xref: /openbmc/linux/fs/btrfs/space-info.c (revision fadbafc1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 
14 /*
15  * HOW DOES SPACE RESERVATION WORK
16  *
17  * If you want to know about delalloc specifically, there is a separate comment
18  * for that with the delalloc code.  This comment is about how the whole system
19  * works generally.
20  *
21  * BASIC CONCEPTS
22  *
23  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
24  *   There's a description of the bytes_ fields with the struct declaration,
25  *   refer to that for specifics on each field.  Suffice it to say that for
26  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
27  *   determining if there is space to make an allocation.  There is a space_info
28  *   for METADATA, SYSTEM, and DATA areas.
29  *
30  *   2) block_rsv's.  These are basically buckets for every different type of
31  *   metadata reservation we have.  You can see the comment in the block_rsv
32  *   code on the rules for each type, but generally block_rsv->reserved is how
33  *   much space is accounted for in space_info->bytes_may_use.
34  *
35  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
36  *   on the number of items we will want to modify.  We have one for changing
37  *   items, and one for inserting new items.  Generally we use these helpers to
38  *   determine the size of the block reserves, and then use the actual bytes
39  *   values to adjust the space_info counters.
40  *
41  * MAKING RESERVATIONS, THE NORMAL CASE
42  *
43  *   We call into either btrfs_reserve_data_bytes() or
44  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
45  *   num_bytes we want to reserve.
46  *
47  *   ->reserve
48  *     space_info->bytes_may_reserve += num_bytes
49  *
50  *   ->extent allocation
51  *     Call btrfs_add_reserved_bytes() which does
52  *     space_info->bytes_may_reserve -= num_bytes
53  *     space_info->bytes_reserved += extent_bytes
54  *
55  *   ->insert reference
56  *     Call btrfs_update_block_group() which does
57  *     space_info->bytes_reserved -= extent_bytes
58  *     space_info->bytes_used += extent_bytes
59  *
60  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
61  *
62  *   Assume we are unable to simply make the reservation because we do not have
63  *   enough space
64  *
65  *   -> __reserve_bytes
66  *     create a reserve_ticket with ->bytes set to our reservation, add it to
67  *     the tail of space_info->tickets, kick async flush thread
68  *
69  *   ->handle_reserve_ticket
70  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
71  *     on the ticket.
72  *
73  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
74  *     Flushes various things attempting to free up space.
75  *
76  *   -> btrfs_try_granting_tickets()
77  *     This is called by anything that either subtracts space from
78  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
79  *     space_info->total_bytes.  This loops through the ->priority_tickets and
80  *     then the ->tickets list checking to see if the reservation can be
81  *     completed.  If it can the space is added to space_info->bytes_may_use and
82  *     the ticket is woken up.
83  *
84  *   -> ticket wakeup
85  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
86  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
87  *     were interrupted.)
88  *
89  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
90  *
91  *   Same as the above, except we add ourselves to the
92  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
93  *   call flush_space() ourselves for the states that are safe for us to call
94  *   without deadlocking and hope for the best.
95  *
96  * THE FLUSHING STATES
97  *
98  *   Generally speaking we will have two cases for each state, a "nice" state
99  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
100  *   reduce the locking over head on the various trees, and even to keep from
101  *   doing any work at all in the case of delayed refs.  Each of these delayed
102  *   things however hold reservations, and so letting them run allows us to
103  *   reclaim space so we can make new reservations.
104  *
105  *   FLUSH_DELAYED_ITEMS
106  *     Every inode has a delayed item to update the inode.  Take a simple write
107  *     for example, we would update the inode item at write time to update the
108  *     mtime, and then again at finish_ordered_io() time in order to update the
109  *     isize or bytes.  We keep these delayed items to coalesce these operations
110  *     into a single operation done on demand.  These are an easy way to reclaim
111  *     metadata space.
112  *
113  *   FLUSH_DELALLOC
114  *     Look at the delalloc comment to get an idea of how much space is reserved
115  *     for delayed allocation.  We can reclaim some of this space simply by
116  *     running delalloc, but usually we need to wait for ordered extents to
117  *     reclaim the bulk of this space.
118  *
119  *   FLUSH_DELAYED_REFS
120  *     We have a block reserve for the outstanding delayed refs space, and every
121  *     delayed ref operation holds a reservation.  Running these is a quick way
122  *     to reclaim space, but we want to hold this until the end because COW can
123  *     churn a lot and we can avoid making some extent tree modifications if we
124  *     are able to delay for as long as possible.
125  *
126  *   ALLOC_CHUNK
127  *     We will skip this the first time through space reservation, because of
128  *     overcommit and we don't want to have a lot of useless metadata space when
129  *     our worst case reservations will likely never come true.
130  *
131  *   RUN_DELAYED_IPUTS
132  *     If we're freeing inodes we're likely freeing checksums, file extent
133  *     items, and extent tree items.  Loads of space could be freed up by these
134  *     operations, however they won't be usable until the transaction commits.
135  *
136  *   COMMIT_TRANS
137  *     This will commit the transaction.  Historically we had a lot of logic
138  *     surrounding whether or not we'd commit the transaction, but this waits born
139  *     out of a pre-tickets era where we could end up committing the transaction
140  *     thousands of times in a row without making progress.  Now thanks to our
141  *     ticketing system we know if we're not making progress and can error
142  *     everybody out after a few commits rather than burning the disk hoping for
143  *     a different answer.
144  *
145  * OVERCOMMIT
146  *
147  *   Because we hold so many reservations for metadata we will allow you to
148  *   reserve more space than is currently free in the currently allocate
149  *   metadata space.  This only happens with metadata, data does not allow
150  *   overcommitting.
151  *
152  *   You can see the current logic for when we allow overcommit in
153  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
154  *   is no unallocated space to be had, all reservations are kept within the
155  *   free space in the allocated metadata chunks.
156  *
157  *   Because of overcommitting, you generally want to use the
158  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
159  *   thing with or without extra unallocated space.
160  */
161 
162 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
163 			  bool may_use_included)
164 {
165 	ASSERT(s_info);
166 	return s_info->bytes_used + s_info->bytes_reserved +
167 		s_info->bytes_pinned + s_info->bytes_readonly +
168 		s_info->bytes_zone_unusable +
169 		(may_use_included ? s_info->bytes_may_use : 0);
170 }
171 
172 /*
173  * after adding space to the filesystem, we need to clear the full flags
174  * on all the space infos.
175  */
176 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
177 {
178 	struct list_head *head = &info->space_info;
179 	struct btrfs_space_info *found;
180 
181 	list_for_each_entry(found, head, list)
182 		found->full = 0;
183 }
184 
185 /*
186  * Block groups with more than this value (percents) of unusable space will be
187  * scheduled for background reclaim.
188  */
189 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
190 
191 /*
192  * Calculate chunk size depending on volume type (regular or zoned).
193  */
194 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
195 {
196 	if (btrfs_is_zoned(fs_info))
197 		return fs_info->zone_size;
198 
199 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
200 
201 	if (flags & BTRFS_BLOCK_GROUP_DATA)
202 		return BTRFS_MAX_DATA_CHUNK_SIZE;
203 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
204 		return SZ_32M;
205 
206 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
207 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
208 		return SZ_1G;
209 
210 	return SZ_256M;
211 }
212 
213 /*
214  * Update default chunk size.
