xref: /openbmc/linux/fs/btrfs/subpage.c (revision e55a0de1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/slab.h>
4 #include "ctree.h"
5 #include "subpage.h"
6 #include "btrfs_inode.h"
7 
8 /*
9  * Subpage (sectorsize < PAGE_SIZE) support overview:
10  *
11  * Limitations:
12  *
13  * - Only support 64K page size for now
14  *   This is to make metadata handling easier, as 64K page would ensure
15  *   all nodesize would fit inside one page, thus we don't need to handle
16  *   cases where a tree block crosses several pages.
17  *
18  * - Only metadata read-write for now
19  *   The data read-write part is in development.
20  *
21  * - Metadata can't cross 64K page boundary
22  *   btrfs-progs and kernel have done that for a while, thus only ancient
23  *   filesystems could have such problem.  For such case, do a graceful
24  *   rejection.
25  *
26  * Special behavior:
27  *
28  * - Metadata
29  *   Metadata read is fully supported.
30  *   Meaning when reading one tree block will only trigger the read for the
31  *   needed range, other unrelated range in the same page will not be touched.
32  *
33  *   Metadata write support is partial.
34  *   The writeback is still for the full page, but we will only submit
35  *   the dirty extent buffers in the page.
36  *
37  *   This means, if we have a metadata page like this:
38  *
39  *   Page offset
40  *   0         16K         32K         48K        64K
41  *   |/////////|           |///////////|
42  *        \- Tree block A        \- Tree block B
43  *
44  *   Even if we just want to writeback tree block A, we will also writeback
45  *   tree block B if it's also dirty.
46  *
47  *   This may cause extra metadata writeback which results more COW.
48  *
49  * Implementation:
50  *
51  * - Common
52  *   Both metadata and data will use a new structure, btrfs_subpage, to
53  *   record the status of each sector inside a page.  This provides the extra
54  *   granularity needed.
55  *
56  * - Metadata
57  *   Since we have multiple tree blocks inside one page, we can't rely on page
58  *   locking anymore, or we will have greatly reduced concurrency or even
59  *   deadlocks (hold one tree lock while trying to lock another tree lock in
60  *   the same page).
61  *
62  *   Thus for metadata locking, subpage support relies on io_tree locking only.
63  *   This means a slightly higher tree locking latency.
64  */
65 
66 void btrfs_init_subpage_info(struct btrfs_subpage_info *subpage_info, u32 sectorsize)
67 {
68 	unsigned int cur = 0;
69 	unsigned int nr_bits;
70 
71 	ASSERT(IS_ALIGNED(PAGE_SIZE, sectorsize));
72 
73 	nr_bits = PAGE_SIZE / sectorsize;
74 	subpage_info->bitmap_nr_bits = nr_bits;
75 
76 	subpage_info->uptodate_offset = cur;
77 	cur += nr_bits;
78 
79 	subpage_info->error_offset = cur;
80 	cur += nr_bits;
81 
82 	subpage_info->dirty_offset = cur;
83 	cur += nr_bits;
84 
85 	subpage_info->writeback_offset = cur;
86 	cur += nr_bits;
87 
88 	subpage_info->ordered_offset = cur;
89 	cur += nr_bits;
90 
91 	subpage_info->checked_offset = cur;
92 	cur += nr_bits;
93 
94 	subpage_info->total_nr_bits = cur;
95 }
96 
97 int btrfs_attach_subpage(const struct btrfs_fs_info *fs_info,
98 			 struct page *page, enum btrfs_subpage_type type)
99 {
100 	struct btrfs_subpage *subpage;
101 
102 	/*
103 	 * We have cases like a dummy extent buffer page, which is not mappped
104 	 * and doesn't need to be locked.
