xref: /openbmc/linux/fs/btrfs/subpage.c (revision 0de459a3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/slab.h>
4 #include "ctree.h"
5 #include "subpage.h"
6 #include "btrfs_inode.h"
7 
8 /*
9  * Subpage (sectorsize < PAGE_SIZE) support overview:
10  *
11  * Limitations:
12  *
13  * - Only support 64K page size for now
14  *   This is to make metadata handling easier, as 64K page would ensure
15  *   all nodesize would fit inside one page, thus we don't need to handle
16  *   cases where a tree block crosses several pages.
17  *
18  * - Only metadata read-write for now
19  *   The data read-write part is in development.
20  *
21  * - Metadata can't cross 64K page boundary
22  *   btrfs-progs and kernel have done that for a while, thus only ancient
23  *   filesystems could have such problem.  For such case, do a graceful
24  *   rejection.
25  *
26  * Special behavior:
27  *
28  * - Metadata
29  *   Metadata read is fully supported.
30  *   Meaning when reading one tree block will only trigger the read for the
31  *   needed range, other unrelated range in the same page will not be touched.
32  *
33  *   Metadata write support is partial.
34  *   The writeback is still for the full page, but we will only submit
35  *   the dirty extent buffers in the page.
36  *
37  *   This means, if we have a metadata page like this:
38  *
39  *   Page offset
40  *   0         16K         32K         48K        64K
41  *   |/////////|           |///////////|
42  *        \- Tree block A        \- Tree block B
43  *
44  *   Even if we just want to writeback tree block A, we will also writeback
45  *   tree block B if it's also dirty.
46  *
47  *   This may cause extra metadata writeback which results more COW.
48  *
49  * Implementation:
50  *
51  * - Common
52  *   Both metadata and data will use a new structure, btrfs_subpage, to
53  *   record the status of each sector inside a page.  This provides the extra
54  *   granularity needed.
55  *
56  * - Metadata
57  *   Since we have multiple tree blocks inside one page, we can't rely on page
58  *   locking anymore, or we will have greatly reduced concurrency or even
59  *   deadlocks (hold one tree lock while trying to lock another tree lock in
60  *   the same page).
61  *
62  *   Thus for metadata locking, subpage support relies on io_tree locking only.
63  *   This means a slightly higher tree locking latency.
64  */
65 
66 bool btrfs_is_subpage(const struct btrfs_fs_info *fs_info, struct page *page)
67 {
68 	if (fs_info->sectorsize >= PAGE_SIZE)
69 		return false;
70 
71 	/*
72 	 * Only data pages (either through DIO or compression) can have no
73 	 * mapping. And if page->mapping->host is data inode, it's subpage.
74 	 * As we have ruled our sectorsize >= PAGE_SIZE case already.
75 	 */
76 	if (!page->mapping || !page->mapping->host ||
77 	    is_data_inode(page->mapping->host))
78 		return true;
79 
80 	/*
81 	 * Now the only remaining case is metadata, which we only go subpage
82 	 * routine if nodesize < PAGE_SIZE.
83 	 */
84 	if (fs_info->nodesize < PAGE_SIZE)
85 		return true;
86 	return false;
87 }
88 
89 void btrfs_init_subpage_info(struct btrfs_subpage_info *subpage_info, u32 sectorsize)
90 {
91 	unsigned int cur = 0;
92 	unsigned int nr_bits;
93 
94 	ASSERT(IS_ALIGNED(PAGE_SIZE, sectorsize));
95 
96 	nr_bits = PAGE_SIZE / sectorsize;
97 	subpage_info->bitmap_nr_bits = nr_bits;
98 
99 	subpage_info->uptodate_offset = cur;
100 	cur += nr_bits;
101 
102 	subpage_info->error_offset = cur;
103 	cur += nr_bits;
104 
105 	subpage_info->dirty_offset = cur;
106 	cur += nr_bits;
107 
108 	subpage_info->writeback_offset = cur;
109 	cur += nr_bits;
110 
111 	subpage_info->ordered_offset = cur;
112 	cur += nr_bits;
113 
114 	subpage_info->checked_offset = cur;
115 	cur += nr_bits;
116 
117 	subpage_info->total_nr_bits = cur;
118 }
119 
120 int btrfs_attach_subpage(const struct btrfs_fs_info *fs_info,
121 			 struct page *page, enum btrfs_subpage_type type)
122 {
123 	struct btrfs_subpage *subpage;
124 
125 	/*
126 	 * We have cases like a dummy extent buffer page, which is not mapped
127 	 * and doesn't need to be locked.