215  */
216 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
217 					u64 chunk_size)
218 {
219 	WRITE_ONCE(space_info->chunk_size, chunk_size);
220 }
221 
222 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
223 {
224 
225 	struct btrfs_space_info *space_info;
226 	int i;
227 	int ret;
228 
229 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
230 	if (!space_info)
231 		return -ENOMEM;
232 
233 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
234 		INIT_LIST_HEAD(&space_info->block_groups[i]);
235 	init_rwsem(&space_info->groups_sem);
236 	spin_lock_init(&space_info->lock);
237 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
238 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
239 	INIT_LIST_HEAD(&space_info->ro_bgs);
240 	INIT_LIST_HEAD(&space_info->tickets);
241 	INIT_LIST_HEAD(&space_info->priority_tickets);
242 	space_info->clamp = 1;
243 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
244 
245 	if (btrfs_is_zoned(info))
246 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
247 
248 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
249 	if (ret)
250 		return ret;
251 
252 	list_add(&space_info->list, &info->space_info);
253 	if (flags & BTRFS_BLOCK_GROUP_DATA)
254 		info->data_sinfo = space_info;
255 
256 	return ret;
257 }
258 
259 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
260 {
261 	struct btrfs_super_block *disk_super;
262 	u64 features;
263 	u64 flags;
264 	int mixed = 0;
265 	int ret;
266 
267 	disk_super = fs_info->super_copy;
268 	if (!btrfs_super_root(disk_super))
269 		return -EINVAL;
270 
271 	features = btrfs_super_incompat_flags(disk_super);
272 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
273 		mixed = 1;
274 
275 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
276 	ret = create_space_info(fs_info, flags);
277 	if (ret)
278 		goto out;
279 
280 	if (mixed) {
281 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
282 		ret = create_space_info(fs_info, flags);
283 	} else {
284 		flags = BTRFS_BLOCK_GROUP_METADATA;
285 		ret = create_space_info(fs_info, flags);
286 		if (ret)
287 			goto out;
288 
289 		flags = BTRFS_BLOCK_GROUP_DATA;
290 		ret = create_space_info(fs_info, flags);
291 	}
292 out:
293 	return ret;
294 }
295 
296 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
297 				struct btrfs_block_group *block_group)
298 {
299 	struct btrfs_space_info *found;
300 	int factor, index;
301 
302 	factor = btrfs_bg_type_to_factor(block_group->flags);
303 
304 	found = btrfs_find_space_info(info, block_group->flags);
305 	ASSERT(found);
306 	spin_lock(&found->lock);
307 	found->total_bytes += block_group->length;
308 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
309 		found->active_total_bytes += block_group->length;
310 	found->disk_total += block_group->length * factor;
311 	found->bytes_used += block_group->used;
312 	found->disk_used += block_group->used * factor;
313 	found->bytes_readonly += block_group->bytes_super;
314 	found->bytes_zone_unusable += block_group->zone_unusable;
315 	if (block_group->length > 0)
316 		found->full = 0;
317 	btrfs_try_granting_tickets(info, found);
318 	spin_unlock(&found->lock);
319 
320 	block_group->space_info = found;
321 
322 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
323 	down_write(&found->groups_sem);
324 	list_add_tail(&block_group->list, &found->block_groups[index]);
325 	up_write(&found->groups_sem);
326 }
327 
328 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
329 					       u64 flags)
330 {
331 	struct list_head *head = &info->space_info;
332 	struct btrfs_space_info *found;
333 
334 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
335 
336 	list_for_each_entry(found, head, list) {
337 		if (found->flags & flags)
338 			return found;
339 	}
340 	return NULL;
341 }
342 
343 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
344 			  struct btrfs_space_info *space_info,
345 			  enum btrfs_reserve_flush_enum flush)
346 {
347 	u64 profile;
348 	u64 avail;
349 	int factor;
350 
351 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
352 		profile = btrfs_system_alloc_profile(fs_info);
353 	else
354 		profile = btrfs_metadata_alloc_profile(fs_info);
355 
356 	avail = atomic64_read(&fs_info->free_chunk_space);
357 
358 	/*
359 	 * If we have dup, raid1 or raid10 then only half of the free
360 	 * space is actually usable.  For raid56, the space info used
361 	 * doesn't include the parity drive, so we don't have to
362 	 * change the math
363 	 */
364 	factor = btrfs_bg_type_to_factor(profile);
365 	avail = div_u64(avail, factor);
366 
367 	/*
368 	 * If we aren't flushing all things, let us overcommit up to
369 	 * 1/2th of the space. If we can flush, don't let us overcommit
370 	 * too much, let it overcommit up to 1/8 of the space.
371 	 */
372 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
373 		avail >>= 3;
374 	else
375 		avail >>= 1;
376 	return avail;
377 }
378 
379 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info,
380 				       struct btrfs_space_info *space_info)
381 {
382 	/*
383 	 * On regular filesystem, all total_bytes are always writable. On zoned
384 	 * filesystem, there may be a limitation imposed by max_active_zones.
385 	 * For metadata allocation, we cannot finish an existing active block
386 	 * group to avoid a deadlock. Thus, we need to consider only the active
387 	 * groups to be writable for metadata space.
388 	 */
389 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
390 		return space_info->total_bytes;
391 
392 	return space_info->active_total_bytes;
393 }
394 
395 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
396 			 struct btrfs_space_info *space_info, u64 bytes,
397 			 enum btrfs_reserve_flush_enum flush)
398 {
399 	u64 avail;
400 	u64 used;
401 
402 	/* Don't overcommit when in mixed mode */
403 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
404 		return 0;
405 
406 	used = btrfs_space_info_used(space_info, true);
407 	if (btrfs_is_zoned(fs_info) && (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
408 		avail = 0;
409 	else
410 		avail = calc_available_free_space(fs_info, space_info, flush);
411 
412 	if (used + bytes < writable_total_bytes(fs_info, space_info) + avail)
413 		return 1;
414 	return 0;
415 }
416 
417 static void remove_ticket(struct btrfs_space_info *space_info,
418 			  struct reserve_ticket *ticket)
419 {
420 	if (!list_empty(&ticket->list)) {
421 		list_del_init(&ticket->list);
422 		ASSERT(space_info->reclaim_size >= ticket->bytes);
423 		space_info->reclaim_size -= ticket->bytes;
424 	}
425 }
426 
427 /*
428  * This is for space we already have accounted in space_info->bytes_may_use, so
429  * basically when we're returning space from block_rsv's.