105 	 */
106 	if (page->mapping)
107 		ASSERT(PageLocked(page));
108 
109 	/* Either not subpage, or the page already has private attached */
110 	if (fs_info->sectorsize == PAGE_SIZE || PagePrivate(page))
111 		return 0;
112 
113 	subpage = btrfs_alloc_subpage(fs_info, type);
114 	if (IS_ERR(subpage))
115 		return  PTR_ERR(subpage);
116 
117 	attach_page_private(page, subpage);
118 	return 0;
119 }
120 
121 void btrfs_detach_subpage(const struct btrfs_fs_info *fs_info,
122 			  struct page *page)
123 {
124 	struct btrfs_subpage *subpage;
125 
126 	/* Either not subpage, or already detached */
127 	if (fs_info->sectorsize == PAGE_SIZE || !PagePrivate(page))
128 		return;
129 
130 	subpage = (struct btrfs_subpage *)detach_page_private(page);
131 	ASSERT(subpage);
132 	btrfs_free_subpage(subpage);
133 }
134 
135 struct btrfs_subpage *btrfs_alloc_subpage(const struct btrfs_fs_info *fs_info,
136 					  enum btrfs_subpage_type type)
137 {
138 	struct btrfs_subpage *ret;
139 	unsigned int real_size;
140 
141 	ASSERT(fs_info->sectorsize < PAGE_SIZE);
142 
143 	real_size = struct_size(ret, bitmaps,
144 			BITS_TO_LONGS(fs_info->subpage_info->total_nr_bits));
145 	ret = kzalloc(real_size, GFP_NOFS);
146 	if (!ret)
147 		return ERR_PTR(-ENOMEM);
148 
149 	spin_lock_init(&ret->lock);
150 	if (type == BTRFS_SUBPAGE_METADATA) {
151 		atomic_set(&ret->eb_refs, 0);
152 	} else {
153 		atomic_set(&ret->readers, 0);
154 		atomic_set(&ret->writers, 0);
155 	}
156 	return ret;
157 }
158 
159 void btrfs_free_subpage(struct btrfs_subpage *subpage)
160 {
161 	kfree(subpage);
162 }
163 
164 /*
165  * Increase the eb_refs of current subpage.
166  *
167  * This is important for eb allocation, to prevent race with last eb freeing
168  * of the same page.
169  * With the eb_refs increased before the eb inserted into radix tree,
170  * detach_extent_buffer_page() won't detach the page private while we're still
171  * allocating the extent buffer.
172  */
173 void btrfs_page_inc_eb_refs(const struct btrfs_fs_info *fs_info,
174 			    struct page *page)
175 {
176 	struct btrfs_subpage *subpage;
177 
178 	if (fs_info->sectorsize == PAGE_SIZE)
179 		return;
180 
181 	ASSERT(PagePrivate(page) && page->mapping);
182 	lockdep_assert_held(&page->mapping->private_lock);
183 
184 	subpage = (struct btrfs_subpage *)page->private;
185 	atomic_inc(&subpage->eb_refs);
186 }
187 
188 void btrfs_page_dec_eb_refs(const struct btrfs_fs_info *fs_info,
189 			    struct page *page)
190 {
191 	struct btrfs_subpage *subpage;
192 
193 	if (fs_info->sectorsize == PAGE_SIZE)
194 		return;
195 
196 	ASSERT(PagePrivate(page) && page->mapping);
197 	lockdep_assert_held(&page->mapping->private_lock);
198 
199 	subpage = (struct btrfs_subpage *)page->private;
200 	ASSERT(atomic_read(&subpage->eb_refs));
201 	atomic_dec(&subpage->eb_refs);
202 }
203 
204 static void btrfs_subpage_assert(const struct btrfs_fs_info *fs_info,
205 		struct page *page, u64 start, u32 len)
206 {
207 	/* Basic checks */
208 	ASSERT(PagePrivate(page) && page->private);
209 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
210 	       IS_ALIGNED(len, fs_info->sectorsize));
211 	/*
212 	 * The range check only works for mapped page, we can still have
213 	 * unmapped page like dummy extent buffer pages.
