missing devices, writable remount is not allowed");
2124 			ret = -EACCES;
2125 			goto restore;
2126 		}
2127 
2128 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2129 			btrfs_warn(fs_info,
2130 		"mount required to replay tree-log, cannot remount read-write");
2131 			ret = -EINVAL;
2132 			goto restore;
2133 		}
2134 
2135 		/*
2136 		 * NOTE: when remounting with a change that does writes, don't
2137 		 * put it anywhere above this point, as we are not sure to be
2138 		 * safe to write until we pass the above checks.
2139 		 */
2140 		ret = btrfs_start_pre_rw_mount(fs_info);
2141 		if (ret)
2142 			goto restore;
2143 
2144 		btrfs_clear_sb_rdonly(sb);
2145 
2146 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2147 	}
2148 out:
2149 	/*
2150 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2151 	 * since the absence of the flag means it can be toggled off by remount.
2152 	 */
2153 	*flags |= SB_I_VERSION;
2154 
2155 	wake_up_process(fs_info->transaction_kthread);
2156 	btrfs_remount_cleanup(fs_info, old_opts);
2157 	btrfs_clear_oneshot_options(fs_info);
2158 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2159 
2160 	return 0;
2161 
2162 restore:
2163 	/* We've hit an error - don't reset SB_RDONLY */
2164 	if (sb_rdonly(sb))
2165 		old_flags |= SB_RDONLY;
2166 	if (!(old_flags & SB_RDONLY))
2167 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2168 	sb->s_flags = old_flags;
2169 	fs_info->mount_opt = old_opts;
2170 	fs_info->compress_type = old_compress_type;
2171 	fs_info->max_inline = old_max_inline;
2172 	btrfs_resize_thread_pool(fs_info,
2173 		old_thread_pool_size, fs_info->thread_pool_size);
2174 	fs_info->metadata_ratio = old_metadata_ratio;
2175 	btrfs_remount_cleanup(fs_info, old_opts);
2176 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2177 
2178 	return ret;
2179 }
2180 
2181 /* Used to sort the devices by max_avail(descending sort) */
2182 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
2183 {
2184 	const struct btrfs_device_info *dev_info1 = a;
2185 	const struct btrfs_device_info *dev_info2 = b;
2186 
2187 	if (dev_info1->max_avail > dev_info2->max_avail)
2188 		return -1;
2189 	else if (dev_info1->max_avail < dev_info2->max_avail)
2190 		return 1;
2191 	return 0;
2192 }
2193 
2194 /*
2195  * sort the devices by max_avail, in which max free extent size of each device
2196  * is stored.(Descending Sort)
2197  */
2198 static inline void btrfs_descending_sort_devices(
2199 					struct btrfs_device_info *devices,
2200 					size_t nr_devices)
2201 {
2202 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2203 	     btrfs_cmp_device_free_bytes, NULL);
2204 }
2205 
2206 /*
2207  * The helper to calc the free space on the devices that can be used to store
2208  * file data.
2209  */
2210 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2211 					      u64 *free_bytes)
2212 {
2213 	struct btrfs_device_info *devices_info;
2214 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2215 	struct btrfs_device *device;
2216 	u64 type;
2217 	u64 avail_space;
2218 	u64 min_stripe_size;
2219 	int num_stripes = 1;
2220 	int i = 0, nr_devices;
2221 	const struct btrfs_raid_attr *rattr;
2222 
2223 	/*
2224 	 * We aren't under the device list lock, so this is racy-ish, but good
2225 	 * enough for our purposes.