430  */
431 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
432 				struct btrfs_space_info *space_info)
433 {
434 	struct list_head *head;
435 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
436 
437 	lockdep_assert_held(&space_info->lock);
438 
439 	head = &space_info->priority_tickets;
440 again:
441 	while (!list_empty(head)) {
442 		struct reserve_ticket *ticket;
443 		u64 used = btrfs_space_info_used(space_info, true);
444 
445 		ticket = list_first_entry(head, struct reserve_ticket, list);
446 
447 		/* Check and see if our ticket can be satisfied now. */
448 		if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) ||
449 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
450 					 flush)) {
451 			btrfs_space_info_update_bytes_may_use(fs_info,
452 							      space_info,
453 							      ticket->bytes);
454 			remove_ticket(space_info, ticket);
455 			ticket->bytes = 0;
456 			space_info->tickets_id++;
457 			wake_up(&ticket->wait);
458 		} else {
459 			break;
460 		}
461 	}
462 
463 	if (head == &space_info->priority_tickets) {
464 		head = &space_info->tickets;
465 		flush = BTRFS_RESERVE_FLUSH_ALL;
466 		goto again;
467 	}
468 }
469 
470 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
471 do {									\
472 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
473 	spin_lock(&__rsv->lock);					\
474 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
475 		   __rsv->size, __rsv->reserved);			\
476 	spin_unlock(&__rsv->lock);					\
477 } while (0)
478 
479 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
480 {
481 	switch (space_info->flags) {
482 	case BTRFS_BLOCK_GROUP_SYSTEM:
483 		return "SYSTEM";
484 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
485 		return "DATA+METADATA";
486 	case BTRFS_BLOCK_GROUP_DATA:
487 		return "DATA";
488 	case BTRFS_BLOCK_GROUP_METADATA:
489 		return "METADATA";
490 	default:
491 		return "UNKNOWN";
492 	}
493 }
494 
495 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
496 {
497 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
498 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
499 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
500 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
501 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
502 }
503 
504 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
505 				    struct btrfs_space_info *info)
506 {
507 	const char *flag_str = space_info_flag_to_str(info);
508 	lockdep_assert_held(&info->lock);
509 
510 	/* The free space could be negative in case of overcommit */
511 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
512 		   flag_str,
513 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
514 		   info->full ? "" : "not ");
515 	btrfs_info(fs_info,
516 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
517 		info->total_bytes, info->bytes_used, info->bytes_pinned,
518 		info->bytes_reserved, info->bytes_may_use,
519 		info->bytes_readonly, info->bytes_zone_unusable);
520 }
521 
522 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
523 			   struct btrfs_space_info *info, u64 bytes,
524 			   int dump_block_groups)
525 {
526 	struct btrfs_block_group *cache;
527 	int index = 0;
528 
529 	spin_lock(&info->lock);
530 	__btrfs_dump_space_info(fs_info, info);
531 	dump_global_block_rsv(fs_info);
532 	spin_unlock(&info->lock);
533 
534 	if (!dump_block_groups)
535 		return;
536 
537 	down_read(&info->groups_sem);
538 again:
539 	list_for_each_entry(cache, &info->block_groups[index], list) {
540 		spin_lock(&cache->lock);
541 		btrfs_info(fs_info,
542 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
543 			cache->start, cache->length, cache->used, cache->pinned,
544 			cache->reserved, cache->zone_unusable,
545 			cache->ro ? "[readonly]" : "");
546 		spin_unlock(&cache->lock);
547 		btrfs_dump_free_space(cache, bytes);
548 	}
549 	if (++index < BTRFS_NR_RAID_TYPES)
550 		goto again;
551 	up_read(&info->groups_sem);
552 }
553 
554 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
555 					u64 to_reclaim)
556 {
557 	u64 bytes;
558 	u64 nr;
559 
560 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
561 	nr = div64_u64(to_reclaim, bytes);
562 	if (!nr)
563 		nr = 1;
564 	return nr;
565 }
566 
567 #define EXTENT_SIZE_PER_ITEM	SZ_256K
568 
569 /*
570  * shrink metadata reservation for delalloc
571  */
572 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
573 			    struct btrfs_space_info *space_info,
574 			    u64 to_reclaim, bool wait_ordered,
575 			    bool for_preempt)
576 {
577 	struct btrfs_trans_handle *trans;
578 	u64 delalloc_bytes;
579 	u64 ordered_bytes;
580 	u64 items;
581 	long time_left;
582 	int loops;
583 
584 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
585 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
586 	if (delalloc_bytes == 0 && ordered_bytes == 0)
587 		return;
588 
589 	/* Calc the number of the pages we need flush for space reservation */
590 	if (to_reclaim == U64_MAX) {
591 		items = U64_MAX;
592 	} else {
593 		/*
594 		 * to_reclaim is set to however much metadata we need to
595 		 * reclaim, but reclaiming that much data doesn't really track
596 		 * exactly.  What we really want to do is reclaim full inode's
597 		 * worth of reservations, however that's not available to us
598 		 * here.  We will take a fraction of the delalloc bytes for our
599 		 * flushing loops and hope for the best.  Delalloc will expand
600 		 * the amount we write to cover an entire dirty extent, which
601 		 * will reclaim the metadata reservation for that range.  If
602 		 * it's not enough subsequent flush stages will be more
603 		 * aggressive.
604 		 */
605 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
606 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
607 	}
608 
609 	trans = current->journal_info;
610 
611 	/*
612 	 * If we are doing more ordered than delalloc we need to just wait on
613 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
614 	 * that likely won't give us the space back we need.
615 	 */
616 	if (ordered_bytes > delalloc_bytes && !for_preempt)
617 		wait_ordered = true;
618 
619 	loops = 0;
620 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
621 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
622 		long nr_pages = min_t(u64, temp, LONG_MAX);
623 		int async_pages;
624 
625 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
626 
627 		/*
628 		 * We need to make sure any outstanding async pages are now
629 		 * processed before we continue.  This is because things like
630 		 * sync_inode() try to be smart and skip writing if the inode is
631 		 * marked clean.  We don't use filemap_fwrite for flushing
632 		 * because we want to control how many pages we write out at a
633 		 * time, thus this is the only safe way to make sure we've
634 		 * waited for outstanding compressed workers to have started
635 		 * their jobs and thus have ordered extents set up properly.
636 		 *
637 		 * This exists because we do not want to wait for each
638 		 * individual inode to finish its async work, we simply want to
639 		 * start the IO on everybody, and then come back here and wait
640 		 * for all of the async work to catch up.  Once we're done with
641 		 * that we know we'll have ordered extents for everything and we
642 		 * can decide if we wait for that or not.
643 		 *
644 		 * If we choose to replace this in the future, make absolutely
645 		 * sure that the proper waiting is being done in the async case,
646 		 * as there have been bugs in that area before.
647 		 */
648 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
649 		if (!async_pages)
650 			goto skip_async;
651 
652 		/*
653 		 * We don't want to wait forever, if we wrote less pages in this
654 		 * loop than we have outstanding, only wait for that number of
655 		 * pages, otherwise we can wait for all async pages to finish
656 		 * before continuing.
657 		 */
658 		if (async_pages > nr_pages)
659 			async_pages -= nr_pages;
660 		else
661 			async_pages = 0;
662 		wait_event(fs_info->async_submit_wait,
663 			   atomic_read(&fs_info->async_delalloc_pages) <=
664 			   async_pages);
665 skip_async:
666 		loops++;
667 		if (wait_ordered && !trans) {
668 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
669 		} else {
670 			time_left = schedule_timeout_killable(1);
671 			if (time_left)
672 				break;
673 		}
674 
675 		/*
676 		 * If we are for preemption we just want a one-shot of delalloc
677 		 * flushing so we can stop flushing if we decide we don't need
678 		 * to anymore.
679 		 */
680 		if (for_preempt)
681 			break;
682 
683 		spin_lock(&space_info->lock);
684 		if (list_empty(&space_info->tickets) &&
685 		    list_empty(&space_info->priority_tickets)) {
686 			spin_unlock(&space_info->lock);
687 			break;
688 		}
689 		spin_unlock(&space_info->lock);
690 
691 		delalloc_bytes = percpu_counter_sum_positive(
692 						&fs_info->delalloc_bytes);
693 		ordered_bytes = percpu_counter_sum_positive(
694 						&fs_info->ordered_bytes);
695 	}
696 }
697 
698 /*
699  * Try to flush some data based on policy set by @state. This is only advisory
700  * and may fail for various reasons. The caller is supposed to examine the
701  * state of @space_info to detect the outcome.