214 	 */
215 	if (page->mapping)
216 		ASSERT(page_offset(page) <= start &&
217 		       start + len <= page_offset(page) + PAGE_SIZE);
218 }
219 
220 void btrfs_subpage_start_reader(const struct btrfs_fs_info *fs_info,
221 		struct page *page, u64 start, u32 len)
222 {
223 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
224 	const int nbits = len >> fs_info->sectorsize_bits;
225 
226 	btrfs_subpage_assert(fs_info, page, start, len);
227 
228 	atomic_add(nbits, &subpage->readers);
229 }
230 
231 void btrfs_subpage_end_reader(const struct btrfs_fs_info *fs_info,
232 		struct page *page, u64 start, u32 len)
233 {
234 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
235 	const int nbits = len >> fs_info->sectorsize_bits;
236 	bool is_data;
237 	bool last;
238 
239 	btrfs_subpage_assert(fs_info, page, start, len);
240 	is_data = is_data_inode(page->mapping->host);
241 	ASSERT(atomic_read(&subpage->readers) >= nbits);
242 	last = atomic_sub_and_test(nbits, &subpage->readers);
243 
244 	/*
245 	 * For data we need to unlock the page if the last read has finished.
246 	 *
247 	 * And please don't replace @last with atomic_sub_and_test() call
248 	 * inside if () condition.
249 	 * As we want the atomic_sub_and_test() to be always executed.
250 	 */
251 	if (is_data && last)
252 		unlock_page(page);
253 }
254 
255 static void btrfs_subpage_clamp_range(struct page *page, u64 *start, u32 *len)
256 {
257 	u64 orig_start = *start;
258 	u32 orig_len = *len;
259 
260 	*start = max_t(u64, page_offset(page), orig_start);
261 	/*
262 	 * For certain call sites like btrfs_drop_pages(), we may have pages
263 	 * beyond the target range. In that case, just set @len to 0, subpage
264 	 * helpers can handle @len == 0 without any problem.
265 	 */
266 	if (page_offset(page) >= orig_start + orig_len)
267 		*len = 0;
268 	else
269 		*len = min_t(u64, page_offset(page) + PAGE_SIZE,
270 			     orig_start + orig_len) - *start;
271 }
272 
273 void btrfs_subpage_start_writer(const struct btrfs_fs_info *fs_info,
274 		struct page *page, u64 start, u32 len)
275 {
276 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
277 	const int nbits = (len >> fs_info->sectorsize_bits);
278 	int ret;
279 
280 	btrfs_subpage_assert(fs_info, page, start, len);
281 
282 	ASSERT(atomic_read(&subpage->readers) == 0);
283 	ret = atomic_add_return(nbits, &subpage->writers);
284 	ASSERT(ret == nbits);
285 }
286 
287 bool btrfs_subpage_end_and_test_writer(const struct btrfs_fs_info *fs_info,
288 		struct page *page, u64 start, u32 len)
289 {
290 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
291 	const int nbits = (len >> fs_info->sectorsize_bits);
292 
293 	btrfs_subpage_assert(fs_info, page, start, len);
294 
295 	ASSERT(atomic_read(&subpage->writers) >= nbits);
296 	return atomic_sub_and_test(nbits, &subpage->writers);
297 }
298 
299 /*
300  * Lock a page for delalloc page writeback.
301  *
302  * Return -EAGAIN if the page is not properly initialized.
303  * Return 0 with the page locked, and writer counter updated.
304  *
305  * Even with 0 returned, the page still need extra check to make sure
306  * it's really the correct page, as the caller is using
307  * find_get_pages_contig(), which can race with page invalidating.