2226 	 */
2227 	nr_devices = fs_info->fs_devices->open_devices;
2228 	if (!nr_devices) {
2229 		smp_mb();
2230 		nr_devices = fs_info->fs_devices->open_devices;
2231 		ASSERT(nr_devices);
2232 		if (!nr_devices) {
2233 			*free_bytes = 0;
2234 			return 0;
2235 		}
2236 	}
2237 
2238 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2239 			       GFP_KERNEL);
2240 	if (!devices_info)
2241 		return -ENOMEM;
2242 
2243 	/* calc min stripe number for data space allocation */
2244 	type = btrfs_data_alloc_profile(fs_info);
2245 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2246 
2247 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2248 		num_stripes = nr_devices;
2249 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
2250 		num_stripes = rattr->ncopies;
2251 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2252 		num_stripes = 4;
2253 
2254 	/* Adjust for more than 1 stripe per device */
2255 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2256 
2257 	rcu_read_lock();
2258 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2259 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2260 						&device->dev_state) ||
2261 		    !device->bdev ||
2262 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2263 			continue;
2264 
2265 		if (i >= nr_devices)
2266 			break;
2267 
2268 		avail_space = device->total_bytes - device->bytes_used;
2269 
2270 		/* align with stripe_len */
2271 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2272 
2273 		/*
2274 		 * Ensure we have at least min_stripe_size on top of the
2275 		 * reserved space on the device.
2276 		 */
2277 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
2278 			continue;
2279 
2280 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
2281 
2282 		devices_info[i].dev = device;
2283 		devices_info[i].max_avail = avail_space;
2284 
2285 		i++;
2286 	}
2287 	rcu_read_unlock();
2288 
2289 	nr_devices = i;
2290 
2291 	btrfs_descending_sort_devices(devices_info, nr_devices);
2292 
2293 	i = nr_devices - 1;
2294 	avail_space = 0;
2295 	while (nr_devices >= rattr->devs_min) {
2296 		num_stripes = min(num_stripes, nr_devices);
2297 
2298 		if (devices_info[i].max_avail >= min_stripe_size) {
2299 			int j;
2300 			u64 alloc_size;
2301 
2302 			avail_space += devices_info[i].max_avail * num_stripes;
2303 			alloc_size = devices_info[i].max_avail;
2304 			for (j = i + 1 - num_stripes; j <= i; j++)
2305 				devices_info[j].max_avail -= alloc_size;
2306 		}
2307 		i--;
2308 		nr_devices--;
2309 	}
2310 
2311 	kfree(devices_info);
2312 	*free_bytes = avail_space;
2313 	return 0;
2314 }
2315 
2316 /*
2317  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2318  *
2319  * If there's a redundant raid level at DATA block groups, use the respective
2320  * multiplier to scale the sizes.
2321  *
2322  * Unused device space usage is based on simulating the chunk allocator
2323  * algorithm that respects the device sizes and order of allocations.  This is
2324  * a close approximation of the actual use but there are other factors that may
2325  * change the result (like a new metadata chunk).
2326  *
2327  * If metadata is exhausted, f_bavail will be 0.
2328  */
2329 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2330 {
2331 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2332 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2333 	struct btrfs_space_info *found;
2334 	u64 total_used = 0;
2335 	u64 total_free_data = 0;
2336 	u64 total_free_meta = 0;
2337 	u32 bits = fs_info->sectorsize_bits;
2338 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2339 	unsigned factor = 1;
2340 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2341 	int ret;
2342 	u64 thresh = 0;
2343 	int mixed = 0;
2344 
2345 	list_for_each_entry(found, &fs_info->space_info, list) {
2346 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2347 			int i;
2348 
2349 			total_free_data += found->disk_total - found->disk_used;
2350 			total_free_data -=
2351 				btrfs_account_ro_block_groups_free_space(found);
2352 
2353 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2354 				if (!list_empty(&found->block_groups[i]))
2355 					factor = btrfs_bg_type_to_factor(
2356 						btrfs_raid_array[i].bg_flag);