128 	 */
129 	if (page->mapping)
130 		ASSERT(PageLocked(page));
131 
132 	/* Either not subpage, or the page already has private attached */
133 	if (!btrfs_is_subpage(fs_info, page) || PagePrivate(page))
134 		return 0;
135 
136 	subpage = btrfs_alloc_subpage(fs_info, type);
137 	if (IS_ERR(subpage))
138 		return  PTR_ERR(subpage);
139 
140 	attach_page_private(page, subpage);
141 	return 0;
142 }
143 
144 void btrfs_detach_subpage(const struct btrfs_fs_info *fs_info,
145 			  struct page *page)
146 {
147 	struct btrfs_subpage *subpage;
148 
149 	/* Either not subpage, or already detached */
150 	if (!btrfs_is_subpage(fs_info, page) || !PagePrivate(page))
151 		return;
152 
153 	subpage = detach_page_private(page);
154 	ASSERT(subpage);
155 	btrfs_free_subpage(subpage);
156 }
157 
158 struct btrfs_subpage *btrfs_alloc_subpage(const struct btrfs_fs_info *fs_info,
159 					  enum btrfs_subpage_type type)
160 {
161 	struct btrfs_subpage *ret;
162 	unsigned int real_size;
163 
164 	ASSERT(fs_info->sectorsize < PAGE_SIZE);
165 
166 	real_size = struct_size(ret, bitmaps,
167 			BITS_TO_LONGS(fs_info->subpage_info->total_nr_bits));
168 	ret = kzalloc(real_size, GFP_NOFS);
169 	if (!ret)
170 		return ERR_PTR(-ENOMEM);
171 
172 	spin_lock_init(&ret->lock);
173 	if (type == BTRFS_SUBPAGE_METADATA) {
174 		atomic_set(&ret->eb_refs, 0);
175 	} else {
176 		atomic_set(&ret->readers, 0);
177 		atomic_set(&ret->writers, 0);
178 	}
179 	return ret;
180 }
181 
182 void btrfs_free_subpage(struct btrfs_subpage *subpage)
183 {
184 	kfree(subpage);
185 }
186 
187 /*
188  * Increase the eb_refs of current subpage.
189  *
190  * This is important for eb allocation, to prevent race with last eb freeing
191  * of the same page.
192  * With the eb_refs increased before the eb inserted into radix tree,
193  * detach_extent_buffer_page() won't detach the page private while we're still
194  * allocating the extent buffer.
195  */
196 void btrfs_page_inc_eb_refs(const struct btrfs_fs_info *fs_info,
197 			    struct page *page)
198 {
199 	struct btrfs_subpage *subpage;
200 
201 	if (!btrfs_is_subpage(fs_info, page))
202 		return;
203 
204 	ASSERT(PagePrivate(page) && page->mapping);
205 	lockdep_assert_held(&page->mapping->private_lock);
206 
207 	subpage = (struct btrfs_subpage *)page->private;
208 	atomic_inc(&subpage->eb_refs);
209 }
210 
211 void btrfs_page_dec_eb_refs(const struct btrfs_fs_info *fs_info,
212 			    struct page *page)
213 {
214 	struct btrfs_subpage *subpage;
215 
216 	if (!btrfs_is_subpage(fs_info, page))
217 		return;
218 
219 	ASSERT(PagePrivate(page) && page->mapping);
220 	lockdep_assert_held(&page->mapping->private_lock);
221 
222 	subpage = (struct btrfs_subpage *)page->private;
223 	ASSERT(atomic_read(&subpage->eb_refs));
224 	atomic_dec(&subpage->eb_refs);
225 }
226 
227 static void btrfs_subpage_assert(const struct btrfs_fs_info *fs_info,
228 		struct page *page, u64 start, u32 len)
229 {
230 	/* Basic checks */
231 	ASSERT(PagePrivate(page) && page->private);
232 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
233 	       IS_ALIGNED(len, fs_info->sectorsize));
234 	/*
235 	 * The range check only works for mapped page, we can still have
236 	 * unmapped page like dummy extent buffer pages.