702  */
703 static void flush_space(struct btrfs_fs_info *fs_info,
704 		       struct btrfs_space_info *space_info, u64 num_bytes,
705 		       enum btrfs_flush_state state, bool for_preempt)
706 {
707 	struct btrfs_root *root = fs_info->tree_root;
708 	struct btrfs_trans_handle *trans;
709 	int nr;
710 	int ret = 0;
711 
712 	switch (state) {
713 	case FLUSH_DELAYED_ITEMS_NR:
714 	case FLUSH_DELAYED_ITEMS:
715 		if (state == FLUSH_DELAYED_ITEMS_NR)
716 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
717 		else
718 			nr = -1;
719 
720 		trans = btrfs_join_transaction(root);
721 		if (IS_ERR(trans)) {
722 			ret = PTR_ERR(trans);
723 			break;
724 		}
725 		ret = btrfs_run_delayed_items_nr(trans, nr);
726 		btrfs_end_transaction(trans);
727 		break;
728 	case FLUSH_DELALLOC:
729 	case FLUSH_DELALLOC_WAIT:
730 	case FLUSH_DELALLOC_FULL:
731 		if (state == FLUSH_DELALLOC_FULL)
732 			num_bytes = U64_MAX;
733 		shrink_delalloc(fs_info, space_info, num_bytes,
734 				state != FLUSH_DELALLOC, for_preempt);
735 		break;
736 	case FLUSH_DELAYED_REFS_NR:
737 	case FLUSH_DELAYED_REFS:
738 		trans = btrfs_join_transaction(root);
739 		if (IS_ERR(trans)) {
740 			ret = PTR_ERR(trans);
741 			break;
742 		}
743 		if (state == FLUSH_DELAYED_REFS_NR)
744 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
745 		else
746 			nr = 0;
747 		btrfs_run_delayed_refs(trans, nr);
748 		btrfs_end_transaction(trans);
749 		break;
750 	case ALLOC_CHUNK:
751 	case ALLOC_CHUNK_FORCE:
752 		/*
753 		 * For metadata space on zoned filesystem, reaching here means we
754 		 * don't have enough space left in active_total_bytes. Try to
755 		 * activate a block group first, because we may have inactive
756 		 * block group already allocated.
757 		 */
758 		ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
759 		if (ret < 0)
760 			break;
761 		else if (ret == 1)
762 			break;
763 
764 		trans = btrfs_join_transaction(root);
765 		if (IS_ERR(trans)) {
766 			ret = PTR_ERR(trans);
767 			break;
768 		}
769 		ret = btrfs_chunk_alloc(trans,
770 				btrfs_get_alloc_profile(fs_info, space_info->flags),
771 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
772 					CHUNK_ALLOC_FORCE);
773 		btrfs_end_transaction(trans);
774 
775 		/*
776 		 * For metadata space on zoned filesystem, allocating a new chunk
777 		 * is not enough. We still need to activate the block * group.
778 		 * Active the newly allocated block group by (maybe) finishing
779 		 * a block group.
780 		 */
781 		if (ret == 1) {
782 			ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
783 			/*
784 			 * Revert to the original ret regardless we could finish
785 			 * one block group or not.
786 			 */
787 			if (ret >= 0)
788 				ret = 1;
789 		}
790 
791 		if (ret > 0 || ret == -ENOSPC)
792 			ret = 0;
793 		break;
794 	case RUN_DELAYED_IPUTS:
795 		/*
796 		 * If we have pending delayed iputs then we could free up a
797 		 * bunch of pinned space, so make sure we run the iputs before
798 		 * we do our pinned bytes check below.
799 		 */
800 		btrfs_run_delayed_iputs(fs_info);
801 		btrfs_wait_on_delayed_iputs(fs_info);
802 		break;
803 	case COMMIT_TRANS:
804 		ASSERT(current->journal_info == NULL);
805 		trans = btrfs_join_transaction(root);
806 		if (IS_ERR(trans)) {
807 			ret = PTR_ERR(trans);
808 			break;
809 		}
810 		ret = btrfs_commit_transaction(trans);
811 		break;
812 	default:
813 		ret = -ENOSPC;
814 		break;
815 	}
816 
817 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
818 				ret, for_preempt);
819 	return;
820 }
821 
822 static inline u64
823 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
824 				 struct btrfs_space_info *space_info)
825 {
826 	u64 used;
827 	u64 avail;
828 	u64 total;
829 	u64 to_reclaim = space_info->reclaim_size;
830 
831 	lockdep_assert_held(&space_info->lock);
832 
833 	avail = calc_available_free_space(fs_info, space_info,
834 					  BTRFS_RESERVE_FLUSH_ALL);
835 	used = btrfs_space_info_used(space_info, true);
836 
837 	/*
838 	 * We may be flushing because suddenly we have less space than we had
839 	 * before, and now we're well over-committed based on our current free
840 	 * space.  If that's the case add in our overage so we make sure to put
841 	 * appropriate pressure on the flushing state machine.
842 	 */
843 	total = writable_total_bytes(fs_info, space_info);
844 	if (total + avail < used)
845 		to_reclaim += used - (total + avail);
846 
847 	return to_reclaim;
848 }
849 
850 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
851 				    struct btrfs_space_info *space_info)
852 {
853 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
854 	u64 ordered, delalloc;
855 	u64 total = writable_total_bytes(fs_info, space_info);
856 	u64 thresh;
857 	u64 used;
858 
859 	thresh = div_factor_fine(total, 90);
860 
861 	lockdep_assert_held(&space_info->lock);
862 
863 	/* If we're just plain full then async reclaim just slows us down. */
864 	if ((space_info->bytes_used + space_info->bytes_reserved +
865 	     global_rsv_size) >= thresh)
866 		return false;
867 
868 	used = space_info->bytes_may_use + space_info->bytes_pinned;
869 
870 	/* The total flushable belongs to the global rsv, don't flush. */
871 	if (global_rsv_size >= used)
872 		return false;
873 
874 	/*
875 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
876 	 * that devoted to other reservations then there's no sense in flushing,
877 	 * we don't have a lot of things that need flushing.
878 	 */
879 	if (used - global_rsv_size <= SZ_128M)
880 		return false;
881 
882 	/*
883 	 * We have tickets queued, bail so we don't compete with the async
884 	 * flushers.
885 	 */
886 	if (space_info->reclaim_size)
887 		return false;
888 
889 	/*
890 	 * If we have over half of the free space occupied by reservations or
891 	 * pinned then we want to start flushing.
892 	 *
893 	 * We do not do the traditional thing here, which is to say
894 	 *
895 	 *   if (used >= ((total_bytes + avail) / 2))
896 	 *     return 1;
897 	 *
898 	 * because this doesn't quite work how we want.  If we had more than 50%
899 	 * of the space_info used by bytes_used and we had 0 available we'd just
900 	 * constantly run the background flusher.  Instead we want it to kick in
901 	 * if our reclaimable space exceeds our clamped free space.
902 	 *
903 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
904 	 * the following:
905 	 *
906 	 * Amount of RAM        Minimum threshold       Maximum threshold
907 	 *
908 	 *        256GiB                     1GiB                  128GiB
909 	 *        128GiB                   512MiB                   64GiB
910 	 *         64GiB                   256MiB                   32GiB
911 	 *         32GiB                   128MiB                   16GiB
912 	 *         16GiB                    64MiB                    8GiB
913 	 *
914 	 * These are the range our thresholds will fall in, corresponding to how
915 	 * much delalloc we need for the background flusher to kick in.