2357 			}
2358 		}
2359 
2360 		/*
2361 		 * Metadata in mixed block goup profiles are accounted in data
2362 		 */
2363 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2364 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2365 				mixed = 1;
2366 			else
2367 				total_free_meta += found->disk_total -
2368 					found->disk_used;
2369 		}
2370 
2371 		total_used += found->disk_used;
2372 	}
2373 
2374 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2375 	buf->f_blocks >>= bits;
2376 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2377 
2378 	/* Account global block reserve as used, it's in logical size already */
2379 	spin_lock(&block_rsv->lock);
2380 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2381 	if (buf->f_bfree >= block_rsv->size >> bits)
2382 		buf->f_bfree -= block_rsv->size >> bits;
2383 	else
2384 		buf->f_bfree = 0;
2385 	spin_unlock(&block_rsv->lock);
2386 
2387 	buf->f_bavail = div_u64(total_free_data, factor);
2388 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2389 	if (ret)
2390 		return ret;
2391 	buf->f_bavail += div_u64(total_free_data, factor);
2392 	buf->f_bavail = buf->f_bavail >> bits;
2393 
2394 	/*
2395 	 * We calculate the remaining metadata space minus global reserve. If
2396 	 * this is (supposedly) smaller than zero, there's no space. But this
2397 	 * does not hold in practice, the exhausted state happens where's still
2398 	 * some positive delta. So we apply some guesswork and compare the
2399 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2400 	 *
2401 	 * We probably cannot calculate the exact threshold value because this
2402 	 * depends on the internal reservations requested by various
2403 	 * operations, so some operations that consume a few metadata will
2404 	 * succeed even if the Avail is zero. But this is better than the other
2405 	 * way around.
2406 	 */
2407 	thresh = SZ_4M;
2408 
2409 	/*
2410 	 * We only want to claim there's no available space if we can no longer
2411 	 * allocate chunks for our metadata profile and our global reserve will
2412 	 * not fit in the free metadata space.  If we aren't ->full then we
2413 	 * still can allocate chunks and thus are fine using the currently
2414 	 * calculated f_bavail.
2415 	 */
2416 	if (!mixed && block_rsv->space_info->full &&
2417 	    total_free_meta - thresh < block_rsv->size)
2418 		buf->f_bavail = 0;
2419 
2420 	buf->f_type = BTRFS_SUPER_MAGIC;
2421 	buf->f_bsize = dentry->d_sb->s_blocksize;
2422 	buf->f_namelen = BTRFS_NAME_LEN;
2423 
2424 	/* We treat it as constant endianness (it doesn't matter _which_)
2425 	   because we want the fsid to come out the same whether mounted
2426 	   on a big-endian or little-endian host */
2427 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2428 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2429 	/* Mask in the root object ID too, to disambiguate subvols */
2430 	buf->f_fsid.val[0] ^=
2431 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2432 	buf->f_fsid.val[1] ^=
2433 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2434 
2435 	return 0;
2436 }
2437 
2438 static void btrfs_kill_super(struct super_block *sb)
2439 {
2440 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2441 	kill_anon_super(sb);
2442 	btrfs_free_fs_info(fs_info);
2443 }
2444 
2445 static struct file_system_type btrfs_fs_type = {
2446 	.owner		= THIS_MODULE,
2447 	.name		= "btrfs",
2448 	.mount		= btrfs_mount,
2449 	.kill_sb	= btrfs_kill_super,
2450 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2451 };
2452 
2453 static struct file_system_type btrfs_root_fs_type = {
2454 	.owner		= THIS_MODULE,
2455 	.name		= "btrfs",
2456 	.mount		= btrfs_mount_root,
2457 	.kill_sb	= btrfs_kill_super,
2458 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2459 };
2460 
2461 MODULE_ALIAS_FS("btrfs");
2462 
2463 static int btrfs_control_open(struct inode *inode, struct file *file)
2464 {
2465 	/*
2466 	 * The control file's private_data is used to hold the
2467 	 * transaction when it is started and is used to keep
2468 	 * track of whether a transaction is already in progress.
2469 	 */
2470 	file->private_data = NULL;
2471 	return 0;
2472 }
2473 
2474 /*
2475  * Used by /dev/btrfs-control for devices ioctls.