237 	 */
238 	if (page->mapping)
239 		ASSERT(page_offset(page) <= start &&
240 		       start + len <= page_offset(page) + PAGE_SIZE);
241 }
242 
243 void btrfs_subpage_start_reader(const struct btrfs_fs_info *fs_info,
244 		struct page *page, u64 start, u32 len)
245 {
246 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
247 	const int nbits = len >> fs_info->sectorsize_bits;
248 
249 	btrfs_subpage_assert(fs_info, page, start, len);
250 
251 	atomic_add(nbits, &subpage->readers);
252 }
253 
254 void btrfs_subpage_end_reader(const struct btrfs_fs_info *fs_info,
255 		struct page *page, u64 start, u32 len)
256 {
257 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
258 	const int nbits = len >> fs_info->sectorsize_bits;
259 	bool is_data;
260 	bool last;
261 
262 	btrfs_subpage_assert(fs_info, page, start, len);
263 	is_data = is_data_inode(page->mapping->host);
264 	ASSERT(atomic_read(&subpage->readers) >= nbits);
265 	last = atomic_sub_and_test(nbits, &subpage->readers);
266 
267 	/*
268 	 * For data we need to unlock the page if the last read has finished.
269 	 *
270 	 * And please don't replace @last with atomic_sub_and_test() call
271 	 * inside if () condition.
272 	 * As we want the atomic_sub_and_test() to be always executed.
273 	 */
274 	if (is_data && last)
275 		unlock_page(page);
276 }
277 
278 static void btrfs_subpage_clamp_range(struct page *page, u64 *start, u32 *len)
279 {
280 	u64 orig_start = *start;
281 	u32 orig_len = *len;
282 
283 	*start = max_t(u64, page_offset(page), orig_start);
284 	/*
285 	 * For certain call sites like btrfs_drop_pages(), we may have pages
286 	 * beyond the target range. In that case, just set @len to 0, subpage
287 	 * helpers can handle @len == 0 without any problem.
288 	 */
289 	if (page_offset(page) >= orig_start + orig_len)
290 		*len = 0;
291 	else
292 		*len = min_t(u64, page_offset(page) + PAGE_SIZE,
293 			     orig_start + orig_len) - *start;
294 }
295 
296 void btrfs_subpage_start_writer(const struct btrfs_fs_info *fs_info,
297 		struct page *page, u64 start, u32 len)
298 {
299 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
300 	const int nbits = (len >> fs_info->sectorsize_bits);
301 	int ret;
302 
303 	btrfs_subpage_assert(fs_info, page, start, len);
304 
305 	ASSERT(atomic_read(&subpage->readers) == 0);
306 	ret = atomic_add_return(nbits, &subpage->writers);
307 	ASSERT(ret == nbits);
308 }
309 
310 bool btrfs_subpage_end_and_test_writer(const struct btrfs_fs_info *fs_info,
311 		struct page *page, u64 start, u32 len)
312 {
313 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
314 	const int nbits = (len >> fs_info->sectorsize_bits);
315 
316 	btrfs_subpage_assert(fs_info, page, start, len);
317 
318 	/*
319 	 * We have call sites passing @lock_page into
320 	 * extent_clear_unlock_delalloc() for compression path.
321 	 *
322 	 * This @locked_page is locked by plain lock_page(), thus its
323 	 * subpage::writers is 0.  Handle them in a special way.