916 	 */
917 
918 	thresh = calc_available_free_space(fs_info, space_info,
919 					   BTRFS_RESERVE_FLUSH_ALL);
920 	used = space_info->bytes_used + space_info->bytes_reserved +
921 	       space_info->bytes_readonly + global_rsv_size;
922 	if (used < total)
923 		thresh += total - used;
924 	thresh >>= space_info->clamp;
925 
926 	used = space_info->bytes_pinned;
927 
928 	/*
929 	 * If we have more ordered bytes than delalloc bytes then we're either
930 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
931 	 * around.  Preemptive flushing is only useful in that it can free up
932 	 * space before tickets need to wait for things to finish.  In the case
933 	 * of ordered extents, preemptively waiting on ordered extents gets us
934 	 * nothing, if our reservations are tied up in ordered extents we'll
935 	 * simply have to slow down writers by forcing them to wait on ordered
936 	 * extents.
937 	 *
938 	 * In the case that ordered is larger than delalloc, only include the
939 	 * block reserves that we would actually be able to directly reclaim
940 	 * from.  In this case if we're heavy on metadata operations this will
941 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
942 	 * of heavy DIO or ordered reservations, preemptive flushing will just
943 	 * waste time and cause us to slow down.
944 	 *
945 	 * We want to make sure we truly are maxed out on ordered however, so
946 	 * cut ordered in half, and if it's still higher than delalloc then we
947 	 * can keep flushing.  This is to avoid the case where we start
948 	 * flushing, and now delalloc == ordered and we stop preemptively
949 	 * flushing when we could still have several gigs of delalloc to flush.
950 	 */
951 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
952 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
953 	if (ordered >= delalloc)
954 		used += fs_info->delayed_refs_rsv.reserved +
955 			fs_info->delayed_block_rsv.reserved;
956 	else
957 		used += space_info->bytes_may_use - global_rsv_size;
958 
959 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
960 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
961 }
962 
963 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
964 				  struct btrfs_space_info *space_info,
965 				  struct reserve_ticket *ticket)
966 {
967 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
968 	u64 min_bytes;
969 
970 	if (!ticket->steal)
971 		return false;
972 
973 	if (global_rsv->space_info != space_info)
974 		return false;
975 
976 	spin_lock(&global_rsv->lock);
977 	min_bytes = div_factor(global_rsv->size, 1);
978 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
979 		spin_unlock(&global_rsv->lock);
980 		return false;
981 	}
982 	global_rsv->reserved -= ticket->bytes;
983 	remove_ticket(space_info, ticket);
984 	ticket->bytes = 0;
985 	wake_up(&ticket->wait);
986 	space_info->tickets_id++;
987 	if (global_rsv->reserved < global_rsv->size)
988 		global_rsv->full = 0;
989 	spin_unlock(&global_rsv->lock);
990 
991 	return true;
992 }
993 
994 /*
995  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
996  * @fs_info - fs_info for this fs
997  * @space_info - the space info we were flushing
998  *
999  * We call this when we've exhausted our flushing ability and haven't made
1000  * progress in satisfying tickets.  The reservation code handles tickets in
1001  * order, so if there is a large ticket first and then smaller ones we could
1002  * very well satisfy the smaller tickets.  This will attempt to wake up any
1003  * tickets in the list to catch this case.
1004  *
1005  * This function returns true if it was able to make progress by clearing out
1006  * other tickets, or if it stumbles across a ticket that was smaller than the
1007  * first ticket.
1008  */
1009 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1010 				   struct btrfs_space_info *space_info)
1011 {
1012 	struct reserve_ticket *ticket;
1013 	u64 tickets_id = space_info->tickets_id;
1014 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1015 
1016 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1017 
1018 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1019 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1020 		__btrfs_dump_space_info(fs_info, space_info);
1021 	}
1022 
1023 	while (!list_empty(&space_info->tickets) &&
1024 	       tickets_id == space_info->tickets_id) {
1025 		ticket = list_first_entry(&space_info->tickets,
1026 					  struct reserve_ticket, list);
1027 
1028 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1029 			return true;
1030 
1031 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1032 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1033 				   ticket->bytes);
1034 
1035 		remove_ticket(space_info, ticket);
1036 		if (aborted)
1037 			ticket->error = -EIO;
1038 		else
1039 			ticket->error = -ENOSPC;
1040 		wake_up(&ticket->wait);
1041 
1042 		/*
1043 		 * We're just throwing tickets away, so more flushing may not
1044 		 * trip over btrfs_try_granting_tickets, so we need to call it
1045 		 * here to see if we can make progress with the next ticket in
1046 		 * the list.
1047 		 */
1048 		if (!aborted)
1049 			btrfs_try_granting_tickets(fs_info, space_info);
1050 	}
1051 	return (tickets_id != space_info->tickets_id);
1052 }
1053 
1054 /*
1055  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1056  * will loop and continuously try to flush as long as we are making progress.
1057  * We count progress as clearing off tickets each time we have to loop.
1058  */
1059 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1060 {
1061 	struct btrfs_fs_info *fs_info;
1062 	struct btrfs_space_info *space_info;
1063 	u64 to_reclaim;
1064 	enum btrfs_flush_state flush_state;
1065 	int commit_cycles = 0;
1066 	u64 last_tickets_id;
1067 
1068 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1069 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1070 
1071 	spin_lock(&space_info->lock);
1072 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1073 	if (!to_reclaim) {
1074 		space_info->flush = 0;
1075 		spin_unlock(&space_info->lock);
1076 		return;
1077 	}
1078 	last_tickets_id = space_info->tickets_id;
1079 	spin_unlock(&space_info->lock);
1080 
1081 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1082 	do {
1083 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1084 		spin_lock(&space_info->lock);
1085 		if (list_empty(&space_info->tickets)) {
1086 			space_info->flush = 0;
1087 			spin_unlock(&space_info->lock);
1088 			return;
1089 		}
1090 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1091 							      space_info);
1092 		if (last_tickets_id == space_info->tickets_id) {
1093 			flush_state++;
1094 		} else {
1095 			last_tickets_id = space_info->tickets_id;
1096 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1097 			if (commit_cycles)
1098 				commit_cycles--;
1099 		}
1100 
1101 		/*
1102 		 * We do not want to empty the system of delalloc unless we're
1103 		 * under heavy pressure, so allow one trip through the flushing
1104 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1105 		 */
1106 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1107 			flush_state++;
1108 
1109 		/*
1110 		 * We don't want to force a chunk allocation until we've tried
1111 		 * pretty hard to reclaim space.  Think of the case where we
1112 		 * freed up a bunch of space and so have a lot of pinned space
1113 		 * to reclaim.  We would rather use that than possibly create a
1114 		 * underutilized metadata chunk.  So if this is our first run
1115 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1116 		 * commit the transaction.  If nothing has changed the next go
1117 		 * around then we can force a chunk allocation.
1118 		 */
1119 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1120 			flush_state++;
1121 
1122 		if (flush_state > COMMIT_TRANS) {
1123 			commit_cycles++;
1124 			if (commit_cycles > 2) {
1125 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1126 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1127 					commit_cycles--;
1128 				} else {
1129 					space_info->flush = 0;
1130 				}
1131 			} else {
1132 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1133 			}
1134 		}
1135 		spin_unlock(&space_info->lock);
1136 	} while (flush_state <= COMMIT_TRANS);
1137 }
1138 
1139 /*
1140  * This handles pre-flushing of metadata space before we get to the point that
1141  * we need to start blocking threads on tickets.  The logic here is different
1142  * from the other flush paths because it doesn't rely on tickets to tell us how
1143  * much we need to flush, instead it attempts to keep us below the 80% full
1144  * watermark of space by flushing whichever reservation pool is currently the
1145  * largest.