2476  */
2477 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2478 				unsigned long arg)
2479 {
2480 	struct btrfs_ioctl_vol_args *vol;
2481 	struct btrfs_device *device = NULL;
2482 	dev_t devt = 0;
2483 	int ret = -ENOTTY;
2484 
2485 	if (!capable(CAP_SYS_ADMIN))
2486 		return -EPERM;
2487 
2488 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2489 	if (IS_ERR(vol))
2490 		return PTR_ERR(vol);
2491 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2492 
2493 	switch (cmd) {
2494 	case BTRFS_IOC_SCAN_DEV:
2495 		mutex_lock(&uuid_mutex);
2496 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2497 					       &btrfs_root_fs_type);
2498 		ret = PTR_ERR_OR_ZERO(device);
2499 		mutex_unlock(&uuid_mutex);
2500 		break;
2501 	case BTRFS_IOC_FORGET_DEV:
2502 		if (vol->name[0] != 0) {
2503 			ret = lookup_bdev(vol->name, &devt);
2504 			if (ret)
2505 				break;
2506 		}
2507 		ret = btrfs_forget_devices(devt);
2508 		break;
2509 	case BTRFS_IOC_DEVICES_READY:
2510 		mutex_lock(&uuid_mutex);
2511 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2512 					       &btrfs_root_fs_type);
2513 		if (IS_ERR(device)) {
2514 			mutex_unlock(&uuid_mutex);
2515 			ret = PTR_ERR(device);
2516 			break;
2517 		}
2518 		ret = !(device->fs_devices->num_devices ==
2519 			device->fs_devices->total_devices);
2520 		mutex_unlock(&uuid_mutex);
2521 		break;
2522 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2523 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2524 		break;
2525 	}
2526 
2527 	kfree(vol);
2528 	return ret;
2529 }
2530 
2531 static int btrfs_freeze(struct super_block *sb)
2532 {
2533 	struct btrfs_trans_handle *trans;
2534 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2535 	struct btrfs_root *root = fs_info->tree_root;
2536 
2537 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2538 	/*
2539 	 * We don't need a barrier here, we'll wait for any transaction that
2540 	 * could be in progress on other threads (and do delayed iputs that
2541 	 * we want to avoid on a frozen filesystem), or do the commit
2542 	 * ourselves.
2543 	 */
2544 	trans = btrfs_attach_transaction_barrier(root);
2545 	if (IS_ERR(trans)) {
2546 		/* no transaction, don't bother */
2547 		if (PTR_ERR(trans) == -ENOENT)
2548 			return 0;
2549 		return PTR_ERR(trans);
2550 	}
2551 	return btrfs_commit_transaction(trans);
2552 }
2553 
2554 static int check_dev_super(struct btrfs_device *dev)
2555 {
2556 	struct btrfs_fs_info *fs_info = dev->fs_info;
2557 	struct btrfs_super_block *sb;
2558 	u16 csum_type;
2559 	int ret = 0;
2560 
2561 	/* This should be called with fs still frozen. */
2562 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2563 
2564 	/* Missing dev, no need to check. */
2565 	if (!dev->bdev)
2566 		return 0;
2567 
2568 	/* Only need to check the primary super block. */
2569 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2570 	if (IS_ERR(sb))
2571 		return PTR_ERR(sb);
2572 
2573 	/* Verify the checksum. */
2574 	csum_type = btrfs_super_csum_type(sb);
2575 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2576 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2577 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2578 		ret = -EUCLEAN;
2579 		goto out;
2580 	}
2581 
2582 	if (btrfs_check_super_csum(fs_info, sb)) {
2583 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2584 		ret = -EUCLEAN;
2585 		goto out;
2586 	}
2587 
2588 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2589 	ret = btrfs_validate_super(fs_info, sb, 0);
2590 	if (ret < 0)
2591 		goto out;
2592 
2593 	if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2594 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2595 			btrfs_super_generation(sb),
2596 			fs_info->last_trans_committed);
2597 		ret = -EUCLEAN;
2598 		goto out;
2599 	}
2600 out:
2601 	btrfs_release_disk_super(sb);
2602 	return ret;
2603 }
2604 
2605 static int btrfs_unfreeze(struct super_block *sb)
2606 {
2607 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2608 	struct btrfs_device *device;
2609 	int ret = 0;
2610 
2611 	/*
2612 	 * Make sure the fs is not changed by accident (like hibernation then
2613 	 * modified by other OS).