308  */
309 int btrfs_page_start_writer_lock(const struct btrfs_fs_info *fs_info,
310 		struct page *page, u64 start, u32 len)
311 {
312 	if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) {
313 		lock_page(page);
314 		return 0;
315 	}
316 	lock_page(page);
317 	if (!PagePrivate(page) || !page->private) {
318 		unlock_page(page);
319 		return -EAGAIN;
320 	}
321 	btrfs_subpage_clamp_range(page, &start, &len);
322 	btrfs_subpage_start_writer(fs_info, page, start, len);
323 	return 0;
324 }
325 
326 void btrfs_page_end_writer_lock(const struct btrfs_fs_info *fs_info,
327 		struct page *page, u64 start, u32 len)
328 {
329 	if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE)
330 		return unlock_page(page);
331 	btrfs_subpage_clamp_range(page, &start, &len);
332 	if (btrfs_subpage_end_and_test_writer(fs_info, page, start, len))
333 		unlock_page(page);
334 }
335 
336 static bool bitmap_test_range_all_set(unsigned long *addr, unsigned int start,
337 				      unsigned int nbits)
338 {
339 	unsigned int found_zero;
340 
341 	found_zero = find_next_zero_bit(addr, start + nbits, start);
342 	if (found_zero == start + nbits)
343 		return true;
344 	return false;
345 }
346 
347 static bool bitmap_test_range_all_zero(unsigned long *addr, unsigned int start,
348 				       unsigned int nbits)
349 {
350 	unsigned int found_set;
351 
352 	found_set = find_next_bit(addr, start + nbits, start);
353 	if (found_set == start + nbits)
354 		return true;
355 	return false;
356 }
357 
358 #define subpage_calc_start_bit(fs_info, page, name, start, len)		\
359 ({									\
360 	unsigned int start_bit;						\
361 									\
362 	btrfs_subpage_assert(fs_info, page, start, len);		\
363 	start_bit = offset_in_page(start) >> fs_info->sectorsize_bits;	\
364 	start_bit += fs_info->subpage_info->name##_offset;		\
365 	start_bit;							\
366 })
367 
368 #define subpage_test_bitmap_all_set(fs_info, subpage, name)		\
369 	bitmap_test_range_all_set(subpage->bitmaps,			\
370 			fs_info->subpage_info->name##_offset,		\
371 			fs_info->subpage_info->bitmap_nr_bits)
372 
373 #define subpage_test_bitmap_all_zero(fs_info, subpage, name)		\
374 	bitmap_test_range_all_zero(subpage->bitmaps,			\
375 			fs_info->subpage_info->name##_offset,		\
376 			fs_info->subpage_info->bitmap_nr_bits)
377 
378 void btrfs_subpage_set_uptodate(const struct btrfs_fs_info *fs_info,
379 		struct page *page, u64 start, u32 len)
380 {
381 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
382 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
383 							uptodate, start, len);
384 	unsigned long flags;
385 
386 	spin_lock_irqsave(&subpage->lock, flags);
387 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
388 	if (subpage_test_bitmap_all_set(fs_info, subpage, uptodate))
389 		SetPageUptodate(page);
390 	spin_unlock_irqrestore(&subpage->lock, flags);
391 }
392 
393 void btrfs_subpage_clear_uptodate(const struct btrfs_fs_info *fs_info,
394 		struct page *page, u64 start, u32 len)
395 {
396 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
397 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
398 							uptodate, start, len);
399 	unsigned long flags;
400 
401 	spin_lock_irqsave(&subpage->lock, flags);
402 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
403 	ClearPageUptodate(page);
404 	spin_unlock_irqrestore(&subpage->lock, flags);
405 }
406 
407 void btrfs_subpage_set_error(const struct btrfs_fs_info *fs_info,
408 		struct page *page, u64 start, u32 len)
409 {
410 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
411 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
412 							error, start, len);
413 	unsigned long flags;
414 
415 	spin_lock_irqsave(&subpage->lock, flags);
416 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
417 	SetPageError(page);
418 	spin_unlock_irqrestore(&subpage->lock, flags);
419 }
420 
421 void btrfs_subpage_clear_error(const struct btrfs_fs_info *fs_info,
422 		struct page *page, u64 start, u32 len)
423 {
424 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
425 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
426 							error, start, len);
427 	unsigned long flags;
428 
429 	spin_lock_irqsave(&subpage->lock, flags);
430 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
431 	if (subpage_test_bitmap_all_zero(fs_info, subpage, error))
432 		ClearPageError(page);
433 	spin_unlock_irqrestore(&subpage->lock, flags);
434 }
435 
436 void btrfs_subpage_set_dirty(const struct btrfs_fs_info *fs_info,
437 		struct page *page, u64 start, u32 len)
438 {
439 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
440 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
441 							dirty, start, len);
442 	unsigned long flags;
443 
444 	spin_lock_irqsave(&subpage->lock, flags);
445 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
446 	spin_unlock_irqrestore(&subpage->lock, flags);
447 	set_page_dirty(page);
448 }
449 
450 /*
451  * Extra clear_and_test function for subpage dirty bitmap.