324 	 */
325 	if (atomic_read(&subpage->writers) == 0)
326 		return true;
327 
328 	ASSERT(atomic_read(&subpage->writers) >= nbits);
329 	return atomic_sub_and_test(nbits, &subpage->writers);
330 }
331 
332 /*
333  * Lock a page for delalloc page writeback.
334  *
335  * Return -EAGAIN if the page is not properly initialized.
336  * Return 0 with the page locked, and writer counter updated.
337  *
338  * Even with 0 returned, the page still need extra check to make sure
339  * it's really the correct page, as the caller is using
340  * filemap_get_folios_contig(), which can race with page invalidating.
341  */
342 int btrfs_page_start_writer_lock(const struct btrfs_fs_info *fs_info,
343 		struct page *page, u64 start, u32 len)
344 {
345 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {
346 		lock_page(page);
347 		return 0;
348 	}
349 	lock_page(page);
350 	if (!PagePrivate(page) || !page->private) {
351 		unlock_page(page);
352 		return -EAGAIN;
353 	}
354 	btrfs_subpage_clamp_range(page, &start, &len);
355 	btrfs_subpage_start_writer(fs_info, page, start, len);
356 	return 0;
357 }
358 
359 void btrfs_page_end_writer_lock(const struct btrfs_fs_info *fs_info,
360 		struct page *page, u64 start, u32 len)
361 {
362 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))
363 		return unlock_page(page);
364 	btrfs_subpage_clamp_range(page, &start, &len);
365 	if (btrfs_subpage_end_and_test_writer(fs_info, page, start, len))
366 		unlock_page(page);
367 }
368 
369 static bool bitmap_test_range_all_set(unsigned long *addr, unsigned int start,
370 				      unsigned int nbits)
371 {
372 	unsigned int found_zero;
373 
374 	found_zero = find_next_zero_bit(addr, start + nbits, start);
375 	if (found_zero == start + nbits)
376 		return true;
377 	return false;
378 }
379 
380 static bool bitmap_test_range_all_zero(unsigned long *addr, unsigned int start,
381 				       unsigned int nbits)
382 {
383 	unsigned int found_set;
384 
385 	found_set = find_next_bit(addr, start + nbits, start);
386 	if (found_set == start + nbits)
387 		return true;
388 	return false;
389 }
390 
391 #define subpage_calc_start_bit(fs_info, page, name, start, len)		\
392 ({									\
393 	unsigned int start_bit;						\
394 									\
395 	btrfs_subpage_assert(fs_info, page, start, len);		\
396 	start_bit = offset_in_page(start) >> fs_info->sectorsize_bits;	\
397 	start_bit += fs_info->subpage_info->name##_offset;		\
398 	start_bit;							\
399 })
400 
401 #define subpage_test_bitmap_all_set(fs_info, subpage, name)		\
402 	bitmap_test_range_all_set(subpage->bitmaps,			\
403 			fs_info->subpage_info->name##_offset,		\
404 			fs_info->subpage_info->bitmap_nr_bits)
405 
406 #define subpage_test_bitmap_all_zero(fs_info, subpage, name)		\
407 	bitmap_test_range_all_zero(subpage->bitmaps,			\
408 			fs_info->subpage_info->name##_offset,		\
409 			fs_info->subpage_info->bitmap_nr_bits)
410 
411 void btrfs_subpage_set_uptodate(const struct btrfs_fs_info *fs_info,
412 		struct page *page, u64 start, u32 len)
413 {
414 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
415 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
416 							uptodate, start, len);
417 	unsigned long flags;
418 
419 	spin_lock_irqsave(&subpage->lock, flags);
420 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
421 	if (subpage_test_bitmap_all_set(fs_info, subpage, uptodate))
422 		SetPageUptodate(page);
423 	spin_unlock_irqrestore(&subpage->lock, flags);
424 }
425 
426 void btrfs_subpage_clear_uptodate(const struct btrfs_fs_info *fs_info,
427 		struct page *page, u64 start, u32 len)
428 {
429 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
430 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
431 							uptodate, start, len);
432 	unsigned long flags;
433 
434 	spin_lock_irqsave(&subpage->lock, flags);
435 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
436 	ClearPageUptodate(page);
437 	spin_unlock_irqrestore(&subpage->lock, flags);
438 }
439 
440 void btrfs_subpage_set_error(const struct btrfs_fs_info *fs_info,
441 		struct page *page, u64 start, u32 len)
442 {
443 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