2614 	 * If we found anything wrong, we mark the fs error immediately.
2615 	 *
2616 	 * And since the fs is frozen, no one can modify the fs yet, thus
2617 	 * we don't need to hold device_list_mutex.
2618 	 */
2619 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2620 		ret = check_dev_super(device);
2621 		if (ret < 0) {
2622 			btrfs_handle_fs_error(fs_info, ret,
2623 				"super block on devid %llu got modified unexpectedly",
2624 				device->devid);
2625 			break;
2626 		}
2627 	}
2628 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2629 
2630 	/*
2631 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2632 	 * above checks failed. Since the fs is either fine or read-only, we're
2633 	 * safe to continue, without causing further damage.
2634 	 */
2635 	return 0;
2636 }
2637 
2638 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2639 {
2640 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2641 
2642 	/*
2643 	 * There should be always a valid pointer in latest_dev, it may be stale
2644 	 * for a short moment in case it's being deleted but still valid until
2645 	 * the end of RCU grace period.
2646 	 */
2647 	rcu_read_lock();
2648 	seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\");
2649 	rcu_read_unlock();
2650 
2651 	return 0;
2652 }
2653 
2654 static const struct super_operations btrfs_super_ops = {
2655 	.drop_inode	= btrfs_drop_inode,
2656 	.evict_inode	= btrfs_evict_inode,
2657 	.put_super	= btrfs_put_super,
2658 	.sync_fs	= btrfs_sync_fs,
2659 	.show_options	= btrfs_show_options,
2660 	.show_devname	= btrfs_show_devname,
2661 	.alloc_inode	= btrfs_alloc_inode,
2662 	.destroy_inode	= btrfs_destroy_inode,
2663 	.free_inode	= btrfs_free_inode,
2664 	.statfs		= btrfs_statfs,
2665 	.remount_fs	= btrfs_remount,
2666 	.freeze_fs	= btrfs_freeze,
2667 	.unfreeze_fs	= btrfs_unfreeze,
2668 };
2669 
2670 static const struct file_operations btrfs_ctl_fops = {
2671 	.open = btrfs_control_open,
2672 	.unlocked_ioctl	 = btrfs_control_ioctl,
2673 	.compat_ioctl = compat_ptr_ioctl,
2674 	.owner	 = THIS_MODULE,
2675 	.llseek = noop_llseek,
2676 };
2677 
2678 static struct miscdevice btrfs_misc = {
2679 	.minor		= BTRFS_MINOR,
2680 	.name		= "btrfs-control",
2681 	.fops		= &btrfs_ctl_fops
2682 };
2683 
2684 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2685 MODULE_ALIAS("devname:btrfs-control");
2686 
2687 static int __init btrfs_interface_init(void)
2688 {
2689 	return misc_register(&btrfs_misc);
2690 }
2691 
2692 static __cold void btrfs_interface_exit(void)
2693 {
2694 	misc_deregister(&btrfs_misc);
2695 }
2696 
2697 static void __init btrfs_print_mod_info(void)
2698 {
2699 	static const char options[] = ""
2700 #ifdef CONFIG_BTRFS_DEBUG
2701 			", debug=on"
2702 #endif
2703 #ifdef CONFIG_BTRFS_ASSERT
2704 			", assert=on"
2705 #endif
2706 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2707 			", integrity-checker=on"
2708 #endif
2709 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2710 			", ref-verify=on"
2711 #endif
2712 #ifdef CONFIG_BLK_DEV_ZONED
2713 			", zoned=yes"
2714 #else
2715 			", zoned=no"