1146  */
1147 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1148 {
1149 	struct btrfs_fs_info *fs_info;
1150 	struct btrfs_space_info *space_info;
1151 	struct btrfs_block_rsv *delayed_block_rsv;
1152 	struct btrfs_block_rsv *delayed_refs_rsv;
1153 	struct btrfs_block_rsv *global_rsv;
1154 	struct btrfs_block_rsv *trans_rsv;
1155 	int loops = 0;
1156 
1157 	fs_info = container_of(work, struct btrfs_fs_info,
1158 			       preempt_reclaim_work);
1159 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1160 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1161 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1162 	global_rsv = &fs_info->global_block_rsv;
1163 	trans_rsv = &fs_info->trans_block_rsv;
1164 
1165 	spin_lock(&space_info->lock);
1166 	while (need_preemptive_reclaim(fs_info, space_info)) {
1167 		enum btrfs_flush_state flush;
1168 		u64 delalloc_size = 0;
1169 		u64 to_reclaim, block_rsv_size;
1170 		u64 global_rsv_size = global_rsv->reserved;
1171 
1172 		loops++;
1173 
1174 		/*
1175 		 * We don't have a precise counter for the metadata being
1176 		 * reserved for delalloc, so we'll approximate it by subtracting
1177 		 * out the block rsv's space from the bytes_may_use.  If that
1178 		 * amount is higher than the individual reserves, then we can
1179 		 * assume it's tied up in delalloc reservations.
1180 		 */
1181 		block_rsv_size = global_rsv_size +
1182 			delayed_block_rsv->reserved +
1183 			delayed_refs_rsv->reserved +
1184 			trans_rsv->reserved;
1185 		if (block_rsv_size < space_info->bytes_may_use)
1186 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1187 
1188 		/*
1189 		 * We don't want to include the global_rsv in our calculation,
1190 		 * because that's space we can't touch.  Subtract it from the
1191 		 * block_rsv_size for the next checks.
1192 		 */
1193 		block_rsv_size -= global_rsv_size;
1194 
1195 		/*
1196 		 * We really want to avoid flushing delalloc too much, as it
1197 		 * could result in poor allocation patterns, so only flush it if
1198 		 * it's larger than the rest of the pools combined.
1199 		 */
1200 		if (delalloc_size > block_rsv_size) {
1201 			to_reclaim = delalloc_size;
1202 			flush = FLUSH_DELALLOC;
1203 		} else if (space_info->bytes_pinned >
1204 			   (delayed_block_rsv->reserved +
1205 			    delayed_refs_rsv->reserved)) {
1206 			to_reclaim = space_info->bytes_pinned;
1207 			flush = COMMIT_TRANS;
1208 		} else if (delayed_block_rsv->reserved >
1209 			   delayed_refs_rsv->reserved) {
1210 			to_reclaim = delayed_block_rsv->reserved;
1211 			flush = FLUSH_DELAYED_ITEMS_NR;
1212 		} else {
1213 			to_reclaim = delayed_refs_rsv->reserved;
1214 			flush = FLUSH_DELAYED_REFS_NR;
1215 		}
1216 
1217 		spin_unlock(&space_info->lock);
1218 
1219 		/*
1220 		 * We don't want to reclaim everything, just a portion, so scale
1221 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1222 		 * reclaim 1 items worth.
1223 		 */
1224 		to_reclaim >>= 2;
1225 		if (!to_reclaim)
1226 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1227 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1228 		cond_resched();
1229 		spin_lock(&space_info->lock);
1230 	}
1231 
1232 	/* We only went through once, back off our clamping. */
1233 	if (loops == 1 && !space_info->reclaim_size)
1234 		space_info->clamp = max(1, space_info->clamp - 1);
1235 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1236 	spin_unlock(&space_info->lock);
1237 }
1238 
1239 /*
1240  * FLUSH_DELALLOC_WAIT:
1241  *   Space is freed from flushing delalloc in one of two ways.
1242  *
1243  *   1) compression is on and we allocate less space than we reserved
1244  *   2) we are overwriting existing space
1245  *
1246  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1247  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1248  *   length to ->bytes_reserved, and subtracts the reserved space from
1249  *   ->bytes_may_use.
1250  *
1251  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1252  *   extent in the range we are overwriting, which creates a delayed ref for
1253  *   that freed extent.  This however is not reclaimed until the transaction
1254  *   commits, thus the next stages.
1255  *
1256  * RUN_DELAYED_IPUTS
1257  *   If we are freeing inodes, we want to make sure all delayed iputs have
1258  *   completed, because they could have been on an inode with i_nlink == 0, and
1259  *   thus have been truncated and freed up space.  But again this space is not
1260  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1261  *   run and then the transaction must be committed.
1262  *
1263  * COMMIT_TRANS
1264  *   This is where we reclaim all of the pinned space generated by running the
1265  *   iputs
1266  *
1267  * ALLOC_CHUNK_FORCE
1268  *   For data we start with alloc chunk force, however we could have been full
1269  *   before, and then the transaction commit could have freed new block groups,
1270  *   so if we now have space to allocate do the force chunk allocation.
1271  */
1272 static const enum btrfs_flush_state data_flush_states[] = {
1273 	FLUSH_DELALLOC_FULL,
1274 	RUN_DELAYED_IPUTS,
1275 	COMMIT_TRANS,
1276 	ALLOC_CHUNK_FORCE,
1277 };
1278 
1279 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1280 {
1281 	struct btrfs_fs_info *fs_info;
1282 	struct btrfs_space_info *space_info;
1283 	u64 last_tickets_id;
1284 	enum btrfs_flush_state flush_state = 0;
1285 
1286 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1287 	space_info = fs_info->data_sinfo;
1288 
1289 	spin_lock(&space_info->lock);
1290 	if (list_empty(&space_info->tickets)) {
1291 		space_info->flush = 0;
1292 		spin_unlock(&space_info->lock);
1293 		return;
1294 	}
1295 	last_tickets_id = space_info->tickets_id;
1296 	spin_unlock(&space_info->lock);
1297 
1298 	while (!space_info->full) {
1299 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1300 		spin_lock(&space_info->lock);
1301 		if (list_empty(&space_info->tickets)) {
1302 			space_info->flush = 0;
1303 			spin_unlock(&space_info->lock);
1304 			return;
1305 		}
1306 
1307 		/* Something happened, fail everything and bail. */
1308 		if (BTRFS_FS_ERROR(fs_info))
1309 			goto aborted_fs;
1310 		last_tickets_id = space_info->tickets_id;
1311 		spin_unlock(&space_info->lock);
1312 	}
1313 
1314 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1315 		flush_space(fs_info, space_info, U64_MAX,
1316 			    data_flush_states[flush_state], false);
1317 		spin_lock(&space_info->lock);
1318 		if (list_empty(&space_info->tickets)) {
1319 			space_info->flush = 0;
1320 			spin_unlock(&space_info->lock);
1321 			return;
1322 		}
1323 
1324 		if (last_tickets_id == space_info->tickets_id) {
1325 			flush_state++;
1326 		} else {
1327 			last_tickets_id = space_info->tickets_id;
1328 			flush_state = 0;
1329 		}
1330 
1331 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1332 			if (space_info->full) {
1333 				if (maybe_fail_all_tickets(fs_info, space_info))
1334 					flush_state = 0;
1335 				else
1336 					space_info->flush = 0;
1337 			} else {
1338 				flush_state = 0;
1339 			}
1340 
1341 			/* Something happened, fail everything and bail. */
1342 			if (BTRFS_FS_ERROR(fs_info))
1343 				goto aborted_fs;
1344 
1345 		}
1346 		spin_unlock(&space_info->lock);
1347 	}
1348 	return;
1349 
1350 aborted_fs:
1351 	maybe_fail_all_tickets(fs_info, space_info);
1352 	space_info->flush = 0;
1353 	spin_unlock(&space_info->lock);
1354 }
1355 
1356 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1357 {
1358 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1359 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1360 	INIT_WORK(&fs_info->preempt_reclaim_work,
1361 		  btrfs_preempt_reclaim_metadata_space);
1362 }
1363 
1364 static const enum btrfs_flush_state priority_flush_states[] = {
1365 	FLUSH_DELAYED_ITEMS_NR,
1366 	FLUSH_DELAYED_ITEMS,
1367 	ALLOC_CHUNK,
1368 };
1369 
1370 static const enum btrfs_flush_state evict_flush_states[] = {
1371 	FLUSH_DELAYED_ITEMS_NR,
1372 	FLUSH_DELAYED_ITEMS,
1373 	FLUSH_DELAYED_REFS_NR,
1374 	FLUSH_DELAYED_REFS,
1375 	FLUSH_DELALLOC,
1376 	FLUSH_DELALLOC_WAIT,
1377 	FLUSH_DELALLOC_FULL,
1378 	ALLOC_CHUNK,
1379 	COMMIT_TRANS,
1380 };
1381 
1382 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1383 				struct btrfs_space_info *space_info,
1384 				struct reserve_ticket *ticket,
1385 				const enum btrfs_flush_state *states,
1386 				int states_nr)
1387 {
1388 	u64 to_reclaim;
1389 	int flush_state = 0;
1390 
1391 	spin_lock(&space_info->lock);
1392 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1393 	/*
1394 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1395 	 * because we may have only satisfied the priority tickets and still
1396 	 * left non priority tickets on the list.  We would then have
1397 	 * to_reclaim but ->bytes == 0.