444 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
445 							error, start, len);
446 	unsigned long flags;
447 
448 	spin_lock_irqsave(&subpage->lock, flags);
449 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
450 	SetPageError(page);
451 	spin_unlock_irqrestore(&subpage->lock, flags);
452 }
453 
454 void btrfs_subpage_clear_error(const struct btrfs_fs_info *fs_info,
455 		struct page *page, u64 start, u32 len)
456 {
457 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
458 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
459 							error, start, len);
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&subpage->lock, flags);
463 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
464 	if (subpage_test_bitmap_all_zero(fs_info, subpage, error))
465 		ClearPageError(page);
466 	spin_unlock_irqrestore(&subpage->lock, flags);
467 }
468 
469 void btrfs_subpage_set_dirty(const struct btrfs_fs_info *fs_info,
470 		struct page *page, u64 start, u32 len)
471 {
472 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
473 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
474 							dirty, start, len);
475 	unsigned long flags;
476 
477 	spin_lock_irqsave(&subpage->lock, flags);
478 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
479 	spin_unlock_irqrestore(&subpage->lock, flags);
480 	set_page_dirty(page);
481 }
482 
483 /*
484  * Extra clear_and_test function for subpage dirty bitmap.
485  *
486  * Return true if we're the last bits in the dirty_bitmap and clear the
487  * dirty_bitmap.
488  * Return false otherwise.
489  *
490  * NOTE: Callers should manually clear page dirty for true case, as we have
491  * extra handling for tree blocks.
492  */
493 bool btrfs_subpage_clear_and_test_dirty(const struct btrfs_fs_info *fs_info,
494 		struct page *page, u64 start, u32 len)
495 {
496 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
497 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
498 							dirty, start, len);
499 	unsigned long flags;
500 	bool last = false;
501 
502 	spin_lock_irqsave(&subpage->lock, flags);
503 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
504 	if (subpage_test_bitmap_all_zero(fs_info, subpage, dirty))
505 		last = true;
506 	spin_unlock_irqrestore(&subpage->lock, flags);
507 	return last;
508 }
509 
510 void btrfs_subpage_clear_dirty(const struct btrfs_fs_info *fs_info,
511 		struct page *page, u64 start, u32 len)
512 {
513 	bool last;
514 
515 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, start, len);
516 	if (last)
517 		clear_page_dirty_for_io(page);
518 }
519 
520 void btrfs_subpage_set_writeback(const struct btrfs_fs_info *fs_info,
521 		struct page *page, u64 start, u32 len)
522 {
523 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
524 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
525 							writeback, start, len);
526 	unsigned long flags;
527 
528 	spin_lock_irqsave(&subpage->lock, flags);
529 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
530 	set_page_writeback(page);
531 	spin_unlock_irqrestore(&subpage->lock, flags);
532 }
533 
534 void btrfs_subpage_clear_writeback(const struct btrfs_fs_info *fs_info,
535 		struct page *page, u64 start, u32 len)
536 {
537 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
538 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
539 							writeback, start, len);
540 	unsigned long flags;
541 
542 	spin_lock_irqsave(&subpage->lock, flags);
543 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
544 	if (subpage_test_bitmap_all_zero(fs_info, subpage, writeback)) {
545 		ASSERT(PageWriteback(page));
546 		end_page_writeback(page);
547 	}
548 	spin_unlock_irqrestore(&subpage->lock, flags);
549 }
550 
551 void btrfs_subpage_set_ordered(const struct btrfs_fs_info *fs_info,
552 		struct page *page, u64 start, u32 len)
553 {
554 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
555 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
556 							ordered, start, len);
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&subpage->lock, flags);
560 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