2716 #endif
2717 #ifdef CONFIG_FS_VERITY
2718 			", fsverity=yes"
2719 #else
2720 			", fsverity=no"
2721 #endif
2722 			;
2723 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2724 }
2725 
2726 static int __init init_btrfs_fs(void)
2727 {
2728 	int err;
2729 
2730 	btrfs_props_init();
2731 
2732 	err = btrfs_init_sysfs();
2733 	if (err)
2734 		return err;
2735 
2736 	btrfs_init_compress();
2737 
2738 	err = btrfs_init_cachep();
2739 	if (err)
2740 		goto free_compress;
2741 
2742 	err = extent_state_init_cachep();
2743 	if (err)
2744 		goto free_cachep;
2745 
2746 	err = extent_buffer_init_cachep();
2747 	if (err)
2748 		goto free_extent_cachep;
2749 
2750 	err = btrfs_bioset_init();
2751 	if (err)
2752 		goto free_eb_cachep;
2753 
2754 	err = extent_map_init();
2755 	if (err)
2756 		goto free_bioset;
2757 
2758 	err = ordered_data_init();
2759 	if (err)
2760 		goto free_extent_map;
2761 
2762 	err = btrfs_delayed_inode_init();
2763 	if (err)
2764 		goto free_ordered_data;
2765 
2766 	err = btrfs_auto_defrag_init();
2767 	if (err)
2768 		goto free_delayed_inode;
2769 
2770 	err = btrfs_delayed_ref_init();
2771 	if (err)
2772 		goto free_auto_defrag;
2773 
2774 	err = btrfs_prelim_ref_init();
2775 	if (err)
2776 		goto free_delayed_ref;
2777 
2778 	err = btrfs_interface_init();
2779 	if (err)
2780 		goto free_prelim_ref;
2781 
2782 	btrfs_print_mod_info();
2783 
2784 	err = btrfs_run_sanity_tests();
2785 	if (err)
2786 		goto unregister_ioctl;
2787 
2788 	err = register_filesystem(&btrfs_fs_type);
2789 	if (err)
2790 		goto unregister_ioctl;
2791 
2792 	return 0;
2793 
2794 unregister_ioctl:
2795 	btrfs_interface_exit();
2796 free_prelim_ref:
2797 	btrfs_prelim_ref_exit();
2798 free_delayed_ref:
2799 	btrfs_delayed_ref_exit();
2800 free_auto_defrag:
2801 	btrfs_auto_defrag_exit();
2802 free_delayed_inode:
2803 	btrfs_delayed_inode_exit();
2804 free_ordered_data:
2805 	ordered_data_exit();
2806 free_extent_map:
2807 	extent_map_exit();
2808 free_bioset:
2809 	btrfs_bioset_exit();
2810 free_eb_cachep:
2811 	extent_buffer_free_cachep();
2812 free_extent_cachep:
2813 	extent_state_free_cachep();
2814 free_cachep:
2815 	btrfs_destroy_cachep();
2816 free_compress:
2817 	btrfs_exit_compress();
2818 	btrfs_exit_sysfs();
2819 
2820 	return err;
2821 }
2822 
2823 static void __exit exit_btrfs_fs(void)
2824 {
2825 	btrfs_destroy_cachep();
2826 	btrfs_delayed_ref_exit();
2827 	btrfs_auto_defrag_exit();
2828 	btrfs_delayed_inode_exit();
2829 	btrfs_prelim_ref_exit();
2830 	ordered_data_exit();
2831 	extent_map_exit();
2832 	btrfs_bioset_exit();
2833 	extent_state_free_cachep();
2834 	extent_buffer_free_cachep();
2835 	btrfs_interface_exit();
2836 	unregister_filesystem(&btrfs_fs_type);
2837 	btrfs_exit_sysfs();
2838 	btrfs_cleanup_fs_uuids();
2839 	btrfs_exit_compress();
2840 }
2841 
2842 late_initcall(init_btrfs_fs);
2843 module_exit(exit_btrfs_fs)
2844 
2845 MODULE_LICENSE("GPL");
2846 MODULE_SOFTDEP("pre: crc32c");
2847 MODULE_SOFTDEP("pre: xxhash64");
2848 MODULE_SOFTDEP("pre: sha256");
2849 MODULE_SOFTDEP("pre: blake2b-256");
2850