1398 	 */
1399 	if (ticket->bytes == 0) {
1400 		spin_unlock(&space_info->lock);
1401 		return;
1402 	}
1403 
1404 	while (flush_state < states_nr) {
1405 		spin_unlock(&space_info->lock);
1406 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1407 			    false);
1408 		flush_state++;
1409 		spin_lock(&space_info->lock);
1410 		if (ticket->bytes == 0) {
1411 			spin_unlock(&space_info->lock);
1412 			return;
1413 		}
1414 	}
1415 
1416 	/* Attempt to steal from the global rsv if we can. */
1417 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1418 		ticket->error = -ENOSPC;
1419 		remove_ticket(space_info, ticket);
1420 	}
1421 
1422 	/*
1423 	 * We must run try_granting_tickets here because we could be a large
1424 	 * ticket in front of a smaller ticket that can now be satisfied with
1425 	 * the available space.
1426 	 */
1427 	btrfs_try_granting_tickets(fs_info, space_info);
1428 	spin_unlock(&space_info->lock);
1429 }
1430 
1431 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1432 					struct btrfs_space_info *space_info,
1433 					struct reserve_ticket *ticket)
1434 {
1435 	spin_lock(&space_info->lock);
1436 
1437 	/* We could have been granted before we got here. */
1438 	if (ticket->bytes == 0) {
1439 		spin_unlock(&space_info->lock);
1440 		return;
1441 	}
1442 
1443 	while (!space_info->full) {
1444 		spin_unlock(&space_info->lock);
1445 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1446 		spin_lock(&space_info->lock);
1447 		if (ticket->bytes == 0) {
1448 			spin_unlock(&space_info->lock);
1449 			return;
1450 		}
1451 	}
1452 
1453 	ticket->error = -ENOSPC;
1454 	remove_ticket(space_info, ticket);
1455 	btrfs_try_granting_tickets(fs_info, space_info);
1456 	spin_unlock(&space_info->lock);
1457 }
1458 
1459 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1460 				struct btrfs_space_info *space_info,
1461 				struct reserve_ticket *ticket)
1462 
1463 {
1464 	DEFINE_WAIT(wait);
1465 	int ret = 0;
1466 
1467 	spin_lock(&space_info->lock);
1468 	while (ticket->bytes > 0 && ticket->error == 0) {
1469 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1470 		if (ret) {
1471 			/*
1472 			 * Delete us from the list. After we unlock the space
1473 			 * info, we don't want the async reclaim job to reserve
1474 			 * space for this ticket. If that would happen, then the
1475 			 * ticket's task would not known that space was reserved
1476 			 * despite getting an error, resulting in a space leak
1477 			 * (bytes_may_use counter of our space_info).
1478 			 */
1479 			remove_ticket(space_info, ticket);
1480 			ticket->error = -EINTR;
1481 			break;
1482 		}
1483 		spin_unlock(&space_info->lock);
1484 
1485 		schedule();
1486 
1487 		finish_wait(&ticket->wait, &wait);
1488 		spin_lock(&space_info->lock);
1489 	}
1490 	spin_unlock(&space_info->lock);
1491 }
1492 
1493 /**
1494  * Do the appropriate flushing and waiting for a ticket
1495  *
1496  * @fs_info:    the filesystem
1497  * @space_info: space info for the reservation
1498  * @ticket:     ticket for the reservation
1499  * @start_ns:   timestamp when the reservation started
1500  * @orig_bytes: amount of bytes originally reserved
1501  * @flush:      how much we can flush
1502  *
1503  * This does the work of figuring out how to flush for the ticket, waiting for
1504  * the reservation, and returning the appropriate error if there is one.
1505  */
1506 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1507 				 struct btrfs_space_info *space_info,
1508 				 struct reserve_ticket *ticket,
1509 				 u64 start_ns, u64 orig_bytes,
1510 				 enum btrfs_reserve_flush_enum flush)
1511 {
1512 	int ret;
1513 
1514 	switch (flush) {
1515 	case BTRFS_RESERVE_FLUSH_DATA:
1516 	case BTRFS_RESERVE_FLUSH_ALL:
1517 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1518 		wait_reserve_ticket(fs_info, space_info, ticket);
1519 		break;
1520 	case BTRFS_RESERVE_FLUSH_LIMIT:
1521 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1522 						priority_flush_states,
1523 						ARRAY_SIZE(priority_flush_states));
1524 		break;
1525 	case BTRFS_RESERVE_FLUSH_EVICT:
1526 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1527 						evict_flush_states,
1528 						ARRAY_SIZE(evict_flush_states));
1529 		break;
1530 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1531 		priority_reclaim_data_space(fs_info, space_info, ticket);
1532 		break;
1533 	default:
1534 		ASSERT(0);
1535 		break;
1536 	}
1537 
1538 	ret = ticket->error;
1539 	ASSERT(list_empty(&ticket->list));
1540 	/*
1541 	 * Check that we can't have an error set if the reservation succeeded,
1542 	 * as that would confuse tasks and lead them to error out without
1543 	 * releasing reserved space (if an error happens the expectation is that
1544 	 * space wasn't reserved at all).
1545 	 */
1546 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1547 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1548 				   start_ns, flush, ticket->error);
1549 	return ret;
1550 }
1551 
1552 /*
1553  * This returns true if this flush state will go through the ordinary flushing
1554  * code.