561 	SetPageOrdered(page);
562 	spin_unlock_irqrestore(&subpage->lock, flags);
563 }
564 
565 void btrfs_subpage_clear_ordered(const struct btrfs_fs_info *fs_info,
566 		struct page *page, u64 start, u32 len)
567 {
568 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
569 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
570 							ordered, start, len);
571 	unsigned long flags;
572 
573 	spin_lock_irqsave(&subpage->lock, flags);
574 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
575 	if (subpage_test_bitmap_all_zero(fs_info, subpage, ordered))
576 		ClearPageOrdered(page);
577 	spin_unlock_irqrestore(&subpage->lock, flags);
578 }
579 
580 void btrfs_subpage_set_checked(const struct btrfs_fs_info *fs_info,
581 			       struct page *page, u64 start, u32 len)
582 {
583 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
584 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
585 							checked, start, len);
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&subpage->lock, flags);
589 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
590 	if (subpage_test_bitmap_all_set(fs_info, subpage, checked))
591 		SetPageChecked(page);
592 	spin_unlock_irqrestore(&subpage->lock, flags);
593 }
594 
595 void btrfs_subpage_clear_checked(const struct btrfs_fs_info *fs_info,
596 				 struct page *page, u64 start, u32 len)
597 {
598 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
599 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
600 							checked, start, len);
601 	unsigned long flags;
602 
603 	spin_lock_irqsave(&subpage->lock, flags);
604 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
605 	ClearPageChecked(page);
606 	spin_unlock_irqrestore(&subpage->lock, flags);
607 }
608 
609 /*
610  * Unlike set/clear which is dependent on each page status, for test all bits
611  * are tested in the same way.
612  */
613 #define IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(name)				\
614 bool btrfs_subpage_test_##name(const struct btrfs_fs_info *fs_info,	\
615 		struct page *page, u64 start, u32 len)			\
616 {									\
617 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; \
618 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,	\
619 						name, start, len);	\
620 	unsigned long flags;						\
621 	bool ret;							\
622 									\
623 	spin_lock_irqsave(&subpage->lock, flags);			\
624 	ret = bitmap_test_range_all_set(subpage->bitmaps, start_bit,	\
625 				len >> fs_info->sectorsize_bits);	\
626 	spin_unlock_irqrestore(&subpage->lock, flags);			\
627 	return ret;							\
628 }
629 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(uptodate);
630 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(error);
631 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(dirty);
632 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(writeback);
633 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(ordered);
634 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(checked);
635 
636 /*
637  * Note that, in selftests (extent-io-tests), we can have empty fs_info passed
638  * in.  We only test sectorsize == PAGE_SIZE cases so far, thus we can fall
639  * back to regular sectorsize branch.
640  */
641 #define IMPLEMENT_BTRFS_PAGE_OPS(name, set_page_func, clear_page_func,	\
642 			       test_page_func)				\
643 void btrfs_page_set_##name(const struct btrfs_fs_info *fs_info,		\
644 		struct page *page, u64 start, u32 len)			\
645 {									\
646 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
647 		set_page_func(page);					\
648 		return;							\
649 	}								\
650 	btrfs_subpage_set_##name(fs_info, page, start, len);		\
651 }									\
652 void btrfs_page_clear_##name(const struct btrfs_fs_info *fs_info,	\
653 		struct page *page, u64 start, u32 len)			\
654 {									\
655 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
656 		clear_page_func(page);					\
657 		return;							\
658 	}								\
659 	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
660 }									\
661 bool btrfs_page_test_##name(const struct btrfs_fs_info *fs_info,	\
662 		struct page *page, u64 start, u32 len)			\
663 {									\