452  *
453  * Return true if we're the last bits in the dirty_bitmap and clear the
454  * dirty_bitmap.
455  * Return false otherwise.
456  *
457  * NOTE: Callers should manually clear page dirty for true case, as we have
458  * extra handling for tree blocks.
459  */
460 bool btrfs_subpage_clear_and_test_dirty(const struct btrfs_fs_info *fs_info,
461 		struct page *page, u64 start, u32 len)
462 {
463 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
464 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
465 							dirty, start, len);
466 	unsigned long flags;
467 	bool last = false;
468 
469 	spin_lock_irqsave(&subpage->lock, flags);
470 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
471 	if (subpage_test_bitmap_all_zero(fs_info, subpage, dirty))
472 		last = true;
473 	spin_unlock_irqrestore(&subpage->lock, flags);
474 	return last;
475 }
476 
477 void btrfs_subpage_clear_dirty(const struct btrfs_fs_info *fs_info,
478 		struct page *page, u64 start, u32 len)
479 {
480 	bool last;
481 
482 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, start, len);
483 	if (last)
484 		clear_page_dirty_for_io(page);
485 }
486 
487 void btrfs_subpage_set_writeback(const struct btrfs_fs_info *fs_info,
488 		struct page *page, u64 start, u32 len)
489 {
490 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
491 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
492 							writeback, start, len);
493 	unsigned long flags;
494 
495 	spin_lock_irqsave(&subpage->lock, flags);
496 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
497 	set_page_writeback(page);
498 	spin_unlock_irqrestore(&subpage->lock, flags);
499 }
500 
501 void btrfs_subpage_clear_writeback(const struct btrfs_fs_info *fs_info,
502 		struct page *page, u64 start, u32 len)
503 {
504 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
505 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
506 							writeback, start, len);
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&subpage->lock, flags);
510 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
511 	if (subpage_test_bitmap_all_zero(fs_info, subpage, writeback)) {
512 		ASSERT(PageWriteback(page));
513 		end_page_writeback(page);
514 	}
515 	spin_unlock_irqrestore(&subpage->lock, flags);
516 }
517 
518 void btrfs_subpage_set_ordered(const struct btrfs_fs_info *fs_info,
519 		struct page *page, u64 start, u32 len)
520 {
521 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
522 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
523 							ordered, start, len);
524 	unsigned long flags;
525 
526 	spin_lock_irqsave(&subpage->lock, flags);
527 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
528 	SetPageOrdered(page);
529 	spin_unlock_irqrestore(&subpage->lock, flags);
530 }
531 
532 void btrfs_subpage_clear_ordered(const struct btrfs_fs_info *fs_info,
533 		struct page *page, u64 start, u32 len)
534 {
535 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
536 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
537 							ordered, start, len);
538 	unsigned long flags;
539 
540 	spin_lock_irqsave(&subpage->lock, flags);
541 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
542 	if (subpage_test_bitmap_all_zero(fs_info, subpage, ordered))
543 		ClearPageOrdered(page);
544 	spin_unlock_irqrestore(&subpage->lock, flags);
545 }
546 
547 void btrfs_subpage_set_checked(const struct btrfs_fs_info *fs_info,
548 			       struct page *page, u64 start, u32 len)
549 {
550 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
551 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
552 							checked, start, len);
553 	unsigned long flags;
554 