1555  */
1556 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1557 {
1558 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1559 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1560 }
1561 
1562 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1563 				       struct btrfs_space_info *space_info)
1564 {
1565 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1566 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1567 
1568 	/*
1569 	 * If we're heavy on ordered operations then clamping won't help us.  We
1570 	 * need to clamp specifically to keep up with dirty'ing buffered
1571 	 * writers, because there's not a 1:1 correlation of writing delalloc
1572 	 * and freeing space, like there is with flushing delayed refs or
1573 	 * delayed nodes.  If we're already more ordered than delalloc then
1574 	 * we're keeping up, otherwise we aren't and should probably clamp.
1575 	 */
1576 	if (ordered < delalloc)
1577 		space_info->clamp = min(space_info->clamp + 1, 8);
1578 }
1579 
1580 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1581 {
1582 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1583 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1584 }
1585 
1586 /**
1587  * Try to reserve bytes from the block_rsv's space
1588  *
1589  * @fs_info:    the filesystem
1590  * @space_info: space info we want to allocate from
1591  * @orig_bytes: number of bytes we want
1592  * @flush:      whether or not we can flush to make our reservation
1593  *
1594  * This will reserve orig_bytes number of bytes from the space info associated
1595  * with the block_rsv.  If there is not enough space it will make an attempt to
1596  * flush out space to make room.  It will do this by flushing delalloc if
1597  * possible or committing the transaction.  If flush is 0 then no attempts to
1598  * regain reservations will be made and this will fail if there is not enough
1599  * space already.
1600  */
1601 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1602 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1603 			   enum btrfs_reserve_flush_enum flush)
1604 {
1605 	struct work_struct *async_work;
1606 	struct reserve_ticket ticket;
1607 	u64 start_ns = 0;
1608 	u64 used;
1609 	int ret = 0;
1610 	bool pending_tickets;
1611 
1612 	ASSERT(orig_bytes);
1613 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1614 
1615 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1616 		async_work = &fs_info->async_data_reclaim_work;
1617 	else
1618 		async_work = &fs_info->async_reclaim_work;
1619 
1620 	spin_lock(&space_info->lock);
1621 	ret = -ENOSPC;
1622 	used = btrfs_space_info_used(space_info, true);
1623 
1624 	/*
1625 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1626 	 * generally handle ENOSPC in a different way, so treat them the same as
1627 	 * normal flushers when it comes to skipping pending tickets.
1628 	 */
1629 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1630 		pending_tickets = !list_empty(&space_info->tickets) ||
1631 			!list_empty(&space_info->priority_tickets);
1632 	else
1633 		pending_tickets = !list_empty(&space_info->priority_tickets);
1634 
1635 	/*
1636 	 * Carry on if we have enough space (short-circuit) OR call
1637 	 * can_overcommit() to ensure we can overcommit to continue.
1638 	 */
1639 	if (!pending_tickets &&
1640 	    ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) ||
1641 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1642 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1643 						      orig_bytes);
1644 		ret = 0;
1645 	}
1646 
1647 	/*
1648 	 * If we couldn't make a reservation then setup our reservation ticket
1649 	 * and kick the async worker if it's not already running.
1650 	 *
1651 	 * If we are a priority flusher then we just need to add our ticket to
1652 	 * the list and we will do our own flushing further down.
1653 	 */
1654 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1655 		ticket.bytes = orig_bytes;
1656 		ticket.error = 0;
1657 		space_info->reclaim_size += ticket.bytes;
1658 		init_waitqueue_head(&ticket.wait);
1659 		ticket.steal = can_steal(flush);
1660 		if (trace_btrfs_reserve_ticket_enabled())
1661 			start_ns = ktime_get_ns();
1662 
1663 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1664 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1665 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1666 			list_add_tail(&ticket.list, &space_info->tickets);
1667 			if (!space_info->flush) {
1668 				/*
1669 				 * We were forced to add a reserve ticket, so
1670 				 * our preemptive flushing is unable to keep
1671 				 * up.  Clamp down on the threshold for the
1672 				 * preemptive flushing in order to keep up with
1673 				 * the workload.
1674 				 */
1675 				maybe_clamp_preempt(fs_info, space_info);
1676 
1677 				space_info->flush = 1;
1678 				trace_btrfs_trigger_flush(fs_info,
1679 							  space_info->flags,
1680 							  orig_bytes, flush,
1681 							  "enospc");
1682 				queue_work(system_unbound_wq, async_work);
1683 			}
1684 		} else {
1685 			list_add_tail(&ticket.list,
1686 				      &space_info->priority_tickets);
1687 		}
1688 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1689 		/*
1690 		 * We will do the space reservation dance during log replay,
1691 		 * which means we won't have fs_info->fs_root set, so don't do
1692 		 * the async reclaim as we will panic.
1693 		 */
1694 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1695 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1696 		    need_preemptive_reclaim(fs_info, space_info)) {
1697 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1698 						  orig_bytes, flush, "preempt");
1699 			queue_work(system_unbound_wq,
1700 				   &fs_info->preempt_reclaim_work);
1701 		}
1702 	}
1703 	spin_unlock(&space_info->lock);
1704 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1705 		return ret;
1706 
1707 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1708 				     orig_bytes, flush);
1709 }
1710 
1711 /**
1712  * Trye to reserve metadata bytes from the block_rsv's space
1713  *
1714  * @fs_info:    the filesystem
1715  * @block_rsv:  block_rsv we're allocating for
1716  * @orig_bytes: number of bytes we want
1717  * @flush:      whether or not we can flush to make our reservation
1718  *
1719  * This will reserve orig_bytes number of bytes from the space info associated
1720  * with the block_rsv.  If there is not enough space it will make an attempt to
1721  * flush out space to make room.  It will do this by flushing delalloc if
1722  * possible or committing the transaction.  If flush is 0 then no attempts to
1723  * regain reservations will be made and this will fail if there is not enough
1724  * space already.
1725  */
1726 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1727 				 struct btrfs_block_rsv *block_rsv,
1728 				 u64 orig_bytes,
1729 				 enum btrfs_reserve_flush_enum flush)
1730 {
1731 	int ret;
1732 
1733 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1734 	if (ret == -ENOSPC) {
1735 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1736 					      block_rsv->space_info->flags,
1737 					      orig_bytes, 1);
1738 
1739 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1740 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1741 					      orig_bytes, 0);
1742 	}
1743 	return ret;
1744 }
1745 
1746 /**
1747  * Try to reserve data bytes for an allocation
1748  *
1749  * @fs_info: the filesystem
1750  * @bytes:   number of bytes we need
1751  * @flush:   how we are allowed to flush
1752  *
1753  * This will reserve bytes from the data space info.  If there is not enough
1754  * space then we will attempt to flush space as specified by flush.
1755  */
1756 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1757 			     enum btrfs_reserve_flush_enum flush)
1758 {
1759 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1760 	int ret;
1761 
1762 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1763 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1764 	       flush == BTRFS_RESERVE_NO_FLUSH);
1765 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1766 
1767 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1768 	if (ret == -ENOSPC) {
1769 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1770 					      data_sinfo->flags, bytes, 1);
1771 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1772 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1773 	}
1774 	return ret;
1775 }
1776 
1777 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1778 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1779 {
1780 	struct btrfs_space_info *space_info;
1781 
1782 	btrfs_info(fs_info, "dumping space info:");
1783 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1784 		spin_lock(&space_info->lock);
1785 		__btrfs_dump_space_info(fs_info, space_info);
1786 		spin_unlock(&space_info->lock);
1787 	}
1788 	dump_global_block_rsv(fs_info);
1789 }
1790