664 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))	\
665 		return test_page_func(page);				\
666 	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
667 }									\
668 void btrfs_page_clamp_set_##name(const struct btrfs_fs_info *fs_info,	\
669 		struct page *page, u64 start, u32 len)			\
670 {									\
671 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
672 		set_page_func(page);					\
673 		return;							\
674 	}								\
675 	btrfs_subpage_clamp_range(page, &start, &len);			\
676 	btrfs_subpage_set_##name(fs_info, page, start, len);		\
677 }									\
678 void btrfs_page_clamp_clear_##name(const struct btrfs_fs_info *fs_info, \
679 		struct page *page, u64 start, u32 len)			\
680 {									\
681 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
682 		clear_page_func(page);					\
683 		return;							\
684 	}								\
685 	btrfs_subpage_clamp_range(page, &start, &len);			\
686 	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
687 }									\
688 bool btrfs_page_clamp_test_##name(const struct btrfs_fs_info *fs_info,	\
689 		struct page *page, u64 start, u32 len)			\
690 {									\
691 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))	\
692 		return test_page_func(page);				\
693 	btrfs_subpage_clamp_range(page, &start, &len);			\
694 	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
695 }
696 IMPLEMENT_BTRFS_PAGE_OPS(uptodate, SetPageUptodate, ClearPageUptodate,
697 			 PageUptodate);
698 IMPLEMENT_BTRFS_PAGE_OPS(error, SetPageError, ClearPageError, PageError);
699 IMPLEMENT_BTRFS_PAGE_OPS(dirty, set_page_dirty, clear_page_dirty_for_io,
700 			 PageDirty);
701 IMPLEMENT_BTRFS_PAGE_OPS(writeback, set_page_writeback, end_page_writeback,
702 			 PageWriteback);
703 IMPLEMENT_BTRFS_PAGE_OPS(ordered, SetPageOrdered, ClearPageOrdered,
704 			 PageOrdered);
705 IMPLEMENT_BTRFS_PAGE_OPS(checked, SetPageChecked, ClearPageChecked, PageChecked);
706 
707 /*
708  * Make sure not only the page dirty bit is cleared, but also subpage dirty bit
709  * is cleared.
710  */
711 void btrfs_page_assert_not_dirty(const struct btrfs_fs_info *fs_info,
712 				 struct page *page)
713 {
714 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
715 
716 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
717 		return;
718 
719 	ASSERT(!PageDirty(page));
720 	if (!btrfs_is_subpage(fs_info, page))
721 		return;
722 
723 	ASSERT(PagePrivate(page) && page->private);
724 	ASSERT(subpage_test_bitmap_all_zero(fs_info, subpage, dirty));
725 }
726 
727 /*
728  * Handle different locked pages with different page sizes:
729  *
730  * - Page locked by plain lock_page()
731  *   It should not have any subpage::writers count.
732  *   Can be unlocked by unlock_page().
733  *   This is the most common locked page for __extent_writepage() called
734  *   inside extent_write_cache_pages().
735  *   Rarer cases include the @locked_page from extent_write_locked_range().
736  *
737  * - Page locked by lock_delalloc_pages()
738  *   There is only one caller, all pages except @locked_page for
739  *   extent_write_locked_range().
740  *   In this case, we have to call subpage helper to handle the case.
741  */
742 void btrfs_page_unlock_writer(struct btrfs_fs_info *fs_info, struct page *page,
743 			      u64 start, u32 len)
744 {
745 	struct btrfs_subpage *subpage;
746 
747 	ASSERT(PageLocked(page));
748 	/* For non-subpage case, we just unlock the page */
749 	if (!btrfs_is_subpage(fs_info, page))
750 		return unlock_page(page);
751 
752 	ASSERT(PagePrivate(page) && page->private);
753 	subpage = (struct btrfs_subpage *)page->private;
754 
755 	/*
756 	 * For subpage case, there are two types of locked page.  With or
757 	 * without writers number.
758 	 *
759 	 * Since we own the page lock, no one else could touch subpage::writers
760 	 * and we are safe to do several atomic operations without spinlock.
761 	 */
762 	if (atomic_read(&subpage->writers) == 0)
763 		/* No writers, locked by plain lock_page() */
764 		return unlock_page(page);
765 
766 	/* Have writers, use proper subpage helper to end it */
767 	btrfs_page_end_writer_lock(fs_info, page, start, len);
768 }
769