555 	spin_lock_irqsave(&subpage->lock, flags);
556 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
557 	if (subpage_test_bitmap_all_set(fs_info, subpage, checked))
558 		SetPageChecked(page);
559 	spin_unlock_irqrestore(&subpage->lock, flags);
560 }
561 
562 void btrfs_subpage_clear_checked(const struct btrfs_fs_info *fs_info,
563 				 struct page *page, u64 start, u32 len)
564 {
565 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
566 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
567 							checked, start, len);
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&subpage->lock, flags);
571 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
572 	ClearPageChecked(page);
573 	spin_unlock_irqrestore(&subpage->lock, flags);
574 }
575 
576 /*
577  * Unlike set/clear which is dependent on each page status, for test all bits
578  * are tested in the same way.
579  */
580 #define IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(name)				\
581 bool btrfs_subpage_test_##name(const struct btrfs_fs_info *fs_info,	\
582 		struct page *page, u64 start, u32 len)			\
583 {									\
584 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; \
585 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,	\
586 						name, start, len);	\
587 	unsigned long flags;						\
588 	bool ret;							\
589 									\
590 	spin_lock_irqsave(&subpage->lock, flags);			\
591 	ret = bitmap_test_range_all_set(subpage->bitmaps, start_bit,	\
592 				len >> fs_info->sectorsize_bits);	\
593 	spin_unlock_irqrestore(&subpage->lock, flags);			\
594 	return ret;							\
595 }
596 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(uptodate);
597 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(error);
598 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(dirty);
599 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(writeback);
600 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(ordered);
601 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(checked);
602 
603 /*
604  * Note that, in selftests (extent-io-tests), we can have empty fs_info passed
605  * in.  We only test sectorsize == PAGE_SIZE cases so far, thus we can fall
606  * back to regular sectorsize branch.
607  */
608 #define IMPLEMENT_BTRFS_PAGE_OPS(name, set_page_func, clear_page_func,	\
609 			       test_page_func)				\
610 void btrfs_page_set_##name(const struct btrfs_fs_info *fs_info,		\
611 		struct page *page, u64 start, u32 len)			\
612 {									\
613 	if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) {	\
614 		set_page_func(page);					\
615 		return;							\
616 	}								\
617 	btrfs_subpage_set_##name(fs_info, page, start, len);		\
618 }									\
619 void btrfs_page_clear_##name(const struct btrfs_fs_info *fs_info,	\
620 		struct page *page, u64 start, u32 len)			\
621 {									\
622 	if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) {	\
623 		clear_page_func(page);					\
624 		return;							\
625 	}								\
626 	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
627 }									\
628 bool btrfs_page_test_##name(const struct btrfs_fs_info *fs_info,	\
629 		struct page *page, u64 start, u32 len)			\
630 {									\
631 	if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE)	\
632 		return test_page_func(page);				\
633 	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
634 }									\
635 void btrfs_page_clamp_set_##name(const struct btrfs_fs_info *fs_info,	\
636 		struct page *page, u64 start, u32 len)			\
637 {									\
638 	if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) {	\
639 		set_page_func(page);					\
640 		return;							\
641 	}								\
642 	btrfs_subpage_clamp_range(page, &start, &len);			\
643 	btrfs_subpage_set_##name(fs_info, page, start, len);		\
644 }									\
645 void btrfs_page_clamp_clear_##name(const struct btrfs_fs_info *fs_info, \
646 		struct page *page, u64 start, u32 len)			\
647 {									\
648 	if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) {	\
649 		clear_page_func(page);					\
650 		return;							\
651 	}								\
652 	btrfs_subpage_clamp_range(page, &start, &len);			\
653 	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
654 }									\
655 bool btrfs_page_clamp_test_##name(const struct btrfs_fs_info *fs_info,	\
656 		struct page *page, u64 start, u32 len)			\
657 {									\
658 	if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE)	\
659 		return test_page_func(page);				\
660 	btrfs_subpage_clamp_range(page, &start, &len);			\
661 	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
662 }
663 IMPLEMENT_BTRFS_PAGE_OPS(uptodate, SetPageUptodate, ClearPageUptodate,
664 			 PageUptodate);
665 IMPLEMENT_BTRFS_PAGE_OPS(error, SetPageError, ClearPageError, PageError);
666 IMPLEMENT_BTRFS_PAGE_OPS(dirty, set_page_dirty, clear_page_dirty_for_io,
667 			 PageDirty);
668 IMPLEMENT_BTRFS_PAGE_OPS(writeback, set_page_writeback, end_page_writeback,
669 			 PageWriteback);
670 IMPLEMENT_BTRFS_PAGE_OPS(ordered, SetPageOrdered, ClearPageOrdered,
671 			 PageOrdered);
672 IMPLEMENT_BTRFS_PAGE_OPS(checked, SetPageChecked, ClearPageChecked, PageChecked);
673 
674 /*
675  * Make sure not only the page dirty bit is cleared, but also subpage dirty bit
676  * is cleared.
677  */
678 void btrfs_page_assert_not_dirty(const struct btrfs_fs_info *fs_info,
679 				 struct page *page)
680 {
681 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
682 
683 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
684 		return;
685 
686 	ASSERT(!PageDirty(page));
687 	if (fs_info->sectorsize == PAGE_SIZE)
688 		return;
689 
690 	ASSERT(PagePrivate(page) && page->private);
691 	ASSERT(subpage_test_bitmap_all_zero(fs_info, subpage, dirty));
692 }
693 
694 /*
695  * Handle different locked pages with different page sizes:
696  *
697  * - Page locked by plain lock_page()
698  *   It should not have any subpage::writers count.
699  *   Can be unlocked by unlock_page().
700  *   This is the most common locked page for __extent_writepage() called
701  *   inside extent_write_cache_pages() or extent_write_full_page().
702  *   Rarer cases include the @locked_page from extent_write_locked_range().
703  *
704  * - Page locked by lock_delalloc_pages()
705  *   There is only one caller, all pages except @locked_page for
706  *   extent_write_locked_range().
707  *   In this case, we have to call subpage helper to handle the case.
708  */
709 void btrfs_page_unlock_writer(struct btrfs_fs_info *fs_info, struct page *page,
710 			      u64 start, u32 len)
711 {
712 	struct btrfs_subpage *subpage;
713 
714 	ASSERT(PageLocked(page));
715 	/* For regular page size case, we just unlock the page */
716 	if (fs_info->sectorsize == PAGE_SIZE)
717 		return unlock_page(page);
718 
719 	ASSERT(PagePrivate(page) && page->private);
720 	subpage = (struct btrfs_subpage *)page->private;
721 
722 	/*
723 	 * For subpage case, there are two types of locked page.  With or
724 	 * without writers number.
725 	 *
726 	 * Since we own the page lock, no one else could touch subpage::writers
727 	 * and we are safe to do several atomic operations without spinlock.
728 	 */
729 	if (atomic_read(&subpage->writers))
730 		/* No writers, locked by plain lock_page() */
731 		return unlock_page(page);
732 
733 	/* Have writers, use proper subpage helper to end it */
734 	btrfs_page_end_writer_lock(fs_info, page, start, len);
735 }
736